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ABSTRACT

Oceanic fluctuations are dependent on geographical location. Near

intense currents, the eddy field is highly energetic and has broad meri-

dional extent. It is likely that the energy arises from instabilities of

the intense current. However, the meridional extent of the linearly most

unstable modes of such intense jets is much narrower than the observed

region of energetic fluctuations. It is proposed here that weaker insta-

bilities, in the linear sense, which are very weakly trapped to the-cur-

rent, may be the dominant waves in the far field.

As a preliminary problem, the (barotropic) instability of parallel

shear flow on the beta plane is discussed. An infinite zonal flow with

a continuous cross-stream velocity gradient is approximated with segments

of uniform flow, joined together by segments of uniform potential vortic-

ity. This simplification allows an exact dispersion relation to be found.

There are two -classes of linearly unstable solutions. One type is trap-

ped to the source of energy and has large growth rates. The second type

are weaker instabilities of the shear flow which excite Rossby waves in
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the far field: the influence of these weaker instabilities extends far

beyond that of the most unstable waves.

The central focus of the thesis is the linear stability of thin, two-

layer, zonal jets on the beta plane, with both horizontal and vertical

shear. The method used for the parallel shear flow is extended to the

two-layer flow. Each layer of the jet has uniform velocity in the cen-

ter, bordered by shear zones with zero potential vorticity gradient. The

velocity in each layer outside the jet is constant in latitude. Separate

linearly unstable modes arise from horizontal and vertical shear. The

energy source for the vertical shear modes is nearly all potential while

the source for the horizontal shear modes is both kinetic and potential.

The most unstable waves are tightly trapped to the jet, within two or

three deformation radii for small but nonzero beta. Rossby waves and

baroclinically unstable waves (in the presence of vertical shear) exist

outside the jet because of a nonzero potential vorticity gradient there.

Weakly growing jet instabilities can force these waves when their phase

speeds and wavelengths match. In particular, westward jets and any jets

with vertical shear exterior to the jet can radiate in this sense. The

radiating modes influence a large region, their decay scales inversely

proportional to the growth rate. Two types of radiating instability are

found: (1) a subset of the main unstable modes near marginal stability

and (2) modes which appear to be destabilized neutral modes. Westward

jets have more vigorously unstable radiating modes.

Applications of the model are made to the eddy field south of the Gulf

Stream, using data from the POLYMODE settings along 550W and farther into



-4-

the gyre at MODE. The energy decay scale and the variation of vertical

structure with latitude in different frequency bands can be roughly ex-

plained by the model. The lower frequency disturbances decay more slowly

and become more surface intensified in the far field. These disturbances

are identified with the weak, radiating instabilities of the model. The

higher frequency disturbances are more trapped and retain their vertical

structure as they decay, and are identified with the trapped, strongly

unstable modes of the jet.

Thesis Supervisor: Joseph Pedlosky, Senior Scientist

Department of Physical Oceanography

Woods Hole Oceanographic Institution
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CHAPTER I: INTRODUCTION

The central subject of this thesis is the linear stability of cer-

tain geophysical flows: thin, baroclinic jets with large horizontal and

vertical shear. A major focus of the theory and applications is the ex-

istence of "radiating" instabilities, which have very large meridional

decay scales. While the high eddy energy which occurs directly in strong

currents is undoubtedly due to the most unstable waves of the currents,

the meridional decay of the energy is much too slow to be explained by

the most unstable waves. Radiating instabilities are explored as a pos-

sible source of this slowly decaying, highly energetic eddy field. The

primary application explored here is to intense, separated subtropical

jets, such as the Gulf Stream east of Cape Hatteras. The theory could

just as easily be applied to the Antarctic Circumpolar Current or to

westward flows like the North Equatorial Current. More detailed obser-

vational and theoretical background are given below, followed by short

summaries of the three chapters which are the bulk of the thesis.

1. Observational background

The large-scale, low-frequency, eddy energy distribution in mid-

latitude oceans is highly inhomogeneous. Maps of any measure of the eddy

energy show very energetic fluctuations in the area of the strongest cur-

rents, weaker fluctuations near and in weaker currents and the weakest

fluctuations where the currents are very gentle. The relation between

the current strength and the eddy energy is quite clear: it is evident



-18-

in horizontal maps of the thermocline potential energy (Dantzler, 1977)

and surface kinetic energy (Richardson, 1981; Wyrtki, Magaard and Hager,

1976) in the North Atlantic. The inhomogeneity is evident in zonal XBT

sections in the North Pacific (Bernstein and White, 1977) where much

higher fluctuation energy occurred in the west. It is evident in the

results of long-term current meter arrays in the western North Atlantic

(Schmitz, 1978) and the North Pacific (Schmitz, Niiler, Bernstein and

Holland, 1982).

Various sources for the eddy energy in the oceans have been ex-

plored. These fall in the categories of direct atmospheric forcing, top-

ographic forcing, local instability and radiation from localized disturb-

ances. These mechanisms are reviewed by Philander (1978). Atmospheric

forcing (Frankignoul and Muller, 1979 and Muller and Frankignoul, 1981)

seems to be a satisfactory explanation for the low-level, background eddy

energy found even in the quietest parts of the ocean, such as the North-

east Atlantic. Atmospheric forcing has neither the strength nor the spa-

tial inhomogeneity to account for the higher eddy energy encountered else-

where in the ocean. Topographic forcing may be quite important: topog-

raphy can change the structure of fluctuations, can cause a flow to be

unstable that would otherwise be stable (Pedlosky, 1980) and can be the

source of perturbations to an unstable flow. Although intensification of

eddy energy can be seen where the topography is rough (-such as over the

New England Seamounts), topography alone does not account for the general

eddy field of the western subtropical oceans. Local flow instability is

the suggested source of eddies directly in currents such as the Gulf
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Stream and the North Equatorial Current (Gill, Green and Simmons, 1974)

and in these currents' counterparts in numerical models (Haidvogel and

Holland, 1978). Local instability of the westward return flow in the

subtropical gyre may also account for the variability observed there

(Holland and Lin, 1975).

None of these mechanisms can really account for the spatial distri-

bution of the eddy energy in the western North Atlantic and North Pacific.

Specifically, while the energy levels directly in the Gulf Stream and Kur-

oshio are high and clearly are due to local processes, the slow decay of

this energy to the south of these currents cannot be entirely explained

by local processes. (Chapter IV discusses these scales in more detail

for the North Atlantic.) That is, the eddy field in the subtropical gyres

may be more related to the presence of the intense currents (Gulf Stream

and Kuroshio) than to local instability processes. The energy from the

instabilities of these intense currents finds its way into the gyre in-

teriors: one mechanism which is being explored is the propagation and de-

cay of Gulf Stream rings (Flierl, 1975, 1977; Flierl, Larichev, McWilliams

and Reznik, 1980). It is the purpose of this thesis to explore a simpler,

but related possibility: namely, that the structure of the eddy field

south of the Gulf Stream can be understood through a consideration of

the unstable modes of the Gulf Stream itself. While the linear stabil-

ity problem cannot tell us exactly what the fully-developed eddy field

will look like, it can tell us what the possibilities are. Then a com-

parison of linear stability results with observations may predict which

linearly unstable waves are most important at finite amplitude. Con-
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versely, knowledge of the possible instabilities can predict aspects of

the actual eddy field. Since Gulf Stream rings are the ultimate product

of the Gulf Stream's finite amplitude instability, perhaps their struc-

ture and preferred size can be deduced, or at least reconciled with, the

instabilities of the Gulf Stream.

2. Theoretical background

This thesis is concerned with the stability of vertically-sheared

thin jets in which both horizontal and vertical shear by themselves can

produce instability. Jets with various geometries are explored to find

as many of their unstable modes as possible. The unstable modes are clas-

sed according to their vertical and meridional structure. While the waves

with the largest linear growth rates are explored here and are clearly

important in the finite amplitude state, attention is focused on waves

with lower growth rates and very large meridional decay scales. It is

hypothesized that the fully-developed flow contains more than just the

initial basic flow and the most unstable waves: it is suggested that

waves with lower growth rates survive and grow and that these waves,

which have much larger meridional decay scales than the more unstable

waves, dominate the far field of the jet while the most unstable waves

are the most important waves right in the jet.

Instabilities of baroclinic jets arise from both the horizontal and

vertical shear. One result of the following study is that each unstable

mode can be classified as a horizontal or vertical shear mode in that it
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exists when either the vertical or horizontal shear, respectively, is re-

moved. However, the exact source of energy for the unstable mode may be

a strong mixture of both kinetic and potential energy, independent of

whether the mode is identified as a horizontal or a vertical shear mode.

Empirically, it is found that no additional modes arise when both shears

are present. Thus it is sensible to consider barotropic and baroclinic

instabilities separately before combining them together in a mixed flow.

The study of barotropic instability began in the nineteenth century

with Helmholtz's (1868) and Rayleigh's (1879, 1880) considerations of the

stability of parallel shear flow. (The problem of the stability of homo-

geneous, horizontally-sheared flows on the f-plane is identical with the

problem for non-rotating, parallel shear flow.) Piecing flow profiles

from straight lines, Rayleigh (1879, 1880) obtained analytic solutions

for a variety of cases, including shear layers and jets, with and without

boundaries. He also derived a necessary condition for instability based

on the occurrence of an inflection point in the velocity (Rayleigh, 1887).

A second necessary condition for instability of parallel shear flow was

derived by Fj~rtoft (1950).

The stability of parallel shear flows in the presence of was first

studied by Kuo (1949). He showed that logarithmic singularities in solu-

tions at points where the phase speed of neutral solutions matches the

flow speed requires that the potential vorticity gradient vanish there.

Thus the number of neutral solutions with phase speeds in the range of the

flow speed is less than or equal to the number of zeros of the.potential

vorticity gradient. Drazin and Howard (1962) and Howard (1964) showed
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that, when a = 0, such neutral solutions have contiguous unstable solu-

tions. Since the number of neutral solutions is equal to the number of

inflection points, and all of these neutral solutions have contiguous un-

stable solutions, the number of unstable modes can be predicted (equal to

the number of inflection points). This criterion has not been extended

to the a plane.

The stability of specific parallel shear flows on the a plane was

investigated by Howard and Drazin (1964). They found analytical solu-

tions for simple flows and a neutral stability curve for the shear flow,

U(y) = tanh y. Most importantly for the present investigation, they pre-

dicted an additional long-wave mode for the hyperbolic-tangent flow with

non-zero s: this long-wave mode is not tied to the neutral solutions as-

sociated with the zeroes of the potential vorticity gradient, (a - U ).

Dickinson and Clare (1973) took up the search for the unstable modes

of the hyperbolic-tangent profile on the s plane. They confirmed Howard

and Drazin's suspicions, finding that there is indeed an additional long-

wave mode when s is non-zero. Moreover, they paid close attention to the

horizontal structure of the instabilities and found that the unstable

waves identified with the hyperbolic-tangent instability at a = 0 are

strongly trapped to the shear zone, while the unstable long-waves resem-

ble Rossby waves in the westerly part of the flow. These "Rossby" waves

have large meridional decay scales. They suggested that the new mode can

be interpreted as over-reflect-ion of Rossby waves from the shear zone.

The existence of the Rossby-wave-like solutions (radiating solu-

tions) found by Dickinson and Clare (1973) requires an ambient potential
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vorticity gradient (e.g., s) in the outer field. It also depends cru-

cially on the overlapping of the unstable wave phase speeds and zonal

wavenumbers with possible Rossby-wave phase speeds and zonal wavenumbers.

McIntyre and Weissman (1978) discussed this phase speed condition; they

also discussed the definition and existence of radiating waves, perhaps a

little too adamantly defining a radiating wave as one with a zero growth

rate (since only non-growing waves can be purely wavelike in all horizon-

tal directions). The definition of radiation is extended here to include

instabilities which are similar to Rossby waves in the flow external to

the energy source.

Since strict limits can be placed on the instability phase speeds

(Howard, 1961; Pedlosky, 1964) and since the Rossby wave dispersion rela-

tion gives the phase speeds of the Rossby waves in the far field, it is

easy to predict when an unstable flow will not radiate. (Proving the ex-

istence of radiating solutions, of course, requires solving the specific

problem.) Instability phase speeds must be within the range of the mean

flow speed (with a small correction due to s) and Rossby wave phase speeds

must be westward with respect to the mean flow. Thus a monotonic shear

layer or a westward jet may radiate, while an eastward, barotropic jet

cannot radiate. A basically eastward jet might radiate if, for instance,

vertical shear (in the form of a westward undercurrent or weak vertical

shear in the far field) or westward jets on either side of the eastward

jet are included.

A relevant investigation of how neutral (Rossby) waves in a flow

with vertical shear can be forced by a moving boundary was made by Ped-
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losky (1976). The vertically-sheared flow is stable because of large,

non-zero a. The disturbances forced by the boundary are either strongly

trapped or purely radiating (semi-infinite Rossby waves), depending on

whether the phase speed condition, matching the phase speed and zonal

wavenumbers of the moving boundary and the Rossby waves, is satisfied.

The present study extends this theory to the situation which motivated

it, namely whether periodic instabilities of a zonal current can excite

the ambient waves of the far field and carry the instabilities' energy

far away into the ocean interior.

Baroclinic instability results from the horizontal density gradient

of rotating flow. Phillips (1954) introduced the layer model of baro-

clinic instability, which tremendously simplified the mathematics of the

general, continuously-stratified problem. Of course, the two-layer model

resolves only the first two vertical modes of the flow. Phillips showed

how baroclinic instability depends on the size of the horizontal density

gradient and how stabilizes the flow. Pedlosky (1964a, b) further ex-

tended the results for the two-layer model. He also derived two necessary

conditions for instability for flow with both horizontal and vertical

shear which are the s-plane analogs of Rayleigh's and Fjortoft's theor-

ems, for both continuously stratified and two-layer flow.

The stability of flows with both vertical and horizontal shear has

been considered by a number of authors. Most relevant to the present in-

vestioation are those involving the stability of quasi-geostrophic flows

with strong horizontal shear in at least one of the layers. Orlanski

(1969) considered the effects of topography and varying stratification
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on the instability of a baroclinic jet. Hart (1974) showed how the rela-

tive importance of barotropic and baroclinic instability depends on the

relative layer depths and Froude number. Gent (1974, 1975) discussed the

effect of variable jet widths and B on the unstable modes, showing that

the meridional scale of the most unstable wave is set by the jet width

rather than the Rossby deformation radius. Haidvogel and Holland (1978)

showed that a linear stability analysis of instantaneous and time-aver-

aged flow profiles taken from two-layer, eddy-resolving general circula-

tion models yields meaningful results for the lowest order properties

(wavenumber, phase speed and growth rate) of the dominant waves in the

complete model. Holland and Haidvogel (1980) investigated the effect

of selected parameter changes (amount of horizontal shear in the lower

layer, Froude number, relative layer depths, ratio of a to the relative

vorticity) on the relative importance of barotropic and baroclinic

instability.

One important difference between the present study and these mixed

instability studies is their concentration on the most unstable waves.

The usual assumption in linear stability analyses is that the most un-

stable wave is the most likely to succeed in growing to the greatest

amplitude and is the most likely to be observed. (Indeed, comparison of

the most unstable waves of Eady's (1949) and Charney's (1947) models with

atmospheric observations shows that this is approximately true, while

Haidvogel and Holland (1978) showed that the linearly most unstable waves

explain much about the fully-nonlinear eddy field in general circulation

models.) However, more weakly unstable waves may also be important,
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especially if their meridional structure is very different from that of

the most unstable waves, e.g. if their meridional decay is much slower

than the decay of the most unstable waves.

Studies of weakly non-linear, finite-amplitude instability (e.g.,

Pedlosky, 1970) show how the most unstable waves develop. Pedlosky (1981)

also showed, however, that the most unstable wave is not necessarily the

one which dominates the final solution. As the most unstable wave grows,

it alters the mean flow in such a way as to make it more hospitable for

longer, less unstable waves to grow. The final, finite-amplitude solu-

tion is dominated by a longer wave with smaller linear growth rates than

the most unstable wave. In other studies (Loesch, 1974; Pedlosky, 1975),

it was shown that nonlinear interactions between unstable and stable waves

can feed energy to stable waves. These results are important for this

thesis because it is assumed here that waves other than the most unstable

wave can survive and grow to finite amplitude so that the final field is

composed of several different waves with radically different linear growth

rates and meridional decay scales.

3. Thesis outline

The stability of homogeneous, parallel shear flow on the a-plane is

discussed in Chapter II. Flow profiles are simplified using Rayleigh's

method (1879, 1880), extended to flow on the a-plane. Necessary condi-

tions are derived and a definition of radiating instabilities is given.

Unstable solutions of a monotonically sheared flow and a thin jet are
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found. When o is non-zero, so that there is a potential vorticity gra-

dient throughout the fluid, the monotonically-sheared flow and a westward

jet have radiating instabilities. (An eastward jet cannot radiate out-

side the jet because its instabilities do not meet the phase speed condi-

tion.) The radiating modes are mainly destabilized Rossby waves rather

than modes which were trapped when circumstances did not permit radiation

(e.g., when B = 0).

Chapter III is the heart of the thesis, containing results for thin

baroclinic jets. The jets all have two layers and strong horizontal shear.

First the results for non-radiating jets are carefully explored. The geom-

etry is then changed slightly to allow these jets to radiate: a jet with

a westward undercurrent, jets with small vertical shear in the ocean in-

terior and westward-flowing jets are studied. There are two types of

radiating instability: (1) trapped instabilities of the non-radiating jet

which are now enabled, by virtue of the change in geometry, to radiate

and (2) destabilized Rossby waves of the interior ocean.

Chapter IV is a comparison of the model results of Chapter III with

observations in the western North Atlantic. The radiating solutions of

Chapter III have distinctive vertical structures depending on their char-

acteristic phase speeds and their ability to propagate in each of the two

layers in the ocean interior. There is rough agreement between the model

and observations if a basic state is chosen which has an eastward Gulf

Stream, westward sidelobes and eastward vertical shear in the ocean in-

terior. The observed eddy field can then be made up of highly unstable,

trapped waves in the Gulf Stream and more slowly growing, radiating waves

in the ocean interior.



CHAPTER II: BAROTROPIC INSTABILITY

The main subject of the thesis is the stability of thin baroclinic

jets, which have both horizontal and vertical shear. It is helpful to

first break the mixed baroclinic-barotropic problem into its constitu-

ents, barotropic and baroclinic instability, so that the role of each is

better understood. The approximations used to model the mean velocity

profiles, necessary conditions for instability as applied to such models

and the definition of and conditions for radiation are more'easily dis-

cussed in the context of barotropic instability. This chapter is a dis-

cussion of the linear stability of parallel shear flow on the 6-plane,

using a method similar to Rayleigh's (1879) to approximate the mean flow.

Several specific flows are then examined for their stability to infini-

tesimal perturbations.

2.1 Formulation of the Linear Stability Problem for Homogeneous,

Parallel Shear Flow.

The fluid whose flow is examined for stability is assumed to be

homogeneous and inviscid. The flow is assumed to be quasi-geostrophic

in that the velocities can be written in terms of a stream function $p

The non-dimensionalized potential vorticity equation is derived and

discussed by Pedlosky (1979). It is:

( - Wy + 2 ) (V2y + sy) =0
at y (2.1.1)
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This is already non-dimensionalized, with

[x,y] = L, [u,v] = U0, [t] = L/U0 , [i] = LU0
and a = S0L2/U0 . (The square brackets here mean "the scale of".) It is

further assumed that the velocity and stream-function are composed of two

well-separated parts: a mean, steady flow and infinitesimal perturbations

on the flow. The basic flow is assumed to be zonal and to vary only with

latitude. Thus

= 2Y(y) + O(x,y,t)

u = U(y) + u'(x,y,t) = - y -
yy

v = v'(x,y,t) =

where 6 << v. Linearizing the potential vorticity equation (2.1.1) to

include only terms of order 6 , we obtain

+ U(y) ) 2 + (s-U ) =0

The domain of the flow is infinite in the x-direction and may be boinded

by walls at y = *H. The boundary condition at y = *H is that v = 0 = 0

there. If H - , the boundary condition is that the solution be bounded

at infinity, or equally that the energy flux be outward at infinity.

Seeking normal mode solutions

O(x,y,t) = A(y) eik(x-ct)

where k is real and A(y) and c are complex, the potential vorticity equa-

tion becomes the familiar

2
[U(y) - c] (-7 - k 2A) + (s - U ) A = 0 (2.1.2)

dy-y
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Solutions to this equation are sought, with particular interest focused

on solutions with complex c, which therefore have exponential growth.

There are four useful theorems which yield some information about

the stability of a particular flow U(y) before the detailed stability an-

alysis is undertaken. They are all well-known, so only a brief statement

of each will be given here. The first two are necessary (but not suffi-

cient) conditions for instability. In their non-a-plane forms, they are

Rayleigh's inflection point theorem (Rayleigh, 1880) and the Fjdrtoft ex-

tension of this theorem (Fjdrtoft, 1950). The s-plane extension of the

Rayleigh theorem was made by Kuo (1949) for homogeneous flow, by Charney

and Stern (1962) for stratified flow and by Pedlosky (1964) to include

upper and lower boundary conditions. An extension of Fjdrtoft's theorem

to the s-plane, including stratification, was made by Pedlosky (1964).

Using the notation of Pedlosky (1979), these two theorems in their normal

mode, s-plane form, for unstratified flow, are:

fH JAI2

c.f dy A _ = 0 (2.1.3)
H |U-c 2 ay

and

dy | A 12 U 7 > 0 (2.1.4)
-H IU-c 2  ay

where an/ay = (s - U ). Here the integrals are taken over the domain

of the flow (-H,H), H can be extended to infinity and a is any constant.

The first theorem says that, if the growth rate of the perturbation is to

be non-zero, the potential vorticity gradient (s-U ) must change sign

somewhere in the flow. The second theorem says that the product U(s-U )



-31-

must be positive somewhere in the flow. [Taking the two theorems together,

(U-a)(s-U ) must be positive somewhere for instability to be possible,

where a is any constant.]

A third useful theorem, which places bounds on the phase speed and

growth rate of the perturbations, is the semi-circle theorem, derived in

its non-s-plane form by Howard (1961) and extended to the s-plane by Ped-

losky (1964). Again using notation from Pedlosky (1979), this theorem

says that if the phase speed is complex (c = cr + ic1), so that the per-

turbation 0 is growing exponentially, then its phase speed has limits:

U -i - a < c r< U ma (2.1.5a)
min - 2(w2/4 + k2) r max -

c 2 Umax - mi + 2 2 Umax - min (2.1.5b)
k + i /4

In the absence of s, the complex phase speed must lie within the semi-

circle of radius (U max-U )/2, centered at

Umax + Umin
cr ) = 2 ' 0

A fourth useful theorem, only applicable to flows where s is zero,

is Howard's inflection point theorem (1961). This theorem predicts the

number of neutral modes that exist in a parallel shear flow. For each

inflection point (Uyy = 0) there is one neutral mode with contiguous un-

stable solutions. This theorem has not been extended to the a-plane: it is

clear from the work of Howard and Drazin (1964) and Dickinson and Clare

(1973) that additional modes appear as soon as a is non-zero. The added
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modes appear, from the present work, to arise when the latitudinal struc-

ture of the eigenfunctions can be wavelike.

2.2 Choice of Flow Profiles

The solution of (2.1.2) is made difficult by the possible presence

of critical layers, where c = U(yc), within the flow. If the disturbance

is growing, so that c. 0, the problem is non-singular on the real line

and has a well-behaved solution. If the flow velocity, U, changes con-

tinuously with y, the only allowed neutral modes must have phase speeds

either outside the range of the flow speed or equal to the flow speed

where the potential vorticity gradient vanishes (Kuo, 1949).

In order to avoid problems associated with critical layers, Rayleigh

(1879) introduced a way of approximating flow profiles (with a = 0) which

significantly simplified the finding of solutions. Rather than allow the

flow to change continuously in y, with isolated zeroes of the vorticity

gradient, he required that Uyy vanish everywhere except at isolated

points. Flows were approximated with straight lines

U =a

or

U = a + by

where a and b are constants. This effectively compresses non-zero U
yy

into delta functions at points where straight lines are joined together.

Rayleigh's method is extended here to the s-plane. On the a-plane,

the flow is pieced together out of regions where the potential vorticity

gradient either vanishes or is independent of y. The problem (2.1.2) is
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simplified by approximating the flow U(y) by

U =a

or
s -U = 0

yy

This is slightly different from Rayleigh's formulation in that the poten-

tial vorticity gradient does not vanish everywhere, but is equal to s, the

planetary vorticity gradient, where U is independent of y. Solutions to

(2.1.2) are then found in each separate region of the flow profile. Bound-

ary conditions at the northern and southern walls, or at y = * -, are ap-

plied. Then, in order to determine the rest of the structure of A(y) and

to find c(k), matching conditions on the pressure and normal velocity are

applied at each profile break.

