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ABSTRACT

Determining the optimal location of facilities to serve a spatially

disnersed set of customers has been an increasingly active research area

during the past twenty years. Many systems whose facilities are to be

located operate in a stochastic environment, with uncertainties associated

with the arrival time, location and service requirements of each customer.

Facilities having finite service capacities can experience queueing-like

congestion in such environments. Unfortunately, only a small fraction of

locational research has included stochastic phenomena in the problem

formulation.

In this thesis, our goal is to begin to bulid an integrated theory

linking traditional location theory to the theory of stochastic processes,

particularly queueing processes, to arrive at improved methods for locating

facilities operating in a stochastic environment. We assume that each

facility garages one or more mobile servers which travel to the scene of

customer service requests. The locational objective is the minimization

of average system response time to random customer, where response time

is the sum of travel time (the standard measure of performance in tra-

ditional location models) and queueing delay; in applications this second

term may be considerably larger than travel time.

We first formulate and solve a stochastic loss problem in which a

single facility is to be located to station n mobile servers. In this

system, a call for service is "lost" (i.e. to be served by a back-up unit)

at a cost if, upon arrival, all servers are busy answering previous cus-

tomer demands. The optimal location is one which minimizes the weighted

cost of "loss" and response time (in this case, the travel time). This

optimal location is shown to coincide with a minisum site -- a location

that minimizes the average travel time. This equivalence is true regard-

less of topological setting and distance metric measure as long as demands

for service are generated by a time-homogeneous Poisson process. The

cost of "loss" is, curiously enough, only constrained to be non-negative.

We next consider a system where calls for service enter an infinite

capacity queue to await service (on a first-come-first-serve basis) if

all servers are busy. We focus our attention on the optimal location of

one single mobile server on a tree network. Customer arrival pattern

follows a time-homogeneous Poisson process generated solely on the nodes



of the network. Convexity properties of the average response time on a
tree allow us to develop an efficient procedure for finding the optimal
location, which we will call the Stochastic Queue Median (SQM). Non-
linearity of the objective funcation introduced by the presence of the
second moment of service time, and singularity caused by possible system
saturation make the analysis non-trivial. We also analytically trace the
trajectory of the SQM as total traffic intensity (arrival rate) is varied.

A natural generalization of the above SQM problem is to allow demands
to be continuously distributed on links of the network as well as discretely
on the nodes. We obtain parallel results in this generalization, again on
a tree network. A by-product of this investigation, which is of interest
in its own right, provides new information regarding minisum location on a
general undirected network with continuous link and discrete nodal demands.
Numerical examples are constructed to illustrate concepts and algorithmic
procedures throughout this thesis.

Finally, to initiate further research efforts on locational decisions
in the presence of queueing, we formulate and indicate possible solution
strategies for several potentially important oroblems.

THESIS SUPERVISOR: Richard C. Larson
TITLE: Professor of Electrical Engineering and Urban Studies.
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Chapter 1

INTRODUCTION

1.1 Thesis Objective

The motivation of this study comes from consideration of facility

location problems where spatially dispersed customers receive service

from mobile and/or stationary servers. Our primary concern is with loca-

tionaldecisions in an urban environment comprised of a local transportation

network and spatially dispersed system users. In the public domain,

examples include police patrol deployments, ambulance services, fire

departments and public emergency repair services. In the private sector,

examples include repair services for utilities and other service-oriented

products (e.g., dishwasher repairs, window and lock replacements and

computer equipment servicings), dial-a-ride systems and taxi-cab fleets.

In other instances where customers travel to a facility to receive ser-

vices, we have banking services, super-markets, and department stores.

In many classical locational decisions, minimization of average

system-wide travel time has been the sole objective. This decision cri-

terion implies that servers are available at all times and each call for

service is answered immediately by the nearest (always available) server.

Under such a congestion free environment, average travel time is a good

measure of system performance. In an urban environment, service-oriented

systems are plagued with uncertainties: spatial uncertainties as to the

location of the next call for service; temporal uncertainties as to the

arrival time of the next customer; service time uncertainties as to the

amount of time required to complete a service; travel time uncertainties

as to the transit time fluctuations on an urban transportation network.



For example, in an urban emergency service setting where system utiliza-

tion (i.e., when all servers are busy) is high, queueing delay is often

an order of magnitude larger than the travel time. Only a year ago in

New York City, it was all too common to wait 45 minutes before an ambu-

lance was available to answer a call for service. Thus, one naturally

attempts to define a performance measure which includes both queueing

delay and travel time -- the average system-wide response time. Ignoring

queueing delay in the objective function can lead to locational decisions

far from optimal.

The main objective of this thesis is to merge the concerns of queue-

ing theory and location theory. We want to explicitly incorporate the

stochastic nature of queueing delays into locational decisions. The

initial attempt is to apply known queueing results to facility location

problems on a network. Queueing-location problems are rich in structure

due to the uncertainties inherited in a spatial (probability distribution

of demands for service) and temporal (probabilistic arrival time and

service time for each customer) setting. New service discipline rules

(which dictate the operating policy of a queueing system) may emerge as

a result of research efforts being expanded in this area. We hope that

future research activities in this direction will open up new avenues

in queueing theory. When this happens, the above-mentioned integration

will be complete in both directions: from queueing theory to locational

decisions and from locational considerations to queueing systems.

Relative lack of research effort in this area does not reflect any

value judgements about the importance of stochastic problems in a loca-

tional context. Tansel, Francis and Lowe [72] suggest that this negli-

gence of probabilistic consideration is probably due to the bifurcation



of the profession into "optimizers" and "probabilizers". It is with this

realization that we direct our research effort in this thesis.

In integrating the concerns of location theory and queueing theory,

the potential number of problems can be explosively large. Thus, one must

develop a systematic procedure to select problems for analysis. We iden-

tify certain important system elements which are central to a queueing-

location problem (in Chapter 2), but stop short of introducing a classi-

fication scheme. This is because we feel that more planning and additional

insights are required before one can devise a meaningful categorization.

To demonstrate solution methodology and problem tractability, we

formulate and analyze several queueing-location problems. The method of

analysis is novel and we hope it will provide insights into problem

structures and solution procedures along this direction of research.

We will review the relevant literature on locational decisions in

the next section. Section 1.3 introduces two queueing-location models

from Berman, Larson and Chiu [3 ], which will initiate the analysis of

Chapters 3, 4 and 5. We conclude this chapter with a directory establish-

ing a road map for the rest of the thesis.

1.2 Overview

This section contains a brief literature survey relevant to queueing-

location problems. A very recent survey paper by Tansel, Francis and

Lowe [72] provides an excellent literature review which includes state-

of-the-art information concerning locational decisions on a network. We

will first focus on location theory literature dating back to 1964 with

the seminal work of Hakimi ([26], [27]). One will notice the lack of

coordinated effort in merging the concerns of queueing and locational



theory as we move on to review the relevant literature on locational

decisions in a stochastic environment.

The problem of determining the locations of a set of p facilities

on a network that minimizes the expected travel time to and/or from the

facilities, for the user population on the nodes of the network, is one

of the classic problems in location theory. This problem, known in the

literature as the p-median problem, has been studied extensively in the

last two decades. The basic theoretical results are due to Hakimi ([26],

[27]), who shows that one only has to consider nodal locations as candi-

dates. Hua [34] and Goldman [22] independently devise efficient algorithms

to locate a single median on a tree network. Mirchandani and Oudjit [60]

develop theorems and algorithms to limit the search of the two-median

problem on a tree network.

In the past twenty years, researchers have studied many variations

of the p-median problem. Levy [51] considers capacity constraints on

facilities, while Hakimi and Maheshwari (281, Wendell and Hurter [78]

impose upper limits on link capacities. Goldman [21] generalizes the

median problem to consider multi-commodities (as identified by origin-

destination pairs) going through two-stage processing at the nearest

facilities. Subsequently, Hakimi and Maheshwari [28], Wendell and

Hurter [78] extend the analysis to the case of multistage processing.

Slater [69] partitions the nodes of the network, and seeks a location

such that the sum of the distances from the facility to a nearest element

of each component (of the partitioned node set) is minimized. Levy [51]

proves nodal optimality when the linear distance objective function is

replaced by concave cost functions of the distance between each node and

its nearest median. Goldman [23] specializes this to the one-median



problem on a tree network when the objective function is defined by the

sum of polynomial functions of distance from any node to the median.

In an entirely different topological setting, Larson and Li [48],

Larson and Sadiq [50], Odoni and Sadiq [65], analyze routing and location

problems on aplanewithaninhomogeneous travel medium (i.e., with impene-

trable barriers or high speed freeways). While our classification concern

does capture such geometrical settings, we will focus our attention on

a network topology.

From an algorithmic perspective, procedures have been developed to

locate a set of nodal facilities. The focus is on the minimization of

total travel time. Mirchandani [58] generalizes the nodal optimality

result to the optimization of a convex utility function. Search proce-

dures (see Handler and Mirchandani [31]) include: enumeration methods

(Hakimi [26]); graphic-theoretic approaches (Goldman [21], Matula and

Kolde [56], Kariv and Hakimi [37]); heuristic procedures (Maranzana [54],

Kuehn and Hamberger [43], Cornuejols, Fisher and Nemhauser [14], Cooper

[12], Teitz and Bart [74], Jarvinen, Rajada and Sinervo [35]); primal-

based mathematical programming algorithms (Eilon, Watson-Gandy and

Christofides [17], Efroymson and Ray [16], Khumorwala [40], Revelle

and Swain (66], Schrage [67]); partitioning algorithms (Geoffrion and

Graves [20], Magnanti and Wong [53]); dual-based mathematical programming

(Cornuejols et al [14], Bitran, Chandru, Sempolinski and Shapiro [ 6],

Erlenkotter [18]); and the cross optimization approach (Van Roy [76]). In

many of the applications, a fixed charge is levied for each facility loca-

tion and the number of facilities to be located becomes a decision variable.

The objective function becomes the cost of service (e.g., travel time),

fixed set-up cost and the cost of facility maintenance.



To study location problems in a stochastic environment, one must

consider at least four elements of uncertainties: (i) spatial uncertain-

ties as to the locations of demands; (ii) temporal uncertainties, as to

the arrival times of customers; (iii) service time uncertainties as to

the amount of time required to complete a given service; and (iv) network

state uncertainties as to the probabilistic behavior of link travel time.

One must incorporate the above uncertainties in any realistic locational

model operating as a spatially dispersed system in a stochastic setting.

A number of probabilistic versions of the p-median problem have been

considered. They capture a subset of the above mentioned elements of

uncertainties, but usually assume away the contribution of queueing delay

to system response time, or they ignore the dependence of system state

probabilities (a state represents server(s) status-idle or busy) on the

location of the facility. Frank [19] considers the one-median problem

when the nodal weights are random variables and link lengths are deter-

ministic. Mirchandani and Odoni [59] consider the case where network

link lengths are random variables and nodal weights and known constants.

Berman, Larson and Odoni [ 4] classify the ongoing median-related research

effort into four categories: (Pl) medians on stochastic networks; (P2)

movable servers on stochastic networks; (P3) congested medians; and (P4)

congested movable servers systems. Without loss of optimality, the search

for facilities can be limited to nodes of the network in (P1) and (P2).

In a stochastic loss system (where demands for service are generated

independently in a Poisson manner at each node, customer requests are

served by back-up units at a cost when the lone server is busy), we again

obtain the familiar nodal optimality result (Berman, Larson and Chiu [3 ]).

Stochastic analyses of the median problem have centered on the changes of



network travel times at discrete time epochs. In the case of movable

server systems, researchers use Markovian decision theory to devise re-

location (of facilities) policies (Berman [1 ], Berman and Odoni [ 5]).

Previous consideration of queueing as a component of travel time

relies on the assumption of exponential service time distribution, which

allows us to model the system as a Markov process. Mirchandani, Silve

and Visocki [61] study the resultant Markov model for a network with two

nodes. Berman and Larson [2 ] generalize this and show that at least

one set of optimal locations exist on the nodes of a network.

Larson's Hypercube Queueing Model [44] provides a way to evaluate

several system performance measures for alternative facilities locations.

He generates steady-state equations of the underlying Markov process

under different operating policies. He then solves for the steady-state

probabilities of the system and hence the set of expected system perfor-

mance measures for a given set of locations. Larson's approach is

descriptive, in the sense that his algorithm computes a set of performance

measures (average travel time, server workloads, inter-district dispatch-

ing frequency, etc.), and the choice of "optimal location" is left to

the planner in an interactive mode (by relocating facilities and recom-

puting performance measures) with the computer. In the case when average

travel time is the single objective, the nodal optimality result of

Berman and Larson [2 ] enables the search to be limited to the nodes of

the network.

In all of the above location problems, demands are generated solely

on the nodes of the network. In the actuality of an urban emergency

setting, accidents do occur everywhere on the network (e.g., highways --

links). Handler and Mirchandani [31] formulate the p-median problem on



a general network with discrete nodal and continuous link demands. On a

tree network, they propose a solution procedure, which is a slight

variant of the Goldman algorithm [22] for the one-median problem.

Minieka [57] implicitly considers link demands in a surrogate way. Speci-

fically, he defines a general absolute median of a network to be a point

on the network that minimizes the (unweighted) sum of the distances from

that point to the most distance point on each link. No systematic

analysis has been performed to study the behavior of the expected travel

distance (as a function of facility location) on a general (or even a

tree) network.

Section 1.3 describes two stochastic location models of Berman,

Larson and Chiu [3 ]. The last section of this chapter provides a

directory for the organization of the thesis.

1.3 Problem Formulations of the Stochastic Loss and Stochastic Queue

Systems

In this section, we review briefly the model of Berman, Larson and

Chiu [ 3], which will serve as a starting point of our thesis.

Problem Structure:

Let G(N,L) be an undirected network with node set NINI = n) and

link set L. Service demands occur exclusively at the nodes, with each

node i generating an independent time-homogeneous Poisson stream of rate

Ah( E h. = 1). Travel distance on link (i,j) is d... Travel time is
i iN 1

equal to travel distance divided by a constant speed v. The time required

to travel a fraction e of link (i,j) is 8d.. /v. All travel distances

are taken as the shortest distance between two points on the network,

denoted by d(x,y) for x, y on G(N,L).



Model Assumptions:

e Demands for service arise solely on the nodes of G in

a time-homogeneous Poisson manner.

* A single mobile server resides at a facility located

at x on link (a,b) of G.

* The server, when available, is dispatched immediately

to any demand that occurs.

Loss Model:

When an arriving customer finds the server busy with

a previous demand, it is rejected at a cost Q, Q 2O.

Stochastic Model:

Unanswered demands enter into a queue that is depleted

in a first-come, first-server (FCFS) manner upon the

availability of the server.