The matching conditions, originally due to Rayleigh (1880), are that

the displacement of the material (zonal) interface between the two regions

of the flow be the same in both regions on either side of the interface.

Thus, if the streamfunction is

= A(y) eik(x - ct)

the meridional velocity is

v = ik A(y) eik(x - ct)

and the interface displacement is

n= F(y) eik(x - ct)

then the velocity and displacement are related by

v = n = ik (U-c) F(y) eik(x-ct)
D t ekxt
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The function F(y) must be the same each side of the interface; thus

F(y) = A(y)
U-c

must be continuous across the interface. If the profile break occurs at

y = 0 for instance, this condition is written as

U-c = 0 (2.2.2)

where the square brackets indicate the jump in the quantity from y = 0 + e

to y = 0 -E.

The second jump condition is that the tangential pressure gradient

at the interface be given equally on both sides of the interface. This

condition is

dA dU 0 (2.2.3)
(U-c) _87- A dy ]O(.23

Both of the matching conditions are unaffected by non-zero a. Application

of these matching conditions and the appropriate boundary conditions to

the solutions in each flow region gives the full solution and the complex

phase speed c(k).

2.3 Necessary Conditions for Instability for "Broken Line" Profiles

When the flow U(y) or its derivative dU/dy are discontinuous, there

are slight changes in the necessary conditions (2.1.3) and (2.1.4). The

potential vorticity equation (2.1.2) is multiplied by A*/(U-c). The equa-

tion is then integrated over the entire y domain and the real and imagin-

ary parts are separated to give the two necessary conditions for instabil-
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ity. For example, if there is a simple discontinuity in U(y) or its der-

ivative at y = yo, the integrated equation is

-[A*A ] + d A -k2  2 +A 2 anSyo J -H Ay AI + U-c ay

(2.3.1)

H r 2 2 A 2  4 _
+ dy - |A 2 -k2 Al2 + U-c a- = 0

+ y U-c ay

where an- -yy and where the square brackets denote the jump inaUy

the bracketed quantity across y . Evaluation of this jump using the

matching conditions (2.2.2) and (2.2.3) at yo yields

U+-c* U -c* U -c A2 U+-c U _ U+y

y yO - -y U_-c* U+-c* U+-c + U_-c U+-c U_-c

(2.3.2)

where the subscripts (-) and (+) indicate evaluation of the function on

the southern and northern sides of the profile breaks respectively. If,

as in most of the cases of interest here, we have U+ = U_ with a discon-

tinuity in dU/dy across the break, this expression becomes

- [A*A ] = IAl2  (U -U)

y y U-c -y U+y) (2.3.3)

where U is the velocity at the break. Note that according to matching

condition (2.2.2), the function A(y) is continuous at the break, but

dA/dy is not. Equation (2.3.3) can be rewritten in delta function form:

+H = 2 (U
-[A*A ] HU~y (y - yo) dy (2.3.4)
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The potential vorticity gradient can be rewritten in a generalized way:

+ aU Y U 6 ( - yO) (2.3.5)

where is the well-behaved part of the potential vorticity gradient in

the regions between profile breaks and (U - Uo+ )y - Yo) is a delta

function contribution to the potential vorticity gradient due to the pro-

file breaks. (It does not have any real meaning unless included in an

integral over y.) The integrated potential vorticity equation (2.3.1)

can be written:

- -Hdy f|Ay|2 + k2 A|2 dy - dy |A |2 + k2 A|2 (2.3.6)
yo+

+H |A I
+ U-c y dy= 0

The imaginary part of this equation is

+H 2^
c UAc 2  = 0 (2.3.7)i J~t2 ay

-H IU-c

This is the analog (normal mode form) of the necessary condition (2.1.3)

when there is a discontinuity in dU/dy at y . If c1 is different from

zero, there must be a change of sign in the effective potential vorticity

gradient, which is now

S-U + (U_, - U+y) 6 (y - yo)

The necessary condition can be satisfied if, for instance, 3T' = - U
ay yy,

were everywhere positive or zero and (U_y - U+y) were negative.
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The second necessary condition is obtained from the real part of

(2.3.6). It is

+H |A2 o~ 2 H2AI2 (U-c ) 37T dy = | 2 dy + | A2 dy
-H U-c -H y -o+ d

(2.3.8)

+ H k2 JAl 2 dy > 0
-H

This is the normal mode analog of (2.1.4) when there is a discontinuity in

dU/dy. Thus, if (U - cr){-2-- + (Uy - U+y)6(y-yo)} is everywhere negative,

the flow must be stable.

Both of these necessary conditions are very useful in seeing whether

a given flow might be unstable. Using delta functions to represent the

potential vorticity gradient at profile breaks, it is easy to see if a

flow is definitely stable. Application of these conditions will be made

for some of the specific flows considered below.

When the flow U(y) is itself discontinuous, the first derivative,

dU/dy, at profile breaks can be represented by a delta function. Th'e

potential vorticity gradient at the profile breaks is dominated by

(s-U ), which looks like a delta function derivative. I have not been

able to find a simple statement of the necessary conditions for this case.

2.4 Radiation Conditions

One of the purposes of this thesis is to explore the occurrence of

"radiating" modes of instability. In a heuristic sense, this means to seek

solutions which have their primary energy source in some well-defined re-

gion and which can propagate this energy to large distances (compared with

the' internal deformation radius, say) from the source. The word "radia-
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ting" usually describes a pure wave, say of the form eV eikx, where k is

real and k is imaginary. When k is purely real, the solution is "trapped".

When the phase speed c is complex so that the wave is growing, the y-wave-

number is also complex. The solution is then wavelike with an evanescent

envelope in y, because the source of energy for the wave is localized in

space (at the region of horizontal shear for these barotropic instabili-

ties). Since the disturbance is growing in time, at any time after the

onset of instability, there will be a spatially decaying disturbance out-

side the jet, because it takes a finite time for the (initially small)

disturbance to reach a point far from the jet. Therefore, any growing

wave will not look like a purely "radiating" disturbance away from the

source of energy. Neutral solutions, on the other hand, will enjoy the

distinction of being either purely wavelike or purely evanescent in the

y direction. The growing waves can be identified as radiating or trapped

by the structure of the contiguous neutral mode, which will be either

wavelike or evanescent away from the energy source. We identify "radi-

ating" waves as unstable waves which neighbor neutral Rossby waves. These

unstable, radiating waves look nearly like Rossby waves except that they

have slowly decaying envelopes imposed on the wavelike structure in y.

There are quantitative means for determining if waves are radiating.

If the disturbance is of the form

e i(kx + y- kcrt) e-ry + kc t

north of the energy source, the envelope of the disturbance moves out at

the rate kc /kr. As an example, look at a single unstable wave which

satisfies the barotropic Rossby wave dispersion relation in the far field,
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but which has complex phase speed and y-wavenumber. Its dispersion rela-

tion is

U 2 2 +k 2  2a

c + i c U - 1 r + r (2.4.1)r 1 |k 2 + z212 k2+ 212(

Thus

c. 2a Z.
1 1

kr Ik2+Z2|2  (2.4.2)

The ratio kc /kr is the meridional group velocity. The group velocity

approaches a non-zero constant as ci > 0 if the outside field is really a

Rossby wave unless the solution for given c and k happens to have ~. -> 0

as ci + 0,. If however the group velocity approaches zero as c > 0, the

decay scale (zr) 1 remains non-zero and the disturbance is trapped. (Some

"radiating" solutions are actually found which have ki > 0 as ci > 0, but

contiguous, slightly unstable waves clearly have large decay scales and

wavelike behavior in y.)

One is tempted to define a radiating instability as one which looks

wavy in y. In fact, this is an acceptable criterion. Again, consider-

ing a barotropic Rossby wave, the y wavenumber can be written as

. + ik r V / __ - k2

U - c -ic.

If, as c + 0, (U - cr) is positive and k2 is small, the radicand is posi-

tive and kr tends to zero. The resulting disturbance is a Rossby wave

with y-wavenumber 2, If, as ci > 0, either (U - c r) is negative or

(U - cr) is positive and k2 is large, the radicand is negative so that
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Zi tends to zero and the disturbance is trapped. Thus, if as c *> 0,

-1+ 0 trapped disturbance
r (2.4.3)

+ - radiating disturbance
r

Visually, this is a measure of how "wiggly" the eigenfunction appears as

ci > 0. If, as ci -> 0, there are more and more oscillations before the

disturbance decays away in y, the mode is radiating. Also, when zr =Zi'

we have

a(U - cr) 2

U - c 2

If the wave is not growing, if c. = 0, waves with

2 s(U - cr)

k <
U - c|2

are purely wavelike in y, while waves with

2 s(U - cr)

IU - cr

are evanescent in y. The transition from waviness to evanescence as a

function of k persists when c. is non-zero. The criterion, Zr = Zi, will

be used to-distinguish between unstable modes which are more wavelike (and

less trapped) and those which are more evanescent.

Under what circumstances will a mode be radiating away from the-en-

ergy source? The first obvious requirement for radiating disturbances is

that the flow in the irradiated region be capable of supporting waves.
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This means that there must be a potential vorticity gradient there. In

this chapter, where the flows have no vertical shear and the horizontal

shear is confined to a small region, a must be non-zero in order to allow

the possibility of radiated waves. In the next chapter, some of the flows

have vertical shear everywhere outside the horizontal shear region. For

these flows, the potential vorticity gradient is non-zero and waves can

be supported even when a is zero.

As seen above, an unstable wave will not radiate if its eastward

phase speed is greater than the flow velocity in the exterior region,

since Rossby waves propagate westward with respect to the flow they are

embedded in. This is known as the phase speed condition (McIntyre and

Weissman, 1972): if a forced disturbance is to radiate, the phase speed

and x-wavenumber of the forcing (in this case, the unstable wave) must

match the phase speed and x-wavenumber of a free wave (essentially a

Rossby wave in this case). From the semicircle theorem, we can put lim-

its on the allowed phase speed of an unstable wave. From the Rossby wave

dispersion relation in the outer field, we can determine the range of

Rossby wave phase speeds. For the phase speed condition to be met, the

instability phase speed must be westward with respect to the flow speed

in the radiation region since Rossby waves have only westward phase

speeds. This means that either a shear flow with U 4 U or a westward

jet might radiate easily while the possibilities for radiation from an

eastward jet are much more restricted.
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2.5 Shear Layer Instability

In this and the next section, specific results will be obtained for

several velocity profiles. "Shear" layers, defined as flows with differ-

ent velocities at + w and - - or at the northern and southern walls (How-

ard and Drazin, 1964), are discussed in this section. "Jet" profiles,

where the flow is the same at the outer boundaries, are discussed in sec-

tion 2.6.

(a) Shear Layer with a Discontinuity in U(y)

The simplest shear flow is the vortex sheet, which has a single dis-

continuity in U(y), at say y = 0. The non-rotating (or equally, f-plane)

case was discussed by Rayleigh (1879). The case with non-zero a was dis-

cussed by Howard and Drazin (1964). It is instructive to look carefully

at the results for this profile, adding details about exactly where the

flow is unstable in a and k and what the eigenfunction structures are.

The velocity profile is shown in Figure 2.5.1 along with a sketch of its

potential vorticity gradient, modified by the double delta function aris-

ing from U at y = 0. The necessary conditions for instability are sat-

isfied because the potential vorticity gradient has both signs, albeit in

a rather strange way concentrated at the origin. The potential vorticity

equation on the 8-plane is

(U - C) - k2A + a A = 0 (2.5.1)
dy2

The solution, subject to the boundedness boundary condition at y = * c, is

A = e-I y > 0 (2.5.2)

A = e II y < 0



(o) (b)

- i a7T

U(y) . --- y

Figure 2.5.1

Vortex sheet: (a) U(y) and (b) the potential vorticity gradient,
ar/ay = ~ Uy including a double delta function contribution arising
from Uyy at the pro file break at y = 0.
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where

I k2 + _
c-1 II- /k2 + cc+1

When c is complex, k, and k,, are chosen to have positive real parts, to

satisfy the boundedness condition on the eigenfunctions at infinity. When

c is real, the 's are purely real or purely imaginary. If real, they must

be positive. If imaginary, the branch of Z is chosen which has outward

group velocity, dc/dZ.

Applying the matching conditions (2.2.2) and (2.2.3) at y = 0, we

find that

a = - 1-c

and (2.5.3)

(c-1) 2  k 2 + L
c-1

(c+1)2 k2 + s
cT1

This was the solution found by Howard and Drazin (1964).

and ,, reduce to k and the dispersion relation is

c = * i

and the solution is

A = e-ky

A = eky

When s is zero,

(2.5.4)

y > 0

y < 0

All waves are unstable when a = 0 and they are nondispersive. Their phase

speed is 0, the average speed of the flow. The imaginary part of the phase

speed is .5, so the growth rate is k/2, increasing without bound with k.

When is non-zero, (2.5.3) can be written, after squaring, as

c (c2 +1) + 42 (3 c 2 + 0
4 2k1

- o
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Howard and Drazin (1964) found the solutions c(k). There are three roots,

one of them real (neutral) and the other two complex conjugates. The real

root is only a solution if c = * U0 and s/k2 = ; 2UO, corresponding to

Rossby waves. The complex roots are the unstable (growing and decaying)

modes. The imaginary part of the phase speed is non-zero for all k, so

all of these waves are unstable, just as when a = 0. This arises because

(1) no a is large enough to cause the potential vorticity gradient, a -

U , to be of a single sign and (2) even the shortest waves have non-zero

decay scales in y at the profile break and can sense the change in sign

of a - U , since U takes on both signs right at the profile break.

These waves are, however, dispersive in contrast to the vortex sheet modes

at = 0. As s/k2 + 0, c > * iU0 , which is the result in (2.5.4). As

s/k2 + , c + * iU 0/ 3. The way that the complex phase speeds fit into

the cr-ci semicircle is shown in Figure 2.5.2a and the complex phase speed

(cr, c ) is shown as a function of k in Figure 2.5.2b. The phase speed

depends only on the ratio s/k2, so the roots for all s's follow the same

curve in the cr-ci plane. The retarding effect of s on the phase speed

c r is clearly seen at intermediate wavelengths.

What is the structure of the eigenfunctions? From (2.5.2), with

b s/k2

2 2
-= + b 2 (-1 + c - i c ), - 1 + b2 (I + cr - i c.)

k c-1 k2  c+1

As a becomes very important and b + -, so that c + * iU / 3,

2 2
I 2b -157/6 /II 2b -i1/6

k2 _"-- 2c1 -Z ' 2 4 2 -1
k1 / c-1 k 3 c+11
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and k/k is proportional to e1i5 f/12 = (.26 - .97i) while E11/k is pro-

portional to e-in/1 2 = (.97 - .26i). In the northern half of the profile

where the flow is more eastward, the eigenfunction is more oscillatory and

decays more slowly than in the southern half. (To the north, the insta-

bility phase speeds are always less than the flow speed so the long waves

satisfy the phase speed condition and look like Rossby waves with complex

phase speed and complex y-wavenumber.) However, because the growth rate

of the disturbance is non-zero for all choices of a and k, the disturb-

ance always has a pronounced decaying envelope.

(b) Shear Profile with Discontinuities in dU/dy.

The vortex sheet results of the previous section explain some of

the behavior of the unstable modes of a shear profile, but since any

realistic shear zone has a non-zero width, the results strictly apply

only to the behavior of long waves, which see a shear zone as a discon-

tinuity in U(y). In a realistic flow where the shear zone has non-zero

width, we expect the short waves to be stabilized and that there should

be a wave with intermediate wavelength with maximum growth rate. (Max-

imum growth rate for the vortex sheet occurs as k + o.) A realistic,

smoothly varying flow will also be stable if is large enough to make

the potential vorticity gradient positive everywhere.

We choose a simple flow using the method of Section 2.2 in which the

potential vorticity gradient is zero or uniform in discrete regions of the

flow. The velocity profile and a schematic of its potential vorticity gra-

dient are shown in Figure 2.5.3. The flow is uniform for ly J> 1 and has

zero potential vorticity gradient (s - U ) for ly j< 1. The potential
y I
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Vortex sheet dispersion relation: (a) ci vs. cr and (b) cr and ci
vs. k. At B. = 0, cr anid ci must fall below the dashed curves accord-
ing to the semicircle theorem.
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Shear layer: U(y) and a /ay for two
= .5 (supercritical). (c) and (d)

(a)

11-i

El

(C)

Figure 2.5.3

choices of a. (a) and (b):
: = 1.5 (subcritical).

(b)
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vorticity equation (2.1.2) is nondimensionalized using the half-width of

the shear zone as a length-scale and the absolute value of U at + W as a

velocity scale. The potential vorticity equation is then

(U(y) - c) d - k2 A + - U ) A =0
dy 2 yy

where

o U*(y) c* ky = y* L , = , U(y) - , c ~ U - , k - k* L.

The velocities are

U =-1

U Y + Y 2 (2.5.5)
U11  2 -y 2 -

U1 .

B and k are the only two parameters. The potential vorticity gradient is e

in Regions I and III, so waves can be supported there when s is non-zero.

At y = + 1, the potential vorticity gradient is the delta function in (a -

U ), as in Section 2.3. Change in sign of the potential vorticity gra-

dient occurs only because of these contributions at y = + 1, since it is

positive or zero everywhere in Regions I, II and III. As e increases, the

velocity profile changes in Region II until both contributions to (a - U )
are positive. At this a ( = c), the flow must be stable, and hence this

patched profiles mimics the s-stabilization that occurs in smoothly vary-

ing flows. This can be seen in Figure 2.5.3 where U(y) and ai/ay are

shown for a supercritical and a subcritical s. The maximum s for which

instability is possible is a = 1. (At this , dU 11/dy at y = 1 is zero

and the potential vorticity gradient is positive or zero everywhere.)
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The potential vorticity equation

I. (
II. (
III. (

dy 2

dy2

k2)

k2)

k2)

in each region is

A -a T+T

A

A

=0

1-c

The solutions, subject to boundedness conditions at infinity, are

A1

A

A I I

= I
- e

= a1 eky + a2 e-ky

= d e

where 2 = k2 + and 2 = k2 -k +i-c an k f- just as in the previous example.

The constants and phase speed are determined from the matching condi'tions

(2.2.2) and

-4k (1 -

(2.2.3) at y = * 1.

/1 , b

i + _b_
1+c

(1+c) + 1

1+c) + (c k*(

The dispersion relation so obtained is

(1-)~ {(1

1-s)} [- (1

/ + b )

+ /+ b
c-1

(1-c) + 1 (1+s)

(1-c) +

(2.5.7)

(1+B)} = 0

where b = s/k

The parameters which can be varied are $ and k. Let us look at var-

ious limits of this relation before solving it numerically. There are

four basic limits:

= 0

= 0A1II

(2.5.6)
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(1) k -> o, 0 fixed: the dispersion relation is

2 /a I +

(2)

(3)

c + 0 /c2-1 + /o(1+c) + /(c-1) + (1+c) 3 /2 + (c-1) 3/2

As 0 >

vortex

As o +

k * 0,

a - 0

o, c -* i/ /3, which is the longwave limit of the

sheet instability.

o, c + - (a/k2 ) [from (2.5.7) with k = 0(1/)].

a fixed: c = * 1 for all 0.

k fixed:

c = * k (2k) 2

As k - o, c = *

sheet problem.

(1 - e-4k)

i, which is the shortwave limit of the vortex

As k + o, c = * 1.

(4) a + o, k fixed: c = 6(1-2k).

Additional informative limits are obtained by letting the length scale L

approach zero and infinity, with * = *L2/U and k = k* L.

(5) L + 0: (ZI/k)(1+c)2 + (Z111/k)(1-c)2 = 0, the vortex sheet

dispersion relation.

(6) L +> -: c +> - /2k.

One other limit which reveals the retarding effect of 0 is

(7) k > , o = 0(k): c = * 1 - B/2k.

The longwave limits are identical to the vortex sheet results: when a ap-

proaches zero faster than k, the limit c = * i is obtained, while when o

approaches zero slower than k, the limit is c = * i/ v~. The shortwave

limit in all cases is a stable solution, with c = * 1. For the limit

= 0
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where L increases to -, s increases faster than k, which also increases.

The flow looks more and more like an infinitely wide Couette flow to the

shorter and shorter waves, which are thus stable.

These limits delineate the results to be expected from the disper-

sion relation. The dispersion relation was solved numerically using the

secant method with complex arithmetic to find the roots c(k) for given a

and k. Figure 2.5.4 is the neutral stability diagram in the a - k plane

for this profile. The dashed curve is the locus Re(kiii) = Im (,III).
The short waves are more trapped and less wavelike in region III than the

long waves. The stability cutoffs were found up to a = .95: extrapolat-

ing the growth rates of the long waves to the a where ci = 0, the long

waves all appear to be unstable up to a = 1.0 and the short waves are

probably also unstable up to 1.0, with a cusp in the stability diagram

there. At high s, there are two separate ranges of unstable wavenumbers.

These are two separate modes which coalesce as a decreases, and are simi-

lar to the two separate modes found by Dickinson and Clare (1973). (A

thorough comparison with Dickinson and Clare's results will be found at

the end of this section.) The flow is stable for all s's greater than 1,

the cutoff required by the necesssary condition for instability: the

necessary condition is sufficient for this profile.

Figure 2.5.5a shows ci as a function of cr for several choices of

a. At 8 = 0, the well-known result for a Rayleigh broken line profile

with a non-zero width shear zone is obtained. In addition to the unsta-

ble waves (complex c), there is a continuum of neutral modes with phase

speeds cr < 1.. While the unstable solutions are representative of the
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unstable modes of a continuous, rather than broken line, profile, only

the neutral mode with cr = 0 survives when the profile is made continuous

(Betchov and Kriminale, 1967). There is a dramatic change in the long

wave behavior when even a small amount of s is introduced. The growth

rate drops dramatically, but does not vanish and the phase speed of all

unstable waves is retarded (made more westward). At high a, a tiny in-

termediate range of wavenumbers is stabilized. As a nears the cutoff

of 1, the phase speed of all unstable waves approaches -1 and the growth

rate approaches 0.

The dispersion relation c(k) for different values of a is shown in

Figure 2.5.5b. The drop in growth rate of the long waves and retardation

of all real phase speeds due to a are clearly seen. The long- and short-

wave dispersion relations look quite different from each other when a is

non-zero: as the wavenumber is decreased, the real phase speed has a cusp

and then becomes nearly constant while the imaginary phase speed drops off

suddenly to a nearly constant value. At higher s, the long- and short-

waves separate into two distinct modes with an intermediate range of sta-

ble waves. There was no evidence of two separate, overlapping modes at

lower B (as was seen in Dickinson and Clare's results for the tanh y pro-

file), so it seems that these two modes coalesced as soon as their wave-

number ranges overlapped. The structure of the long and shortwave modes

are quite different. Figures 2.5.5c and d show the real and imaginary

parts of k, and tyy for several s's. The decay scales are given by

[Re(z,)]~1 and [Re( 111)]~ and the y-wavenumbers by Im(Z1 ) and Im( ZI ).

We note that on the northern side of the profile where E = RI, the disturb-
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ances are trapped. On the southern side (where t = z IH), the long waves

are like Rossby waves with a clear transition to trapped waves as k in-

creases. The two separate modes at large a are simply the separated

radiating (long-wave) and trapped (short-wave) modes.

Examples of eigenfunctions at s = .5 are shown in Figure 2.5.6,

showing the difference in trapping scales of the radiating and trapped

modes. The short wave mode is clearly trapped on both sides of the shear

layer. In contrast, eigenfunctions on the long wave side of the dotted

boundary in Figure 2.5.4 look oscillatory on the southern (more eastward)

side of the flow. Only at high a is there a neutral stability curve ad-

jacent to the modes, so only at high a can the radiation criterion of Sec-

tion 2.4 be strictly applied (and it shows that the long waves are radia-

ting). However, the long wave eigenfunctions at lower a so strongly re-

semble those which are clearly radiating at higher s, that one may call

them radiating also. (Because of the coalescence of the long and short

wave modes, the neutral curve has been lost at low a).

Both radiating and trapped solutions are evanescent on the northern

side where the flow is easterly and the phase speed condition cannot be

satisfied. On the southern side of the shear layer, the short wavelength

modes are trapped and the long waves are radiating, even though the phase

speeds of both modes are westward with respect to the flow speed. The

difference in behavior is due to satisfaction (or lack thereof) of the

phase speed condition. The Rossby wave dispersion relation for e = .5

is plotted in Figure 2.5.7 for two extreme y-wavenumbers. Also shown

in Figure 2.5.7 is the phase speed of the unstable mode at = .5. The
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phase speed for the Rossby wave with k= 0 crosses the unstable mode's

phase speed. The phase speed condition for matching instabilities to

Rossby waves is thus satisfied on the long-wave side of this crossover.

At higher k, there are no Rossby waves to match to: the y-wavenumber is

imaginary and the disturbance must be evanescent in y.

Thus for a simple shear profile, it has been seen that whenever

the phase speed condition can be satisfied, there are radiating modes.

These can be thought of as destabilized Rossby waves, rather than as in-

herent instabilities of the shear layer. The puzzle is that, for each k

from 0 to -, there are an infinite number of neutral Rossby waves, with

y-wavenumbers from 0 to C. A single phase speed, a single Rossby wave,

is selected for destabilization at each k. For this profile, the radia-

ting modes all have growth rates which are a substantial fraction of the

growth rates of the trapped modes.

Comparison of the results from this profile and the results of How-

ard and Drazin (1964) and Dickinson and Clare (1973) for the shear pro-

file, U(y) = tanh y, are fruitful, partly because it indicates how well

the broken profile represents a smoothly-varying flow. Howard and Drazin

(1964) made the first theoretical study of the hyperbolic tangent profile

on the s-plane. They found a neutral curve in the -k plane with contig-

uous unstable solutions. At 6=0, there is a single neutral mode at high k,

corresponding to the single change in sign of -U yy At slightly non-zero

6, there are two neutral modes, one with k near 0 and one at high k, cor-

responding to the two changes in sign of . The longwaves associated with
ay

this neutral curve are stabilized by s.The maximum value of 6 for which
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instability occurs is given correctly by the necessary condition for in-

stability. They also predicted an additional set of unstable, long wave

low modes which were not predicted by Howard's inflection point theorem

(1964).

Kuo (1973) filled in Howard and Drazin's stability diagram, showing

the phase speeds and growth rates of the unstable modes. He apparently

did not find separate neutral stability curves for the two modes at small

a and small wavenumber, although behavior due to both modes was apparent.

Dickinson and Clare (1973) made a complete numerical study of the

solutions for the hyperbolic tangent profile, but because of its complex-

ity, did not attempt to complete the stability diagram in the crucial low

wavenumber region where the second mode of Howard and Drazin appears. In

this range of a and k, Dickinson and Clare found two distinct modes of

instability, overlapping in wavenumber. The main mode was contiguous to

the neutral curve found by Howard and Drazin and was stable at the long-

est wavelengths. The second mode was unstable for long waves and had a

shortwave cutoff. The first mode was strongly trapped to the region of

maximum horizontal shear while the second mode was "radiating" and had

much slower decay.

The unstable modes of the shear layer found in the beginning of

this section are very similar to the unstable modes of the hyperbolic-

tangent flow. The similarities are: (1) the trapped instabilities occur

inside a neutral curve with both a long and a shortwave stability cutoff

at non-zero 6. All of these waves are trapped to the shear layers since

their wavenumbers are too large to force Rossby waves on the westerly side
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of the flow (the neutral curve was given analytically by Howard and Drazin

for the tanh y profile and there is an apparent neutral curve for the bro-

ken profile); (2) the long waves at non-zero a are unstable and radiating,

forming a second unstable mode which is most distinct at larger . All rad-

iating waves are in the range of and k where Rossby waves in the westerly

flow are possible. The main differences are that (1) at low where the

(tanh y) flow has two separate modes, overlapping in wavenumber, the shear

layer has a single mode which is a combination of the two (tanh y) modes

without the lower growth rate parts of the overlapping modes and (2) where

the oscillatory mode for the hyperbolic tangent profile is limited to a

small range of a and k, the oscillatory mode for the shear layer occurs

for all values of a up to the cutoff dictated by the necessary condition

for instability. The first difference suggests that the mode coalescence

which occurs so readily for broken line profiles (this is true of the jets

examined in Chapter 3 also) does not occur when the profile is continuous.

2.6 Barotropic Jets

A jet is defined as a flow which has the same velocity at + c and

(Howard and Drazin, 1964). Only symmetric jets with no more than two

inflection points in U are considered here. When there are two inflection

points (where U = 0), Howard's inflection point theorem predicts two

neutral modes with contiguous unstable modes at a = 0. The theorem, of

course, predicts nothing about the number of modes when a is non-zero and,

in fact, we saw in the previous section that a new mode, associated with

Rossby waves outside the shear layer, was introduced when was non-zero.
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A search for unstable modes of a jet can, however, be begun at a = 0

where there will be two unstable modes. If the jet is symmetric, the

two modes will be the sinuous mode (symmetric) and the varicose mode

(antisymmetric).

The jets that will be considered are: (1) top-hat, eastward jet,

(2) eastward jet with shear layers, and (3) westward jet with shear lay-

ers. ("Westward" jets were explored by allowing to be negative: a is

negative when the scale velocity is negative.) Eastward and westward jets

are considered separately because their potential for radiation of energy

far from the jet differs so greatly. (The energy from the horizontal shear

of an eastward jet essentially "radiates" to the inside of the jet.) While

the phase speeds of the eastward jet instabilities will be generally too

large to match to Rossby waves outside the jet, there will be no such

difficulty for the westward jets. In fact, the results for westward jets

look very much like the shear layer results of the previous section.

Figure 2.6.1 shows the eastward jets and a schematic of their poten-

tial vorticity gradients. The potential vorticity gradient for the top-hat

jet is always a inside and outside the jet and a double delta function

(because of U ) at the profile breaks. Because the top-hat shape is

independent of s, there is no range of s for which this flow is abso-

lutely stable by the necessary condition (2.3.6) since the potential

vorticity gradient changes sign for any choice of a. The shear layer

jet is different in this respect. Its shape in the shear zones (Region

II in the figure) depends on s. When a becomes large enough, dU/dy at

y = D-c and -D+e becomes negative. When this happens, the delta function
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for Uyy changes sign and the potential vorticity gradient is positive

everywhere (for eastward flow). The flow then must be stable for all 0

larger than a critical value, called ac. Bc depends on the width

D of the shear layer.

(a) Eastward Top-Hat Jet

The unstable modes of the top-hat jet are well known, although as-

pects of their behavior as a increases are explored here for the first

time. A symmetric flow has symmetric and antisymmetric perturbation

eigenfunctions. They are known as the sinuous and varicose modes, re-

spectively. Only the sinuous (symmetric) mode is treated extensively in

this thesis. The varicose mode is explored for the barotropic, top-hat

jet only.

Rayleigh (1879) first posed the problem of the top-hat jet, for the

case e = 0. Howard and Drazin (1964) extended it to the a-plane, giving

analytical results for the phase speed and growth rate for various limits

of wavenumber and s. Flierl (1975) discussed the full behavior for vary-

ing values of a/k2, although he did not completely explore the a and k

parameter ranges.

When s = 0, the well-known dispersion relations for the two jet

modes obtained from the solutions (2.1.1) in regions I and II and the

matching conditions (2.2.2) and (2.2.3) are

2 2
c + (1 - c1 ) tanh k = 0

2 2
cT tanh k p+ (1sc2) 2 = 0

The sinuous (symmetric) mode has phase speed c1 and the varicose (asymmet-
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ric) mode has phase speed c2. Both modes have precisely the same growth

rates at the same wavenumbers. The eigenfunctions for these modes are

strictly evanescent in y, with a decay scale of (1/k).

When a is non-zero, the two dispersion relations are (Howard and

Drazin, 1964)

Z + k I (1 - c 1)2  tanh k

tanh k + ki1 (1 - c2)2

-0

-0
(2.6.1)

(2.6.2)

k2= k2 + /cI

II 1-c

Again, cl corresponds to

mode. The eigenfunction

the symmetric mode and c2 to the antisymmetric

is

A, = e
kIY

(2.6.3)

A I= d (e e )

where the~sign

mode and d = c-1
c

is for the sinuous mode and the® sign for the varicose

e

e e

The limits of the dispersion relation as a/k2 and k take extreme

values have been explored by Howard and Drazin (1964), so the results will

not be repeated here. It is sufficient to say that both the varicose and

sinuous modes are unstable at very large k [where c + 1/2(1 * i)] and very

large s [where c > 1/2(1 * i// 3)].

where
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Figure 2.6.2

Top-hat jet
(marked "S")

(sinuous mode) stability diagram. The stable region
becomes vanishingly thin as B increases.
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The sinuous modes of the eastward top-hat jet are unstable for ran-

ges of a and k shown in the stability diagram of Figure 2.6.2. Notice

that the long waves are stabilized by low s's, but that higher a actually

destabilizes the modes again. These modes will be called "s-destabilized"

modes. Because of the top-hat profile, the short waves and modes with

high a are all unstable (they are stable when the shear zone has some

width). A sample dispersion relation is shown in Figure 2.6.3 for s = .55.

In Figure 2.6.4 are plotted the real and imaginary parts of k and k 1.

Both the main mode and the s-destabilized mode are trapped to the jet.

Their behavior is different inside the jet however: from Zyy, we see that

the s-destabilized mode is wavelike and the main mode is evanescent in-

side the jet. The s-destabilized mode is the lowest cross-channel mode,

with a y-wavenumber of roughly 7r/2 at small k.

The varicose mode of the top-hat jet has a stability diagram (Fig-

ure 2.6.4) which looks similar to the sinuous mode diagram (Figure 2.6.2).

Again there is a small region where the varicose mode is stable, but it is

now centered at higher s. All waves are trapped to the jet. The details

of the stability diagram depend on the structure of the eigenfunctions

within the jet: eigenfunctions from the long-wave, high-s side of the

stable region and dashed curve are more wavelike inside the jet than

those from the short-wave, low-s side. Dispersion relations as a func-

tion of k for several s's are shown in Figure 2.6.5. The shift in phase

speed across the stable part of the stability diagram is very apparent

for s > 3. The y-dependence outside.the jet clearly indicates that the

disturbances are trapped. The y-dependence inside the jet shows the wavy
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Figure 2.6.4
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nature of the eigenfunction at low k and high . The y-wavelength inside

the jet for these eigenfunctions is roughly w, corresponding with the low-

est cross-channel antisymmetric mode.

Both the sinuous and the varicose modes are stable in a small region

of the -k plane, with a locus of minimum ci extending off to infinite

from the stable region. The stable region and curve of minimum ci mark a

transition from evanescent to radiating behavior inside the jet. That is,

since
2 k2

1-c

inside the jet, Z2 is positive or negative depending on how large k and a

are if c is real. When k is large or s small, the disturbance is evanes-

cent inside the jet. As a increases relative to k, k becomes imaginary

and the disturbance is wavelike inside the jet. When c is complex, this

distinction is blurred. However, the waves with high k and low s in Fig-

ures 2.6.2 and 2.6.4 are more evanescent inside the jet than the low-k,

high-s waves. I do not have an explanation for the stability of the

profile in the narrow wedge in the -k plane.

(b) Barotropic Jet

The logical extension of the top-hat jet is a jet with horizontal

shear occurring over a zone of non-zero width, just as in the shear layer

examples of Section 2.5. The eastward barotropic jet was shown in Figure

2.6.1 with its potential vorticity gradient. This profile is similar to

the the shear layer profile, so it can be predicted that any Rossby-wave-

like behavior will be confined to the more westerly part of the flow,

which is the central jet in this case. Thus the eastward jet will prob-

ably not radiate energy outside the jet. In contrast to the top-hat jet,
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the barotropic jet is stabilized when a is large enough to make the poten-

tial vorticity gradient single-signed, just as for the shear layer. The

barotropic jet is also stable to short wavelength perturbations, like the

shear layer, since the short waves are less able to sample the full width

of the shear zone (which they must do if they are to "see" the change in

sign of the potential vorticity gradient.)

The profile has uniform velocity in Regions I and III and

U= 1 - (1-±) + . [D(1-y) 2y + y2

in Region II. The potential vorticity is s in Regions I and III and zero

in Region II. The length scale L* is the half-width of the central jet,

Region III. The width of the shear zone, Region II, is (D*-L*) and its

non-dimensional width is (D-1). The flow is stable when s is large

enough to make dU/dy at y = * D negative. This occurs when

2
7 = = 7 2 (2.6.4)
(D-1)

The dispersion relation derived from the matching conditions for

the symmetric mode is

-kS - 1 + (1-c) ( h k + 1 S)e ~ ~ [clv+)+T (_+c 1)[l1)l-' a tahT ~

(2.6.5)

+eS c( + a S tanh k ) 1(1 S) 0/7 Y 7c 1-+- S).(1c(1 v ____ a) S +2

where S = (D - 1) and a = 2

k

Limits of the phase speed (cr + ici) as 8 and k take on extreme values

are as follows:
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(1) S = (D-1) > 0: this gives the top-hat dispersion relation (2.6.1)

(2) k + -, a fixed: c = 0, 1

(3) k co , a = 0(k): c = -sS/2k, 1 - sS/2k

(4) k . 0, s fixed:

n i - -/ + (1-c / c 0
C 7 ( tan (I - _) +

(5) s = 0, k fixed:

e kS () [1-c) k (1 - tanh k) + ]3

kS1
+ e (2 ck - [-(-c) k (1 + tanh k) + = 0

The limits tell us that the dispersion relation is correct, since

the top-hat and the correct dispersion relation at a = 0 can be derived

from it. The limits also show that the profile is stable at large wave-

number, but give no information when a is large for fixed wavenumber (in

this limit, the flow must be stable because of the necessary condition

for instability).

The stability diagram for this jet is shown in Figure 2.6.6 in

the s-k plane with various choices of shear zone width. (There are

three independent parameters in the problem: s, k and D.) The sc's for

several shear zone widths are listed in Table II.1.

(D - 1) Sc

0.0
0.05 800.00
0.5 8.00
0.7 4.08
1.0 2.00
9.0 .02
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Figure 2.6.6

arotropic jet, sinuous mode: stability diagram in the s-k plane for
shear zone widtiGis (D-1) = .5 and .7. "S" = stable, "UT" = unstable,
r:aped, "LUR" = unstale, radiating. The solid curves are stability

beundaries and the dot-dash curves are extrapolated stability boun-
caries. The dashed curves are the loci Re(E 1) = Ira(ii).
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Three effects of increasing the shear zone width (D-1) are seen: (1) the

shortwave cutoff occurs at lower values of k; (2) as the shear zone wid-

ens, sc decreases, from- for a top-hat jet to 2 for a jet with shear zone

widths equal to the central jet half-width; (3) the $-destabilized modes

occur at higher s as D increases. The last two tendencies are opposing:

as the shear zone gets wider, the 0-destabilitzed modes disappear since sc

is decreasing while the modes occur at higher and higher B. When (D-1) >

.6, the s-destabilized modes vanish. On the other hand, as the shear

zone gets narrower, there are more and more s-destabilized modes. For

the narrowest shear zone considered here, the behavior at high a is dif-

ficult to work out since it appears that there are many, many B-destabil-

ized modes separated by stable regions. When D is small and B is increased

to Bc at k = 0, there are many alternations between unstable and stable

waves. As the shear zone is widened, fewer and fewer of these unstable

modes appear until there is only one unstable mode when D is between 1.55

and 1.6. This single mode persists for all D's beyond 1.6.

The unstable regions on the stability diagram (2.6.6) all terminate

in a cusp at sc. This cusp may be an artifact of the specific choice of

profile with breaks in U or dU/dy.

Dispersion relations and .cr vs. ci for different values of a at D =

1.5 and 1.7 are shown in Figure 2.6.7. Both of these shear zone widths

are used in the two-layer jet cases of the next chapter. There are two

barotropically unstable modes when 0 = 1.5 and only one when D = 1.7.

Note that a tends to decrease the eastward phase speed of these sinuous

modes, while it decreases the growth rates. The complex y-wavenumbers,
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kil and Py, are also shown in Figure 2.6.7. Eigenfunctions for the two

modes when D = 1.5 are shown in Figure 2.6.8.

None of the unstable modes of the barotropic eastward jet are rad-

iating since their phase speeds are always more eastward than the flow

speed outside the jet. Note that this could not be predicted by the semi-

circle theorem, since the semi-circle theorem is modified when a is non-

zero to include the possibility of unstable waves with phase speeds less

than the minimum phase speed. However, Tung (1981) showed that the neu-

tral mode contiguous to unstable modes with phase speeds outside the range

of U(y) must have its phase speed within the range of U(y). Using Tung's

result, then, th.e lack of radiating modes for the eastward barotropic jet

could have been predicted.

A westward barotropic jet could, however, radiate easily: all of

its instability phase speeds are in the range of Rossby wave phase speeds.

Moreover, the barotropic jet resembles the barotropic shear layer, folded

over onto itself, which had radiating solutions in the more westerly part

of the flow. To look at westward jets,- we simply allow 8 = a0L2/U to be

negative. The stability diagram (Figure 2.6.6) extends to negative 8.

The stability diagram is very similar to the shear layer stability dia-

gram (Figure 2.5.4). The dotted curve effectively separates radiating

solutions, on the long wave side, from trapped solutions, on the short

wave side. At large a, there is actually a range of stable waves be-

tween the radiating and trapped instabilities. The stability boundary at

large a is at 8 = 8c for both the radiating and trapped solutions. While

the unstable region for the trapped solutions terminates in a cusp at 8 =
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Sc, the radiating solutions are unstable for all wavenumbers between 0 and

the transition to trapped solutions (at small |81 and their shortwave cut-

offs at large |81. The shortwave cutoff for the radiating modes is solely

determined by the phase speed condition: for k > ks, there is no y wave-

number zI for which the instability phase speed can match a Rossby wave

phase speed (k = 0 at k = k and Z - iz1 for k < k s).

The dispersion relations and eigenfunctions for the westward jets

are also very similar to those of the barotropic shear layer. In Figures

2.6.9 and 2.6.10, dispersion relations, y dependencies [kI(k), PI1 (k)] and

eigenfunctions are shown. The similarity to those of the shear layer

(Figures 2.5.6 and 2.5.7) is obvious.

2.7 Summary of Barotropic Instability Results

In this chapter a method for simplifying a barotropic flow profile

when the ambient potential vorticity gradient is non-zero was introduced.

The results for a simple shear layer agreed well with the numerically-

obtained linear stability results for a continuous shear layer, calcula-

ted by Dickinson and Clare (1973). Results for eastward and westward jets

were also explored, assuming that these results also resemble the results

for a continuous flow profile. Necessary conditions for instability were

restated to include the effects of discontinuities in the first deriva-

tive of the basic velocity, dU/dy.

Because of the way the profiles with shear layers are constructed,

they simulate the behavior of continuous flows, which can be stabilized

by s. It was found that the necessary conditions for instability are
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sufficient for these profiles. Special attention was given to the exist-

ence of radiating modes. A definition of radiation in terms of the struc-

ture of the neutral mode contiguous to the instabilities was made. It

was found that there are radiating instabilities whenever the Rossby wave

phase speed range overlaps the flow speed range. These instabilities are

additions to the trapped instabilities of the flow. These radiating

modes are really destabilized Rossby waves.

An interesting peculiarity was found - for the eastward, non-radia-

ting jet, small values of a stabilize the profile but larger values de-

stabilize it again. The s-destabilized modes, for positive a, seem to be

related to the eigenfunction structure inside the jet. Each separate mode

which enters as a increases can be identified as the next higher cross-

channel mode. When D is small (small shear zones), ac is large and many

of these modes can be seen. As D increases, ac decreases and the higher

cross-channel modes are eliminated. There is a symmetry between the re-

sults for the eastward and westward jets. The a-destabilized modes occur

in the region of the s-k plane where wavelike solutions (in y) are possi-

ble inside the jet. The radiating modes of the westward jet occur where

wavelike solutions are possible outside the jet. Whereas there are un-

stable radiating modes for all negative a's with |61 < sc, there are stable

regions in the positive a range separating the s-destabilized modes. The

stability is probably related to the quantization of cross-channel modes

in the jet: although the channel width is not well-defined because the

jet sides are not rigid walls, the waves are still travelling in the wave-

guide due to the jet. When the wave is an "exact" cross-channel mode, its
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amplitude is negligible where the potential vorticity gradient is a delta

function, and the wave may well be stable. The existence of additional

modes when a is non-zero which are not predicted by Howard's inflection

point theorem is thus related strongly to the existence of wavelike solu-

tions in y.



CHAPTER III: THIN TWO-LAYER JETS

In many parts of the ocean, the circulation is concentrated in nar-

row currents. These currents are nearly zonal and may be modelled as

quasi-geostrophic jets. The jets are usually baroclinic as well as hav-

ing large horizontal shear. Thus they may have the capacity for both

baroclinic and barotropic instability. Ocean observations show that var-

iability in velocity and density is very large in and near such currents:

the variability is undoubtedly due to instability.

It is the purpose of this chapter to determine the linearly unsta-

ble modes of symmetric, quasi-geostrophic jets which have both horizontal

and vertical shear. All unstable jets have instabilities which are firmly

tied to the jet, penetrating only a short distance into the stable (or

less unstable) bordering regions. Another type of instability is "radia-

ting", as defined in Chapter 2. These instabilities penetrate large dis-

tances into the bordering regions. A major focus of this chapter is the

existence and structure of these radiating instabilities. The "radiation"

takes the form of modified Rossby waves in the ocean interior. A condition

for the existence of radiating instabilities is that the phase speed and

x-wavenumbers of the jet instabilities and the modified Rossby waves cor-

respond. In the previous chapter, it was seen that this condition pre-

disposes westward, barotropic jets to radiate while eastward, barotropic

jets do not radiate. In this chapter, basically eastward jets are changed

slightly to allow some of their instabilities to radiate. The stability

of westward, baroclinic jets is also considered: both trapped and radia-

ting instabilities are found.
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The chief importance in these results, in addition to being yet

another discussion of the linearly most unstable modes of currents like

the Gulf Stream, is that they suggest that at least part of the "mid"-

ocean eddy field can be generated some distance away by more intense

currents. The results only suggest this possibility since we cannot

predict from linear stability analysis alone which instabilities will

survive to dominate the fully nonlinear flow.

3.1 Formulation for Two-Layer Jets

(1) Potential Vorticity Equation

The stability of narrow, intense baroclinic jets is examined here

using two simplifications for the flow profiles: the baroclinicity is

represented by a two-layer model in which the two layers have equal

depth, thus retaining only two vertical modes; the horizontal shear is

restricted to specific zones, using flow profiles similar to Rayleigh's

(1879) "broken line" profiles. It is assumed that the basic flow whose

stability is examined is zonal and steady and that the perturbation

stream function has much smaller amplitude than the mean flow stream

function. The linearized, inviscid non-dimensional potential vorticity

equations for the perturbations in the two layers are (c.f., Pedlosky,

1979):

(a+ U H2 + F(-2 ~ +1)] + [ - U + F(U- = 0at 1 ax ~H ~1 2  1 Uiyy ( 1  U 2)] a
(3.1.1)

(t+ U2 H2 $2 - F(#2 -1)] + [ - U2yy - F(U1 -U2
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Here, (vH2 ) is the two-dimensional Laplacian (a2/3 2 + 32/ay2). di and

02 are the perturbation streamfunctions for the top and bottom layers,

respectively. The equations were scaled using L, U andA(horizontal

length, flow velocity and layer depth). The non-dimensional parameters

are B = B L2/U and F = (L/LR)2 where LR is the internal deformation rad-

ius, LR = v%'4/f. The mean flow, U1 and U2 , depends only on latitude,

y. The potential vorticity gradient for the mean flow in each layer also

depends on y and is

-B - Uiyy + F(U - U2)

(3.1.2)

ay ~ - U2yy - F(U - U2

The boundary conditions are that the disturbances d1 and 02 be bounded at

y = * (if the ocean is unbounded), or that 0 = 02 =0 at y = * H (if

there are northern and southern boundaries at * H). If the wave is not

growing and is oscillatory in y, the boundary condition at y = * is

that the meridional group velocity be outward.

Normal mode solutions to (3.1.1) are sought, with 01 = 1(y)eik(x-ct)

and 2 k 2(y)e ik(x-ct). Both c and D n are allowed to be complex while

k is strictly real. Equation (3.1.1) becomes

d241  2 a___
(U -c) 2  - k 2 + F( 2 - 1) + a0

(3.1.3)
2
d 02 2 3_2

(U2 - c) 2 - k 22 - F(12 - 1) + 2 T = 0
dy -
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(2) Profile Simplification

Specific flows are modelled in a similar way to the barotropic flows

of Chapter 2. It is assumed that either

U1  = constant and U2  = constant (3.1.4a)

or

S ay - 0 (3.1.4b)

so that, in a given region, either the flow speeds are constant or that

the potential vorticity gradient vanishes. Note that where the flow

speeds are independent of y, the potential vorticity gradient is non-

zero and independent of y.