Objective:

It is desired to locate a facility on G such that the

average cost of response is minimized. For the Loss

model, it is a weighted sum of mean travel time and the

cost of rejection. In the Queue model, it corresponds

to the sum of mean queueing delay and mean travel time.

Both models share the following common parameters. For a facility

located at x on G, the total service time associated with a random ser-

vice demand is

s(x) = w. + S/v d(x,j) with probability h.

J J

Where w. is the non-travel component of service time, a random

variable.S/v d(x,j) accounts for round-trip travel time between facility
I



service demand arrival of return to arrival at end of
occurs from server at facility facility service
node j node 1

Time
d(x,j)/v (Q-1) d(x, j)/v

travel time on-scene travel time back off-scene
to the scene service to facility service

time ' -time

Total service time S(x) __

with probability 4

Temporal Sequence of a Service DemandFigure 1. 3. 1



at x and incident at node j. is a constant bigger than 1. Figure 1.3.1

shows the temporal sequence associated with a service demand originated

from node j.

Where w. = (on-scene + off-scene) service time. We also define
J

w = h h , where (-) indicates the expectation of a random variable; and

2j jeN 2 2 - 2
w = E h.w., s (x) = second moment of service time. We assume w., w.

jEN
are finite for all j E N.

Loss Model:

The expected cost of travel to a random demand is

Z (x)= [1- P(x) ] Z h id (x, j) /v + P(x) Q
jeA 3

for a facility located at x on G

where Q is the cost of rejection when the server is busy and P(x) is the

average fraction of time that the server is busy, given that the facility

is located at x on G.

One would like to find a point y on G, such that Z(y) < Z(x) for all

x 6 G. We will call such a point the stochastic loss one-median. Berman,

Larson and Chiu [ ] show that without loss of optimality, one can search

over the nodes of the network only.

Queue Model:

For a facility located at x on G, the expected response time to a

random request is

2
TR(x) = 2 (x) + t(x) when 1-Xs(x) > 0

2(1-Xs(x))

+ o otherwise



where

s (x) is the queueing delay
2(1-\s(x))

t(x) is the travel time (= E h.d(xj)/v), and
jEA J

s(x) = w + t(x)

The objective is to find a point y on G, such that TR(y) < TR(x) for

all x c G. We will term the point y the Stochastic Queue-One Median, or

simply SQM. There is no nodal optimality result for this problem.

In the next section, we will lay down a road map for the remainder

of this thesis.

1.4 Organization of the Thesis

This thesis is organized into seven chapters. 'Chapter 1 contains

the usual literature review of relevant previous research efforts and

the formulation of two stochastic location models. In Chapter 2, we

discuss issues and essential system elements of a queueing location model

when one attempts to categorize such problems. We stop short of provid-

ing a classification scheme because much more work must be done to care-

fully and meaningfully characterize each problem.

Chapter 3 focuses on the analysis of the stochastic loss one-median

problem (i.e.. zero queue capacity) in which a facility is to be located

to house n servers. In Chapter 4, we analyze the stochastic queue one-

median system on a tree network in its entirety. Starting with the con-

vexity of the response time on the network, we develop efficient search

procedures to optimally locate the facility. We conclude Chapter 4 with

a parametric analysis of the trajectory of the optimal location when total



network traffic intensity,X, is varied. Chapter 5 generalizes the

results of Chapter 4 to a case where continuous link demands are allowed

on the network. It begins with an analysis of the minisum location

problem (with continuous link demands) and ends with a numerical example

illustrating the search procedure and provides results of the parametric

analysis.

Chapter 6 contains formulations of five analytically interesting

and potentially useful queueing-location models. Each of them captures

some of the important system elements discussed in Chapter 2. We also

provide conjectures regarding solution techniques and optimal solution

structures after the formulation of each model. The last chapter,

Chapter 7, summarizes the results of each chapter. The potential for

future research is emphasized throughout Chapters 1, 2 and 6.



Chapter 2

ON CATEGORIZING LOCATION PROBLEMS WITH

QUEUEING-LIKE CONGESTIONS

Our original intention was to introduce a classification scheme under

which each instance of queueing-location problems can be identified by a

coded vector representation. However, we feel that one needs more plan-

ning and insight before a permanent and well-structured categorization rule

can be formulated. Therefore, we choose to delay such an endeavor at the

present time. Instead, we will discuss features of a stochastic system

central to locational decisions in this chapter. We will begin the chapter

with a general discussion of the complexity inherited in a queueing-location

problem. In Section 2.2, we will consider individual components of a loca-

tion problem in a stochastic environment, some of which are queueing speci-

fic, while others are related to the spatial structure of location prob-

lems. It is our hope that the dicsussion in this chapter will lay the

foundation for, and eventually lead to, the construction of a permanent

classification scheme.

2.1 Complexity of Queueing-Location Problems

As mentioned in Chapter 1, when one deals with locational decisions

for a spatially dispersed system operating in a stochastic environment,

there are at least four basic kinds of uncertainties: spatial distribu-

tion of demand patterns; inter-arrival time between successive calls for ser-

vice; service time distribution and transit time fluctuations. The potential

number of research problems can be very large. Thus, it is desirable to

develop a systematic way to select and identify problems for analysis.



Our main concern is to incorporate queueing delays into locational

decisions. Travel time uncertainties are usually modelled by discrete

changes of transit times on any given network links at discrete epochs.

This modelling approach naturally fits into a Markovian decision theory

framework. At each change of the network state (i.e., network transit

time), a decision is made to reposition any (or all) mobile servers in

anticipation of serving future demands. The objective, then, is to derive

a set of optimal relocation (of servers) strategies under each network

state such that the average long term cost (measured in terms of response

time) to the system is minimized. It is our intention not to consider

such complications at the present time. We hope that the merge of

queueing-location and Markovian-relocation problems will be the focus

of research in the not-so-distant future. Therefore, the travel time,

within the scope of our current interest, will be determined solely by

the topological structure under which our location problem is defined,

and will not be probabilistic in nature.

Limiting our scope to deterministic transit times, we still have to

deal with the spatial and temporal uncertainties discussed earlier. An

added level of uncertainty concerns the degree of urgency which one

associates with each call for service. The performance of a queueing

system depends on the manner upon which waiting customers are selected

to be served by the next available server. There are many service rules,

unique to spatially dispersed environments, which dictate the operating

policy of a queueing system. We will discuss them in more detail in

Section 2.2. Other queueing specific considerations include: queue

capacity; the number of servers (or facilities) to be located and the

manner under which they share (or divide) their workloads -- a districting



problem; and the decision to serve specific customers by back-up units.

Locational specific issues include: the topological structure under

which our location problem is defined (e.g., on a network, on a plane

with Euclidean or rectilinear metric); and the spatial distribution of

demands for service. While our primary concern is the minimization of

response time, we may wish to optimize a response-time induced utility

function to account for the risk preference of our decision maker.

The above brief discussion reveals the many components and complexities

abounding in a queueing-location problem. In the next section, we will

examine each system component in greater detail. We hope that our dis-

cussion here will eventually lead to the birth of a classification scheme

under which each instance of queueing-location problems can be uniquely

identified and categorized.

2.2 System Components of a Queueing-Location Problem

2.2.1 Common System Characteristics:

The systems we are interested in share the following common character-

istics:

(i) Customers arrive at spatially dispersed locations, in

a time-homogeneous Poisson fashion.

(ii) In response to each call for service, either a mobile

unit located at a facility is assigned to the customer,

or the customer travels to a near-by service facility.

In both cases, queueing-like congestion may delay the

servicing of customers.

(iii) The system operates in statistical equilibrium.



(iv) All travel times are deterministic and governed by

system topological structure.

(v) The basic system performance measure is average

response time which is comprised of queueing delay

and travel time.

2.2.2 System Components of a Queueing Location Problem:

In addition to the common characteristics mentioned above, we will

examine each of the essential system elements (highlighted in Section 2.1)

in more detail. They are:

A. the form of the objective function;

B. the topological structure under which our locational

decision is defined;

C. queue capacity;

D. number of facilities (or servers) to be located;

E. the service discipline which dictates the operating

policy of our queueing system;

F. a pruning procedure which designates certain class(es)

of customers to be served by back-up units.

We now proceed to examine the issues involved with each of

the system components.

A. Objective Function:

The basic system performance measure is average response time. One

may induce a utility (or loss) function on the response time and seek to

optimize the expected utility when making locational decisions. Since

in a life-and-death situation, which is all too common in an urban emer-

gency setting, extreme values of response time may be intolerable, a



utility function will explicitly incorporate risk preference. In a sto-

chastic setting, constraint optimization (such as minimizing the average

system-wide response time subject to a maximum response time constraint)

may not be appropriate because there is always the possibility of extreme

delay in responding to a call for service. Therefore, the concept of

utility optimization seems appealing.

Other objectives include: (i) minimizing the probability that the sum

of weighted distances exceed a certain tolerance limit([Frank [19]); (ii)

multiobjective optimization. Halpern [29] and Handler [30] study the

cent-dian (center-median bi-objective) problem, Lowe [52], Tansel, Fran-

cis and Lowe [73] study multiobjective vector minimization and minimax

problems, Larson's Hypercube Queueing model [44] considers several system

performance measures (such as workload balancing, average travel time,

etc.).

Other forms of objective functions, which are of interest to us,

include bounds and approximations of response time in more complex queue-

ing formulations. We do not wish to exclude potentially interesting and

practical problem instances where closed form expressions for average

queueing delay do not exist in current literature. Such approximations

give upper and lower bounds on the mean queueing delay (see, for example,

Brumelle [8 ], Kollerstrom [42], Boxma et. al. [7 ] and Hokstad [32]),

examination of which can be insightful in the absence of exact closed

form solutions.

There is yet another solution methodology we do not wish to ignore;

it is the use of simulation to study system behavior and, ultimately, the

use of it to aid making locational decisions.



B. Topological Structure:

While our main concern is in topological structure with a network

setting, one may wish to study location problems on a plane. Under this

system element, we also specify the spatial manner in which demand pattern

is distributed. In particular, we will consider the following settings:

(i) Network Structure: A network is defined on a graph

G(N,L) (with node set N and link set L) together with

a distance matrix which specifies the distance between

every pair of nodes in N. The network under study can

be directed or undirected. It may have special struc-

ture, such as a tree or a complete network. The dis-

tance matrix may or may not obey the triangular

inequalities. Customers may originate solely from

nodes of the network or the arrival process can be dis-

tributed probabilistically along the links.

(ii) Plane Structure: Carter, Chaiken and Ignall [ 9] design

response areas for two emergency units on a plane. More

recently, Larson and Li [48 ], Larson and Sadiq [50],

Sadiq and Odoni [65] study routing and location decisions

on a plane with an inhomogeneous travel medium and dis-

crete demands. They use Z metric as a measure of dis-

tance. One may have different measures of distance and

continuous spatial distribution of arrival processes on

the plane. Larson and Odoni [49] provide an excellent

tutorial on geometric probability which can aid the

analyiss of this class of problems.



C. Queue Capacity:

Queue capacity may range from zero to infinity. In the zero capacity

case, all arriving customers who find no idle server will be served (or

lost) by back-up units at a specified cost. When queue capacity is non-

zero but finite, customers are served by back-up units, again at a cost,

when all "waiting spaces" are taken. One may consider queue capacity

a decision variable when making locational decisions. We assume all

customers are eventually served, by primary or back-up units.

D. Number of Servers and Facilities:

The number of facilities to be located can range from one to infinity.

Each facility, in turn, can house one or more servers. Most closed form

expressions for average system behavior exist only in the case of one

single server. The primary research effort should focus on the one server

system. However, there exist bounds and approximations results when

there are many servers operating simultaneously to provide service to the

same pool of customers. Also, one may partition the pool of customers

into independent districts to be served by different facilities. This

districting issue is the topic of discussion next, under the system ele-

ment of service discipline.

E. Service Discipline:

Performance of a system operating with congestions in a spatially

dispersed environment, depends critically on the manner upon which

customers are selected for service by the next available server. It also

depends on the coordinated assignment of servers to customers when there

are more than one facility (or server) in the system. Other than the

usual selection rules (selecting waiting customers for service) of first-



come-first-served (FCFS), first-come-last-served (FCLS) and service-in-

random-order (SIRO), we identify the following operating policies relevant

to a spatially dispersed system:

(i) Priority Class Discipline: In an urban emergency setting,

certain types of calls for service evidently require more

urgent attention than others. A popular and important

discipline categorizes customers into K (1 < K < co)

priority classes. The proposed service discipline offers

FCFS service within a priority class, and always prefers

customers in a higher priority class. Within this operat-

ing policy, one may incorporate pre-emption or the lack

thereof. Pre-emption relates to the interruption of a

service upon arrival of a higher priority customer. A

pre-emptive policy can be of two types: pre-emptive

resume, in which service is restored at the point of

interruption; or pre-emption repeat, in which case the

entire service must be repeated (perhaps re-sampling from

the service time distribution).

(ii) Preference Probability: Each spatial call for service

may possess a preference probability vector to select

the more preferred available server. Larson's Hypercube

Queueing model [44] utilizes such preference structure

in making location (of servers) and allocation (of cus-

tomers) decisions.

(iii) Spatially-Oriented Priority Discipline: We identify

four types of service disciplines relevant and unique

to the spatially distributed system.



(a) Minimal expected service time discipline:

Under this policy, the next available server is

assigned to the closest-in-waiting customer (or

the customer with minimum expected service time

if non-travel related service time differs among

customers). This service discipline has the pro-

perty of reducing the mean system response time

when compared to a FCFS discipline.

(b) Maximum dispatch radius:

In which customers located more than a critical

distance away from the facility are lost at a cost,

whereas others are entered in queue.

(c) Priority-conditioned dispatch radius:

Which is the same as above, except that the cri-

tical rejection radius is dependent on customer

priority.

(d) Maximum marginal loss reduction:

In which a nonlinear loss function is used to char-

acterize system performance and the next customer

is selected on the basis of-minimizing expected

future loss. This service scheme has the flavor

of sequential decision making. Markovian decision

theory may be required to analyze such problems.

(iv) Districting Consideration: When one wants to locate more

than one facility, there is a districting issue one should

consider. It is the manner in which the system operates:

whether as one single unit or many independent systems.



They are:

(a) Each facility operates independently with no sharing

of work loads among facilities. The main concern in

this case is to characterize the response area for

each of the facilities. We may identify such a disci-

pline as independent operation policy.

(b) All servers (facilities) operate jointly with com-

plete or partial sharing of work loads. One can view

this as a "pooled" system where all customers are

"fpooled" together and served under one single operat-

ing system. Dispatching rules as to the assignment

of idle servers to customers are to be specified

under the service discipline described above. The

exact analysis of such a system is intrinsically

difficult due to the non-Markovian nature of the

service time distribution. However, bounds and

approximations of average response time can be used

to study system behavior -- usually at extreme values

(high or low) of traffic intensity (i.e., arrival

rate X).