The flow configuration is illustrated in Figure 3.1.1. The length

scale used in non-dimensionalization is L*, the half width of the central

jet, Region I. The shear zone region (II) is 1 < Jyj < D. Boundaries are

at 1y I = H where H >> L (in most models considered here, H = - ). The

velocity is specified in the upper and lower layers in the central jet

(Region I) and outside the jet (Region III). The velocities are all

scaled by UI1 *. Thus, U12 = U12*/U11*, U01 = U01*/U 1* and U02 =

U02*/U 1*. Also, U02 = 0 in all models.

The number of parameters which describe this geometry is large -

the jet width, the shear zone width, the channel width, the velocities in

the central jet and outside the jet, the wavelength of the disturbance,

and non-dimensional and F.

The requirement that a=/ay - alr2/ay = 0 in the shear zone, Region

II, specifies the velocities U1(y) and U2 (y). Solving (3.1.4b) for U1 and

U2 , requiring that the velocities be continuous at y = 1 and D, results in
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+ c + c2y + C3 cosh \2 y + C4  sinh

+ c c2y -c3 cosh /Z7Fy -c 4 sinh

(UII + U12) + U02)

2 (D-1)

(1101 + U02) D - (UIi + U12)

2 (D-1)
s(D-1)
2

(U01 - U2) sinh /'72* + (Ui i -
C3  - 2 sinh / 2F (D-1)

(U01 ~ 102) cosh /ZF - (U -

4 - 2 sinh V 2F (D-1)

U12) sinh /2F D

U12) cosh v'2 D

Note that if the upper and lower layer velocities are equal, this reduces

to the same parabolic flow profile in both layers, as found in Chapter 2.

Also, if the velocity in say, the lower layer, is the same in Regions I

and III (U = U) , there is still horizontal shear in Region II since

the potential vorticity gradient is required to vanish there. Thus, the

familiar two-layer baroclinic instabiity problem is only an exact limit

of this problem if D > 1, eliminating Region II.

The problem to be solved then is

(Un-c) dy2u k2n k ~ (_,)n F(Q2 ~

in Regions I and III,

+ 37rn = 0; n = 1, 2ay n

(3. 1. 6a)

U (y) =

2
U 2(y) = -

/T y

(3.1.5)

/27 y

where c

c
2

D -(U 01
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and
d2

n dy2  2 n

in Region II. (3.1.6b)

The matching conditions on interface displacement and normal veloc-

ity at each profile break were given in Equations (2.2.2) and (2.2.3) for

barotropic flows. These matching conditions are unaffected by baroclin-

icity and s: (3.1.3) can be written in displacement form:

d f(UnC) dn + Gn {(U-c)2k2-F) + - (-1)n F(U1 - U2)J

(3.1.7)

+ Gn F(U -c)(U2c)= 0

Here G n is the horizontal displacement of the interface between two

regions of the flow, e.g.,

Gn
n U -c

If U n has at most a simple discontinuity, then Gn and (Un-c)2(dGn/dy)

must be continuous for (3.1.7) to make sense. Thus the matching condi-

tions for the layer flows are identical with the matching conditions

(2.2.2) and 2.2.3). They are applied at each profile break and in each

layer, separately.

(3) Useful Theorems

The necessary conditions for instability are given by Pedlosky

(1979) for two-layer flow on the s-plane. They are his equations

(7.10.5) and (7.10.6):
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2 H dy ___ |2 9

c dy n 0
n1 -H |Un -c a

2 H avT l 1
'E dy U n _ 2 -> 0

n=1 -H [Un -c I

An effective potential vorticity gradient which includes contribu-

tions from the discontinuities in U and dU/dy was useful in showing if a

barotropic flow was absolutely stable in Chapter 2. In barotropic flows

in Chapter 2, the flow is stabilized by large s, because the flow in the

shear zones is altered as a increases until the effective potential vor-

ticity gradient is single-signed. This mimics the s-stabilization that

occurs in continuous flow. The necessary conditions for two-layer flow

with horizontal discontinuities in U(y) and/or dU/dy can be written in

terms of this effective potential vorticity gradient, just as in chapter

2. The effective potential vorticity gradient is defined for each layer

just as in equation (2.3.5):

n 37n n dUn (3.1.8a)
ay ~ 3y ~cy (y-y0 )

where [ I indicates the jump in the bracketed quantity at y = y0 . The two-

layer counterparts to (2.3.6) and (2.3.7), assuming that U is continuous

but dU/dy i s not, are

2 H le 2 ai

n=1 -H U-c2 ay

(3.1.8b)

2 fH 2 | 3'
dy n 2 (Un- cr) > 0

n=1 -H |Un-cr
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In barotropic flow, stability depends only on the sign of the delta

function contribution to the potential vorticity gradient. In two-layer

flows, there are many different ways to satisfy the necessary conditions

(3.1.8). The flow can be baroclinically unstable in Regions I or III if

the vertical shear is large enough. The flow can be barotropically un-

stable in each layer if the potential vorticity gradient changes sign

in that layer. A change in sign of the potential voticity gradient in

a single layer can actually be due to the flow's baroclinicity since

* F(U1 - U2) can change sign from Region I to Region III.

Figure 3.1.2 shows different possibilities for the potential vor-

ticity gradient in each layer. This type of figure facilitates examin-

ation of the first necessary condition (3.1.8a). In the figures, it

is arbitrarily assumed that the potential vorticity gradient, 3r/ay =

* F(U1 - U2), is positive in Region III and negative in Region I. Of

course, for specific models considered in the chapter, these signs de-

pend entirely on the relative sizes of and F(U1-U2). The second neces-

sary condition for instability should also be evaluated for each profile.

The semi-circle theorem, which limits the complex phase speed, is

still given by (2.1.5). Howard's inflection point theorem, which predicts

one neutral mode with neighboring unstable modes for each inflection point

in a barotropic flow with s = 0, has not been extended to two-layer flow

on the -plane, although it seems safe to assume that the theorem holds

for the barotropic instability of each layer taken by itself.

The focus here will be on the existence of radiating modes, just as

in the previous chapter. The definition of radiating modes given in 2.4



y 'y

Figure 3.1.2

-I
Velocity profile and potential vorticity gradient, modified by the contribution of
the profile breaks to the term (-Uyy). Four different configurations for the
velocity in the shear zone are shown, along with the resulting effective potential
vorticity gradient. It is arbitrarily assumed here that air/ay is positive in
Region III and negative in Region I.

d77
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is operative in this chapter also. The conditions for radiation are ex-

actly the same: if the phase speed and wavenumber k of an instability

match those of a free wave outside the jet, then the wave can be forced

and the model is radiating.

(4) Energy Transfer

A point of interest in mixed barotropic-baroclinic flows is the

source of energy for instabilities. Perturbation energy can come from

either the horizontal shear or the horizontal temperature gradient (in-

terface displacement between layers). The perturbation can feed on both

the potential and kinetic energy, or it can feed on, as another example,

just the mean flow potential energy and pass energy back to the mean flow

kinetic energy (or vice versa). Evaluating the magnitudes and signs of the

energy transfer and their dependence on the flow parameters may be useful

in understanding the balances in real ocean currents.

The transfer of energy from the mean flow to the growing pertur-

bations is accomplished by means of convergent, horizontal Reynolds

stresses (which reduce the kinetic energy of the mean flow) and eddy heat

fluxes (which reduce the horizontal temperature gradient). The presence

of discontinuities in the mean flow and its horizontal shear may give rise

to additional terms in the energy equation. A derivation of the perturba-

tion energy equation for a flow with discontinuities in horizontal shear

is given here. It is seen that there are no additional contributions to

the eddy energy transfer due to the profile breaks, if the energy trans-

fer is written in terms of the Reynolds stress and the horizontal shear

of the mean flow.
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The perturbation energy equation is obtained by multiplying the po-

tential vorticity equation for each layer (3.1.1) by 0n and the depth of

the layer, adding the two layers' equations (to integrate in z) and then

integrating over x and y. The summed and x-averaged energy equation is

aETO) a f ( + U ) 0 + 2(a + U2 I) 2 (3.1.9)at ay 1 at U1 at 1y 2 a t, 2a 2y

dU1  + dU2  )

dy 1x ly + 02xo2y + F(U - U2  1 2x

where the overbar denotes the x-average. The averaged perturbation energy is

E = { (d0-62)2 + n 1 Cnx)2 + ny 2

For a continuous profile with boundary conditions of n = 0 at y =

*H (the channel walls), integration of this equation in y eliminates the

second bracketed term. With the introduction of discontinuities in Un
and U , however, there may be contributions to this term at the discon-

tinuties. Suppose there are discontinuities in U and dU/dy at y = yo.

Integrating the bracketed terms in (3.1.9) from one channel wall to the

other yields

S1( + U1 Q d-) +1 + 2 + U2 y (3.1.10)

i.e., the jump in the bracketed quantity at y = yo. The streamfunctions

are expressed as normal mode solutions:

1 (Y) e ik(x-ct)+ *

$1 ~~2
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02 (y) eik(x-ct)+
2 2

where "*" denotes complex conjugation. Then this jump is evaluated, using

the pressure and velocity jump conditions for di and 02 at y = yo [equa-

tions (2.2.2) and (2.2.3)]. Denote the velocities north of the jump as Un

and those south of it by U ~. Then (3.1.10) becomes, after integration

in x and application of the matching conditions (2.2.2) and (2.2.3),

2kc t ik 2 + 2 + (c-c*) (Ul - U2 +* + (U+ - c)
e - U l fly + 1 U (U -U ~ - *

4n=1 Uny c2 n ny + c* n nn U1 -cn

(3.1.11)
This can be rewritten in delta function form:

2kc t ik 2 H + 2 + ic + +* + (Un -c)
e - y lo U~ 2 n - c -*.Sn=1 ny U - c12 n ny U+ - c*

(Un - Un) 6 (y - yO)

Thus (3.1.10) is like a delta function addition to the energy transfer

term (-u'v')dU/dy in the perturbation energy equation. If Un+ = Un,
this term disappears because dU/dy no longer has "delta function" behav-

ior at y = y . The integrated perturbation energy equation, when Un +

U n~ is

(H faE- +H 7 +FU 1  H d

-H H aHdy f U y x ly + U2y 02x 02y + F(U1 -U2 0102x (3.1.12)

This equation relates changes in perturbation energy to energy transfers
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from the mean flow kinetic and potential energy. There are no additional

transfers due to discontinuities in dU/dy, only due to discontinuities in U.

If, however, the first two terms on the right-hand side are integra-

ted by parts in y and rewritten in terms of convergent Reynolds stresses,

there will be contributions from the profile breaks. Thus, assuming that

only dU/dy is discontinuous:

1 HH
-Hd -dy U d d = -U 0 0 - -dy U (
-H - ynx ny) n nx = 0 -d Un ay nx n

Rewriting in normal mode form, dn n ik(x-ct) and applying the

matching conditions (2.2.2) and (2.2.3) results in

H aE(0) 2 2kc t ikc (H U n 2
dy at e4 d 2 (Uy - Uny) 6 (y - y0 )-H atn = -H TUc -c n n

(3.1.13)

H

- U ay n ny n ) + e2kcit i dy F(U1 - U2)( 1 2 1 '2

where the unsuperscripted Un and Dn are the continuous values of Un and

on. This has been rewritten in delta function form. There is clearly a

contribution to the convergent Reynolds stresses from the profile break

because, even though Un is continuous, u'v' is not continuous across the

profile break. This effectively means that U (u'v') has a delta func-
n ay

tion contibution.

To measure the relative importance of baroclinic and barotropic

transfers in specific models, the terms from the right-hand side of

(3.1.12) will be plotted. The barotropic transfer terms will be non-

zero only in Region II, where dU/dy is non-zero.
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(5) The Problem

Now that the basic equation, the necessary conditions for instabil-

ity, the semi-circle theorem, the radiation condition and the energy equa-

tions have been discussed, we can move on to actually solving the problem.

The potential vorticity equations for Regions I, II and III of Fig-

ure 3.1.1 are given in (3.1.6). Only symmetric solutions are sought. In

Chapter 2, both symmetric and antisymmetric solutions for one-layer jets

were obtained. While the varicose solutions were seen to be highly un-

stable, their growth rates were generally less than those of the sinuous

mode. In the jet itself, the most unstable wave will probably dominate,

so it is justified to omit the varicose mode for the near field. However,

the notion that the most unstable waves will dominate in the finite amp-

litude field has been discarded in order to argue that the weakly grow-

ing, radiating modes may also be important, so it may not be altogether

justified to discard the varicose modes.

In Regions I and III where the velocity is constant but different

in the upper and lower layers, the solutions must satisfy (3.1.6a). Seek-

ing solutions for the form on = AnerY, the y dependence is:

2 2 s(U1 + U2 - 2c) F(U2- U2)2
2(U -c)(U 2 -c) 2(U1-c)(U 2-c)

(3.1.14)

1 {2 2 2
2(U 1-c) (U2-c) (U1 - U2 ) - 2 a F (U1 + U2 - 2c)(U 1 - U2)

+ F2 [(Ul - U2 2 + 2(U1 -c)(U 2 -c)]21 /2

The corresponding ratio of amplitudes in the upper and lower layers is
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A2

1 ~

(U1-c)(r2 - k2 - F) + + F(U1 - U2)

F(U 1 -C)

Substituting for r2

= 2 RS F US - F U (Us + 2S)

I B2 U 2 - 2 F (R + S) U52 + F2 (Us2 + 2 R S)2

(3.1.15)

where R = U1-c, S = U2 -c and US = U1-U2 '

When the flow has no vertical shear (U1 = U2 ), the usual barotropic

and baroclinic Rossby waves exist in the far field. The y e-folding scale,

r2, becomes

r2 k2 + 2 F -
k 2 _

and the amplitude ratio becomes

A
2

1

When a = 0, r2 reduces to

(U 1-c)2 + (U 2 -c) 2

+2 (U1-c) (U2-c)

and the corresponding amplitude ratio to

A2

1

U1-c

U2-c
U2-c

(3.1.16)
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These are the solutions of the usual f-plane baroclinic instability prob-

lem. However, the second root, with r = k, does not usually appear when

the flow has no horizontal shear since that part of the solution has zero

amplitude when the flow has no horizontal shear. This root, however, must

be included if the basic flow is y-dependent.

If, in addition to letting B = 0, we let the top and bottom layer vel-

ocities be equal so that, although the basic flow has no vertical struc-

ture, the disturbance has two vertical modes, we obtain

2 k 2 + 2F -hA 2 1
r2=V 2 2 with A ~ (3.1.17)

k 2A1 -1

The first solution is the baroclinic mode and the second the barotropic

mode. These are the solutions when the basic potential vorticity gradi-

ent is zero and are therefore the solutions to the equation in the shear

zone (Region II) where the governing equations are (3.1.6b).

The total solution is then, for Regions I, II and III

S= m1 y + -m1y + m2y + -maY

I. (3.1.18a)

2= d (aemly + a2 -m) + d2(a3e e+ -m2

where mi and m2 are given by Equation (3.1.14) and d1 and d2 are the cor-
A2

responding ratios, A , from Equation (3.1.15), both for Un = UIn
1
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1 = be ky + b2e-ky + b3e ZY + b4e~'k

II. (3.1.18b)

2 = b eky + b2-ky - b3eV - b4e~

where z. = k + 2F, as given by (3.1.16);

Z1  ~Z1Y 22 ~ -2
1 ce + c2e + c e + c4e

III. (3.1.18c)

e2 f 1 (c 1e + c2e + f2(c3e 2 + c4e~ 2

where k.1 and 2.2 and f and f2 are given by Equations (3.1.14) and (3.1.15),

both for U n = Uon* Application of the boundary conditions and matching

conditions then allows evaluation of all but one of the coefficients an,

bn and cn and yields the dispersion relation, c(k). The dispersion rela-

tion is quite long and is written in full in the Appendix.

3.2 Solutions

This section describes the behavior of the solutions (3.1.18) for

specific flows. For background, the solutions for a one-layer jet where

the only energy source is the horizontal shear were described in Chapter

II. In this chapter, instability of two-layer flow in a channel with no

horizontal shear is reviewed, since it is anticipated that two-layer jet

solutions will include modes due to both horizontal and vertical shear.

Instability due to vertical shear in the jet will be similar to baro-
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clinic instability of meridionally uniform flow in a channel. Solutions

for various jets follow: (1) eastward and westward jets with vertical

shear in the jet only (Regions I and II); (2) eastward jet in the upper

layer and westward jet in the lower layer, and no vertical shear in

Region III; (3) eastward jet in the upper layer, quiescent lower layer

and positive vertical shear in Region III; (4) eastward jet in the upper

layer, quiescent lower layer and negative vertical shear in Region III.

A discussion of all results follows, summarizing the types of unstable

modes, the conditions under which the instabilities radiate and the

vertical and meridional decay scales of the instabilties.

(a) Two-Layer Baroclinic Instability in a Channel with No Horizon-

tal Shear (a review).

The problem of the linear stability of a two-layer flow with ver-

tical shear and no horizontal shear was formulated by Phillips (1954) and

further discussed by Pedlosky (1964). A treatment is found in Pedlosky

(1979). The channel used in these models is roughly simulated by the jet

of the models discussed in this chapter: the jet acts as a waveguide with

evanescent solutions outside for all trapped instabilities. The disper-

sion relation for two-layer, baroclinic instability is [c.f. Pedlosky's

(1979) equation (7.11.13)1:

U U 2 BK 2 +F)2
c 1 U 22 F4 - K U3 (4 F - K) (3.2.1)

K (K + 2 F) 2 K2 (K2 + 2 F)

where it has been assumed that the layer depths are equal and K is the

total wavenumber, K2 = k2 + k2, and z = (j+1/2)r/W, where W is the half-
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width of the channel. The stability diagram in the s-k plane for differ-

ent choices of W is shown in Figure 3.2.1. The vertical shear is fixed

at Us = 1 (i.e., scaling the velocities by the total shear), and the

stratification parameter F is fixed at 5 while s and k are allowed to

vary. According to the necessary conditions for instability, the flow

can only be unstable if is less than the critical value sc = F Us.
For this choice of parameters, Bc = 5. Only the first two cross-channel

modes are unstable for the choices of W used here. The first mode is un-

stable whenever s is less than Sc. The phase speed of the instabilities

are all 1/2 at s = 0. As s>sc, the phase speeds decrease and may become

more negative than the minimum flow speed.

(b) Eastward and Westward Jets With Vertical Shear in the Jet and

No Vertical Shear Outside the Jet.

Within this category of jets, there are many variations to explore,

although only a few relevant examples will be given. Looking at Figure

3.1.1 and Equations (3.1.6), we see that there are a large number of par-

ameters which can be varied. These parameters are H (channel half-width),

D [where (D-1) is the shear zone width], F, UI2) U01' U02, a and k. The

channel width was set at w for all jets treated in this section. In Sec-

tion 3.4, the inclusion of boundaries is seen to have a marked effect on

radiating modes which are able to sense the boundary, setting up stand-

ing waves. The shear zone width was not varied a great deal: widening the

shear zone stabilizes the flow with respect to barotropic instability.

The measure of stratification, F, was also not varied much: increasing F

(i.e, decreasing the Rossby radius with respect to the jet width) has the
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obvious effects of increasing sc [see (3.2.1)] and increasing the number

of cross-jet, baroclinically unstable modes. There is a discussion of the

effects of changing H, D and F at the end of this chapter.

The relative velocities in the profile can be shifted around and

this section of the chapter is organized according to such changes. Once

the profile is set, 5 and k are varied freely. Both positive and negative

values of a are explored. Because B = 0*L2 /U, negative B is equivalent

to westward flow.

The first example is the profile

S  = 1D = 1.7

U12  = .5 (3.2.2)
F = 5

U01  0

U 02  = 0

The profile is shown in Figure 3.2.2a with B = 1. [The flow in the shear

zones is given by (3.1.5)]. The potential vorticity gradient is shown in

Figure 3.2.2b. The first step is to find the values of a for which the

necessary conditions for instability (3.1.8) are satisfied. The first

necessary condition is broken down as follows: (1) for what s's does

as1 /ay change sign; (2) for what s's does 3 2̂/@y change sign; (3) for what

s s are a7rr/ay and ar2/ay in Region I of opposite sign; (4) for what s's

are ar1/ay and ar2/ay in Region III of opposite sign; and (5) for what s's

does arn/ay change sign laterally because of the baroclinic term F(U1-U2)'

We will call instabilities due to (1) and (2) horizontal shear instabil-
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ities of the upper and lower layers, respectively; instabilities due to

(3) and (4) will be called vertical shear instabilities of Regions I and

III; instabilities due to (5) will be called mixed instabilities since

the change in sign of ar/ay with latitude is due to the change in ver-

tical shear with latitude.

Note that the distinction between modes is not made on the basis

of the dominant energy transfer, but rather on the basis of the parameter

range in which they occur. Modes which are classified together also have

similar-looking dispersion relations and characteristic eigenfunction

structures. The dominant energy source for, say, the horizontal shear

mode may in fact be the potential energy. This classification of modes

is different from that of other authors (e.g., Hart, 1974; Holland and

Haidvogel, 1980).

The types of instability which might occur for profile (3.2.2)

at F = 5 are (1) horizontal shear instability in the upper layer for

-5.35 < s < 3.55; (2) horizontal shear instability in the lower layer

for - .75 < s < 2.57; (3) vertical shear instability in the central jet

for - 2.5 < s < 2.5; (4) no vertical shear instability outside the jet

since there is no vertical shear there; and (5) mixed instability in

the lower layer when 0 < s < 2.5 and mixed instability in the upper

layer when -2.5 < s < 0.

Radiation will probably be very difficult when >'0 since the phase

speeds of the instabilities will generally be more eastward than the free

wave phase speeds in Region III. It could, however, still be possible

because of the effect of s on the semicircle theorem (2.1.5a) and because

there is slight westward flow in the shear zone of the lower layer for
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positive a because of the way the profile was constructed there. While

barotropic instabilities cannot have contiguous neutral solutions with

negative phase speeds according to Tung (1981) and therefore cannot rad-

iate, baroclinic instabilities demonstrably have contiguous solutions

with negative phase speeds (Pedlosky, 1964; Garcia and Norscini, 1970).

On the other hand, radiation may occur readily for westward ( >0) jets

since the phase speeds of all unstable modes will be westward with

respect to the far field.

The stability diagram for both the eastward and the westward jet

(i.e., positive and negative a) is shown in Figure 3.2.3. There are two

overlaying diagrams shown to reduce confusion. At positive , there are

three obvious modes, labelled 1, 2 and 3. Using the necessary conditions

for instability as a guide, these can be identified as the upper layer

horizontal shear mode (Nc = 3.55), and two vertical shear modes of the

central jet (Sc = 2.5). The similarity between the shape of the stabil-

ity diagram for Mode 1 and the stability diagram for the barotropic jet

(Figure 2.6.7) is striking. The stability curves for Modes 2 and 3 are

very similar to the stability curves for the two cross-channel baroclinic

instability modes of Figure 3.2.1: Mode 3 is identified as the gravest

mode and Mode 2 as the next lowest mode of a "channel" whose apparent

width is about the full width of the jet, including the shear zones.

Dispersion relations c r(k) and c.(k) are shown in Figure 3.2.4 for

a = 1. They are separated into the diagrams just as Figure 3.2.3 is.

Again, identification of Mode 2 as a horizontal shear mode and Modes 2

and 3 as vertical shear modes is made: the phase speeds of the vertical
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Neutral stability curves in the B-k plane for the profile (3.2.2).
Here F = 5 and D = 1.7. The plane extends to negative B: an east-
ward jet has positive B and a westward jet has negative B. The solid
curves are ci = 0, the dashed curves ki = fr. The dot-dash curves
are also ci=0, but based on only a few points.

1 2 3 i 2 3 4

S = stable; ut = trapped instability; ur = radiating instability.
There are three modes at .30 shown intwo diagrams : (a)' longwave,
vertical shear mode (2) and (b) upper layer, horizontal shear mode
(1) and shortwave, vertical shear mode (3). For ;<0, Modes 1 and
3 become the upper layer horizontal shear mode.
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shear modes are large, nearly equal to the vertically-averaged velocity

in the jet center, while the phase speed for the horizontal shear mode is

much lower and closely resembles the dispersion relation for the barotro-

pic jet (Figure 2.6.7). All phase speeds and growth rates decrease to zero

as 8 increases. The kinetic and potential energy transfers are shown in

Figure 3.2.5, also for 8 = 1. Mode 1 is the only mode in which barotro-

pic instability plays a significant role, with input of kinetic energy in

both layers. Baroclinic instability also accounts for a fraction of Mode

1's energy. On the other hand, Modes 2 and 3 rely almost entirely on

baroclinic instability for energy. Thus, the dominant instability in

each mode is in keeping with its identification as a horizontal or

vertical shear mode.

All disturbances for a > 0 are trapped to the jet: their phase

speeds are always eastward with respect to the flow in the far field

(Region III) and they cannot satisfy the phase speed condition. An

example of an eigenfunction for each mode is shown in Figure 3.2.6.

When B is negative, the unstable modes can again be identified as

horizontal and vertical shear modes, based on the necessary conditions

for instability. In addition, because the phase speed condition can now

be satisifed since the jet is westward with respect to the far field,

both trapped and radiating modes are obtained.

Mode 2 is the simplest mode to describe so we begin with it: there

are two distinct regions of instability in the 8-k plane for B < 0, one

marked "ur", meaning that the unstable waves are radiating and the other

marked "ut", for trapped instabilities. Both parts of the mode are iden-
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tified as vertical shear modes because their sc = -2.5. For -.8 < B < 0,

the two regions are separated from one another by the curve t2i = '2r'
To the left of this curve, k2i > Z2r and the disturbances have wavelike

behavior in the meridional direction. For s < -.8, the radiating modes are

separated from the trapped modes by a set of stable waves. The curve of neu-

tral stability (ci = 0) for the radiating modes is also the curve P2i = 0.

These points .are illustrated in Figure 3.2.7 where c(k) for s = -1 is plot-

ted and in Figure 3.2.8 where 1(k) and 92(k) for B = -1 are plotted. The

radiating modes clearly have lower growth rates than the trapped modes.

While k1 is almost completely real (so this part of the solution in the

far field is trapped), k2 is mainly imaginary for the radiating modes

and mainly real for the trapped modes. The radiating modes thus have very

large decay scales compared with the trapped modes. The y-wavenumber of

the radiating modes is Im (z2): this is maximum at k = 0 and decreases

to 0 at the neutral curve for the radiating modes. We see in the stabil -

ity diagram, Figure 3.2.3, that the entire region of the 8-k plane to the

left of the k2i = 0 curve is filled with unstable radiating modes, which

are stabilized only when a = -2.5. The conclusion is that radiating modes

exist everywhere in the 8-k plane where Rossby waves exist: rather than

being fundamental unstable modes of the jet itself which just happed to

satisfy the phase speed condition, these modes are really destabilized

Rossby waves.

The Rossby wave dispersion relation at a = -1 for the far field

when there is no vertical shear there is pictured in Figure 3.2.7c where

c(k) for k = 0 and 9+ - of both the baroclinic and barotropic modes is
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plotted. No Rossby waves exist to the right of the k = 0 curve for the baro-

tropic mode. In order for there to be radiation, c and k must fall within

the k = 0 curve. This approach to finding the ranges of c and k where

radiating instabilites can occur was used by Pedlosky (1976).

The radiating modes for the westward jet have phase speeds and zonal

wavenumbers which fall in the right range for radiation on this diagram.

Superimposed on the Rossby wave dispersion relations are the dispersion

relations of the unstable modes at a = -1. Stability for the radiating

modes occurs precisely where k = 0: beyond this point, no Rossby waves

exist. Only the barotropic Rossby wave is excited by this jet.

Modes 1 and 3 have much more complicated behavior at negative s than

Mode 2. First of all, it appears that Mode 3 loses its identity as a

vertical shear mode: all instabilities associated with Modes 1 and 3

cutoff at the ac of the upper layer horizontal shear mode when 8 is nega-

tive. At negative 8, there are radiating and trapped instabilities just

as for Mode 2. The same explanations apply: the entire region to the

left of the dashed curve, k2i = Z2r, and the solid curve z2i = ci = 0 is

filled with destabilized Rossby waves, now associated with the horizontal

shear of the upper layer. Notice that for many wavenumbers there are two

destabilized Rossby waves (with different C and Z2), one associated with

the central jet vertical shear and the other with the upper layer hori-

zontal shear. The energetics of all modes at a = -1 are shown in Fig-

ure 3.2.9. All modes except Mode 1 are dominated by baroclinic insta-

bility: note that this is also true of Mode 3, whose stability.diagram

identifies it as a "horizontal shear" mode.
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There is a complication in the stability diagram for Modes 1 and 3

for -1 < a < 0. The modes coalesce and produce an additional mode some-

where in the little box marked on the diagram. This separate mode is

labelled 4 and exists for -1 < a < -. 3. It is a radiating mode. The

coalescence and mode production is best illustrated in the following

schematic pictures of c1(k) at B > -.2 and a < -.4:

>~

The new of Mode 1 at 8 < -.4 is combined from the higher growth rate

parts of Modes 1 and 3 while Mode 4 is the remaining lower growth rate

part. Such coalescences of modes mean that stability diagrams such as

this one can be difficult to understand.

To summarize briefly the results for this profile: the eastward jet

(8 > 0) has only trapped solutions, which are easily identified as hori-

zontal and vertical shear modes; the westward jet (B < 0) also has hori-

zontal and vertical shear modes, both of which have radiating longwaves

and trapped shortwaves. The maximum a for each mode is equal to one of

the a's given by the necessary condition: in other words, the necessary

conditions appear to be sufficient, at least for the central jet verti-

cal shear mode and the upper layer horizontal shear mode. The radiat-

ing modes for B < 0 are identified as destabilized Rossby waves of the

far field.
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The second example of a jet with vertical shear in the central

region and no vertical shear outside the jet is the profile

Uy = 1
i .1F = 5

U12  = 0 (3.2.3)
D = 1.7

U01  = 0

U02  = 0

This is similar to the previous profile but with no flow, and hence no

horizontal shear, in the lower layer (there actually is a little flow in

the shear zones, Region II, because of the potential vorticity constraint

on the profile there). We might expect the importance of the horizontal

shear to be diminished relative to the vertical shear compared with the-

previous profile. The profile shape and its potential vorticity gradient

for B = 1 are shown in Figure 3.2.10. The necessary conditions for insta-

bility for this profile imply that there is possible (1) horizontal shear

instability in the upper layer when -6.67 < a < 3.05, (2) no lower layer

horizontal shear instability, (3) vertical shear instability in the cen-

tral jet when -5 < B < 5, (4) no vertical shear instability outside the

central jet and (5) no mixed instability in the lower layer because of

the second necessary condition which requires that U > 0 somewhere
ay

for instability.

Again, radiation should be difficult for the eastward jet (B > 0)

and easy for the westward jet. The stability diagram in the B-k plane is

shown in Figure 3.2.11. The diagram is shown in two parts again. Al-

though the stability diagram appears to be simpler, the types of un-



b)

Figure 3.2.10

(a) U(y) as given by (3.2.3)
vorticity gradient (3.1.8).

and (b) an/ay, the effective potential

a)

A77-
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Figure 3.2-11

0 0-) 0

rv/

eutral stbil ity curve s in the 3-k plane for the profile (3.2.3).
The clane extends to negutive 3, as in Figure 3.2.3. Notation is as
in F'igure 3.2.3. There are two rCes shown separately: (a)longwave,
vertical shear mode (2) and (b) combination of the shortwave,
vertical shear mode and the upper layer, horizontal shear mode (3).
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stable modes seen here are not as clear-cut as in the previous profile.

For B > 0, there are two separate modes, rather than the three of the

previous profile. Mode 2, which is a vertical shear mode of the central

jet, is essentially unchanged by the increase in vertical shear. It is

now unstable up to Bc = 5.0 because of the increase in shear. Its

phase speed and growth rate at B = 1 are shown in Figure 3.2.12: the

phase speed is now closer to .5 (the phase speed of a pure baroclinic

instability at B = 0 where the vertical shear is 1.0). Mode 3 on the

other hand is now a combination of Modes 1 and 3 from the previous pro-

file (Figure 3.2.3). The combination of the two modes into one is clear

when U12 is gradually reduced from .5 to 0. Apparently the loss of hori-

zontal shear in the lower layer means that the overall flow is less baro-

tropically unstable. Such a result was reported by Holland and Haidvogel

(1980). Comparing the dispersion relations for Mode 3 (Figure 3.2.12) with

the dispersion relation for Modes 1 and 3 when U12 = .5 (Figure 3.2.4),

it is easy to see thatboth modes are really still present, although com-

bined together. The energy source for Mode 3 is highly baroclinic (Fig-

ure 3.2.13) but there is still a barotropic source of energy associated

with Mode 1. Mode 3 is thus some sort of mixed barotropic-baroclinic

mode, since it is combined from a horizontal and a vertical phase mode.

The flow is strongly dominated by baroclinic instability.

When o < 0, there is a rather odd trade in behavior: as can be seen

in the stability diagram, Figure 3.2.11, Mode 2 essentially becomes a hor-

izontal shear mode (because of its oc) while Mode 3 retains itsmixed

character. Note that there are still just two sets of destabilized Rossby
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waves: one is associated with the horizontal shear (Mode 2) and the other

with the vertical shear (Mode 3). The stability diagram for Mode 3 is

peculiar at large negative s: the portion which is associated with the

central jet vertical shear becomes stable at B = -5 while the portion as-

sociated with the horizontal shear is stable at a = -6.67.

Dispersion relations at B = -1 are shown in Figure 3.2.14. Again, it

looks as though Modes 2 and 3 have switched places compared with the prev-

ious profile. The growth rate of the radiating waves is lower than that of

the trapped waves, but not by much. The energy transfers for the two modes

are shown in Figure 3.2.15 at B = -1. Mode 2 has nearly equal baroclinic

and barotropic energy sources, again identifying it as a horizontal shear

mode for B < 0. Mode 3 is very much dominated by baroclinic instability.

The confusing switch of behavior from horizontal to vertical shear

modes and the coalescence of modes is not important, and should not be

stressed. The important points are that there are instabilities which

can be identified with different instability mechanisms (using the neces-

sary conditions for instability and the energy transfers) and that, when

the conditions are right (when this particular jet is westward), there

are two radiating modes, one associated with the vertical and one with

the horizontal shear.

(c) Eastward Jet with a Westward Undercurrent

The eastward jets discussed above were unable to successfully force

Rossby waves in the outer region because of the mismatch of Rossby wave

and instability phase speeds. The westward jets, on the other hand, were

quite successful in radiating energy. A predominantly eastward jet might,
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however, radiate if, for instance, it had (1) a westward jet underneath

(like the westward undercurrent beneath the Gulf Stream), (2) vertical

shear in Region III or (3) westward sidelobes to the south (and/or north)

of the eastward jet. This subsection discusses the first possibility. The

following two subsections give results for jets with positive and nega-

tive vertical shear exterior to the jet. The effect of westward side

lobes was not investigated because of the increase in complexity of the

dispersion relation. However, such a geometry may actually be the most

realistic for the Gulf Stream (see Chapter 4) and would be extremely

useful to investigate.

The flow configuration for the eastward jet with a weak westward

undercurrent is shown in Figure 3.2.16, with its potential vorticity

gradient, for B = 1.

The profile is

U11  = 1 F = 5

U12  = -.1 (3.2.4)
D = 1.7

U01  0 0

U02  = 0

The necessary conditions are nearly unaltered from those of profile

(3.2.3). There is possible (1) horizontal shear instability in the up-

per layer when a < 2.94, (2) horizontal shear instability in the lower

layer when B < 3.26, (3) vertical shear instability in Region I when

S< 5.5, (4) no vertical shear instability in Region III, and (5) mixed

instability in the lower layer when 3.26 < s < 5.5.



b)

2

.5
-2.5 2.5 5 7.5 10

-2 --

Figure 3.2.16

(a) U(y) as given by (3.2.4) and (b) air/ay, the effective potential
vorticity gradient (3.1.8).
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Only cases with a > 0 are considered here. Because of the slightly

increased vertical shear in the central jet, we might expect baroclinic

instability to be slightly more important than in profile (3.2.2). The

shift in importance of baroclinic and barotropic instability is reflected

in the decreased sc for the horizontal shear mode and increased sc for

the vertical shear mode. Also, the phase speed of the central jet verti-

cal shear modes should be a little reduced since the vertically-averaged

velocity in the central jet is lower.

Radiation may be possible if unstable modes have negative phase

speeds. As B increases to the appropriate Bc for each mode, the phase

speed decreases to the minimum speed of its associated part of the flow

profile. Each unstable mode is associated with a particular part of the

profile: the vertical shear modes with the central jet flow, which has a

range of -.1 to 1, and the horizontal shear modes with the upper layer

horizontal shear, which has a range of 0 to 1 and with the lower layer

horizontal shear which has a range of -. 1 to 0. Thus for this profile,

we would expect the vertical shear modes of the central jet and the

lower layer horizontal shear mode to be much more likely to radiate

than the upper layer horizontal shear mode.

The stability diagram is shown in Figure 3.2.17. First some explan-

ation of the notation used in Figure 3.2.17 is in order. As before,"ut"

and "ur" indicate trapped and radiating instabilities. The solid curves

are the loci c. = 0. There are three dashed curves in each diagram: one

is where ci = .01, which is used to informally indicate a boundary be-

tween fundamental modes of the jet and destabilized Rossby waves; the other

two are the curves Re(O). = W) and Re(Z 2 ) = Im(Z2). These curves
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Figure 3.2.17

Neutral stability
ur curves in the B-k plane

for the profile
(3.2.4). There are two

fi basic modes labelled
O (2) and (3), as in

Figure (3.2.11).
Notation is as in
Figure 3.2.3. The

ut long-dashed boundaries
are where ci drops
to .01.

31

ur o

/ ~//

Cr-O/,

s

-- I I I

ur

O

ut



-134-

indicate, also informally, a transition from trapped behavior to wavelike

behavior for each of the two Rossby waves in the far field.

The stability diagram, Figure 3.2.17, is nearly the same as the

diagram in the preceding section (Figure 3.2.11). There are still two

modes of instability, called Modes 2 and 3, just as in Figure 3.2.12.

Both modes are stabilized by sc = 5.5: mode 2 is a central jet vertical

sehar mode. Mode 3 is also predominantly a central jet vertical shear

mode but still incorporates the horizontal shear mode, which affects its

longwave behavior. There is one important difference from the preceding

jet (Figure 3.2.11): both Modes 2 and 3 have associated radiating insta-

bilities. In the stability diagram, some of the neutral stability curves

(cg = 0) are now dashed to indicate where (ci = .01): the modes along the

neutral stability curve of Figure 3.2.11 are now slightly unstable. These

formerly stable modes have negative phase speeds, satisfy the phase speed

condition and are now radiating. The unstable waves between the (Re(k) =

Im()) curves and the (c = .01) curve correspond with the trapped insta-

bilities of the previous profile: they now satisfy the phase speed con-

dition, because of the slight change in the flow profile, and are now

radiating.

It is surprising and interesting that where there was formerly a

neutral curve, there is now a small growth-rate curve at high B, for both

modes. (The neutral curve for these modes now lies at B -c BC). Although

the growth rate drops precipitously at this "boundary", it does not be-

come zero. Let us discuss Modes 2 and 3 and their associated radiating

instabilities separately. Mode 2 satisfies the phase speed condition
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only at high s. There are radiating instabilities on both sides of the

curve c. = .01. To the left, they are basically the usual jet modes, which

now radiate. To the right, they are destabilized Rossby waves, exactly as

found for the westward jets of the two preceding profiles. The destabil-

ized Rossby waves have their own associated neutral curves: one is the

boundary B = 5.5 as dictated by the necessary conditions for instability,

the second is the curve marked "cr = 0" and the third, which is not shown,

is at k~5 (where the Rossby wave y-wavenumbers Im(f) go to zero).

Dispersion relations are shown in Figure 3.2.18 at B ='5. In con-

trast to the growth rate of the destabilized Rossby waves for the west-

ward jets, the growth rates of these destabilized Rossby waves are very

small. It appears from consideration of various profiles that the growth

rate of the destabilized Rossby mode depends strongly on the "window" al-

lowed for satisfaction of the the phase speed condition. For instance,

the velocity of the westward jets ranged from -1 to 0 so its destabilized

Rossby waves can have any phase speed between -1 and 0. On the other hand,

the velocity of the eastward jet with a westward undercurrent ranges from

-. 1 to 1 with a far field velocity of 0. Destabilized Rossby waves for

this flow can have phase speeds only in the range -. 1 to 0, a considerably

smaller range than for the westward jets. The consequence is that their

growth rates are much smaller.

The energy transfers at B = 5 are shown in Figure 3.2.19. This o is

considerably in excess of the Bc associated with the upper layer horizon-

tal shear instabilities, so the flow is far from being barotropically un-

stable. Indeed, the energy transfer to the perturbations is entirely dom-
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Figure 3.2.18

For the flow in Figure 3.2.16 at B = 5:
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inated by baroclinic instability while the flow is actually losing kin-

etic energy to the mean flow.

Let us turn now to Mode 3. Returning to the stability diagram,

Figure 3.2.17, we see that Mode 3 appears to radiate all along its old,

longwave, neutral stability boundary (see Figure 3.2.11) and also on the

shortwave side at high B. These short radiating waves are virtually

identical with those of Mode 2 and will not be discussed further here.

At low a and k there is a stable region, bounded by a neutral curve on

which c r = 0. This neutral stability curve seems to be due to the im-

plicit presence of Mode 1 as part of Mode 3: it has been seen before

that Mode 1 strongly affects the longwave behavior of Mode 3. As argued

above, Mode 1, the horizontal shear mode, will probably not radiate be-

cause the minimum velocity of the flow it depends on for energy (the up-

per layer flow) is 0. The neutral curve along which cr = 0 is probably

due to Mode 1: while the phase speeds of the contiguous instabilities

are negative, and the instabilities appear to be radiating, the stringent

requirement that c./kr remain constant.along the neutral curve is not

met. The phase speed, c r, along the neutral curve is consistent with

Tung's (1980) prediction that the phase speeds of neutral modes of baro-

tropic instability must be in the range of the flow speed here, the upper

layer flow speed has a range of 0 to 1 at higher a and low k. Mode 3 is

predominantly a vertical shear mode and has associated destabilized, long,

Rossby waves.

We have seen that vertical shear instabilities are present and that

the upper layer horizontal shear mode affects the longwaves of Mode 3. A



-139-

lower layer horizontal shear mode was not found although the necessary

conditions do not rule it out. It may be coalesced with the vertical

shear modes and may in fact be responsible for the longwave behavior

of Mode 3 at high s.

Dispersion relations at a = 1 are shown in Figure 3.2.20. The phase

speed of Mode 3 at its longwave cutoff is 0. This is the edge of the sta-

ble region at low o and k in Figure 3.2.17. However, the phase speed of

Mode 3 just inside the neutral curve is negative, as can be seen in Fig-

ure 3.2.20. With negative phase speeds, there is a possibility that

these instabilities latch onto Rossby waves in the far field although

this mode does not strictly radiate, as above. The energy transfers at

I = 1 are shown in,Figure 3.2.21. At B = 1, the necessary conditions

for instability say that barotropic instability is possible in the upper

layer. While both Modes 2 and 3 are dominated by baroclinic instability,

there is a positive contribution from barotropic instability especially

on the longwave side of Mode 3, resulting from the horizontal shear mode

which is part of Mode 3.

The eigenfunctions for the trapped, high growth-rate modes are

similar to those of the previous profiles (Figure 3.2.6) since they depend

mainly on the vertical shear in the jet center for their energy and have

phase speeds which are too eastward to allow radiation. They are not re-

plotted here. A radiating mode at a=5 is shown in Figure 3.2.22. It is

curious-looking: the amplitude alternates between surface and bottom

intensification. This happens because there are two waves outside the

jet for the unstable waves to excite, a barotropic and a baro-
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For the flow in Figure 3.2.16 at a = 1: (a) cr(k) and (b) ci(k).
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clinic Rossby wave. The dispersion relation for the Rossby waves at

s = 5 is shown in Figure 3.2.23. Superimposed on the diagram are the

phase speeds of the unstable waves at a = -5, but rescaled by U = -1.

Both Rossby waves have phase speeds which asymptote to 0 at large K2 -

(k2 + Z2). The phase speed ranges overlap considerably. No Rossby waves,

and hence no radiating modes, occur when the point defined by c and k

falls to the right of the z = 0 curve. Thus, say, an instability with

small, negative phase speed and a specified x-wavenumber within a wide

range of k's forces both of these waves, but with different y-wavenumbers,

Z. The barotropic and baroclinic Rossby waves then add constructively to

give the vertical and meridional structure seen in Figure 3.2.22.

Despite the fact that the radiating modes are felt at great dist-

ances from the jet, all energy transfer to the perturbations must occur

in the jet itself since there is no source of energy outside the jet.

The radiating modes themselves can affect the mean flow outside the jet

through their Reynolds stress and heat flux which are also shown in

Figure 3.2.22.

To summarize, the solutions for the eastward jet with a small west-

ward undercurrent are similar to those of the eastward jet with a quiet

lower layer, but with the important difference that radiating modes are

excited. In this respect, this jet is more like the westward jets.

There are two types of radiating instability: (1) unstable modes of the

non-radiating jet which now, thanks to the alteration in configuration,

satisfy the phase speed condition and.radiate and (2) a whole new class

of unstable solutions with small growth rates: these are interpreted as

destabilized Rossby waves.
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Figure 3.2.23

Rossby wave dispersion relation for a fluid with two layers of equal
deth and vartical chear (UL2) = 0.0 at = 0 ard = 1.00.
The barotrpic #.Lve is marked eT and the baroclinic is .,arked SC.
The dashed curves are the phase speeds of the unstable waves at

=-5, rescaled with U=-1.
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The radiating modes of type (1) were expected on the basis of pre-

ceding stability analyses (chapter 2 and non-radiating baroclinic jets):

in all cases, as s>sc, the phase speed of the unstable waves approaches

the minimum velocity of the part of the profile responsible for the in-

stability. Thus, if the minimum velocity for, say, the vertical shear

instability, is reduced to be more westward than the exterior flow, neg-

ative phase speeds can be expected, at least at high a. Such modes might

radiate and in fact, they do. The destabilized Rossby waves were not ex-

pected, although in retrospect, they are the counterparts of the long,

radiating waves of the shear layers and westward jets. The phase speed

cr of the destabilized Rossby waves for a given wavenumber k is determined

by the jet instabilities. The y-dependence, z, is then determined by cr

and k. Since the barotropic and baroclinic Rossby waves have similar

phase speeds when there is no vertical shear in the exterior region,

they can both be forced. The meridional structure of the radiating

instabilities, which are combined from these two waves with different

y-wavenunbers, alternates between surface and bottom intensification.

(d) Eastward Jet With Small Positive Vertical Shear Outside the Jet

It is anticipated that jets with vertical shear in the exterior

Region III will have radiating solutions if the instabilities have phase

speeds less than the flow speed in at least one layer in Region III. The

free waves of the outer flow will be Rossby waves where the potential vor-

ticity gradient is replaced by B + F(U1-U2) and s - F(U1-U2) in the upper

and lower layers, respectively. We note that where s is small enough,
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small vertical shear in this outer region allows baroclinic instability.

For simplicity, the waves which do not extract energy from the vertical

shear (interface displacement) in Region III will be referred to as

"Rossby waves" and the growing waves which feed on the local available

potential energy will be called "baroclinic instabilities". Note that

Rossby waves can exist even when 8 = 0 since there is an ambient poten-

tial vorticity gradient due to the vertical shear.

The dispersion relation for waves in the outer flow is the familiar

two-layer relation (3.2.1), listed at the beginning of section 3.2(a). It

has neutral solutions in addition to the complex ones which are the focus

of discussions of baroclinic instability. The phase speed c(k) (equation

3.2.1) is plotted in Figure 3.2.24 as a function of K, the total wavenum-

ber, for vertical shear Us = .15, F = 5 and 8 = .1 and 1. For these par-

ameters, the flow may be baroclinically unstable if 8 < Bc '75. There

is a range of unstable K when B = .1, but all phase speeds are real when

8 = 1, since baroclinic instability for these parameters requires that

8 < .75.

When 8 is non-zero, the limit of (3.2.1) as K2 > 0 is

1 2 -0.75 -

c or c (3.2.5)

K

The limit when K2 + - is c = U1, U2 or c = .15, 0. The phase speeds of

the neutral modes thus fall in one of the two ranges [.075 - B/2F, .15]

and [-- ,0]. (When there is no vertical shear, the first range corre-
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sponds to the baroclinic Rossby waves and the second to the barotropic

Rossby waves.) For moderate-sized K, the phase speeds of the two modes do

not overlap. Because the phase speeds of eastward jet instabilities are

generally positive (cr > 0), it is likely that the second type of Rossby

wave will not be excited so that only the first type will be seen. (The

first type is surface-intensified.) This is in contrast to the previ-

ously examined profile (3.2.4), where both the barotropic and baroclinic

Rossby waves in the outer region were excited.