F. Pruning:

The idea here is to designate certain customers (spatially) as loss

customers (to prune away) to be served by back-up units at a costregard-

less of server(s) status (i.e., idle or busy). There are several varia-

tions within this pruning procedure:

(i) Spatially Selective Pruning: A selected subset of spatial

customers (nodal, link on a network setting and region on



a plane) are designated as loss customers. The remain-

ing customers will be served by the primary service

facility(s) to be located.

(ii) Uniform Pruning: All spatial customers are pruned uni-

formly. The net effect is to reduce the overall total

arrival rate .

(iii) Stationary Pruning: Spatial customers are pruned away

(perhaps by a mixture of selective and uniform pruning)

so that the original facility location (before pruning)

remains unchanged. This operation is desirable when

there is a change of spatial distribution of customers

after the location of a facility

(iv) Priority-Oriented Pruning: Instead of spatially-pruned

away customers, one may serve certain priority class

customers by back-up units. A facility will be located

to serve the remaining customers.

We hope that our discussion of system elements, relevant to a queueing-

location problem, will contribute to the understanding and selection of

future research activities in this area. It is our belief that a classi-

fication scheme will soon emerge as a result of more research efforts

expanded in this direction in the not-so-distant future. In the next

three chapters, we will formulate and analyze several instances of queue-

ing-location problems, each of which derives its system descriptors from

the issues raised in this chapter. Chapter 6 contains the formulations

of five potentially tractable location problems with possible real-world

application. There is a summary of results (by chapter) in Chapter 7.



Chapter 3

STOCHASTIC LOSS SYSTEM

3,1 Introduction

We mentioned in Chapter 1 that most of the previous research efforts

have focused on the assumption that the server(s) are available at all

times, and have thus ignored the stochastic nature of queueing delay.

Infinite server capacities imply that the closest (or most preferred)

facility is always available to serve a particular demand point. This

assumption is inappropriate when the demand rate is high. When the closest

(or most preferred) facility is unavailable at the time of a particular

demand, the demand could be served by the closest (or most preferred)

available facility, or the demand could wait in a queue until the pre-

ferred unit has a. free server, or the demand could be lost at a cost,

or something else could happen depending on the operating policies of the

system. Previous queueing considerations in this context relied on the

assumption of exponential service time distribution, which allows us to -

model the system as a Markov process. Mirchandani, Silve and Visocki [61]

study the resultant Markov model for a network with two nodes. Berman

and Larson [2 1 extended the nodal result to the case where availability

of servers is a random variable. They assume that the state probabilities

of server status remain fixed for local changes of service facility loca-

tions (except when the change of facility locations result in changes of

the server preference list at demand nodes). This approximation is good

when on-scene service time is much larger than travel time. They con-

sider three different cases when all servers are busy: (i) demand is

lost at a cost; (ii) demand enters a first-in, first-out infinite capa-
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city queue; upon completion of service, the server is either assigned to

the next request waiting in queue, or returns home immediately if none is

waiting; (iii) service time is exponentially distributed. They show

that the expected travel time is linear on each link and thus the nodal-

optimality result. Berman, Larson and Chiu [3 ] prove the nodal result

for the one server loss case (demand is lost at a cost when the lone

server is busy). In this chapter, we extend the nodal result when there

is more than one server to be located at the same facility. The result

here is both more general and more restricted than the problem studied

in Berman and Larson [2 ]. It is more general because we make no assump-

tions on service time distribution and we allow the steady state proba-

bilities to vary continuously as we change facility location. It is more

restrictive because we are locating one single home for all the servers.

We will first introduce and study the one-server loss system in

Section 3.2, to be followed by the formulation and analysis of the n-server-

single-facility loss system in Section 3.3. In Section 3.4, we show that

the standard average travel time minimizing location coincides with the

n-server-single-facility median in any topological setting with any demand

distribution over the region of interest. The situations include contin-

uous link demands on a general undirected network, minisum location prob-

lems on a Euclidian plane, and location problems on a plane with k (or

Z ) metric. The chapter ends with a discussion of the difficulties one

encounters in generalizing the stochastic loss model.

3.2 One Server Stochastic Loss System

3.2.1 Model Formulation:

We want to locate a single facility for one mobile server on a net-



work. Calls for service arrive independently on each node as Poisson

Processes. When the server is busy, any arriving call is lost at a cost

Q > 0. The objective is to minimize the expected response time (weighted

by the travel time when the server is available and by Q when the server

is busy).

As formulated in Chapter 1, the objective function is

Z(x) = (1-P (x)) E h d(j,x)/v + Q P1 (x)
j1N

for a facility located at x E G(N,L)

where

P 1(x) = probability that the server is busy when the

facility is located at x in G,

d(j,x).= shortest distance from node j to point x as

defined by network topology,

h. fraction of calls originated from node j,

v = travel speed.

Definition: y e G(N,L) is the one-server-stochastic-loss median (1-SSL

median) if Z(y) < Z(x) for all x in G.

For completeness, we will derive the algebraic expression of E h d(j,x).
jEN

Consider a point x on link (a,b) of length Z. When we say x on (a,b),

we mean that the point x is on link (a,b) at a distance x from node a.

Then

d(j,x) = min {d(a,j) + x, (.-x) + d(b,j)}



That is, the shortest path from j to x will pass through either node a or

node b. We partition the node set N into A(a,b;x) and B(a,b;x), or simply

A, B if the context leaves no ambiguity, as follows:

A = {j ij EN, and d(a,j) + x < (Z-x) + d(b,j)}

B = N - A

We observe that the sets A and B may change as we move from node a to node

b on a general undirected network.

Definition: Primary region of a link is the portion of a link over which

the sets A and B are unchanged. Note that there may be as many as INI -2

primary regions on a link.

Definition: A break point on a link is a point on the link where there

is a change .in the sets A and B.

With the above partition of the node set N, we can write

-- 11
t(x) = - E h.d(j,x) = - (c x + c 2)v jEN3 v 1

where

c= h. - h.
jEA jcB

c= E h.d(a,j) + E h.(Z+d(b,j)).
jSA jEB

It is easy to evaluate P1 (x) when we view P1 (x) as the fraction of

time the server is busy. If s(x) is the expected service time and X is

the total Poisson demand rate, P1 (x) is:



P (x) -s(x) Xs(x)

S + s(x) 1 + X s(x)

This is because the expected length of the idle period is 1/X for Poisson

arrivals and the expected length of the busy period is s(x) for a system

with zero queue capacity. s(x) can be written as

s(x) = w + St(x)

where w is the non-travel component of service time and St(x) represents

round-trip travel time ( > 1). Having fully developed the algebraic

expression of Z(x), we are now in the position of investigating the

behavior of Z(x) as x moves from one end of the link to the other.

3.2.2. Nodal Result for the 1-SSL Median Problem'

We first study the behavior of Z(x) over a primary region where

the constants c1 and c2 remain fixed. We will then examine the directional

derivative of Z(x) in and out of a break point.

Let p(x) = Xs(x) = Xw + Xt(x)

Lemma 3.2.1: Z(x) is monotone over a primary region.

Proof: Z(x) = () + p (x)Q]

where

p(x) = Xs(x) = Xw + X$t(x)

and

t(x) = - (c x + c2



dZ (x) c l 1+X Q + w
dx v [1+ p(x)]

dZ(x) takes on the sign of c in a primary region. Z(x) is monotone
dx

in a primary region.

Note that Z(x) is not necessarily concave in a primary region. We

now investigate the change of c1 as one moves across a break point xB on

link (a,b) at a distance xB from node a (refer to Figure 3.2.1).

x 1 x 2

XB

- XB I

Figure 3.2.1 Breakpoint xB on link (a,b)

Let X and X2 be two consecutive primary regions, where

x <x 2 for all x EXx 2  X2

and

X1 n X2  XB

Let C{, C , A', B' and C', C's, A", B" denote the C constants and node

partitions (as defined in 3.1) for X and X2 respectively. Since XB is

a break point, this implies

6(xB) n {ji j EN and d(j,a) + xB = d(j,b) + ) - xB ' #



We can easily show that

A' = A" U 6(xB )

B" = B' U 6(xB )

. C" = E h. - E h.

1 j6A" jeB" '

=C' -2 E h.< C'

jE6(x B j - 1

The above observation allows us to establish that

dZ(xB > dZ(xB

dx-+ dx +

dZ(x B) dZ(xB )
where and d denote the left (approaching from) derivative and

dx -+ dx
the right (moving away) derivative at xB respectively. This is true due

to the fact that (x) is continuous at xB and C is non-increasing across

xB'

Because Z(x) may not be concave in a primary region, we do not have

a concave function over the entire link and thus the Hakimi type of

nodal optimality argument does not apply here. However, the monotonicity
dZ(xB) dZ(xB)

of Z(x) over a primary region and the fact that > exclude
dx + dx +

the possibility of an interior point (of a link) being a local minimum

of Z(x). The only possible interior local minimum of Z(x) is shown in

Figure 3.2.2. The dotted lines in this figure denote the boundary of

the primary regions. However, (a) is not allowed because C1 decreases

across the break points and (b) is not allowed because Z(x) is monotone
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Figure 3.2.2



in a primary region. Therefore we conclude that:

Theorem 3.2.1: The 1-SSL median exists on nodes of a network. Berman

Larson and Chiu [3 ] prove an even stronger result.

Theorem 3.2.2: The 1-SSL median coincides with the Hakimi median [3 ].

The Hakimi median is a point x on G, which minimizes t(x). The nodal

result of Hakimi ([26], [27]) guarantees the nodal location of the 1-SSL

median.

It is surprising to note that the value of Q (cost to the system

when a call is lost), except for the non-negativity requirement (Q > 0),

does not enter the analysis of our problem. This is due to some can-

cellation when we differentiate Z(x) with respect to x. If we impose

the additional requirement that Q > t(x) for all x 6 G (i.e., Q is an

upper limit of response time, so that the system is being penalized when

the server is busy), we can prove concavity of Z(x) on a link, which is

accomplished next.

Lemma 3.2.2: Z(x) is concave on a link if Q > t(x) for all x £ G.

Proof: Because C is non-increasing across the break point, we need only
1

to prove that Z(x) is concave in a primary region.

Z(x) = (1-P 1 (x)) t(x) + P1 (x)Q = t(x) + P1(x)(Q - t(x))

2 d2P (x) C dP (x)
d Z(x) l 1 1

- (Q -t(x)) -2 -
dx2  dx2  dx

X 2 -2 C 1XC
(Q-t(x))( C 2 - 3)- - v ( ) 0.(1U+p x)) (1 v U+ p x))2



.'. Z(x) is' concave over a primary region. U

The nodal result for the 1-SSL median follows immediately from

Lemma 3.2.2.

3.3 The N-Server Single-Facility Stochastic Loss System

In this section, we consider the optimal location of an n-server

stochastic loss system. We want to locate a single facility for n mobile

servers on a network. Calls for service arrive independently on each node

as Possion Processes. Calls originating from each node have a preference

probability for each idle server as defined by system status. System

status is represented by an n-tuple of the zero-one vector, y. The i th

th
component, y , is zero if the i server is free and one when it is busy.

We denote the collection of system status vectors by Y. There are 2n

elements in Y. We also denote the saturation state (where all servers

are busy) by S = (1, 1,...,1). In state S, calls will be lost at a cost

Q > 0 to the system. The objective is to minimize expected costs (mea-

sured in terms of response time) to the system.

3.3.1 Model Specification

Other than the usual network descriptions, G(N,A), call rate Xh., we

have the following additional problem structure.

* Calls from node j have a server preference probability

vector a = (ca ), where a = probability that a node-
j jk jk

j call chooses server k when the system status is y.

Clearly a = 0 if y = 1, i.e., when server k is busy,
jk k

and E ay 1. When one component a = 1 for a particu-
k Jk jk

lar k, the server preference probability vector becomes

a server preference list.



" P = probability that the system is in state y.
y

" In state S = (1, 1,....,1), all arriving calls are

lost at a cost Q.

We wish to find an x £ G(N,A), such that the expected response time is

minimized. We call such an optimal x the n-server-single-facility-loss

median (n-SSFL median).

Before we analyze and search for the n-SSFL median, we want to make

a few observations:

" For a facility located at x, the service time distribu-

tion depends only on call location and not on system

status; nor does it depend on server identity.

" We are locating one single facility for all n servers.

* The location of the facility determines not only the

service time distribution for each node - it also deter-

mines the steady state probabilities. Previous works

on median problems with congestion (Berman and Larson

[2 1) assume that the steady state probabilities are

given and not directly affected by the perturbation of

server locations, or that the service time is exponen-

tially distributed.

* For a facility located at x on G, the objective function

takes on the following form:

Z (x) = Z P (x) E h.d(xj)/v + P (x)Q
n ysY jEN3

y#S

= -Ps(x))t(x) + P s(xQ

where
t(x) = E h.d(x,j)/v

jEN '



The objective function depends only on the saturation

probability P, response time t(x) and penalty, Q.

* All servers are indistinguishable in terms of their

service time distribution and hence the expected

service time. We need only know the expression for

P . This is readily available as the Erlang Loss
S

Formula (Takacs [71]):

n

P P /n!
s n

E p /i!
i=O

where we have suppressed the argument x, and

p = Xw + XSt(x) = Xs(x)-

t(x) = - (c x + c2)v 12

* We will first impose the condition that Q > t(x) for

all x on G and prove a nodal result for the n-SSFL

median.

3.3.2 Nodal Result for then -SSFL Median:

Lemma 3.3.1: Z n(x) is monotone over a primary region if

Q > t(x) for all x on G.

dZ (x)
Proof: We will evaluate n Again we suppress argument x.

dx



dZ (x) ASc1
= (1-P )c 1 /v+ (Q) -

V dp

where p = Xw + XS/v (c 1 x + c2 )

dZ c 1  dP

dx v dp

dZ
therefore d takes on the sign of c1 if we can show that

dx

dP
> 0 for all x on a primary region.

dp

note 1-P > 0
S-

P Pn/n!
s n

E p /i
i=0

we now evaluate
d

dp

dP' n -2 n-l n . .

dp i=0 (n -1)! i=0 i!n

Therefore Z (x) is monotone and takes on the sign of c

region. U
over a primary

Again, since c1 is non-increasing across break points, the same

argument of Theorem 3.1.1 leads to:

Theorem 3.3.1: Without loss of optimality, the n-SSFL median exists on

a node of a network if Q > t(x), t x s G.

dP
S

Using



As a by-product of Lemma 3.3.1, we can prove that the n-SSFL median

coincides with the Standard Hakimi median (minimizing expected travel time

t(x).

Theorem 3.3.2: The n-SSFL median coincides with the Hakimi median if

Q.> t(x) V x 6 G.