There is a small problem with using an infinite, north-south plane

when there is vertical shear outside the jet: the boundary condition at

y = * is difficult to define if the flow in the far field is baroclin-

ically unstable. The following calculations were therefore initially

made in a bounded channel. When B is small, solutions which are baro-

clinically unstable in the outer region are found - their energy source

is clearly the potential energy of the local mean flow. However, it

turns out that these baroclinically unstable modes are not matched by

jet instabilities and that only neutral Rossby waves radiate energy from

the jet. When it was ascertained that only neutral Rossby waves are in-

volved in jet radiation, the hunt for the baroclinically unstable waves

in Region III was discontinued and the northern and southern boundaries

were removed. This aids the search for radiating solutions since growth

rates of destabilized waves are significantly enhanced by removal of the

boundaries. A later section deals with this effect of widely spaced nor-

thern and southern boundaries on radiating solutions.

The jet considered in this subsection is
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Ui = 1 D = 1.7

U= 0 (3.2.6)
F = 5

U01  = .15

U02  = 0

The vertical shear (U01 - U02 ) = .15 was chosen rather arbitrarily to be

large enough to allow the radiating solutions to be found easily (the

growth rates of the radiating modes go to zero as the vertical shear is

reduced, i.e., as the opportunity for radiation is eliminated). Using

the scaling developed in Chapter 4, this vertical shear corresponds to

about 6.cm/sec, which is a trifle high for the ocean interior. The pro-

file and effective potential vorticity gradient are shown in Figure

3.2.25, for a = 1. Only eastward jets, i.e. a > 0, are considered.

The necessary conditions for instability are again figured in terms

of each possible source of instability. At F = 5, there can be (1) hori-

zontal shear instability in the upper layer for a < 2.05, (2) no horizon-

tal shear instability in the lower layer due to -U y, (3) vertical shear

instability of the central jet for a > 5, (4) vertical shear instability

in Region III for B < .75, and (5) no mixed instability in the lower layer

because of the second necessary condition which requires that U 3- > 0ay

somewhere for instability.

Radiation is likely to occur where the instability phase speeds

fall beneath U01 = .15 since there are free waves in Region III with

these phase speeds. Since instability phase speeds are small at high

B, we can predict which modes are likely to radiate: the vertical

shear mode, with phase speeds from 0 to 1, may radiate while the up-



Figure 3.2.25

(a) U(y) as given by (3.2.7)
vorticity gradient (3.1.8).

and (b) a^/ay, the effective potential

a) b)

ay
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per layer horizontal shear mode, with phase speeds from .15 to 1, is

not likely to radiate.

Figure 3.2.26 is the stability diagram in the o-k plane, with the

two modes plotted separately to reduce confusion. The two familar modes

of the non-radiating jet [profile (3.2.3) and Figure 3.2.11] are present

and are basically unaltered. These are basically trapped modes associ-

ated with the vertical shear of the central jet, with fast eastward phase

speeds. In addition, there are many radiating modes, just as for the east-

ward jet with westward undercurrent (3.2.4). At high a for each mode and

along the longwave side of Mode 3, there is no longer a neutral curve

(just as in the previous profile with westward undercurrent): instead

the neutral waves are slightly destabilized. In the stability diagram,

the curve ci = .01 is plotted. Again, there are two types of radiating

mode: the basic instabilities associated with the jet, which are present

as trapped instabilities even when the conditions for radiation are not,

and destabilized Rossby waves, which are only present when conditions are

ripe for radiation.

Dispersion relations at B = 4 (Figure 3.2.27) show how quickly the

growth rate falls off near this curve. The imaginary phase speed ci is of

order 10-3 or 10~4 for the radiating modes. (A "truly" zero ci registered

as order 10-12 to 10-17 in the numerical scheme used.) The y-dependences,

ki and ' 2 , are plotted in Figure 3.2.28: only one Rossby wave is excited

in the far field, designated by . (This is the baroclinic mode when the

vertical shear is zero and is a surface-intensified mode here.) The en-

ergy transfer at a = 4 looks nearly like that of the previous profile at
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(A )

-

I I I I I

( B)

- 2 3
0

-.2 I I I

K Figure 3.2.27

For the flow of Figure 3.2.25 at 4: (a) cr(k), (b) ci(k).
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5 = 4 and is not plotted: energy is transferred to the perturbations by

baroclinic instability while the perturbations actually lose a little

kinetic energy to the mean flow.

In addition to the two main modes, which are closely related to the

vertical shear of the jet, there are two modes which may be associated

with the horizontal shear. These are labelled Modes 1 and 4. Both modes

have phase speeds smaller than .15 and radiate. Because the far field has

a non-zero potential vorticity gradient at 8 = 0, there can still be rad-

iating waves at B = 0. The solid boundaries at high k are well-defined

stability boundaries. The dashed curve at low k for Mode 1 is nearly a

neutral- curve: the imaginary phase speed has a minimum here. Both Modes

I and 4 appear to be unstable up to at least B ~ 1.5. They are possibly

related to the upper layer horizontal shear (which can be unstable for

0 < o < 2.05).

The eigenfunction of a radiating mode at a = 4 is shown in Figure

3.2.29. Its most important aspect, in addition to its slow meridional

decay, is surface-intensification. Characteristically, the Reynolds

stress extremum in the dominant layer (the surface layer) is farther

away from the jet than the Reynolds stress extremum in the weaker layer

(the bottom layer).

To summarize the results for the eastward jet with positive verti-

cal shear in the exterior region, there are the two basic modes present

in both non-radiating and radiating jets. Both modes have large growth-

rates and strongly trapped solutions which appear to depend mostly on the

vertical shear of the central jet for their energy. With positive verti-
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cal shear in Region III, some of these modes (those with cr < .15 = U01
and which are near the neutral curve) radiate. Modes with cr < .15 and

which fall on the neutral curve for the non-radiating jet are no longer

stable but have small growth rates and connect to a whole range of desta-

bilized Rossby waves. Although there is baroclinic instability in Region

III when o < .75, the locally baroclinically unstable modes are not im-

portant for radiation of the central jet. Destabilized Rossby waves ex-

ist wherever Rossby waves exist in the s-k plane (and where the necessary

conditions for instability are satisfied) for phase speeds, cr, which are

are determined by the jet. In other words, even though there are Rossby

waves for all wavenumbers k, the jet does not select the phase speeds of

the Rossby waves at high zonal wavenumber for destabilization. Thus

there is a distinct shortwave cutoff for the destabilized modes. The

mechanism whereby a particular phase speed is selected for destabiliza-

tion is unclear.

(e) Eastward Jet with Small Negative Vertical Shear Outside the Jet

It was seen in the previous two sections that when conditions allow

radiation, (i.e., allowing the instability phase speed to overlap the

phase speed range of free Rossby waves) previously trapped modes may rad-

iate if they satisfy the phase speed condition and that a host of Rossby

waves is destabilized. This subsection completes the exploration of rad-

iating jets by allowing negative vertical shear outside the jet.

The Rossby wave dispersion relation in Region III is again (3.2.1).

The dispersion relation is plotted in Figure 3.2.30 as a function of k for
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k = 0 (or equivalently, for the total wavenumber, K) with F = 5, U1 -.15,

U2 = 0 and for 8 = .1 and 1.0. The flow is baroclinically unstable when

a < .75. The phase speed limits from (3.2.1) for the two modes are [-.075

- 5/2F, 0] and [-c , -.15]. The first range corresponds to the 0 sign

in (3.2.1) and was the baroclinic Rossby wave when there was no vertical

shear. The () mode is strongly bottom-intensified when its phase speed

falls between 0 and -.15 (in this range, the phase speed is only westward

with respect to the flow in the bottom layer).

The profile used is shown in Figure 3.2.31 with its effective poten-

tial vorticity gradient. The profile i s

U11  = 1 F = 5
U12  0 (3.2.7)

D = 1.7

U01  = .15
H +

U02  = 0

The necessary conditions at F = 5 for the various possible sources of

instability are: 1) horizontal shear instability in the upper layer

for a < 4.04, (2) horizontal shear instability in the lower layer for

.655 < 8 < .75, (3) vertical shear instability in the central jet for

a < 5, (4) vertical shear instability outside the jet for a < .75 and

(5) no mixed instability in the lower layer because of the second neces-

sary condition which requires that U > 0 somewhere for instability.

Radiation might occur if the instability phase speeds are negative

as we can see from Figure (3.2.30) since the phase speeds of all Rossby

waves outside the jet are negative. Since the instability phase speeds
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(a) U(y) as given by (3.2.8) and (b) ail/ay, the effective potential
vorticity gradient (3.1.8).
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tend to the minimum flow speed as + c, there may be radiating modes

for the upper layer instabilities at large a. The vertical shear modes

are less likely to radiate because their velocity range is 0 to 1.

The stability diagram for this profile is shown in Figure 3.2.32.

This is by far the most complicated stability diagram in this chapter.

It is divided into three parts, showing the two familiar vertical shear

modes and an additional mode. Modes 2 and 3 still become stable at the

Bc decreed by the necessary conditions for instability for the vertical

shear of the central jet. The additional mode, labelled "4", is an upper

layer horizontal shear mode based on the range of B for which it is unsta-

ble: it- is stabilized by a B of about 4, which is Bc for the horizontal

shear in the upper layer.

One informal test for a radiating mode has been the relative size

of Re(zi) and Im(2). This criterion does not work for this profile.

Instead, we must use the stricter criterion involving ci/Zr discussed

in Chapter 2. - This criterion shows that the only portions of Modes 2

and 3 which radiate is .9 < k < 1.8 in Mode 3. This is true even though

cr is negative for both modes at high a in the small areas between the

ki = 'r curves and the neutral stability curves. However, cr + 0 on the

neutral curve at high B and ci/Zr + 0 all along the neutral curve so

these modes are not radiating. This confirms the original expectation

that the vertical shear mode does not radiate for this profile. At low

s, the longwave portion of Mode 3 is dominated by the horizontal shear

mode: as noted above, this mode radiates (only the horizontal shear mode

was expected to radiate for this profile).
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The new mode (4) which was not present for the other jets is a rad-

iating, upper layer mode. At high k, Mode 4 has its highest growth rate

and is basically trapped. However, Mode 4 radiates on the longwave side

and is associated with destabilized Rossby waves. Because the potential

vorticity gradient is non-zero when o is zero because of the vertical

shear, this mode can radiate (and does) at a = 0. The neutral bounda-

ries for this mode are (1)c = 4.04, where cr + -.15 and ci.+ 0, (2) the

locus cr = 0 and (3) a small section at high k where 91 = 0.

A pervading problem in finding neutral stability curves and assign-

ing each mode to a given instability mechanism is the readiness of the

modes to coalesce. In this jet, Modes 3 and 1 partially coalesce, making

their stability diagrams quite messy around a = 2.3. The longwave, radi-

ating modes for s < 2.3 are associated with Mode 3 while the longwave

radiating modes for a > 2.3 are associated with Mode 4. The dotted boun-

dary on each diagram gives an indication of this switch: note that the

boundary could have been assigned to a constant k, rather than to a con-

stant B. The trade is best illustrated with sketches of the imaginary

phase speed at B's below and above the transition. At, say, B = 2, ci
for Modes 3 and 4 looks roughly like

CLv
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At 8 = 3, c i looks roughly like

k
This trade of the radiating long waves is really only a complication of

the problem and should not be dwelt upon, except insofar as it clarifies

the difficult stability diagrams.

Dispersion relations for the different modes are shown in Figure

3.2.33 at a = 1. The y-dependences, ki and Z2 are shown in Figure 3.2.34.

Once again, it is the k, wave which is important for radiation. This was

the baroclinic mode when the vertical shear was zero. This wave is much

more likely to have phase speed between -.15 and 0 than the other Rossby

wave (see Figure 3.2.30 and text). This z, wave is bottom-intensified

when its phase speed lies between 0 and -.15 since such a wave propagates

much more successfully in a layer in which its phase speed is westward

with respect to the flow speed. For this profile, this is the bottom

layer. An example of a radiating mode is shown in Figure 3.2.35 where

the bottom intensification is quite clear. This eigenfunction is inter-

esting because it derives its energy from the horizontal shear of the

upper layer but propagates meridionally in the lower layer. Hence its

amplitude in the jet is large in the shear zone of the upper layer and
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Figure 3.2.33
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negligible elsewhere, while its amplitude outside the jet is large only in

the bottom 1ayer.

3.3 The Effect of Selected Parameter Changes on the Behavior of Non-

Radiating Jets

Remarks are made here about the effects of changing the shear zone

width (D-1), the stratification parameter F and the width of the total

channel H on the instabilities. A limited examination of changes in

lower layer velocity in the central jet, U12 , was also made. No study

was made of the effect of a range of vertical shears in Region III,

(U0 1 - U02 ). The effects of changes in some parameters were quite

straightforward, while others were more subtle.

(a) Effect of Changes in Shear Zone Width, (D-1)

It was seen in Chapter 2 that a smaller shear zone width (relative to

the central jet width) destabilizes the horizontal shear modes, as is only

reasonable since the horizontal shear is increased when D is decreased.

Not only are the growth rates higher and the maximum sc for instability

higher, but there are additional destabilized regions of the s-k plane.

Only one horizontal shear mode occurs for the barotropic jet with shear

zone width (D-1) = .7. (This width has been used for all baroclinic jet

calculations so far in Chapter 3.) When the barotropic jet's shear-zone

width is reduced to (D-1) = .5, there are additional s-destabilized modes.

It is reasonable to expect this to happen for the two-layer jet, also.

Two non-radiating jets with shear zones of width 0.5 were examined.
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The results are compared with the results for the jets (3.2.2) and (3.2.3).

The first profile considered is

U 1  = 1

D = 1.5

U12  = .5

F = 5 (3.3.1)

U0 1  = H 0

U02  = 0

This flow is just the same as (3.2.2) and Figure 3.2.2 with a smaller

shear zone. The necessary conditions are broken down just as for the

jets of' Section 3.2. For s > 0, there can be (1) horizontal shear insta-

bility in the upper layer when s < 7.4, (2) horizontal shear instability

in the lower layer when B < 4.7, (3) vertical shear instability in the

central jet when B < 2.5, (4) no vertical shear instability outside the

jet and (5) no mixed instability in the lower layer.

The neutral stability diagram in the 5-k plane is shown in Figure

3.3.1. The diagram is again split into two parts: (a) both vertical shear

modes and (b) modes associated with the upper layer horizontal shear. The

vertical shear modes are virtually unchanged by the widened shear zones.

The main horizontal shear mode, indicated by "1', is unstable to much

higher 8 than before because sc predicted by the necessary conditions

for instability is higher. There are two additional (s-destabilized)

modes, associated with the horizontdl shear in the upper layer. A sep-

arate horizontal shear mode for the lower layer was not found. As in the

barotropic jet, the horizontal shear modes at high o are probably higher,

cross-jet, symmetric modes of the barotropic instability.
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When the horizontal shear in the lower layer is removed, the pro-

file, which is the counterpart of (3.2.3) is

U = 1

D = 1.5

U12  = 0

F = 5 (3.3.2)
U0 1  = 0

H + -O

U02  = 0

The types of instability which might occur, based on the necessary condi-

tions for instability for a > 0 are (1) horizontal shear instability in

the upper layer when a < 6.75, (2) no horizontal shear instability in the

lower layer, (3) vertical shear instability in the central jet when a < 5,

(4) no vertical shear instabil'ity outside the jet and (5) no mixed insta-

bility in the lower layer.

There are only two separate modes and both are shown in the stabil-

ity diagram, Figure 3.3.2. The effect of the narrowed shear zone is again

to raise the 8c associated with the horizontal shear zone in the upper

layer. The horizontal and vertical shear modes have coalesced, as they

do when D = 1.7, but the horizontal shear mode can be seen clearly at

8 > 5, in the peculiar shapes of the neutral curves for both modes. The

horizontal shear mode "1" of Figure 3.3.1 has coalesced with Mode 3 and

pops out at $ > 5. The first a-destabilized mode of Figure 3.3.1 has

coalesced with Mode 2 and accounts for all the instability for 8 > 5.

Changing D clearly changes the relative importance of horizontal

and vertical shear instabilities. This trade-off between the instabili-
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eutral stability diagra, in the 3-k plane for the profile '(3.3.2).
The hori Zontal shear modes of Figure 3.3.1b are coa- lesced with the
vertical shear modes.
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ties dominant in a wide jet (baroclinic instabilities) and the instabili-

ties dominant in a narrow jet (barotropic instabilities) is well-known.

(b) Effect of Changes in F

The effect of changes in F on baroclinic instability is also well

known. F is the squared ratio of the length scale to the internal defor-

mation radius. As the stratification is weakened, the deformation radius

shrinks and F increases. As F increases, the flow becomes more unstable

(there are more baroclinically unstable modes in a channel and the growth

rates increase), because the interface between the two layers becomes in-

creasingly pliant.

For instance, the dispersion relation (3.2.5) at a = 0 says that

F > K2/2 for the perturbation ,to grow. If the flow is confined to a

channel of half-width L, the total wavenumber is K2 = k2 + (n+1/2)2(r/L)2

which is always non-zero if L is finite. Table 3.3.1 lists the minimum

value of F required for the first (n = 0) and second (n = 1) modes to be

unstable for three channel half-widths, L:

Table 3.3.1
Fc FC

L (n = 0) (n = 1)

1.0
1.5
1.7

1.23
.55
.43

11.10
4.93
3.80

The disturbances will see the jet as a waveguide with "walls" somewhere be-

yond L = 1. If the "walls" appear to be at y > D, there is a good chance

that there will be two vertical shear modes when D > 1.5 and F = 5.
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A stability diagram in which F and k are varied (at a = 0) and where

the flow profile is otherwise given by (3.2.3) is shown in Figure 3.3.3.

This figure complements Figure 3.2.11 in which a and k are varied at F = 5.

The diagram may not be complete: only Modes 2 and 3 of Figure 3.2.11 were

examined. Figure 3.3.3 shows the regions of the F-k plane which are un-

stable, at o = 0. Mode 2, identified as the (n = 1) baroclinic instabil-

ity mode, is stable when F < 1.0. Mode 3, which is a combination of the

lowest baroclinic instability mode and the horizontal shear mode, is unsta-

ble at all F's: the instability at F = 0 is undoubtedly due to barotropic

instability, since there cannot be baroclinic instability when F = 0. Such

a result was found by Hart (1974), who examined the effects of changing F

and the relative layer depths on the relative amounts of barotropic and

baroclinic energy transfer to the most unstable wave for a two-layer flow

with a jet confined to the upper layer, just as in the present case.

(c) Effect of Northern and Southern Boundaries

Imposing northern and southern boundaries at a distance that is

large compared with the jet width has no effect at all on the trapped

modes, which do not influence the flow much beyond the jet. However,

boundaries do change the behavior of the radiating modes quite strongly.

The net effect is to allow standing modes and to lower their growth rates.

Figure 3.3.4a and b shows the effect of the walls on the growth rate

of the radiating modes associated with Mode 3 of the jet (3.2.3). Bounda-

ries are placed at (a) - and (b) H = *100. When there are wall.s, there are

well-defined c minima, each minimum corresponding to a separate standing
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Neutral stability diagram in the F-k plane for the profile (3.2.3),
at a = 0. There are two unstable modes (see Figure 3.2.9 for the
complementary diagram in the i-k plane).
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Figure 3.3.4

The effect of channel walls which are distant from the jet relative
to the internal deformation radius: the imaginary phase speed ci
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wave of the entire channel. Independent calculations of the channel modes

is difficult because of the thin, intense jet in the middle. (The y-wave-

lengths of the instabilities here are of the order of the jet width, so

the waves may be shifted significantly). One might guess that the ci min-

ima correspond to the standing modes: since standing waves are reflected

from the wall, they decay very little in the y-direction, which is one

property of waves with minimum c .

A similar observation of the effect of boundaries on radiated waves

was made by Lindzen (1974), who looked at Kelvin-Helmholtz instability in

a fluid which supports internal waves. Radiating instabilities of the

shear layer were found and their dispersion relations were somewhat dis-

turbed by the presence of top and bottom boundaries.

(d) The Effect of Variable Vertical Shear in the Central Jet.

Changes in the vertical shear in the central jet should shift the

relative importance of baroclinic and barotropic instability. This is

seen in the results for jets (3.2.2) and (3.2.3). In the first jet,

U12 = .5, and in the second jet, U12 = 0, but otherwise they were iden-

tical. The increase in shear from (U1 - U2 ) = .5 to (U1 - U2) = 1.0 re-

sults in an obvious increase in importance of the vertical shear mode in

the jet center. It is also accompanied by a coalescence of the main hor-

izontal shear mode with the shortwave vertical shear mode. (When there

are the high-s, destabilized horizontal shear modes, they coalesce with

the longwave vertical shear mode.) Thus, even when the horizontal shear

of the upper layer is unchanged, but the lower layer shear is removed,

the overall horizontal shear sensed by the instabilities is reduced.
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Holland and Haidvogel (1980) looked at the properties of the most

unstable wave of a two-layer jet. They found a decrease in the import-

ance of baroclinic instability as the jet became more barotropic. There

were also two distinct modes: one dominated when the jet was more baro-

clinic and the other when the jet was more barotropic.

3.4 Summary of results and general discussion of the instability of thin

baroclinic jets

The linear stability of several thin, baroclinic jets was discussed.

This was preceded by a description of the instabilities due to horizontal

shear alone (Chapter 2) and vertical shear alone. The parameter depen-

dence of the results was discussed briefly. In this section, specific

results (how many modes are there, what do they look like, what is their

energy source and can they affect the mean flow) for all jets are brought

together, followed by a general discussion of instabilities and radiation.

(a) Summary of results

The instabilities of the five basic jets have many features in com-

mon. All jets have two vertical shear modes and one or two horizontal

shear modes. The horizontal shear modes are separate (when U12 = .5) or

combined with the vertical shear modes (when U12 = 0). The number of ver-

tical shear modes is dictated by the width of the jet and the value of F,

both of which were the same for the five jets so it is not surprising

that all five have similar vertical shear modes. Based on the results

for two layer flow in a channel, the two vertical shear modes are the
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lowest cross-jet mode (this was called "Mode 3") and the next lowest

cross-jet mode (called "Mode 2" and occurring at lower zonal wavenumber

than Mode 3). These, of course, are symmetric modes by initial assump-

tion. The growth rates, kci, of Mode 3 are higher than for Mode 2 mainly

because its wavenumbers are higher. The phase speeds of Mode 3 are a lit-

tle lower than those of Mode 2: this is consistent with the phase speeds

of the first two baroclinic modes in a channel, where the total wavenum-

ber, K2 = k2 + (n + 1/2) 2 (7/L) 2 , of the (n = 1) mode is higher than the

(n = 0) mode. The vertical shear modes are not as easily identified by

their meridional structure because of the interference of the profile

breaks at lyf = 1. Generally, Mode 2 has a pronounced, relatively narrow

maximum in amplitude at y = 0, and a secondary maximum at y = 1. Mode 3

often has a slight amplitude minimum in the upper layer at y = 0, but oth-

erwise it's mid-jet maximum is broader than that of Mode 2. This weak

sign in the eigenfunction identifies Mode 3 as the (n = 0) mode and Mode

2 as the (n = 1) mode. The energy source for both modes is unequivocally

dominated by potential energy transfer from the mean flow.

The horizontal shear modes are separate from the vertical shear

modes when U12 = .5 and combined with Mode 3 when U12 = 0. The presence

of Mode 1 is pronounced on the long wave side of Mode 3 when they are

combined. The horizontal shear mode is called such because of the neces-

sary condition for instability which it is associated with and its dis-

tinctive dispersion relation, but its energy source for these jets is of-

ten dominated by the potential energy rather than the kinetic energy of

the mean flow. However, there is a larger proportion of positive kinetic
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energy transfer when this mode is present, compared with Modes 2 and 3.

The meridional structure of the horizontal shear mode closely resembles

the structure of the unstable modes of the barotropic jet: it has an

amplitude minimum at y = 0 and a maximum at y = 1, and is surface-intens-

ified in the jet when U12 = 0 (when there is no horizontal shear in

the lower layer).

Radiating modes exist whenever the phase speed condition is satis-

fied: when the jets are westward (s < 0), when there is westward flow in

the lower layer in the jet and when there is vertical shear outside the

jet. The radiating modes can be identified with either the horizontal or

the vertical shear modes. The horizontal structure of the radiating modes

depends strongly on the energy source. If the vertical shear in the cen-

tral jet provides the energy, the modes have maximum amplitude in the cen-

ter of the jet. If the upper layer horizontal shear provides the energy,

the maximum amplitude occurs in the upper layer in the shear zone (c.f.

Figure 3.2.35). The amplitude of the radiated wave near the jet is very

often comparable to its amplitude in the jet, although there are cases

where it is smaller. The vertical structure of the radiated waves out-

side the jet depends entirely on the flow configuration which allows the

mode to radiate in the first place. That is, the structure depends on

how the phase speed conditions is satisfied. There are two "free" waves

in the outer region for each k and c, because of the two-layer appoxi-

mation. Thus

(1) the radiating modes of the westward jets excite only the barotropic

Rossby wave in an ocean interior with no vertical shear. There are
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two radiating modes, one associated with the vertical shear mode

and one with the horizontal shear mode.

(2) The radiating modes of eastward jets with westward undercurrents

(with no vertical shear in the ocean interior) excite both Rossby

waves. Although the two waves have the same k and c, they have

different meridional wavenumbers Z. When both Rossby waves are

added together, the resulting eigenfunction alternates between

surface and bottom intensification in the meridional direction.

There is one radiating mode, associated with the trapped vertical

shear mode: the upper layer horizontal shear modes do not satisfy

the phase speed condition.

(3) The radiating modes of the jet with eastward vertical shear in the

ocean interior (U0S > 0), are surface intensified because they force

only the Rossby wave which is surface intensified. There are two

radiating modes, associated with the two trapped vertical shear

modes. The upper layer horizontal shear modes do not satisfy the

phase speed condition and do not radiate.

(4) The radiating mode of the jet with westward vertical shear in the

ocean interior (UOS < 0) is bottom intensified for the same reason.

This radiating mode is associated with the upper layer horizontal

shear. The vertical shear modes do not satisfy the phase speed

condition.

The energy transfers for the radiating modes of these specific ex-

amples are dominated by potential energy transfer, just as the trapped

modes are.
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In summary, the unstable modes of their baroclinic jets are be cat-

egorized as vertical shear and horizontal shear modes. There are trapped,

high growth rate modes and radiating, low growth rate modes. There are

two types of "radiating" instabilities: (1) horizontal and vertical shear

modes which satisfy the phase speed condition and (2) destabilized Rossby

waves which are contiguous to the type (1) radiating instabilities.

(b) General properties of the instabilities

(1) The necessary conditions for instability for different sources

of energy in the flow (that is, the vertical shear and the horizontal

shear in different regions) were derived. It was found that they were

sufficient for the profiles considered here. There were identifiable

horizontal shear and vertical shear modes, each satisfying its own neces-

sary condition.

(2) Hence, modes can be identifed not only on the basis of their

energy source, but also, and preferably, on the basis of the necessary

condition which they satisfy.

(3) In the parameter range selected for most of the examples in

3.2, baroclinic instability was the dominant source of energy. This is

not to say that horizontal shear modes were not present; on the contrary,

their effect was noted for each profile. However, most of their energy

was derived from the mean flow potential energy in these examples. While

the vertical shear modes obtained almost all of their energy from the po-

tential energy, the horizontal shear modes also obtained kinetic energy

from the mean flow. When the necessary condition for barotropic insta-
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bility was satisfied for one of the layers, the kinetic energy transfer,

however small, was usually positive. Conversely, when this necessary

condition was not satisfied, the perturbations lost kinetic energy to

the mean flow.

(4) The relative importance of barotropic instability is increased

when the lower layer has significant horizontal shear, when the jet as a

whole is narrowed (both as in Holland and Haidvogel, 1980) and when F is

decreased (as in Hart, 1974).

(5) As a increases, it exerts a retarding effect on the phase speed

and a stabilizing effect on the instabilities. As approaches ac, the

maximum- for a given type of unstable mode, the instability phase speed

approaches the minimum velocity of the part of the flow which produced

the instability.

(6) Knowing the necessary conditions for instability (which predict

the types of instabilities which might exist), knowing the Rossby wave

dispersion relation in the ocean interior and using result (5), it is pos-

sible to successfully predict which modes can have radiating solutions.

(7) If the phase speed and zonal wavenumber of a neutral mode with

contiguous unstable solutions satisfy the phase speed condition,

(i) that neutral mode is destabilized and looks like a modified

Rossby wave in the ocean interior,

(ii) the contiguous unstable modes also radiate in the sense that

c/zr >- 0 as the neutral-mode is approached (and also in the sense

that z /'r becomes large and Zr itself becomes quite small, with the

desired effect of producing a large meridional decay scale),
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(iii) the contiguous stable modes are destabilized (and are

referred to here as destabilized Rossby waves).

Growth rates of radiating modes (ii) and destabilized Rossby waves (iii)

are lower than growth rates of trapped waves (McIntyre and Weissman,

1978). Growth rates depend strongly on the range of phase speeds which

can radiate. Hence the radiating modes of a westward jet have growth

rates which are comparable to those of the trapped modes, while the

radiating modes of an eastward jet, which radiates because of a weak

westward flow somewhere in the system, have very low growth rates.



CHAPTER IV: COMPARISON OF MODEL RESULTS WITH DATA

FROM THE WESTERN NORTH ATLANTIC

4.1 Introduction

In this chapter we see to what extent the eddy field south of the

Gulf Stream can be attributed solely to the instabilities studied in the

previous chapter. The observed, highly energetic, eddy field in the Gulf

Stream and its broad decay to the south can only be due to the presence

of the Gulf Stream and its recirculation. Direct atmospheric forcing is

not a viable mechanism for producing the eddy field because it does not

have sufficient strength and spatial inhomogeneity. It is assumed here

that the disturbances observed in the western North Atlantic are due to

instabilities of the Gulf Stream system, which includes the Gulf Stream,

possibly an undercurrent and possible flow outside the Gulf Stream. Two

complementary manifestations of instabilities are the finite amplitude

extension of the instabilities studied in this thesis and Gulf Stream

rings (Flierl, 1977). The formation and initial vertical structure of

Gulf Stream rings may be strongly influenced by the instabilities dis-

cussed in the previous chapter. In addition, the region in which rings

propagate may be affected by radiating Gulf Stream instabilities, which

may interact with the rings.

Comparing linearly unstable modes with data is tricky since the

proper basic flow and the finite-amplitude behavior of the instabilities

are unknown. The fully-developed field may not resemble the initially
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growing waves if the fastest-growing waves modify the flow quickly (by

forcing westward lobes north and south of the eastward jet, say) so that

the slowly-growing waves see an environment which is quite different from

the initial basic state. The problem of choosing a basic state is hand-

led here by looking at the unstable modes of three radiating, eastward

jets and the westward jet of the previous chapter and deciding which,

if any, set of results best fits the observations.

There are two types of unstable modes for the basic jets explored

in the previous chapter: (1) strongly unstable, trapped modes which do

not vary from model to model and (2) weakly unstable, "radiating" modes

with large meridional decay scales whose structure and phase speeds de-

pend strongly on the detailed structure of the flow. Good agreement of

the model and observations means that the model predicts reasonable fre-

quencies, wavenumbers, and meridional and vertical structure of energy,

Reynolds stress and heat flux.

Haidvogel and Holland (1978) examined the linear stability of in-

stantaneous and mean velocity profiles taken from meridional sections

of Holland's (1978) general circulation models. They found good agree-

ment between the properties (wavenumber, phase speed and growth rate)

of the linearly unstable waves and the actual waves which predominated

in the (fully non-linear) numerical models. The higher order quantities

(Reynolds stress and heat flux) were not predicted as well by the linear

stability analysis. They also found that proper simulation of the baro-

tropic instability process requires a velocity profile which is closer to

the instantaneous velocity than to the time-averaged flow: the sharpness
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of the Gulf Stream is lost in averaging because of its meandering. Their

results indicate that linear stability analysis of observed velocity pro-

files can yield meaningful predictions of the actual finite-amplitude

waves.

The model results are compared primarily with observations made along

55'W in the POLYMODE experiment and at the MODE site. Schmitz (1978, 1980,

1981) has analyzed the current meter data from these moorings and has pub-

lished the meridional distributions of mean flow, kinetic energy and Rey-

nolds stress. He has also calculated the kinetic energy spectra in the

thermocline and the abyss at a mid-field POLYMODE mooring and at the MODE

site (1978). Schmitz and Holland (1982) have made a very useful compari-

son of POLYMODE data and eddy-resolving numerical model results. Hogg

(personal communication) calculated the meridional heat flux and also the

velocities and temperature perturbations associated with the first empir-

ical orthogonal function for the POLYMODE data. Mention is also made of

the LDE results. Bryden (1982) computed the energy transfers between mean

and eddy kinetic and potential energy for the LDE (coordinates). Owens,

Luyten and Bryden (1982) discuss the ocean variability in the LDE, in-

cluding kinetic energy spectra which they fruitfully compare with the

POLYMODE and MODE spectra.

4.2 Scaling of Model Results

The first step in comparing model and observed results is redimen-

sionalization of the model. We wish to know the physical wavelengths,
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phase speeds, growth rates and meridional decay scales of both the trap-

ped and radiating instabilities. The second step is to choose the model

whose instabilities best match the observed fluctuations. The third step

is to decide if the best match is acceptable, with the possibility that

an unexplored basic state may actually be more appropriate.

In scaling the model to the observed Gulf Stream, the total trans-

port of the Gulf Stream is preserved. The observed horizontal shear is

also preserved. Choosing a vertical shear for the two-layer model is

more difficult since the vertical shear varies continuously in the hor-

izontal in the ocean, while it has the same value throughout the jet

center in the model. As long as the vertical shear in the model is a

reasonable average of the net vertical shear in the Gulf Stream, the

scaled model is assumed to be applicable.

The maximum net transport of the Gulf Stream is about 150 x 106 m3/sec

(Worthington, 1976). This maximum transport is achieved in a rather hor-

izontally constricted area, but for our purposes, it will be assumed to

be the transport of an infinite, eastward, zonal current. The transport

is distributed over 4.5 km in depth. Assuming that all of the transport

in the two-layer model is in the upper layer, of depth 2.25 km, we obtain

U dy = 5.8 x 103 km 2/day (4.2.1)

The modelled velocity profile, equation 3.1.5, is written in terms of D,

the position of the edge of the shear zone. Define 6 = D-1 as the width

of the shear zone. Then the nondimensional cross-stream integral of

velocity in the top-layer from 3.1.5 is
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fU dy = U (2 + 6) + 2 ( + 6 + 2) + 1 0 + cosh /2F 6 (4.2.2)6 0 6 V/HFL sinh V'2F 61

In dimensional form, where asterisks denote dimensional variables:

* *2 U* L

U dy o 6 (- + L 6 + 2L )+ o R - + cosh /2~F 6

/ - 7- sinh /2F 61

where LR is the internal deformation radius. The net horizontal shear of

the observed Gulf Stream is about 100 km/day in 100 km. In the model, this

shear occurs over the distance 6*, so

U* = 6* / day

Because most models in Chapter 3 had 6 = .7L and F = L2/LR2 = 5, these

relations are assumed here also. The model's integrated velocity becomes

*2 *3 6 L 1
f U dy = (3.36) + (5.34) + LR 1 + cosh v2 6 (4.2.3)

day + 2~54+ (day) L sinh V2F 6J

For reasonable values of 6* and LR, the first term of 4.2.3 dominates. The

other two terms are the corrections to the shear profile in the wings

which make the potential vorticity gradient vanish in the presence of 0

and vertical shear. Ignoring these two terms and combining (4.2.1) and

(4.2.3), we obtain

*
6 = D*- L* = 42 km

L* = 60 km

U* 42 km/day (4.2.4)

. L R 27 km
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T = L*/UO* = 1.43 days

$ = B0L* /U0* .1

The deformation radius is obtained from L* and the assumed value of 5 for

F = (L*/LR)2 ,

These scales are reasonable. By definition they give the correct

Gulf Stream transport and observed horizontal shear. They give a total

Gulf Stream width of 204 km, which may be a little wide, although it in-

cludes all of the wings. The vertical shear is also reasonable: the max-

imum observed vertical shear in the center of the jet is about 100 km/day,

but the. baroclinic instability may depend more on the average vertical

shear. The internal deformation radius is also of the right order:

Flierl (1975) calculates internal deformation radii of 26 km in the

Gulf Stream and 47 km in the MODE region.

The biggest source of error is probably the choice of horizontal

shear, particularly since the actual basic state for the Gulf Stream

may be rather different from the observations. If the horizontal shear

were doubled, the Gulf Stream width would shrink to 142 km and the inter-

nal deformation radius to 19 km, while the time scale would be .72 days.

If the horizontal shear were halved, the Gulf Stream width would be 286 k m,

the internal deformation radius 38 km and the time scale 2.8 days.

Another source of error could be the arbitrarily assumed values of

D and F, both of which affect the modelled width of the Gulf Stream and

hence the number of cross-stream, baroclinically unstable modes. The

choices of F = 5 and D = 1.7L yield two cross-stream modes. Increasing
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D or F increases the number of cross-stream modes. Because the higher

modes are less unstable (Pedlosky, 1979), it does not seem vitally essen-

tial to include them. Barotropic instability is unaffected by the choice

of F. When D is increased and a (thus L) is held constant, the flow is

less barotropically unstable because the horizontal shear is effectively

diminished.

4.3 Observations in the Subtropical Gyre

This section is subdivided into many small sections to separate the

different types of observations from one another. The first three sections

discuss the eddy energy distribution in the subtropical North Atlantic. The

next two sections discuss the mean flow, mean potential vorticity gradient

and the fluctuations associated with the first empirical orthogonal func-

tion for the POLYMODE data. The Reynolds stress, heat flux and energy

transfers between the mean and fluctuating flows are discussed in the

sixth, seventh and eighth sections. The results of all subsections are

summarized in the ninth subsection. Most of the results listed here are

published in the cited references.

(i) Horizontal energy distribution

The horizontal distribution of mean and eddy kinetic energy at the

surface of the North Atlantic (and world's oceans) was plotted by Wyrtki,

Magaard and Hager (1976), using ship-drift observations. At the core of

the Gulf Stream, the eddy kinetic energy is in excess of 1500 cm2/sec2 ,

The meridional e-folding scale of the kinetic energy at 65*W is about
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700 km; at 550W it is about 600 km: both are calculated roughly from the

published maps. The scales are comparable in the Pacific south of the

Kuroshio.

Richardson (1981) also plotted the surface kinetic energy in the

subtropical North Atlantic based on all available surface drifter data.

He estimated a surface eddy kinetic energy of 1630 cm2/sec 2 at 550W.

The decay scale of the energy was about 500 km south of the Gulf Stream

and was nearly independent of longitude. The energy values of Wyrtki et.

al. were lower because they could not sample short time-scales very well

with ship-drift observations.

Dantzler (1977) plotted the eddy potential energy density for the

subtropical Atlantic, using the mean-squared displacement of the 150 iso-

therm to calculate the eddy potential energy. He obtained values in ex-

cess of 1600 cm2/sec 2 in the Gulf Stream. From his map, an e-folding

scale of 300 km south of the Gulf Stream can be estimated.

All three horizontal maps plainly show the intensification of eddy

energy in the Gulf Stream (and Kuroshio). In addition, the distribution

of eddy energy perpendicular to the Gulf Stream is nearly independent of

distance along the Gulf Stream from about 75*W to 500W. (Wyrtki, et. al.

show a weakening of energy along the Gulf Stream but no real change in

meridional decay scale.)

(ii) Vertical cross-sections of kinetic energy

The kinetic energy along 55OW at four different depths was discussed

by Schmitz (1978). South of the Gulf Stream there were moorings up into

the thermocline. In and north of the Gulf Stream, there were moorings
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only at 4000 m. Schmitz reports an increase of energy from the interior

ocean to the Gulf Stream by a factor of over 100 below the thermocline

and by a factor of 30 in the thermocline. E-folding scales estimated

from his data are 290 km in the thermocline and 220 km at 4000 m. The

thermocline kinetic energy can be extrapolated into the Gulf Stream using

this e-folding scale, yielding a kinetic energy of about 525 cm2/sec 2 ,

This is sensitive to the kinetic energy values at the moorings and to the

position of the moorings relative to the Gulf Stream axis, and is some-

what higher than SOFAR float results in the Gulf Stream at 55*W (Owens,

personal communication; Schmitz et. al., 1981).

(iii) Kinetic energy distribution for different frequencies

Schmitz (1978) calculated the kinetic energy distribution as a

function of frequency at two moorings. One was the POLYMODE mooring

at (37030'N, 55*W), 200 to 250 km from the mean Gulf Stream. The second

was the MODE mooring at (280N, 70'W), about 700 to 900 km from the Gulf

Stream. Schmitz focused his attention on "mesoscale" (50 to 100 days)

and "secular" scale (100 to 1000 days) disturbances. The mesoscale fluc-

tuations were weakly surface-intensified at both moorings. They decayed

rapidly to the south, but maintained their relative vertical structure.

The secular scale disturbances decayed more slowly to the south than the

mesoscale disturbances. They were weakly surface-intensified at 37 030'N,

becoming strongly surface-intensified at the MODE site.

Schmitz's energy values for the two frequency ranges at the two

moorings are listed in Table 4.3.1.
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Table
PM08 (37.5 0N, 55'W)

Depth KE

4.3.1

MODE (280N,

Depth

70'W)

KE

KE = Ae

A 1/z (km)

Secular 600 m 75 500 m 37 110 640
Scale
(> 100 Days) 4000 m 34 4000 m 2.2 155 165

Mesoscale 600 m 222 500 m 15.6 970 170

(50-100 Days) 4000 m 80 4000 m 6.6 320 180

If we assume that the meridional fall-off of energy in each frequency

range is a simple exponential [E(y) = Ae~Y], we can compute the decay

scale (1/z) away from and amplitude (A) in the Gulf Stream. The POLYMODE

mooring is assumed to be 250 km and the MODE mooring 700 km from the Gulf

Stream. The decay scale and amplitude are listed in the right column. The

mesoscale disturbance decays much more rapidly than the secular scale dis-

turbance and is much more energetic in the Gulf Stream. The errors in this

simple calculation are undoubtedly large: if MODE is farther than 700 km

from the Gulf Stream, the decay scales are larger and the amplitudes smal-

ler. (According to this simple extrapolation, the secular scale energy in

the Gulf Stream is bottom-intensified: if MODE is really farther than

700 km from the Gulf Stream, the extrapolated secular scale energy would

be surface-intensified in the Gulf Stream.)

(iv) Mean flow velocity and potential vorticity gradient

The mean flow at many depths along 550W was plotted by Schmitz (1978)

and discussed in greater detail by Schmitz (1980). The mean flow is shown

in Figure 4.3.1. There were no moorings directly in the Gulf Stream but it
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is assumed that the Gulf Stream is eastward and centered at about 400N.

The main features of the observations are (1) a westward current of 5 to

7 cm/sec directly under the Gulf Stream's historical axis, (2) a nearly

barotropic eastward flow of 7 to 10 cm/sec, centered at 37030'N, (3) a

nearly barotropic westward jet of 10 to 15 cm/sec centered at 360N and (4)

quiet flow of 1 to 2 cm/sec south of 35'N with vertical shear of ambiguous

sign, depending on the averaging period used.

In modelling the Gulf Stream, one might include a westward undercurrent

since the observations suggest that there is a reversal of flow at depth.

However, such a basic state may be incorrect since the mean westward under-

current may be under the mean Gulf Stream only at this longitude or the in-

stantaneous westward flow may never be under the instantaneous Gulf Stream.

The westward undercurrent could have at least two different sources: it

could be the abyssal part of a westward recirculation on the northern side

of the Gulf Stream, driven by Gulf Stream instabilities or it may be an

abyssal flow driven by thermohaline processes and dynamically uncoupled

from the Gulf Stream.

The eastward flow centered at 37030'N can be considered to be a separ-

ate eastward filament of the Gulf Stream (Schmitz, 1980). It could also

be caused by sporadic Gulf Stream incursions at this latitude.

The nearly barotropic, narrow, westward flow at 360N (Schmitz, 1978

and 1980) may be the westward part of a highly inertial circulation (c.f.

Veronis, 1966), or it may be eddy-induced by the Gulf Stream or it may

be partially induced by the thermohaline process of 180 Water formation

(Stommel and Veronis, 1980). In the first case, the westward flow should
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have been included as part of the model basic state. Apropos of the sec-

ond case, numerical models with unstable eastward currents produce west-

ward-flowing side lobes (Holland, 1978). The instabilities of the east-

ward jet should be examined to see if they have appropriate Reynolds

stresses to generate such a flow. In the third case, the intensity of

the westward current may be seasonal.

The mean potential vorticity gradient along 55*W can be estimated very

roughly. It is calculated and shown in Figure 4.3.2 as if for a two-layer

system with uniform layer depths, using the 600 m and 4000 m measurements

for the top and bottom layers. The potential vorticity gradient in each

layer is given by (3.1.2). Because there were no moorings in the Gulf

Stream at 600 m, velocities of 50 cm/sec at 40'N and 35 cm/sec at 390N

were assumed. Using Schmitz's mean flow values for both POLYMODE deploy-

ments, the eastward velocity profile was fit by a parabola for each group

of three adjacent moorings, giving the curvature Uyy. The resulting in-

terpolated velocity profile was realistic except in the lower layer at 31.6N,

so this point is not included in the Figure. The stretching terms were eval-

uated by assuming that the flow could be approximated by two layers of equal

depth, with the velocities at 600 and 4000 m assigned to each of the layers.

The layer depth was taken to be 2000 m and the reduced gravity to be 1 cm

sec-2. The broad pattern in Figure 4.3.2 shows a possibility for baro-

clinic instability in the Gulf Stream, between 38' and 400N, (because of

the difference in sign of air/ay in the two layers) and barotropic insta-

bility in the upper layer. Details in the westward flow at 36'N are

smeared out by the station spacing. It must be emphasized that this

calculation is very rough.
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(v) Fluctuation velocities and temperatures

Hogg (personal communication) calculated the first empirical orthog-

onal function for three frequency ranges, centered at 120 days, 60 days

and 40 days, using the meridional POLYMODE array along 55'W and a zonal

array along 36'N. The method of empirical orthogonal functions (Wallace

and Dickinson, 1972) is used to expose the best-correlated parts of sev-

eral time series, which in this case are the north and east velocities

and temperature at several depths and many sites. The velocity and temp-

erature perturbations of the first empirical orthogonal functions were

surface-intensified in the near (37.50N) and far field (31.5 0N) and

slightly bottom-intensified at the intermediate moorings (36'N).

(vi) Momentum flux (Reynolds stress)

The momentum flux, u'v', along 550W was described by Schmitz (1981)

and used by Schmitz, Niiler, Bernstein and Holland (1982) in a comparison

of observations and numerical results. The momentum flux is shown in

Figure 4.3.3. North of the Gulf Stream, the only data was at 4000 m and

the momentum flux was negative. South of the Gulf Stream, the momentum

flux was positive at all depths with a maximum whose latitude depended on

depth: at 600 m it reached a maximum at 35*N while at 4000 m, it reached

a maximum at 37.50N. The momentum flux at 4000 m was thus antisymmetric

with respect to the Gulf Stream, consistent with the Gulf Stream being a

localized source of eddy energy. This was also the case in the Pacific

at shallower depths (Schmitz, Niiler, Bernstein and Holland, 1982).

From Hogg's first empirical orthogonal function, the north and east

velocities at 55*W were nearly in phase with each other except at 36*N,
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where they were v/2 out of phase. The momentum flux u'v' was therefore

positive except at 36'N where it was nearly zero. Bryden (1982) calcu-

lated the momentum flux in the LDE area (30*30'N to 31*30'N and 690W to

71*W) and found that the momentum flux was positive there.

The vertically-averaged momentum flux external to a localized source

of energy, such as an infinite zonal current concentrated at one latitude,

will increase to the north if the background potential vorticity gradient

is positive (Held, 1977). If the momentum flux goes to zero far from the

current, its only possible configuration is positive far to the south and

negative north of the current (if the potential vorticity gradient far

from the current is s). This is the configuration which is observed in

all unstable modes examined in the previous chapter, in eddy-resolving

general circulation models and along 55'W (Schmitz et. al., 1982).