Proof: Since the Hakimi median minimizes t(x), we need only show that

dZ (x)
n _> 0 for all x c G.

dt(x)

dZ (x) _dP

U n ( )= (1-P )+ Xf (Q - t) p S> 0

dt(x) dP

since 1-P > 0, Q -t > 0 and dP > 0 from lemma 3.3.1.
dp

When we examine the one server loss median problem, we observe that,

due to cancellation, the condition Q > t(x) for all x e G is not necessary

to prove the nodal (or Hakimi) result. As we can see from analysis of the

n-SSFL median problem, the condition Q > t is convenient in proving the
dP5

nodal result. We need only prove the non-negativity of . We would
dp

like to relax this condition and see if the cancellation effect observed

in the 1-SSL median problem carries over to the generalized problem. The

answer to this is yes.

Lemma 3.3.2: Z (x) is monotone over a primary region.

Proof: From the proof of lemma 3.3.1,

dZ (x) c dP dP
n 1 -P ) - + X$ Q S ]

dx v s dp dp
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We need to show that the exnression in brackets is non-negative. In

particular, to show

dP

(1-l - A xt > 0.
s, -

dP dP

S dp dp

dP
p = Xw + XSt > XSt and s > 0.

(1-P) -p
sdp

n . -2 n-i . n .

= { /i!] [ E p/i!)( E p/i!)
i=0 i=0 i=0

n-i n

p((n-1)! .
i=0

n-i .

i=0

After some algebraic manipulation, B is seen to be

n-i n+k
B= E p

k=0

n-k
n!k!

We need only concern ourselves with terms in A that involve pn+k for

k = 0, 1,...,n-1. We compute the coefficients of pn+k in A to be

n+k
C(p ) =

n i

. j! (n-j+k)!j =k+1
for k=0,1,2,...,n-1

1 1 1

(k+l)!(n-1)! (k+2)!(n-2)! (k+3)!(n-3)! n!k!

(n-k) terms

Note:

because



We see also that n!k! > (n-i)!(k+i)! for i < n-k iff

n(n-1) ... (n-i+l) > (k+i)(k+i-l)...(k+l)

Compare the above inequality term by term.

(n-Z) vs (k+i-Z)

Z = 0,1,2,...,i=l and we know i < n-k.

It is clear that (n-k) - (k+i-k)

= n-k-i > (n-k) - (n-k) = 0 since i < n-k.

Therefore, n!k! > (n-i)!(k+i)!

or the coefficient of pn+k (in A) is:

n+k 1
C(p k ) > (n-k)( ,)

n-1 n+k n-k n-k
A -B > Z P [n!k! n!k! 0.

k=O

dP

thus, (1-P) ~ P ds > 0,
s dp -

dZ (x)
or takes on the sign of C in a primary region. Therefore, Z (x)

dx 1 n

is monotone in a primary region. U
An argument similar to Theorem 3.3.1 leads to nodal results of the

n-SSFL median without the assumption of Q > t(x) F x c G. Exactly the

same reasoning gives us the equivalence between the Hakimi median and the

n-SSFL median:



Theorem 3.3.3: The n-SSFL median coincides with the Hakimi median

Proof: From the proof of Lemma 3.3.2

dZ (x) dP dP

n = (1-P ) - Xt-+?$Q >0

dt(x) dp dp

Since the Hakimi median minimizes t(x), it also minimizes Z (x).n

3.4 Stochastic Loss System under General Topological Settings and

Demand Distributions

Consider an n-server-single-facility loss system as described above,

with the exception that we are operating under a general topological

setting and any demand (for service) pattern. The topological setting can

be on an Euclidean plane, or any Z p metric. The demand pattern is com-

pletely general if on a plane. On a general undirected network, we may

have general continuous link demands. (We will study the stochastic queue

one-median problem on a general network with continuous link demands in

Chapter 5.) We will define a minisum location as a point, in the region

of interest (network or plane), which minimizes the average travel time

t. t is computed under the relevant metric measure on a topological space.

The n-SSFL median is defined, as before, as the location which minimizes

the weighted sum of travel time (when not all servers are busy) and the

cost of rejection, Q, (when all servers are busy). The objective function

to be minimized in the n-server-single-facility loss system is Zn(x), where

x is the location of the facility:

Z (x) = -P (x)] t(x) + P (x)Q
n s s



where P (x) = probability of saturation; i.e., all servers are busy, and

5n

[Xs(x) /n!
P (x) =n _Ps W n _

Z [As(x)] /i!
i=O

the Erlang loss formula, and

s(x) = w + St(x) as in Section 3.2.1.

The dependence of Z n(x) on t(x) is the same regardless of how t(x) is

computed. Therefore, from the proof of lemma 3.3.2,

dZ (x) 0

dt(x)

We conclude that

Theorem 3.4.1: In any topological space, and under any general demand

distribution, the minisum location coincides with the n-SSFL median.

3.5 Discussion

We have formulated the n-server-single-facility loss system in which

we want to locate a single facility on a network in order to minimize sys-

tem average response time. Servers are indistinguishable as far as their

service time distributions are concerned. Server preference structure

(or preference probability vector) of calls does not complicate the

evaluation of state probabilities. This allows us to use the Erland

Loss Formula. We do not have to evaluate state probability to its finest

grain. Only the knowledge of the saturation probability is required.

Otherwise, we have to resort to numerical methods to compute each state



probability as discussed in Wolff and Wrighton [80].

We are able to prove the Hakimi nodal result for the n-SSFL median

without imposing any restriction on the value of Q, the cost of rejection

when all servers are busy (except for non-negativity). This is very

peculiar since the cost for a lost customer can take on the value zero.

This can be seen intuitively as a balance between t(x) and P s(x). When

we place the facility at a very "bad" location, the expected service time

increases due to the increase of response time t(x). This will increase

the saturation probability P s(x). Even if Q is zero, in which case there

is no cost for a lost customer, the increase in P s(x) (decrease in 1-P s(x))

is countered by the deterioration of the response time t(x). The final

mathematical analysis shows that the best location is still at a place

where t(x) is minimized.

One can understand this peculiarity (about the cost of rejection Q)

mentioned above better if one computes the cost to the system per unit

time, in the one-server loss system. Consider a very long period of time

T. The amount of time the server is busy is P1T, where P= probability

that the server is busy. Since the average length of a busy period equals

the expected service time s, there are P T/s busy periods in the time span

T. The cost to the system in one busy period is: (i) t, the travel time

to a service demand that triggers the server to become busy; and (ii)

XsQ, where there are Xs lost customers,each at a cost Q. When the server

is idle, it costs the system nothing. Therefore in the time T, the cost

to the system is (number of busy periods in T) x (cost to the system per

busy period) = P1T/s(t + AsQ), and the cost per unit time is P1 1 .

Since s = w + St, t/s is essentially a constant. Thus, minimizing cost



per unit time is equivalent to minimizing P1, the probability that the

server is busy. P1 is minimized if the service time s (and therefore t)

is minimized. The above argument is due to Professor Stephen C. Graves

of M.I.T.

The availability of preference probability vectors at each node for

free servers allows modeling feasibility such as bi-lingual personnel or

servers familiar with local neighborhoods. However, the presence of this

preference structure does not enter our analysis. The inclusion of such

structure is to tie in with previous work, where one has a server prefer-

ence list at each demand point (e.g., see Larson [44]).

When proving the n-server nodal result, we evaluate the sign of

dP /dt. This is seen intuitively (plausible) to be non-negative. The
5

reasoning is as follows: P is the probability that all n servers are

busy and t(x) is the average travel time from x. The expected service

time is s(x) = w + 8t(x). w is independent of server location. Increas-

ing t(x) increases the expected service time for each call. This, in turn,

should produce more work for the servers and thus increase the chance that

all servers are busy.

We have considered several extensions to this loss model. The first

obvious extension is that servers are allowed to reside at different loca-

tions. This modification gives rise to different service time distribution

for different servers. Hence, the Erlang loss formula does not apply.

We also have considered different types of calls to be handled differently

by different servers and thus change the non-travel component of total

service time to be server specific. This, of course, results in the same

difficulty. No existing results onqueueing theory can handle such problems.
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The nodal result of Berman and Larson [2 ] assumes the stationarity

of steady state probabilities for local change of facility locations.

This simplification leads to the nodal locations of servers allowing each

to take on different nodes. In our model, the steady state probabilities

depend on server location (continuously) through the expected service time.

Allowing different locations will result in difficulties discussed earlier.



Chapter 4

STOCHASTIC QUEUE MEDIAN ON A TREE NETWORK

4.1 Introduction

Ever since Hakimi's work ([26], [27]), there has been considerable

interest in the problem of optimally locating one or more facilities on a

network. Consider an undirected network G(N,L) with node set N(|NI = n)

and link set L, having a fraction h. of total service demands originating
J

at node j 6 N. (No demand originates on the links.) If d(x, j) is the

distance between the facility at x e G and node j £ N, then the expected

travel time associated with a random service demand is

n
t(x) = E h.d(x,j)/v

j=1 i

where v is the constant travel speed on the network.

Hakimi's one median problem is to locate a facility on the network

such that t(x) is minimized. Hakimi shows that an optimal location exists

in the node set N, thus reducing a continuous search to a finite one.

The median problem incorporates only one of the two types of probabi-

listic behaviors often seen in practice: it does include the probabilistic

spatial nature of service demands, using h. as the probability that a ran-
J

dom service demand originates at node j; it does not include the probabilis-

tic temporal nature of service demands, which in certain operating systems

can result in service demands either being rejected (as studied in Chapter

3) or placed in a queue due to the unavailability of servers. The proba-

bility of system saturation (all servers unavailable) is often quite

significant; if the server is busy servicing demands 50% of the time, and



if service demands arrive in time in a Poisson manner, then 50% of the

arriving service demands find the server busy and are either rejected or

placed in queue. With the queueing option, the mean in-queue waiting time

can be much larger than the mean travel time, the lone consideration in the

median problem. Thus one is motivated to formulate and analyze location

problems in which temporal as well as spatial uncertainties are incor-

porated.

In this chapter, we consider the location on a tree network of a

single facility that houses a mobile server. Service demands occur at

nodes in a Poisson manner. In response to each demand, the server (if

available) travels to the demand to provide on-scene and perhaps off-scene

service. If the server is unavailable at the time of a service demand, the

demand is entered into a queue that is depleted in a first-in-first-out

manner. From a queueing point of view, this is an M/G/l system (Poisson

input, general independent service time with a single server) operating in

steady state with infinite queue capacity. The objective is to locate

a facility to minimize the sum of mean queueing delay and mean travel time.

Berman, Larson and Chiu [3 ] examine this problem on a general network and

develop a finite step algorithm to obtain the optimal location.

We specialize our analysis on a tree network and introduce an effi-

cient algorithm to "trim" the tree in search of the optimal location. In

Section 4.3, we perform parametric analyses on the total Poisson demand

rate X and trace the trajectory of the optimal location when traffic inten-

sity is varied. An effort is made to characterize the optimal value of the

objective function as a function of X. We only obtain partial results

concerning this value function. To conclude this chapter, we present an



example to show that multiple local optima do exist on a link in a general

network. In Chapter 5, we will illustrate the trim algorithm and the para-

metric analysis in a numerical example with a discrete nodal, as well as

continuous link demands.

4.2 Stochastic Queue Median on a Tree Network

4.2.1 Problem Formulation:

Let G(N,L) be an undirected network with node set N (IN! = n) and link

set L. Service demands occur exclusively at the nodes, with each node j

generating an independent Poisson stream of rate Xh.( Z h. = 1). The
jEN 2

travel distance from point x on G to node i in N is d(x,i). The travel

distance on link (i,j) is d... In all cases, travel time is equal to

travel distance divided by travel speed v. The time required to travel

a fraction 6 of link (i,j) is assumed to be d. ./v. All travel distances
:1J2

are taken as the shortest distance between two points on the network.

For a facility located at x on G, the total service time associated

with a service demand is:

s(x) = w. + S/v d(x,j) with probability h.

where w. is the non-travel component of service time, a random variable.

S/v d(x,j) accounts for round-trip travel time between facility at x and

incident at node j. Figure 4.2.1 shows the temporal sequence associated

with a service demand from node j.

We identify the sum of the on-scene and off-scene service time (see

Figure 4.2.1) with w., the non-travel related component of total service

time. We let w = E h.w., where (-) indicates expectation of a random

2 j 2 2
variable and w = E h.w ., s (x) = second moment of service time.

j N2 21
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We assume that w., w ., w, and w are finite.

J J

Given the facility location at x, the expected response time TR(x)

associated with a random service demand is the sum of the mean in-queue

delay Q(x) and the expected travel time t(x). Since the stochastic

system is a single server queue having Poisson input and general indepen-

dent service time (i.e., an M/G/l system), it is well known that (for exam-

ple, see Kleinrock [41]):

(x)
Q (x)=

2(1-As(x)) for Xs(x) < 1

+0 for Xs(x) > 1

Hence, for As(x) < 1

TR(x) = Q(x) + t(x)

where t(x) = - h.d(x,j), s(x) = w + /vt(x). The objective is to find
v j J

y E G(N,L) such that

TR(y) < TR(x) for all x on G(NL)

Definition: y will be called a Stochastic Queue Median (SQM).

Before we search for this SQM, we will develop an algebraic expres-

sion for TR(x). With the definition of node partitioning A(a,b,x) and

B(a,b;x) (as defined in Chapter 3), when we are at a point x on link (a,b)

(i.e., at a point on (a,b) with distance x from node a), we can write

2
t(x), s(x) and s (x) as follows:
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t(x) - (c x + c2)

s(x) = w + St(x) = w + 3/v (c1x + c2)

2
22 2 262C4  28C6

s (x) = 2/v x +[ 2 +
v v

22 2
x+ [S2/v + 26/v C + w]

C 1 = E h. - E h.

jeA 3 jEB

c = E h.d(a,j) + E h.(Z
jLA jsB J

+ d(bj))

c = E h. = 1

j6N J

c= E h.d(a,j) + E h. (2 + d(bj))
jA jB

e= E h.[d(a,j)]2 + E h.[Z + d(bj)]
5 jA jeB

c = Ew. -6 jA E h.w.
EB I i

c= h.w d(a,j) + Z h.w.[d(b,j) + 9]
j CA j E:B 3 1

Note that the generic expression for s (x) is

s2x) = E h. [w. + S/v d(x,j)]2

jeN

(4.2.1)

where

(4.2.2)

(4.2.3)



In a general network, the sets A and B change as one moves from node

a to node b (i.e., as x increases). Specifically, A will shrink and B

will grow correspondingly. We will recall two definitions given in

Chapter 3.

Definition: A breakpoint is a point on a link at which the set A (B)

changes.

Definition: A primary region is an interval on any link for which the

sets A and B remain unchanged.