The Reynolds stress has a direct effect on the mean flow since

S-'-v-- + V (4.3.1)
at ay "1

is the x-averaged, non-dimensional momentum equation (Pedlosky's (1979)

equation 7.2.13). U, u' and v' are the zero order mean and perturbation

velocities (geostrophic) and vi is the ageostrophic correction to the

northward velocity. The observed, antisymmetric momentum flux decelerates

the flow north of the momentum flux minimum (on the north side of the Gulf

Stream) and south of the momentum flux maximum (on the south side of the

Gulf Stream): its effect on the the eastward Gulf Stream is unknown since

details of the momentum flux distribution in the Gulf Stream are unknown.

(The details of the distribution in the Gulf Stream depend on whether the
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barotropic instability mechanism is operating and which way the kinetic

energy flows between the mean flow and perturbations.) Because the lati-

tude of the momentum flux maximum depends on depth, the mean flow south

of 35'N at 600 m and south of 37.5'N at 4000 m is forced westward. The

direct effect of the momentum flux, i.e., - W ('), is to weaken the

observed, nearly barotropic, westward flow at 600 m and strengthen it at

4000 m. However, the total effect of the momentum flux is more complica-

ted than this since the term v, depends on the momentum flux.

(vii) Heat flux

The heat flux for all fluctuations along 550W at 600 and 4000 m is

shown in Figure 4.3.4: there was tremendous southward heat flux between

the Gulf Stream and 36'N in the thermocline. South of 360N, the thermo-

cline heat flux and its meridional gradient were much reduced and the heat

flux was slightly positive. Bryden (1982) found southward heat flux in

the thermocline in the LDE, which corresponds with latitudes 320-35*N

at 550W. The .heat fluxes associated with the first empirical orthogonal

functions for the POLYMODE data (Hogg, personal communication) were also

southward since the northward velocity and temperature perturbations were

more than w/2 out of phase.

(viii) Energy transfer

The time-averaged transfers between mean and eddy energy, assuming a

meaningful separation between mean flow and fluctuations, are given by

Bryden (1982). If, additionally, the transfer equations are averaged

over the volume of the flow, assuming that the flow is inviscid and that

the mean flow U(y,z) is independent of x and has no northward component,

the energy equations for the mean and fluctuating flows are:
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aEW) = /dy dz - 'v. aU + 'v aU
at ay $ az

(4.3.2a,b)

ffdy dz U- H'

where E() is the energy of the perturbations and E is the mean flow en-

ergy. The notation of Pedlosky (1979) is used. In equation 4.3.2a, the

eddy energy is changed by potential and kinetic energy transfers from the

mean flow. In equation 4.3.2b, the mean energy is changed by potential

and kinetic energy transfer from the eddies. (When these equations are

not integrated in y and z, there are additional energy flux terms in both

equations. They are not important in the global energy balance, but may

be quite important locally.

The energy transfers are difficult to evaluate from observations

along 55*W because (1) the meridional spacing of the moorings is wide,

(2) the record length is finite and a time average may not remove the

longest period fluctuations and the zonal dependence from the full local

energy equations, (3) the actual flow is not exactly x-independent, al-

though a comparison of POLYMODE, LDE and MODE data shows that the assump-

tion of x-independence is not bad (zonal derivatives were also unimportant

in energy transfers in Holland and Lin's model of the subtropical gyre).

The first problem leads to errors in evaluating meridional derivatives.

The other two problems mean that the basic assumptions leading to equa-

tion 4.3.2 could be faulty when applied to data in the western Atlantic.

A thorough energy analysis was made by Bryden (1982) for the LDE

site, which is about 480 km from the Gulf Stream and 300 km from MODE.
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While the spacing of the moorings was close enough to evaluate spatial

derivatives, the record length was not long enough to yield meaningful

mean northward flows (Owens, Luyten and Bryden, 1982). This mainly

caused problems in the kinetic energy transfers. The potential energy

transfer to the eddies was almost entirely due to vertical shear along

the direction of the mean flow, parallel to the Gulf Stream (there was

little rotation of the velocity vector with depth so that the mean flow

and vertical shear were almost aligned). However, the kinetic energy

transfers were dominated by zonal derivatives, particularly of the north-

ward flow, because of substantial curvature in the "mean" flow. This was

true even when the axes were realigned with the overall "mean" flow. An

increase in averaging period reduced the zonal derivatives and increased

the importance of the meridional derivatives, leading one to believe that

a much longer record would yield a mean flow nearly independent of dis-

tance parallel to the Gulf Stream. Thus the record length can make a

substantial difference in computed "mean" quantities, such as energy

transfers between eddies and mean flow. It is probably safe to use

equations 4.3.2 to compute energy transfers without including zonal

derivatives if the record is long enough.

With these warnings, the energy transfer terms of 4.3.2 are computed

for the POLYMODE data along 550W. It is assumed that the array is nearly

perpendicular to the Gulf Stream [this is supported by Worthington's (1976)

circulation scheme]. The POLYMODE records average 700 days in length, as

opposed to the 225-day averages used for the LDE. The kinetic energy trans-

fers from the mean-to-eddies and eddies-to-mean at 600 and 4000 m and the
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potential energy transfer from the mean-to-eddies in the thermocline are

shown in Figure 4.3.5. A systematic error analysis has not been done.

Bryden (1982) optimistically calculated an error of about 1 x 10-5 cm2

sec-3 for the energy transfers. Using this as a guide, only the trans-

fers in the area of the westward recirculation (centered at 360N) are

meaningful. In the thermocline: the mean flow gains kinetic energy in

the recirculation and loses it at 35*N; the eddies lose kinetic energy

near 37'N and gain energy on the south side of the recirculation (35.5 0N);

the eddies gain potential energy in the recirculation. Between 320 and

350N, the latitudes which correspond with the LDE site, the potential

energy transfer is still positive but smaller than at the LDE (where it

was 3.2 x 10-5 cm2 sec-3), and may not be significant. At 4000 m, eddies

lose energy on the northern side and lose kinetic energy on the southern

side of the recirculation; the mean flow gains energy right in the re-

circulation.

The westward recirculation is a fertile region for baroclinic insta-

bility. In contrast, it is also a place where the mean flow gains kinetic

energy from the eddies. Eddies gain kinetic energy on the south side and

lose it on the north side of the recirculation.

[A possible problem in computing energy transfers arises from the low

Reynolds stress in the thermocline at 35*N - see Figure 4.3.3. The low

Reynolds stress may be due to the seamount underlying the mooring: the

seamount demonstrably affects the mean flow here (Hogg, personal com-

munication). If this point is removed from the calculation, the kinetic

energy transfer to the mean flow is substantially reduced and the kinetic

energy transfer to the eddies is greatly increased at this latitude.]
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Figure 4.3.5
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In general, mean-to-eddy energy transfer is not locally balanced

by eddy-to-mean energy transfer, although they must balance globally.

The biggest sources of energy for the eddies are of course the vertical

and horizontal shear of the Gulf Stream and cannot be assessed with this

data set.

If the jet model of the previous chapter is qualitatively correct,

conversion of mean-to-eddy energy outside the Gulf Stream should be unim-

portant, while the effect of the eddies on the mean flow outside the Gulf

Stream could be important. In fact, the westward recirculation, which may

be such a product of the fastest-growing instabilities, is quite impor-

tant in. the overall structure of observed energy transfers, allowing sub-

stantial potential energy transfer to the eddies to occur south of the

Gulf Stream.

(ix) Summary of observations

(1) The surface eddy kinetic and thermocline potential energies are

maximum in the Gulf Stream with values in excess of 1000 cm2/sec 2.

Their meridional decay scales are about 600 and 300 km respectively.

(2) The total eddy kinetic energy along 55*W is surface-intensified and

has a meridional decay scale of 290 km in the thermocline and 220 km

at 4000 m.

(3) Mesoscale disturbances (50 to 100 days) at 55'W are surface-intensi-

fied and have decay scales of about 170 km. Secular scale disturb-

ances (100 to 1000 days) decay much more slowly, with a scale of

about 600 km in the thermocline, becoming strongly surface-intensi-

fied away from the Gulf Stream.
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(4) The mean flow at 55'W includes an eastward Gulf Stream and a west-

ward undercurrent at 40'N, nearly barotropic eastward flow at

37050'N, nearly barotropic westward flow at 36*N and weak flow

of nearly indeterminate sign south of 35*N. The mean potential

vorticity gradient is large in the Gulf Stream and close to zero

south of the recirculation. The Gulf Stream itself is baroclin-

ically supercritical. Reversals in sign of the potential vortic-

ity gradient also occur laterally in the thermocline and at 4000 m,

allowing the possibility of barotropic instability.

(5) The perturbation velocities and temperatures of the empirical orthog-

onal function (Hogg, personal communication) are surface-intensified

at 37*30'N, bottom-intensified at 360N and surface-intensified at

31*30'N. This apparently contradicts the observation in (3) because

only two stations were used for the statements made in (3): one at

37030'N and one in the MODE region where the observations closely

resembled the observations at 31*30'N. The source of bottom-

intensification at 36*N may not be the Gulf Stream instabilities:

other possible sources are mentioned in the next section.

(6) The momentum flux along 550W is antisymmetric with respect to

the Gulf Stream and is positive to the south of the Gulf Stream.

This is consistent with the export of energy from the unstable Gulf

Stream (Held, 1977). The momentum flux maximum occurs farther to the

south in the thermocline than in the deep water.

(7) The heat flux is large and southward in the westward recirculation.
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(8) Energy transfers along 55'W show that the westward recirculation is

an active site of baroclinic instability. Kinetic energy transfer

is into the mean flow in the recirculation. Meaningful transfers

probably cannot be calculated south of the recirculation. In the

LDE, centered at 69.5 0W, 31'N (roughly equivalent to 330N at 55'W),

Bryden found the mean-to-eddy potential energy conversion was posi-

tive while the mean-to-eddy kinetic energy was negative and the

eddy-to-mean kinetic energy conversion was negligible.

4.4 Model-Data Comparison

A proper comparison of data and the model depends on the proper

choice of a basic flow for the model. However, the observed mean flow

has already been influenced by instabilities so it may not be correct

to use the observed mean flow as a basic state. In particular, the basic

flow in the gyre interior and the observed westward recirculation at 360N

are strongly affected by instabilities. Instead of choosing a basic state

first, the structure of the observed fluctuations is used to define the

possible basic flows. Remaining ambiguities in the basic flow after

this choice may be resolved using other knowledge about how the circu-

lation arises.

In comparing the observations with the models, the first step is to

see which jet model can produce surface-intensified disturbances (perhaps

with bottom-intensification at.an intermediate latitude) where the longer

period waves decay much more slowly than the short period waves. The sec-

ond step is to see if the Reynolds stress, heat flux and energy transfers
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of the model perturbations chosen in step one resemble the observed Rey-

nolds stress and heat flux. The third step is to decide if the model

basic state which is chosen in steps one and two is "realistic" (on the

basis of the observed mean flow and various general circulation theories)

and whether there is any correspondence between the observed and modelled

mean potential vorticity gradients. Of course the last test is somewhat

dubious because the observed mean flow is already altered by the insta-

bilities.

The radiating modes of three eastward jet models have wildly varying

structures, while the trapped modes (more unstable and higher frequency)

are basically the same. The jet with eastward vertical shear in the outer

region has surface-intensified modes. The jet with westward vertical

shear in the outer region has bottom-intensified modes. The jet with a

westward undercurrent excites both the barotropic and baroclinic modes

outside the jet; these waves interfere with each other, setting up an

alternating pattern of surface- and bottom-intensified modes.

All three models have positive momentum flux south of the jet with

surface- and bottom-intensification according to the model. The momentum

flux maximum in the upper layer was well to the south of the momentum

flux maximum in the lower layer for the jet with eastward vertical shear

outside. The momentum flux maximum in the bottom layer of the bottom-

intensified modes was to the south of the upper layer momentum flux max-

imum. The heat flux in all models was negligible outside the jet and was

slightly negative.
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A fourth jet which can radiate is a westward jet (section 3.2). It

is possible that the westward flow south of the Gulf Stream is set up

quickly by fast-growing instabilities of the Gulf Stream and may itself

be unstable to other perturbations. (This is observed in eddy-resolving

general circulation models (Holland, Haidvogel, personal communication).

The ideal model for comparison at this point would have both a Gulf Stream

and westward side lobes. Since such a model has not been explored, we can

only look at the results for eastward and westward jets separately. The

radiating modes of westward jets have penetration scales of 300 to 400 km,

which is quite sufficient for the Sargasso Sea. The most important fea-

ture of. the structure of these radiating modes is that they are barotropic

in the far field. The maximum momentum flux occurs farther to the north

(closer to the westward jet) in the upper layer. The energy transfer is

dominated by potential energy transfer to the instabilities, particularly

at the low a's which best represent the ocean flow.

Figures 4.4.1 and 4.4.2 show the dimensional frequency and growth

rate as a function of wavenumber and Figure 4.4.3 shows the frequency as

a function of meridional decay scale for the three eastward jets and the

westward jet. Scales were selected in Section 4.2. a was chosen to be

.1 for the eastward jets and -.1 to give a westward jet. The eastward

jets are supposed to model the Gulf Stream while the westward jet is to

model the westward flow south of the Gulf Stream. All jets have two

basic, trapped modes which are.associated with the vertical and hori-

zontal shear. The most unstable waves of the two modes have (x-wave-

lengths, periods and e-folding times) of (175 km, 10 days, 15 days) and
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(Dimensional) frequency vs. wavenumber of the unstable modes for
four jets: (a) eastward j.et with a westward undercurrent and no
vertical shear in the ocean interior; (b) eastward jet in the upper
layer with small eastward vertical shear in the ocean interior;
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(315 km, 20 days, 35 days) respectively. The low frequency, long waves

are radiating for all jets. There are additional radiating modes for the

two jets with vertical shear to the south. From Figure 4.4.3, it can be

seen that the waves with longest meridional decay scales generally have

low frequencies (periods greater than about 30 days).

The decay scales of the trapped instabilities are seen from Figure

4.4.3 to be less than 100 km (at a = .1) while the radiating modes can

have decay scales of 100 to 1000 km. In the western North Atlantic, we

are looking for disturbances with decay scales of 500 or 600 km south of

the Gulf Stream, or 300 km or so south of the westward recirculation.

These must be radiating modes since the trapped unstable modes are more

tightly bound to the Gulf Stream. The eastward jets with vertical shear

to the south have radiating modes with very large decay scales. The west-

ward jet at s = .1 has modes with decay scales of 100 to 700 km. The east-

ward jet with a westward undercurrent has radiating modes with large de-

cay scales at large a but does not radiate efficiently at s = .1. Thus,

unstable modes exist which can produce the observed, slowly decaying,

eddy energy.

The first observation to be matched to the model is the surface-

intensification of eddy energy and the difference in decay scales and

vertical structure of the secular and mesoscale disturbances. The long

period ("secular scale") waves decayed very slowly and became more

surface-intensified in the gyre interior; the medium period ("meso-

scale") waves decayed more quickly and were surface-intensified, but

not as strongly as the secular scale waves. The momentum flux for the
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whole spectrum of fluctuations was positive to the south of the Gulf

Stream but had marked vertical dependence: the momentum flux maximum in

the upper water (600 m) was well to the south of the maximum in the lower

water (4000 m) and decayed more slowly. These observations can be ex-

plained by the model with eastward vertical shear outside the jet: the

secular scale disturbances are identified with radiating modes and the

mesoscale with the trapped modes.

Hogg's (personal communication) empirical orthogonal functions and

heat fluxes from the POLYMODE array complicate the- comparison. While the

first empirical orthogonal functions were surface-intensified at 37*30'N

and 31030'N, they were bottom-intensified at 36'N. There are at least

three different possibilities: (1) The topography at 360N excited bottom-

intensified waves (suggestion of Nelson Hogg) so the proper model is still

the jet with eastward vertical shear to the south. This can be tested by

looking at results of numerical models without topography to see if bottom-

intensified modes occur in the westward recirculation. (2) There were

radiating, unstable modes arising from a Gulf Stream with a westward

under-current and propagating in a region with no vertical shear: these

modes are alternately surface- and bottom-intensified. (3) The westward

recirculation at 360N, which had some vertical shear (more westward at the

surface) was transmitting the Gulf Stream instabilities more efficiently

in the lower water column, thus making them bottom-intensified in the

westward flow. Because the mean flow and Reynolds stress seem to be

strongly affected by the topography at 360N (Hogg, personal communi-

cation), the first alternative is the most probable.
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The observed meridional heat flux at 600 and 1000 m is large and

southward in the westward recirculation. The heat flux due to radiating

modes south of the modelled, eastward jets is negative but very small so

the westward flow itself is probably responsible for the large, southward

heat flux, as a result of baroclinic instability. The heat flux due to

the radiating modes south of the modelled, westward jet is also very

small which agrees with the observation of greatly reduced heat flux

in the ocean interior.

The energy transfers between mean and eddy potential and kinetic en-

ergy are the next quantities to be compared. In the thermocline (upper

layer) the transfers can only be compared up to the southern flank of the

Gulf Stream. In the models, transfers to the eddies are dominated by bar-

oclinic instability in the jet center. Kinetic energy transfer occurs only

in the shear zones: it is positive in the upper layer and positive but

small in the lower layer. Transfers to the mean kinetic energy are sur-

prising: in general, for all unstable modes, the mean flow gains kinetic

energy in the shear zones, along with the eddies. [This must be true

since aU/ay and a(u'v')/ay have the same sign in the shear zones.] For

many unstable modes, the mean flow gains and loses energy in an alternat-

ing pattern of gain in the center of the jet, loss farther out and gain

in the shear zones. A small amount of energy is lost just outside the

shear zone if there is non-zero flow there to begin with. This pattern

tends to produce a banded mean flow.

Because there is little real difference in the energy transfer pat-

tern from model to model, comparison with data can only tell us if the ob-
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served energy transfers are consistent with current instabilities. In a

general way, the data (Figure 4.4.3) and models are consistent: energy

transfer falls off greatly south of the westward recirculation and Gulf

Stream. Kinetic energy transfers are much reduced at depth where the hor-

izontal shear is less. The observed transfer of energy to the eddies in

the thermocline in the westward recirculation (large potential energy

transfer in the center of the flow and positive kinetic energy transfer)

shows that the westward flow centered at 360N is itself unstable. The

negative transfer of kinetic energy to the eddies north of 36*N is not

predicted by any of the modelled instabilities and may result from the

presence of both eastward and westward jets.

The abyssal energy transfers are not as easily compared: three of

the four models essentially had no velocity in the lower layer so that

kinetic energy transfers were negligible. Kinetic energy transfer in the

lower layer of the jet with a westward undercurrent was also small since

the lower layer was barotropically stable. The observations also have

small, but non-zero, kinetic energy transfers at 4000 m. The pattern of

transfers may be important: the abyssal flow gains energy in both the

westward recirculation and the adjacent eastward flow to the north, while

the undercurrent at 40'N loses energy.

The energy transfers leave the strong impression that the westward

recirculation should be included as part of the basic unstable flow.

Since no models with adjacent eastward and westward jets were run, the

next best thing is to consider the results for the westward jet model.

Radiating eigenfunctions for the westward jet model were barotropic in
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the ocean interior: this was the case only because no vertical shear

was included in the interior. With eastward vertical shear, there could

be surface-intensified modes and with westward vertical shear, there

could be bottom-intensified modes in the interior, just as for the

eastward jets.

It would be most instructive to perform the same exercise with the

recent Pacific data set which extends all the way across the Kuroshio in

the thermocline (Schmitz, Niiler, Bernstein and Holland, 1982) to see

what the energy transfers in the main eastward jet are.

In summary, the model which compares most favorably with the obser-

vationshas eastward vertical shear in the ocean interior. This model

and the data both have: increasing surface-intensification away from the

Gulf Stream, increasing redness of the spectrum away from the Gulf Stream

(and hence difference in meridional decay scales for different frequen-

cies) and the Reynolds stress pattern. In addition, the energy transfers

highlight the importance of the westward recirculation for the instabili-

ties. The ideal model of the Gulf Stream system would have a strong east-

ward Gulf Stream, weaker westward side lobes and weak eastward vertical

shear in the ocean interior. Is such a basic state consistent with

general circulation theories and numerical model results?

The frictional, barotropic, wind-driven circulation models of Stom-

mel (1948) and Munk (1950) are symmetric in the north-south direction.

They have no intense Gulf Stream along the northern side. The inertial

circulation of Fofonoff (1954) has westward flow throughout the interior

with zonal eastward flow only in a narrow, interior northern boundary cur-
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rent. Circulation with both inertia and friction (Veronis, 1966) has a

Gulf Stream which overshoots the western boundary, follows the northern

boundary for a while to the east and then loops back to the west and then

to the east. A north-to-south section in mid-gyre would have a strong,

narrow, eastward current (the Gulf Stream), weaker, broader westward flow

(the recirculation), gentle, broad, eastward flow (the interior of the

northern part of the gyre) and gentle westward flow (the interior of the

southern part of the gyre). If the frictional-inertial flow were the flow

in the upper layer of an ocean with a quiescent bottom layer, we would

have just the basic state suggested in the previous paragraph. The mean

flow in the upper layer of eddy-resolving models of the circulation (Hol-

land and Lin, 1975) basically resembles Veronis' circulation. However,

eddy-resolving models also have mean flow in the lower layer which is

strictly eddy-driven. If this eddy-driven mean flow is included in the

basic state (a questionable proposition), the eastward vertical shear

in the ocean interior is no longer present and the proposed basic state

model is not viable.

In spin-up of the Gulf Stream system in numerical models, before Gulf

Stream rings develop, the instabilities discussed in this thesis are the

only source of variability. One important result of Chapters 2 and 3 was

that the instabilities of eastward jets are usually more trapped than those

of westward jets. (Even when basically eastward jets are set up with ad-

ditional geometry to allow radiation, the growth rates of the radiating

modes are much lower than those of westward jets.) Holland (personal

communication) finds that in the spin-up of basin-scale layer models,
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the initial instabilities of the eastward Gulf Stream are trapped until

a westward recirculating jet is induced. This westward flow is itself

unstable and its instabilities radiate readily into the ocean interior.

This suggests that an eastward jet with westward sidelobes is the next

reasonable model of the basic state which should be explored.

The question of whether to include eddy-driven flows in the basic state

is difficult. If only the most unstable waves are important and all other

instabilities ineffective in the fully-developed flow, then of course the

basic state cannot include eddy-driven flow. If, however, instabilities

with low growth rates are important in the final state, they may see a

basic st-ate which includes the effect of the fastest-growing instabili-

ties. In this case, mean flow driven by the fastest-growing instabilities

should be included in the basic state if the existence and structure of

slowly-growing, radiating modes is being examined. My prejudice is to

first examine the fastest-growing instabilities of an eastward jet to see

what their effect on the mean flow is. In general, their Reynolds stress

is such as to aid in setting up or reinforcing the westward recirculation.

The westward recirculation should then be included in a new model of the

basic state in which the radiating modes are of prim- ary interest. The

radiating modes may not see the initial basic state, but could exist in

some fashion in the flow altered by the most unstable waves.

Let us list the points at which the model and the Western Atlantic

data agree and disagree:

(1) The observed surface intensification in the gyre interior can

be explained by radiating modes of jets with eastward vertical shear in

the interior.
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(2) The low frequency disturbances decay more slowly than the higher

frequency disturbances in the data and the models.

(3) The momentum flux is positive south of the Gulf Stream with a

maximum farther south in the upper layer, which agrees with models with

eastward vertical shear in the interior.

(4) The structure of the westward recirculation may be affected by

the Reynolds stress exerted by Gulf Stream instabilities.

(5) Large negative heat flux in the westward recirculation suggests

that the recirculation be included in the bas-ic model.

(6) The alternation of surface and bottom-intensified perturbations

could possibly be radiating modes of an eastward jet with a westward under-

current, but this model does not radiate well in the parameter range of the

Gulf Stream. Bottom-intensification at 36'N is more likely to be due to

topography.
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APPENDIX

The dispersion relation for the two layer, baroclinic jet (Figure

3.1.1) is obtained from the matching and boundary conditions imposed on

the solutions (3.1.18). The channel is assumed to have walls at y = *H.

The boundary conditions there are that n = 0. This simplifies (3.1.18)

to

-21 H+,zly + e- ky

-2 1 H+ly -21 y)
(e +e

+ a (-e -2k2H+z2y + e 2)
3
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The dispersion relation obtained from the matching conditions is

written below as two coupled equations in the unknowns c3 [one of the

coefficients in (A.1)] and the complex phase speed c. The equations

are solved to eliminate c3, resulting in a transcendental, but alge-

braic, equation, for c. This is solved numerically using the root-

finding secant method with complex arithmetic. The dispersion rela-

tion is listed on the next two pages.
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In the following dispersion relation,

D

den = (1-dj)(1+d ~ (1+d)(1-d2

A = Uyi-c

B UI2-

D U01C
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dU
U I y =1
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