We note that the sets A and B remain unchanged on a link in a tree

network. Thus the entire link is a primary region in a tree network. We

7
will first study the behaviors of t(x), s (x) and TR(x) in a primary

2
region. In Section 4.2.3, we will examine the properties of t(x), s (x)

and TR(x) on a path of a tree network. We present an efficient search

procedure by trimming away portions of a tree in determining the location

of the stochastic queue median in Section 4.2.4.

4.2.2 Behavior of t(x), s2(x) and TR(x) in a Primary Region

All the results in this section are valid for a general network. Be-

fore we begin our analysis, we want to inform the readers that the algebra

involved is intrinsically complicated. We have tried our best to reduce

all expressions to their simplest possible forms. Instead of explicitly

expressing the dependence of the equations on x (location of the facility

2
on G), we use t(x), s(x), s (x) and their derivatives in all the equations.

7
The dependence on x becomes implicit through t(x), s(x), s (x), etc., and

this reduces the algebra from a possible two-page equation to a two-line

one. The beauty of most of the analyses lies in the fact that we fix the



optimal location at x on G, and ask the question: "What values of X will

make x optimal?". Therefore, in the analysis that follows (throughout

2-- 2-
the thesis), the reader can consider s , s, t, s , s , etc., as numbers

rather than functions of x. The only relevant information are the signs

of these functions, which will be apparent as we move along. The first

2
two results concern the behavior of t and s

Lemma 4.2.1: t(x) is linear in a primary region.

Proof: Since t(x) = (c x + c

Lemma 4.2.2: s2 x) is convex in a primary region.

Prof:d 2( 2 (x) 2 2
Proof: 2 2  = 2 S /v > 0.

dx2

Before we analyze the behavior of TR(x) in a primary region, we will

state an important inequality which will aid future analysis, looking first

at the generic expression of s 2(x), for x on (a,b).

s (x) = E h.[w.+a/v(x+d(a,j))] 2 + Z [w.+ SI/v(d(b,j)+ Z- x)]
jeA J jEB

Note that for node partitions A(a,b; x) and B(a,b; x), s2 (x) is defined

through the parameters c's, and they are defined and valid over only one

primary region. However, we observe that s2 x) is non-negative for all

values of x E R. Thus, we can extend the domain of definition of s (x)

and note that this quadratic expression of equation 4.2.3 is non-negative
I

for all values of x. Therefore the value of s 2(0) and s2 (0) (denoted by

s02 and s02 ) are well defined even if the primary region over which the

sets A and B are partitioned does not contain the point x = 0. We can



write s2 (x) as

s2 2/V2 x2 + s0  + s0 2 > 0 for all x E R

and thus
-,22'2 2 2 2

(s0  ) - 4 6 /v s0 < 0

Albegraic manipulation also reveals that:

-- 2 2

(s2 (x) ) - 4 2/v2 s2 (x) = 4 /V2 s02 < 0 (4.2.4)

which is independent of x.

With these observations, we are ready to prove a convexity result

of TR(x).

Lemma 4.2.3: TR(x) is convex in a primary region over which TR(x) is

finite (i.e., 1 - A s(x) > 0).

Proof: We evaluate the second derivative of TR(x) directly.

d2TRx = [1 s s)2 c s2 + a/v c 2 2+ ( - 2/vs)S+ /v]

dx 2 v 11

where we have suppressed the argument x.

We are only interested in the case where (1-A s(x)) > 0. Therefore,
2-

d TR(x) takes on the sign of the numerator, which is a quadratic equation
dx

in A; we will call it N(A). We note that N(0) = 6/v > 0. Let N(X) =

1 2 + Y2 + T3 and compute



-'2 222
Y2 ~ 4y 1Y3 = c1 [(s ) - 46 /v s

--- 2 2 2 2
= 2 2 - 4w /v s ] < 0

e[(s )
10

by expression (4.2.4). We conclude that N(X) has no real roots and thus
2-

N(O) > 0 implies N(X) > 0 for all values of X. Therefore, d TR(x) 0,

2 -
4.2.3 Properties of t(x), s (x), TR(x) over Paths of a Tree Network

Since the entire link in a tree network is a primary region, we know

that t(x) (linear), s (x) and TR(x) are all convex over the entire link

in a tree network. We would like this convexity behavior to carry over

when we move across nodes from one link to another. This turns out to be

true. Before we present our result, we will examine the change of the

node partitions A and B as one moves across a node.

Suppose we are moving along a path from node i to node j to node k

(or i - j - k) in a tree. From now on, we will not mention the context

of tree network.

A',B' A" ,B"

C' C"

We will denote the respctive node partitions A, B and constants C as A',

B' and C'; for link (i,j), A", B" and C" for link (j,k).

Definition: A(j; i,k) = set of nodes (including j) connected to node j

after the removal of links (i,j) and (j,k). When no ambiguity arises, we

will simply use A.



It is easily verified that

A" = A'U A

B' = B"UA

A', A, B" are mutual disjoint.

In a tree network, where the sets A and B remain unchanged on a

7
link, derivatives of TR(x) (when finite), s (x), s(x), and t(x) exist

except at the nodes. (Note that the value of these functions is con-

tinuous, when finite, at the nodes.) To facilitate discussion, we will

introduce the notion of in and out derivatives of a function at a node

along a path. When we are moving along a path i-j-k, the in (or out)

derivative of a function at node j is evaluated with parameters (the sets

A, B and constants C) relevant to the link (i,j) (or (j,k)). We will
5

7
now investigate the properties of s (x), s(x), t(x) and TR(x) along a

path in a tree.

Lemma 4.2.4: The function s2 (x) is convex on any path in a tree network.

Proof: Since s (x) is convex on a link, it suffices to show that along

any path i-j-k

2 2
s (j). < s(j)

in - out
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Let the length of (i,j) be d...

s (j) = 2 2/v2 x + 2 2/v2 c + 2 /v c. x
Jx=d

= 22/v2 d + 2a2/v2 c + 26/v c
iJ46

and

s )out = 2 2/V2 x + 2 2/v2 c + 26/v c I4 6 x=0

= 22/v2 c + 2/v c4 6

We can show that

c = E h w - hiw
ZEA" ZEB"

=E hw + E h w, E hw -, h ]
' 2, SLSB 'EZ:A' Zs:A 2,B9I: kp

= I hz w k- E hw] + 2 E hiw
CeA' ZEB' tEA

= 6+ 2 E h w

A similar argument and the facts that

(i) d(i, ) - d.. = d(j,,)
1J

(ii) d(j,Z) = d(k,2) + djk

c = c + d..4 4 13~

for E e A and

for Z E B"

+ 2 E h ,d(jZ)

give
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With c c expressed in terms of c and c6 , we can relate s (j)
1 4) 6 4 69 out

2
s (j).:

in

2
s ()

2 2 2
= Q) jin + 46 /v I h d(jj) + 46/v Z h w( inxAAX

s (j) > s (j). along i-j-k follows.out - in

Therefore s2 (x) is convex along any path in a tree network.

Lemma 4.2.5: t(x) is convex along any path in a tree network.

Proof: Since t(x) is linear on a link, it suffices to show that along

path i-j-k

- I - I

t(j)i < t(j)in - out

- I I

t(j) in=c 1/V t(j)out c /V

It I I

but c, = c1 +2 h > c
j EA

t(j). < t(j)

Lemma 4.2.6: s(x) is convex along any path in a tree network.

Proof: Since s(x) = w + t(x), and >1, the result follows.

Lemma 4.2.7: TR(x) is convex along any path in a tree network when it

is finite.

Y, 6 XEL
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Proof: Again convexity of TR(x) over a link permits us to prove this

lemma by showing that along i-j-k at node j:

TR(j) > TR(j)out - out

- -22 - ' 2
TR(j) = - [l - Xs(j)] [s (j) ( -X s(j)) + XAt(j) s (j)] + t(j)out 2 out out out

since 1 - A s(j) > 0

-), 2

sQ() , s (j) are continuous at node j

22
s (j) > s (j).out - in

- I _ I

t(j) > t(j).out - in

TR(j) > TR(j).out - in
U-

For a convex function along any path of a tree network, we can prove

the following lemma.

Lemma 4.2.8: Suppose F(x) is convex along any path of a tree network and

F(i) < F(j) where (i,j) is a link; then for all x on (j,k), k # i, F(j) <

F(x).

Proof: Convexity of F along path i-j-k (in particular) and the fact that

F(i) < F(j) implies that

> 0 along any path (j,k), k # i.

and



Again using convexity of F along a link, we conclude that F(x) > F(j)

for all x E (j,k), k # i.E

-- 2
Since TR(x), s (x), t(x) and s(x) are convex along any path in a

tree, lemma 4.2.8 applies to all of them. We will use this property to

eliminate portions of a tree in search of the Stochastic Queue median in

the next section.

4.2.4 An Efficient Algorithm to Locate the Stochastic Queue Median of a

Tree

Since TR(x) is convex along any path of the tree, we can start from

any end node (a node with degree one, i.e., number of links incident on

it is one) and follow a link with decreasing derivatives at each node

encountered in the path. However, we can take advantage of the structure

of TR(x) and do significantly better. Recall that

\2)
-- X s x)WTR(x) = _(-(x)) + t(x) when 1-X s(x) > 0.

where

s(x) = w + t(x)

If we start from any end, 1 -X s(x) could be negative. In that case,

convexity of TR(x) does not hold and we are left with no direction. If

we start at a point x where 1 - A s(x) is positive and examine a direction

of movement; suppose we find that both t(x) and s (x) are increasing in

that direction, we can abandon our search along that direction. This is

because t(x) and s (x) are convex -- if they start increasing they will

keep on increasing. This also causes 1 - A s(x) to decrease and approach



the value zero. The overall effect is the increase of TR(x) as long as

1 - X s(x) is positive. If 1 - X s(x) ever becomes zero, the convex

nature of s(x) tells us to stop searching.

The above observation prompts us to start our search at a point

where TR(x) is finite, i.e., 1 - X s(x) > 0. The most obvious starting

point is the Hakimi median where t(x) (and thus s(x)) is at its minimum.

Any movement away from the Hakimi median will result in the continued

increasing of t(x) as guaranteed by the convexity of t(x). Thus, one

needs only to check the value of s2 (x) (or its derivative) for direction

of movement. This line of reasoning leads us to develop an efficient

algorithm to locate the Stochastic Queue Median (SQM).

Before starting the algorithm, we will introduce some standard net-

work notations and definitions. Again, we are dealing exclusively with

undirected and connected tree networks:

Definition: A tree is rooted at node i if we define the depth of a node

j, d.(j), as the number of links between nodes i and j, and we call node

i the root of the tree.

For two nodes p, q in a tree rooted at node i, we have the following

definition:

Definition: p is the predecessor of q if d.(p) < d.(q) (or the immediate
1 1

predecessor if d.(p) = d.(q) - 1) and d(p,q) = d(i,q) - d(i,p); where
1 1

d(m,n) is the shortest distance between nodes m and n on the network, q

is the successor (or immediate successor) of p.

We now study the behavior of t(x) on a tree network rooted at the

Hakimi Median (HM).



Lemma 4.2.9: Suppose i is the Hakimi Median on a tree network. Then c1

is non-negative on all links (i,j). (Note that when we say link (i,j),

a direction is imposed on the movement of x from i to j.)

Proof: The HM minimizes t(x) = v (c x + c2) over the network, implying

that x = 0 minimizes c 1x + c2 along all links (i,j) where cI and c2 are

parameters on link (i,j); c > 0 follows.

Lemma 4.2.10: c1 _> 0 on (p,q) where q is an immediate successor of p

in a tree rooted at the Hakimi median.

Proof: The parameter c 1 > 0 on (i,j) where i is the Hakimi median, toge-

ther with convexity of t(x) along any path of a tree network, guarantees

the positivity of c on (p,q), since c1 is seen to be the derivative of

t(x) along (p,q).

From the above analyses, we know that when one moves away from the

Hakimi median through nodes of increasing depth, the function t(x) (and

thus s(x)) increases. Therefore, we need only check on the behavior of

s 2(x) as a direction of search down the rooted tree. (Moving down a

rooted tree means moving along a path of increasing depth.) There are

many variations of this testing mechanism. We can test the value of s2

directly, or we can check the sign of s . In what follows, we will

investigate each possibility. First, we define a branch of a rooted tree.

Definition: Branch k of a rooted tree is the sub-tree consisting of node

k, its successors and the links connecting them.



Theorem 4.2.1: Consider a tree rooted at the Hakimi Median, i. Suppose

s 2(j) > s2 (i), where j is an immeidate successor of i. We can eliminate

branch j in determining the stochastic queue median (note that we cannot

ignore link (i,j)).

Proof: Because TR(x) is convex along any path of a tree, it is sufficient

to show that TR(j). along (i,j) is positive.
in

in 2 -22 2 c 1
TR(j). = - [1-X s(j)] [s (j) (1-X s(j)) + XA c /v s (j)] + -

There are two cases to consider:

(1) 1 - A s(j) < 0, TR(j) is infinite, convexity of s(j)

and s(j) = S/v c > 0 tells us that 1 - X s(x) will

never become positive again, further down the rooted

tree.

(2) 1- X s(j) > 0. We know cl > 0 down the rooted tree.

2'
All we have to show is s (j). > 0. This is true

in-

because s 2(i < s 2(j) and s2 (x) is convex along link

(i,j).

Thus, we can eliminate branch j from consideration.

Corollary: Consider a tree rooted at the Hakimi median i, and consider

a particular sequence of nodes along a path from i: i-j-k-q. Suppose

s 2(i > s 2() > s2 k), and s 2(k) < s2 (q). Then we can eliminate branch

q from consideration (refer to Figure 4.2.2).

-- ' 1
Proof: On link (k,q), c > 0 (lemma 4.10) implies t(q). = - c > 0 on

1 in v 1

link (k,q). The exact argument, as in Theorem 4.1, gives the desired

result.
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Figure 4.2.2 A Tree rooted at node i



As noted in Theorem 4.2.1 and its corollary, we can eliminate branch

k but not the link from node k pointing towards the Hakimi median. The

following lemma allows us to do so selectively.

Lemma 4.2.11: Eliminate link (j,k), j being the immediate predecessor of

k in a Hakimi median rooted tree if s2 (j) > 0.
out

272
Proof: s (x) > 0 for all x on (j,k) by convexity of s (x); t(x) = c1 /v

> 0 by lemma 4.10. These two conditions imply that TR(x) is increasing

along (jk). U
In addition to the above elimination procedures, we also have to

check whether 1 - X s(x) is positive to ensure the finiteness of TR(x).

We want to know the structure of the "trimmed" tree after the application

of these elimination processes. The discussion that follows will be in-

formal, but mathematically justifiable. The informal discussion will be

followed by a theorem describing the efficiency of the trimming procedure.

We will first describe our trimming procedure.

The SQM Trimming Algorithm (on a tree network):

(1) Root the tree at the Hakimi Median.

(2) Evaluate s2 (j)' at each node, in order of increasingout

depth, along link (j,k) where k is the immediate

successor of j. Stop if j is an end of the tree.

(3) Eliminate link (j,k) and branch k if s2 (j) > 0.out

There are several observations we wish to make regarding this algo-

rithm. The first one is the choice of test quantity s2 (j) instead of
out

s2 (j) at each node. The reason for this is that we can eliminate not only

branch k but also link (j,k) if s2 (j) > 0 along link (j,k). This
out

eliminates the possibility of links "sticking" out from a node. Also,
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the evaluation of s (j) is a little easier than s (j) since only c4 andout4

c6 need be computed (see Equation 4.2.3 for the expression of s (x) evalua-

ted at x = 0 along link (j,k)). The second observation concerns stream-

lining of this trimming procedure. Suppose we are now at node j and j(k)

k = 1,2,...,Q are the immediate successors of j (see Figure 4.2.3). Due

to the convexity of s2 (x) along any path in a tree network, we see that at

2
most one s (j) along links (j,j(k)), k = 1,2,...,Z, can be negative.

out

The next observation deals with justification of this algorithm.

This trimming procedure does not exclude any optimal solution to our prob-

lem because: (1) at node j, we eliminate portions of a tree with larger

s guaranteed by s (j) > 0 and convexity of s down the tree; (2) con-
out -

vexity of t(x) along a path and the fact that we eliminate portions of a

tree (rooted at the Hakimi median) "deeper" than node j assure us that

t(x) (s(x)) will be at least as large as t(j) if we go further down the

tree. Therefore, TR(j) is no bigger than any TR(x) associated with the

eliminated sub-tree. Note that we have not concerned ourselves with the

finiteness of TR(x) in our trimming operation. Also the value of X has

not entered into our consideration. We could evaluate TR(j)out at each

node j. Convexity of TR(x) will guarantee the same operations and justi-

2 '
fications as using s (x) . However, we will be computing a more compli-

cated expression (involving c1 , c2, c5 ' c7 and X) and we will not be

taking advantage of the rooting (at the Hakimi median) operation. The

fact that we move away from the Hakimi median allows us not to check the

value of t(x).

With the above observations and the trimming algorithm, we conclude:



2'
s (j )(out

along link (jj()

Figure 4.2.3 A Step in the Trimming Algorithm



Theorem 4.2.2 (Efficiency of the Trimming Algorithm): The trimmed tree

consists of a single path with nodes of increasing depth leading out of

its root, the Hakimi median.

After the trimming operation, we are left with a sub-tree which con-

sists of a single path leading out of the Hakimi median. The following

search procedure, applied to the residual tree, using the convex property

of TR(x), locates the Stochastic Queue Median:

Search Procedure:

(1) Evaluate 1 - A s(j), and TR(j)out at node j along this

path in order of increasing depth.

(2) If k is the first node such that either (i) 1 - X s(k)

< 0 or (ii) TR(k)out > 0, the SQM is located on link

(Z,k), where k is the immediate predecessor of k in

this path.

(3) If all 1 - s(j) > 0 and TR(j) < 0 (or TR(j). < 0
out in

if j is the last node on the path) on this path, then

the last node is the SQM.

Optimality of the above procedure is guaranteed by the convexity of TR(x)

along any path in a tree. We still need to specify the operation in Step

(2), namely, how to locate the SQM on link (Q,k). There are three possi-

bilities.

(1) TR(k). < 0 (note TR(k) > 0) and 1 - X s(k) > 0.
in - out

In this case, node k is the SQM due to the convexity

of TR(x).

(2) 1 - X s(k) > 0 and TR(k) in > 0 along link (Z,k). When

this occurs, we have to find the minimum of TR(x) on



on link (Z,k) by examining the derivative of TR(x)

with respect to x:

dTR(x) 1 -2[B (x 2 + B2(X)x + B
dx 2 [l-X SWXJ [ 1(x+ B2(x + MIX)

where

B2 2 2222

B2 ( ) = -2/v 2 (5 - 2c1 2) w + 5/v c 2  + 2/v 2 ( - 2c 2 )X

B3 (k) = [W/v c (0 2 /v 2 c + 2/v c + 2) + c ( + /v c2) 2

- 25/v(3/v c4 + C6)(W + 5/v c2 )]X2 + [25/v(/v c4 +c6
4- c (/v c2 +w)]X + 2/v c1

dTR(x)
To find the minimum of a convex function, we set dx)= 0

dx

and solve for x (note 1 - X s(x) > 0 for x e [0,m], where

m is the length of link (9,k)), G(x) H B ()x 2 + B2(M x

+ B3(3) = 0. We know TR(Z)out < 0 and TR(k)in > 0. There-

fore, we have G(0) < 0 and G(m) > 0. This implies G(x) =0

has a solution for x C [0,m]. We have to make some obser-

vations before solving this quadratic equation in x:

First, c1 > 0 on this path;

Second, we will show in the next section that S - 2c1
2

> 0 on this path,

2 2
Third, B2 (X) = 2a/v (S - 2c21 )X1 - X s(2 )) > 0,

Fourth, B3(X) takes on the sign of dTR(x) which
3 dx x=0

is negative.

We will show that x takes on the (+) root in this quadra-

tic solution G(x) = 0, that is,



-B 2 M+A2 M2 - 4B1 () )B 3 MA

2B

We will consider both situations in which c1 can take

on positive or negative values, since in a general net-

work, c1 can be negative. In the case that c1 = 0,

x = -B3(A)/B2M*

(i) c1 > 0, which is our current situation on a tree

network: B 1(X) - 42/v3 c(S - 2c1 2
2 < 0 implies

G(x) is concave. G(0) < 0, G(m) > 0 allows us to

sketch G(x) in Figure 4.4(a). Note that B2 M > 0,

B3(X) < 0, and

+B2 2 2 - 4B1 (X)B3 M() -B2 2 - 2(X 2- 4B 1(X)B3(X)
x = <x

1 2B-(X) 2B () 2
1 1

Therefore, referring to Figure 4.2.4(a), we want to

take the (+) root, that is, x .

(ii) When c1 < 0, which is possible in a general network,

B 1() > 0 implies G(x) is convex, and we again have

B = dG(x) x > 0, B3 (0) = G(0) < 0, G(m) > 0.

From the sketch of G(x) in Figure 4.2.4(b), we note

-B2 2 )2 - 4B (X)B3(X)
x = < 0
2 2B(X)

2B1 '2
-B2 ) + A2 (X)2 - 4B1 (X)B3 ()

Therefore, we want x - 2B1M)

the only feasible choice.
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(3) The last situation is 1 - A s(k) < 0. We know 1 - X s(Z) >

0 since node k is the first node such that 1- X s(k) < 0.

This implies s(k) > s(Z) or c1 > 0 (since s(k) = s(Z) +

c1xIx-). Also we know that there exists an x E (0,m)

such that 1 - X s(x) = 0. We will denote this x by xs.

Simple substitution of xs = [1- X(w+ /v c2)]/Xc 1 reveals

that G(x s) > 0, G(0) < 0, G(x s) > 0 and Roll's Theorem

implies that G(x) passes through the x axis somewhere

between 0 and x . The same observation as in case (2)

(Figure 4.2.4(a)) tells us that we should take the (+)

root in the quadratic solution G(x) = 0.

The above trimming and search procedures are very efficient since we

trim away a large portion of the tree. To locate the Hakimi median in a

tree requires (worst case) 0(n) operations (where n is the number of nodes

in a tree). In the Trim Algorithm, we have to evaluate s(j) out at each

depth of the rooted tree. However, we do not have to evaluate this for

all the links of the tree due to the fact that at most, one s(j)out can

be negative. This again requires 0(n) operations. The search procedure

is applied to the residual tree, which again requires no more thatn 0(n)

operations. Therefore, the worst case complexity is order n. However,

we expect the average performance to be much better. We will quantify the

above discussion next.

We can make some very rough estimate of the average behavior of the

Trim and Search Algorithms. Suppose we are given a tree with n nodes and

the average degree of each node (except its ends) is d. After we root

the tree at the Hakimi median, we expect there are 2 levels in the rooted



tree (we count the Hakimi median as being at level one, and its immediate

successors at level two, etc.). n, d, and Z are related roughly as

Z-1 . (d-1) -(d -1 - 1
E (d-1)j = = n
=0 (d-1) - 1 d-Z

or

k = Pnd-l[n(d-2) + 1]

At each level, we only have to consider one node, and at most one link

leading out of it. We also check the sign of s2 (i) at most (d-1) times.out

We conclude that we will perform on the average (and at most)

(Z-1)(d-l) = (d-l){Zn d-[n(d-2)+ 1] - 11 operations.

As for the search algorithm, the number of operations is no more than the

number of links in the residual path, which in our average analysis is

about Z-1, or knd-l[n(d- 2)+1] - 1 times. To illustrate our analysis, we

consider a tree with an average degree of three (except its ends). This

tree will be like a binary tree, as illustrated in Figure 4.2.5. For con-

creteness, suppose this tree has 15 nodes.

d = 3, n = 15 imply

9, = n 2[15(3-2)+1] = 4

(-1) (d-1) = 3 x 2 = 6 operations

An exhaustive search will require searching over all 14 links. The search

algorithm requires about 2 - 1 = 3 computations.



Figure 4.2.5 A Binary Tree with Four Levels



As another example, consider d = 4, n = 121. In this case, the

average level is Z = 4 and the number of operations is (4-1)(4-1) = 9 for

the trim operations. For the search algorithm, it is 4 - 1 = 3 operations.

We would like to point out that each operation here involves the evalua-

tions of the coefficients c s in the expressions for s (x) and TR(x). To

locate the Hakimi median, it requires n operations, but each operation

involves only the update of nodal weights h.. The saving is in the reduc-
J7

tion of operations involving computation of TR(x) and s 2(x), even though

it takes n(simple) operations in locating the Hakimi median.

One final remark concerning nodal restriction is in order before we

turn to the topic of parametric analysis. Due to the convex nature of

TR(x), if we impose the additional restriction that the facility must be

located on a node, we need only check on node 2 and node k (refer to

Step (2) of the search procedure).

It turns out that the trim and search procedures described here are

also applicable to the stochastic queue one median problem defined on a

tree network with continuous link demands (see Chapter 5). We will illus-

trate the procedures with a numerical example at the end of Chapter 5.

4.3 Parametric Analysis (on X) of the SQM Location

4.3.1 Preliminary

In locating the SQM in a tree, we only have to follow a path of de-

creasing s 2(x) starting from the Hakimi median (HM). This is due to the

positivity of c1 when one moves away from the HM. Once s2 (x)' becomes

positive, all points down the path from the HM will never be candidates

for the SQM regardless of the value of X. This is a very crude test and

uses an elementary observation of the functional form of TR(x) =Xs 2(x)/



2(1 - A s(x))+ t(x). As a matter of fact, one can eliminate branches of

the tree before s 2(x becomes positive. We intend to develop a stronger

and X-independent test quantity here (as is the test quantity s (x) , con-

trasted to the evaluation of TR(x) which depends on the value of X). The

development and analysis of such a test quantity not only sheds light on

proof techniques that follow, but also is desirable when we try to find

the locations of all the SQM's in a tree (i.e., the SQM for all values of

X). In other words, the development in this section will set the stage

for parametric analysis of X.

Before we start to find such a test quantity, we will introduce some

notations and make several observations. We are operating under two

general constraints: (i) s (x) < 0 and (ii) 1 - X s(x) > 0; this limits

27'
the range of X for fixed value of x. s (x) < 0 means that we are inte-

rested only in points on the median seeking path (MSP) -- a path starting

from the HM in the direction of decreasing s2 x). We note that the MSP

is independent of A and is unique. As before, x on (i,j) represents a

point on link (i,j) at a distance x from node i. A point y down the path

from x means that x is in the unique path between the HM and the point y.

For convenience, we re-label the nodes along the MSP as (i, i2,...)2

where i = HM. The letters i, j, k will denote nodes of the network. We

will write TR(x) as TR(x,X) to highlight the dependence of TR on A as well

as on x. Our intention is to test where a point x on G will ever be a

stochastic queue median, for any value of A.

Definition: DTX(x,A) -' = derivative of TR with respect to x.
ax

When x is at node i, we use the notations DTX(i,A)in and DTX(i,) outo

denote the in and out derivatives of TR(x,X) (with respect to x) at node i



along the implied path, MSP. From the expression for TR(x,A), we obtain:

2 ' 2 2
A s (x) (i- A s(x))+ A 5/v cys (x) y A(x,A)

DTX (x,A)=+-c
2(1 - A s(x)) V 2(1-A s(x))

2

where

2 2- - 2 ' 2 2 4c 1 2
A(x,A) = [S/v c s 2+- c (s(x)) S(x)s (x) ] +[s (x) -s(x)]A + c=vi vi

= A (x)X2 + A2 (x)A + A3.

Since we are interested only in those (A,x) pairs such that 1- A s(x) > 0,

we know DTX(x,A) and A(x,A) have the same signs. If at the point x,

DTX(x,A) is positive for all values of A we can conclude that x will

never be a candidate for the SQM regardless of the value of A. This is

due to the convexity of TR(x,A) as a function of x. Our aim now is to

examine the sign of A(x,A) for fixed x and varying A. We realize that

A(x,A) is quadratic in A (when x is fixed), and there is a well established

rule to test the sign of a quadratic function. First we will examine the

coefficients of A , and A in A(x,X).

We are now on a path of decreasing s and increasing t; therefore,

2' -1
s < 0 and t = c1 > 0, and

A (x) > 0

A 2(x) < 0

A 3> 0A3

A(x,O) =A 3 0

A(xA) = A < 0
A1 I=O 2



S=(x, 2A (x) > 0M 2 1 for all values of X.

Lemma 4.3.1: A(x,X) is convex in A for fixed values of x along the MSP
-A 2(x)

and has a global minimum at = -2 . Figure 4.3.1 shows a sketch of

A(x,A) for fixed x. 2A1(x)

Lemma 4.3.2: A(x,X), for x on MSP, has no zero in A iff A2 (x)2 4A1(x)A3

< 0.

Lemma 4.3.2 reduces to the following inequality:

2 2 2 2 '8W/v cl s (x) - (s (x) ) > 0

This condition is the same as:

min A(x,X) > 0
a

and

min A(x,X) = 8W/v c1 s (x)

-i-

Again, s (x) is negative, since we are on

2 22 2'does not guarantee 86/v c1 s (x) - s (x)

second level test above s (x) < 0, and it

test quantity is positive, we know that at

thus will never be a candidate for the-SQM.

(s (x) ) > 0.

the MSP. Note that s (x) < 0

> 0. We can view this as a

is A-independent. If this

x,TR(x) is always positive and

Theorem 4.3.1: Along the MSP, we can eliminate all points y down the

path of x as candidates for the SQM if
- 2

2 2 2 2 '
8S/v cl s (x) -(Cs )x) ) > 0.

and



A(x, X)

A
3

Sketch of A(x,,X) in AFigure 4.3.1



This result is useful in obtaining all the SQM in a tree when all possible

values of A are considered.

The following remarks are in order:

" Strictly speaking, we have to consider SIGN (min DTX(x,X))

for x on the MSP. However, assuming 1 - A s(x) > 0, i.e.,

restricing the range of A to A < 1/s(x), implies

SIGN (min DTX(x,A)) = SIGN (min A(x,A)).

* We have to be sure that, at each point x, the restriction

on the range of A (i.e., 1 - A s(x) > 0) presents no prob-

lems in our analysis. This will become apparent in the

next section.

* DTX(x,A) and A(x,A) have the same zeros in A in the range

of interest (A < 1/s(x)).

We will now turn to the parametric analysis of A.

4.3.2 Parametric Analysis of A on the Location of the SQM

We wish to locate all the SQM's of a tree, in the sense that we want

to find the location of the SQM as a function of A. We will introduce

the notion of the DTX(x,A) profile in A-space and present a graphic way

to trace the locus of the SQM as A varies. A by-product of this analysis

is to find a range of X such that the HM coincides with the SQM.

Berman, Larson and Chiu [ 3] show that as A approaches zero or X m,

where A is the value of A such that 1 - A s(i) = 0, i being the HM,
max max

the SQM coincides with the HM. They further observe (computationally)

that the SQM moves away from the HM as A increases, and then retreats



towards the HM upon further increase of X. Their computational experience

shows that the locus of the SQM (as a function of X), in a general un-

directed network, may not even be continuous. We will quantify such

observations in the case of a tree network. We again remind the reader

that we are on the MSP, i.e., on point x, such that s2 (x) < 0 and c1 > 0.

Lemma 4.3.3: For fixed values of x, DTX(x,X) has a unique minimum in

(0, 1/s(x)).

2
Proof: Recalling DTX(x,X) = A(x,X)/2[1- X s(x)] , we have

(i) DTX(x,0) = A3 /2 > 0,

1 2
(ii) A(x, 1/s(x)) = A (x)[-] + A2( sx) A3

1 s(x) 2  

= (3/v)cl(s2 (x))/[s(x)] 2> 0,

(iii) DTX(x,0) < DTX(x,X), as X + 1/s(x) from below,

(iv) i= 0 = 1/2 s2(x) < 0,

(v) DTX(xX) = 0 solving for X gives A = -s23X c

2 2 '
[2 /v c s (x) - s(x)_s (x) I > 0,

1 '. . -s2 '
(vi) A < < 12/v c s (x) - s(x) s (x)

Points (i) to (v) above show that DTX(x,X), as a function of A at fixed

x, has a unique minimum at Xc 6 (0, 1/s(x)).

Figure 4.3.2 shows two different profiles of DTX(x,X) at x1 and x2

in A-space. Note that due to the convexity of TR(x,X) in x, the profile

at a point y down the path of x will be enveloped below by the profile

of x. In Figure 4.3.2, we know that x2 is down the path of x . As will

be seen later, x and x2 belong to two different links of the MSP. Ac is

the value of A at which DTX(x,X) achieves its minimum. We now state a
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2 22
lemma assuring us that the test quantity 8/v c1  s (x) - (s (x) ) is

the same whether we look at the minimum of A(x,X) or DTX(x,X) in X.

2 2 2 2 '
Lemma 4.3.4: min DTX(x,X) > 0 iff 86/v c1  s (x) - (s (x) ) > 0.

x2 2 2 2 ' 2

Proof: min DTX(x,X) = DTX(x,A c 2 7 ~Z -
2(1-XAcs(x)) (2/v c1s (x) -s (x) s(x))

Since 1 - X cS(x) > 0 as seen in Lemma 4.3.3 and s2 ' < 0, c1 > 0, we

have SIGN [min DTX(x,X)] = SIGN [86/v2 c 2 (x) - (S2 (x)'2

We will make some remarks before stating the main result of this

section. For fixed values of x:

" DTX(x,0) = DTX(y,0) = 1/v c1 if x and y are on the same link,

" DTX(x,X) is supported below by DTX(y,X) for all values of X

of interest if x is down the path of y. By "X of interest",

we mean the range of X such that 1 - X s(x) > 0 in the asso-

ciated profile DTX(x,X).

" DTX(x,X) and A(x,X) have the same zeros in X for fixed x.

22 2 22
e Along the MSP, we know that (s ) - 8S/v c1 s > 0 by our

2' 2 2 2 2
A-independent test, and (s ) - 4S /v s < 0 by the proof

of lemma 4.2.3. The above inequalities imply that 6 - 2c1
2

> 0.

Theorem 4.3.2: the SQM of a tree network moves (as a function of X) down

the MSP from the HM continuously and then retreats continuously along the

MSP back to the HM upon further increase of X.



Proof: First we will examine the movement of the SQM when it is on the

interior of a link. We know that for each point x on the MSP, there are

associated values of X for which x is the SQM. Specifically, the (x,X)

pair satisfies A(x,X) = 0. We will investigate the movement of x by exam-

ining the derivative of the SQM location with respect to X.

dx ' -A/3X

dX = A/3x

A/3x = 23/v2 X(3 - 2c 1 )(l- s) > 0

2
because S - 2c > 0 from Section 4.3.2 and 1 - X s > 0 since x is optimal.

Therefore x' takes on the sign of -3A/3X at the point where A(x,X) = 0.

We know that A(x,X) is convex in X (quadratic) for fixed values of x. Also,

aA/3x > 0 implies that when X is fixed, A(x1 ,X) < A(x2 )X) if x1 < x2 (x1

and x2 on the same link).

We now refer our discussion to Figure 4.3.3, which shows the graphs

of A(x1 ,X) and A(x2,X), where x1 and x2 are fixed and on the same link and

x < X2. At X = 0, A(x1 ,0) = A(x2,0) = 2/v c . These two curves (as a

function of X) will not intersect because 3A/Dx > 0 (except at X = 0).

Both of them will cross the X-axis because x1 and x2 are on the MSP (lemma

4.3.2). x = dx/dX -- the derivative of the SQM as a function of X --

is positive at X 1 -( 2) and negative at X (x ) and X (x2). In other

words, the SQM is advancing down the MSP at X (-) and retreating back to

the HM at + (_).

At a node j, A(j,X) depends on whether one is going into node j or

moving away from node j. Exactly the same argument we use to prove con-

vexity of TR(x) across a node applies here: A(j,X)out is enveloped below
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below by A(j,X). as shown in Figure 4.3.4. We note that A(j,O). <in in

A(j,0)Out because the parameter c1 increases across a node. For X E A(j)

or A(j ), node j remains the SQM. This is because, for X c A(j) or A(j ),

A(x,X) > 0 for x down the path of node j and A(y,X) < 0 for y up the path

of node j; and since DTX(x,X) takes on the same sign as A(x,X), no interior

(to a link) point x will satisfy A(x,X) = 0, and therefore, node j is the

SQM.

As one moves down the MSP, either of the following two situations

will occur: (i) there is a point x (x could be a node) such thatm m
2' 2 2 2 2 2' 2

(s ) -8/v c s =0; or (ii) there is a node j, such that (s.) -1 in
2 2 2 2' 2 2 2 2

8/v c 1si > 0 and (s Out 8/v c1  s < 0. Both situations are
8vc 1  s.nOand t 1 out

illustrated in Figures 4.3.5 (case ii) and Figures 4.3.6 (case i), where

we have sketched the DTX(x,X) profiles instead of A(x,X) to highlight the

critical value at saturation (when 1 - A s = 0).

For each location x along the MSP, there exist A~(x) and A (x), as

in Figure 4.3.3, where x' at A~(x) is positive and negative at A (x).

Same observations can be made when x is a node. In that case, x' is

positive at A~(j)i and A(j) out, and negative at A +(j) and A+ (out

With the above argument, we conclude that:

(i) Case 1: When there is a point xm on the MSP such that

2' 2 2 2 2
(s ) - 8S/v c1  s = 0, A(x m,A) or DTX(x m,A) touches

the A-axis at Am (see Figure 4.3.6):
1 1

x > 0, for A < A ; x < 0, for A > A
m - m

(ii) Case 2: When there is a node j on the MSP such that

~2' 2 2 22 ~~2~' 2 2 2 2~
(s ) - 8S/v c2 s.> 0 and (s ) - 8/v c 2sou

in1in out 1 out

< 0, A(j,A). or DTX(j,A). intersects the A-axis atin in



X(j). and X +(j)
in in

x > 0, for X < X(j). ; x < 0, for X > X (j). .-- in -in

We know that the MSP is independent of X (as long as (a) 1 - X s > 0,

2' 2' 2 2 2 2
(b) s < 0, (c) (s ) - 8S/v c1  s > 0). The above argument shows

that the SQM moves along the MSP away from the HM as X increases and

retreats back to the HM along the MSP as X increases further. We illus-

trate the movement of the SQM in Figures 4.3.5 and 4.3.6. U
In Figure 4.3.5, we have highlighted five DTX(x,X) profiles: (1)

DTX(i1 ,x) out; (2) DTX(i2 X). ; (3) DTX(i 2,X) out; (4) DTX(i 3,X). ; (5) DTX

(i X) out. The shaded region corresponds to points on the same link (in

this case, link 1 is bracketed by profiles (1) and (2), link 2 is bracketed

by profiles (3) and (4)). The correspondence between the value of X and

the location of the SQM is as follows:

0 A1

1 2

2 3

3 4

A4 + A5

5 6

6 7

7 8

A8 + 1/s(i 1 )

A > 1/s(i )

Location of SQM

i1 (HM)

points on link 1 (i -i2

i
2

points

i 3

points

in2

points

on link 2 (i2  i3

on link 2 (i3  i 2

on link 1 (i2 i 1

i 
n

no finite value of TRWx exists
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the same link.

1 1 1
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0<
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Figure 4,3.5 DTX Profiles and Trajectory of SQM.
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DTX(xi)

HM

7 8



A different scenario is that the SQM moves back toward the HM in the

interior of a link. This happens if there exists a point x on the MSP

such that A2 (XM) 
2 - 4A1 (x )A3 = 0. This situation is shown graphically

in Figure 4.3.4, which is analogous to Figure 4.3.5. Notethatatx, A 2(X )2
m2 m

- 4A 1 (x)A3 = 0.

The four DTX profiles are: (1) DTX(i ,X) ; (2) DTX(i ,X). ; (3)1 out 2 in

DTX(i2X) out; (4) DTX(x ,X). The trajectory of the SQM as a function of

A is:

A

0 + A1

1 2

2 3

3 4

4

4 5

5 6

6 7

X7 + 1/s (i 1 )

A > l/s(i )

Location of SQM

ii = HM

link 1 (i., +

i
2

point of

x
m

point of

i
2

link 1

link 2 (i2 )

link 2 (x + 2)

i1

no finite value

on the network

of TR(x) exists

Intuitively, we are just picking the zeros of DTX(x,A) in A as x changes.

Convexity of TR(x,X) in x gives layers of DTX profiles with no intersection,

except possibly at A = 0. This property disallows zig-zagging behavior

of the SQM as A varies.

There is a special case in which c1 = 0 along one link of the MSP.

Figure 4.3.7 shows the MSP from node 1 to node 2, and so on. Node 1 is
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Figure 4.3.7 The MSP Rooted At Node 1
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Figure 4.3.8 DTX(x,>-) Profiles With Multiple
Minisum Locations.

DTX(xX)
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the Hakimi median; c1 along link (1,2) is zero. The implication is that

we have degeneracy associated with the HM. Node 1, along with node 2 and

all points on link (1,2), are all minisum locations. The DTX(x,A) pro-

files are shown in Figure 4.3.8.

Profile (a) represents DTX(x,X) out' where x is node 1.

Profile (b) represents DTX(x,X). , where x is node 2.
in

Profile (c) represents DTX(x,X) it, where x is node 2.

Profile (d) represents DTX(x,X). , where x is node 3.
in

In this situation, the MSP begins with node 2 instead of node 1; all analy-

sis remains identical from node 2 on.

A by-product of these observations is that we can find the range of

A such that the HM coincides with the SQM.

Lemma 4.3.5: Let i be the HM. Then i = SQM for 0 < A < A~ and A < A <

l/s(i ) where A < A, and they are the roots of A(i1 ,A) = 0.

4,3,3 A Numerical Example

To give the reader a feel for A~ and A , we have constructed a

numerical example as shown in Figure 4.3.9. The weights, h.'s, are shown

beside the nodes; the link lengths are shown next to the arcs. The Hakimi

median is found to be at node 2. We have computed the following relevant

parameters for A(x,A) for x at node 2.

s2 = 343.88

s o = - 43.096
out

s = 13.432

c 0.066

for a = 2, w = 1, v = 1, w 1.
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A(x,X) is: 648.07288X2 - 46.642X + 0.132 = 0

or X = 0.002951 , X += 0.0690192

also 1/s = 0.074449

Therefore, for Xe [0, 0.002951] U[0.0690192, 0.74449), the Hakimi median,

i.e., node 2, is the SQM.

4.4 The Optimal Value Function in X

4.4.1 Preliminary

We define the optimal value function v(A) as follows:

v() = min TR(x,X)
xEG

That is, the optimal average response time of the Stochastic Queue Median

problem as a function of the arrival rate X. There have been few results

concerning the behavior of the expected waiting time (as a function of the

number of servers, for example) in the queueing literature. Besides gene-

ral theoretical interest, we can use v(X) to study the uniform pruning

problem: Upon arrival of a call for service, Bernoulli trial is performed

to decide whether this call is to be serviced by a secondary unit (at a

cost Q with probability p). One can balance the cost.Q against the mar-

ginal change of TR(x,X) to obtain an optimal Bernoulli probability. Due to

the Poisson nature of the arrival process, the resulting M/G/l system is

modified only in its arrival rate, from X to (1-p)X. This uniform pruning

problem can be stated as follows:

min (1-p)v((l-p)X) + pQ
pE[0,1]
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If v(A) is convex, the uniform pruning problem is a convex program-

ming problem. One needs only to find a p satisfying the -first order

optimality condition. We are able to prove the convexity of v(X) for a

certain range of X. However, we conjecture the convexity of v(X) for all

X of interest; i.e., for 0 < X < 1/s(i), where i is the Hakimi median.

We will first introduce some notations and definitions.

Definition: We define the Median Seeking Path (MSP) as a path leading out

2'
of the Hakimi median along the direction of x such that: (i) s (x) < 0;

2 ' 2 2 2 2
and (ii) (s (x) ) - 86/v c1 s (x) > 0. Note that along this directed

path, c1 > 0.

For convenience, we will re-label the node along the MSP in increasing

order, from the Hakimi median. Refer all definitions to Figures 4.4.1 (a)

and (b).

Definition: A(i) the set of values of X such that node i is the SQM.

Referring to Figures 4.4.1(a) and (b), A(i) consists of either (i)

two non-overlapping intervals as in (a), or (ii) sometimes one continuous

interval as in (b). In the case of (a), we can write A(i) as

A(i) = A(i) U A(i+)

where

X <X for all X e A(i) and X A(i)

Definition: A(i, i+l) = the value of X such that points on link (i, i+l)

become the SQM continuously from node i to node i+l, a.s A increases,

A(i+1, i) = the value of X such that points on link (i+l, i) become the

SQM continuously from node i+l to node i as A increases.
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We want to point out that

x 1 x2 for all X E A(i, i+1)

and x2 c A(i+l, i)

Assume node 1 is the HM, and the nodes are labelled as (1,2,3,. ..,R)

along the MSP. In Figure 4.4.1(a), we define x = R, the interior point

on a link, such that the SQM moves back towards the HM when X increases.

In this case, A(R) = A(x m) = {X m}.

Definition: A = the set of values of X such that the SQM problem is

feasible, i.e., A = [0, 1/s(l))

R R-1 R
A = [ U A(i)] U [ U A(i, i+l)] u [ UX(i, i-1)]

i=1 i=l i=2

where each of its components are non-overlapping intervals, and

A(i) =A(i) U A(i+) for i 0 R

A(R) consists either of one point or one single interval.

4.4.2 Properties of v(X)

With all the notations and definitions introduced, we can state some

properties of X(v).

Lemma 4.4.1: v(X) is continuous in A for all A E A.

+ s2 _i) 1
Proof: for AXEA(i) = A(i) U A(i ), v(A) = 2(l-As(i)) + t(i), which

is continuous in A. For AXEA(i, i+l) or AXEA(i+l, i), v(A) = s 2(x)
2(1- t,(x))

+-1 t(x), where (x,A) satisfy A(x,A) = 0. As seen in Section 4.2.4 --
v
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Search Algorithm -- A(x,X) is quadratic in x, A(x,X) = B (Mx2 + B2

B3 (X) and2

S-B 2( ) + B2 (X)2 -4B 1 (X)B ()

2 B 1(M

Since X < 1/s(x) as discussed in Section 4.3, v(X) is continuous in X.

*
(Note that x is continuous in A.) At the boundary (i.e., where the

2-
coefficients defining s (x), t(x), and s(x) change -- all the c's) at

which A = A(i) n A(i, i+1) and A = A(i ) n A(i, i-1), we have no prob-
2

lems because s (x), t(x), and s(x) are continuous at the nodes (going in

and coming out) .

Lemma 4.4.2: v(X) is continuously differentiable for all A E A.

Proof: We will present two proofs, first algebraically, and then, utiliz-

ing the fact that A(x,A) = 0, functionally.

dv ' dx
We first define v (A) - , d x dA through A(x,A) = 0.

Proof One: For A E A(i ) or A(i); node i is the SQM,

2
dv . s (i) - continuous in A.
dA 2(l-As(i))2

For A c A(i, i+l), suppressing argument x:

dv _ (1-As)[1-s x +s ] + As [A $/v cyx +s] + c x
dA -2 v 12(1-As)

2 2 2' 2 2s , O c1s -~s )+s A +c /v2(1-A2)
- 2 + x - 2

2(1-As) -2(1-As)
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_ s 2 + x'-A 2
2 (1-As)

A(xA) s
-s2 -22(1-As) 2(1-As)

2 -
Since s , s are continuous at the nodes, v (A) is continuous also at the

boundary (node) =4v(A) is continuously differentiable for A c A.

2--dv 3v dx s 2 T(x)
Proof Two: For X c Ai, i+1), = X+ = + 3TRAx X

3TR(xx) 2(1-As)
but ax = DTX(x,A) = 0 (since DTX and A have the same zeros).

, 2
v (A)= s 2

2 (1-As)

follows.

Lemma 4.4.3: v(A) is increasing for A c A.

Proof: '.' v (A)

differentiability of v(A)

2

s - 0
2(1-Xs)2

Without evaluating the derivatives of v(A), we can prove lemma 4.4.3

directly using an entirely different argument.

Alternate Proof of Lemma 4.4.3: We want to show that A2 > A1 ==v(A2) >

v(A 1)9. Let x1 and x2 minimize TR(x, A1 ) and TR(x, A 2) respectively over

a tree network. This means:

1 - A1 s(x 1 ) > 0

A2 > X1

1 - 2 s(x2  > 0

1 s(x2

or x2 is feasible in minimizing TR(x, A1 ). Optimality of x in minimiz-

ing TR(x, A1 ) implies
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TR(x2 'X1 ) > v(X = TR(xi, 1 )

All we need to show now is

v(X2  T(x2 9 X2) > T(x 2' 1X

or 2 2
2s (x2  s (x2

2(1-X 2 s(x2)) 2(1-X1 s(x2

which is evident because X < X2'

v(X2 ) > v(X1).

Lemma 4.4.4: v(X) is convex for X E A(i) U A(i +

Proof: For X c A(i) U A(i ), node i remains optimal.

2 2
-. I(X v" d v(X) s(i) s2 > 0.

dX (1-X s(i)

Convexity follows. U
To prove convexity of v(A) on all X s A, we still have to show that

v(X) is convex over A(i, i+l) and A(i+1, i), since we have shown convexity

of v(X) in A(i) and that v (A) is continuous. We have not been successful

in this respect. However, we will evlauate the functional form of v (A)

over A(i, i+1) and A(i+1, i).

1 2 -- 2
We have shown that (suppressing argument x) v (A) = - s (1 - A s)

Recalling that x is the interior of a link and (x,A) satisfy A(x,X) = 0,

therefore,
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dx ~X

SdA -3A

and

v (X) - (1- As)
2 ' - 2' 2

[2s s + x [(1-XAs)s + 2X S/v c1 s ]

2 2 -2-2' 2'-[2(0/v c 1 s +- c 1 (s) - s s )X + (s - 4c /v s)]
x = (-3A/3X)(3A/3x)

2 2 -

Substitution of x into v (M) results in:

v (M) = (1X- s)-3 [2 /v X(-2c 2 ) 1- s))~lP(xX)

where

P(x,A) = P(x)X2 + P2(x)X + P3(X)

and

22' 2 2-22 2 2 232
P1 (x) = 46/v c 1 s s s - 4 /v (s) s - 4 /v c 1 (s) < 0

P()=- 2' 2 2 2- 2 ~ 2 2'>
P 2(x) = s(s ) + 42 /v s s - 48/v c1 s s > 0

P3 (x) = 2'2 < 0

We would like to remind readers that:

(i) 1 - As > o

(ii) (s2')2 - 8/v2 c12 S2 > 0

(iii) s2 < 0

(iv) A(x,X) = 0.

and
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(xN)

A (x, X
4(x,X)

A (x ,?)

I '
* t

- -

A

t t

A P

F(x,a) and A(x,) For Fixed Value of xFigure 4.4.2
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2
We have shown in Section 4.3.2 that 3 - 2c1  > 0. Therefore, v (X)

takes on the sign of P(x,X). For fixed values of x, P(x,X) is concave in

A and P(x,X) has real roots in A also (by computing P2 2 1x)P 3(x)

> 0). We plot A(x,X) and P(x,X) in Figure 4.4.2 for a fixed value of x.

If A(x,A) and P(x,A) intersect in the manner demonstrated in Figure

+ + if

4.4.2, i.e., XA and XA are bracketed by A and A v (A) is positive.

This is because P(x, X-) and P(x, A ) are both positive. (We remind theA 'A

reader that optimal x satisfies A(x,A) = 0, which corresponds to A and

AA for fixed x.) Unfortunately, we have been unable to prove thisA

result.

4.5 Postscript

We would like to close this chapter with an example showing the behav-

ior of TR(x) on a general network. Also, we will make some observations

about the implications of minimizing s2 x) on a tree network.

4.5.1 Non-Convexity of TR(x) in a General Network

In locating an SQM over a tree network, we are able to exploit the

tree structure and prove certain convex properties of s (x) and TR(x).

Such properties enable us to devise efficient search procedures to locate

the SQM. We have proved convexity of s2 (x) and TR(x) over a primary

region of a link in a general network. Convexity, however, does not

carry over to an entire link. This is seen intuitively because the set

partition A shrinks as one moves along a link. In a general network, the

reason for A shrinking across break-points is that we are keeping the

reference nodes a and b fixed. When we prove our results on a tree net-

work, we move along a path i-j-k and the reference nodes change from i and
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j to j and k. We will first show that s2 (x) and TR(x) are not convex on

a link in a general network. An example is developed to show that multi-

ple local minima of TR(x) exist on one link in a general network.

Consider two consecutive primary regions on link (a,b). Let x be
I if

the distance from the first reference node a. Let c. and c. be the rele-
11

vant c. parameters for the two consecutive primary regions, and A , B

A , B be the respective node partitions A, B. Let x be the break point

between these two primary regions. Let Z be the length of (a,b).

A'B' A"B"

oI I I 0
ax

c. c.
11

It is easy to see that

A CA,B CB

A U a= A

B U a =B

A , B , a are mutually disjoint

and C < C

C < C
C6 - 6

C < C1 - 1

where

a = {jljjEN, and d(j,a) + x = d(j,b) + 9. - x}

Let F(x) be a function defined on (a,b), and
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T (x)

xl x

Break
point

Figure 4.5.1 Multiple Local Optima

of TR(x) on a Link.
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F(x)F(x) - F(x-) = left derivative of F at x
Z A-*O A

F(x+A) - F(x)F(x) lim A = right derivative of F at xr A

When F is differentiable at x, F(x) = F(x) r*

It is straightforward to show that

(i) S (x) > s 2(x)r

and

(ii) TR (Z) > TR(R) r

by observing the changes of c. across x.

We now try to construct an example showing that TR(x) can have multi-

ple local minima on a link. Figure 4.5.1 shows the desired situation.

Instead of giving just a numerical example, we find it interesting to go

through the construction of such an example.

Convexity of TR(x) in each primary region allows us to evaluate four

values of TR(x) to demonstrate this behavior: (i) TR(x ) r< 0; (ii)

TR() z> 0; (iii) TR() r < 0; and (iv) TR(x2 % > 0.

Consider the following network:

hy =se

1

11

h =1- 2 3 h =1
2 2 1 3 2

There are two primary regions on link (2,3) with break points at the mid-

point of link (2,3). We denote them by <0, 1/2> and <1/2, 1>.
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A = {1,2} A = {2}

B = {3} - B = {1,3}

Assume w. = 1 for j = 1,2,3, 3 = 2, v = 1. This implies w = 1, w = 1.

We will leave the value C and the arrival rate X undetermined for the

moment. First we compute all the relevant parameters.

c =0 c =2E

c2 = + c2 2c +C2  2 C2  2

1 1
c4 = E-- c4 =-2s --

c = 0 c6 =2E

c =4E: +
" 2

c7 =2E +

The value of X is such that 1 - X s(x) > 0 for all x E [0,1], i.e., x on

link_(2,3). In primary region <0, 1/2>, c = 0 = t(-) = s(-) . TR(-) =

x 2(-)'- - I2 '21-s(-) . We want to show that TR(0) < 0 and TR(1/2) > 0. Since s (0)r2 l-Cs&) r Zr

2S /v c + 2 /v c = 8(E - 1/2) < 0 . 0 < E < 1/2, and s ( =

2 2/v 2(1/2) + 2a2/v2 c4 + 2/v c = 8e > 0. Therefore,

TR(0)r < 0

and

TR(1/2) > 0

Over primary region <1/2 1> on link (2,3),

-- ' X -2 - 2 ' 2 '
TR(-) = (1 - Xs(-)) [(l-Xs(-)) s (-) +Xs () t(--)] + t(-)



119

-- T - ' 1 "
We want to show first that TR(1/2) < 0, since t(*) - c = -26 < 0,r v1
21' 2 2 2 2"1 it

and s ) = 2 /v (1/2) + 2$ /v c + 23/v c = -246 < 0. Again, 1 -2 r 4 6

\ s(-) > 0 implies

TR(1/2)r < 0.

r

Lastly, we have to evaluate TR(l) k and show that for the appropriate

choice of E and X, TR(l) > 0. Some of the quantities below depend on

the choice of E and X.

* t(l) = 1/2, s(1) = w + St(l) = 1 + 2 = 2
2

* 1 - X s(l) = 1 - 2X

* t(l) = c = -2E

Ss2 (1) = 5

2 '
* s (1) = 4(1 -6).

TR(1) = (1- 2X) 2 [4 - 24E -8X+28]t 2

To ensure that 1 -X s(-) > 0 for all points on link (2,3), we impose an

-1
upper bound on X: X < [2(1+e)]1. This is because max t(x) =

x on link (2,3)
6 + 1/2, s(x) = w + a t(x).

. 1 X- s(x) > 0

1 <1
implies X < 2(1+c) 2 , since £ > 0.
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Set ( =(1-A) < 2(1+e) = > A +> and A < 1. Evaluating the left

derivative of TR(x) at x = 1, we have

1-A
TR(l) -2 [4A - 10E - 14AE].

4A

We want to choose A, and c such that

(i) TR(l)9 > 0

(ii) 6< A <11+e

(iii) O < c < 1/2

Set A = 56 > , 0 < 6 < 1/2 and 6 small.
1+6

1 2
TR(l) = 10 [1 - 126 + 15c2

for

1 -- ' 15£
41 - 12 TR (1) -fo > 0 .£12 TRl) 10

5 7 1
Therefore, A - A - ,£- is one set of possible values of these

12 24 1

parameters satisfying (i), (ii) and (iii) above. One finds the local

minima are on link (2,3) at x = and x = 0.9538.
12

The following example shows multiple local minima of TR(x) can exist

on a link in a general network (on x = 5/12 and x = 0.9538 on link (2,3)):

hi = 1
12

11

5
h - 2 3 h =1
2 12 3 2

A = 7/24, S = 2, v = 1, w = 1, w 1
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4.5.2 Minimization of s2 (x) Over a Tree Network

We know that s2 (x) is convex over any path in a tree network. There

are two possibilities for the location of minimum s 2(x) on a tree: (1) it

is on a node; (2) it is in the interior of a link. When it occurs in the

interior of a link, the necessary and sufficient condition for minimum

s 2(x) is s2 (x) = 0. This condition reduces to

E h.[S/v[x+d(a,j)]+w.] = h.[IS/v(-x+d(b,j)) + w.]
jEA 3 3 jcB '

2
When the minimum of s (x) is on link (a,b), E h.[/v(x+d(a,j))+w.] can

j&A E
be interpreted as workload generated from node set A, where S/v(x+d(a,j))

is the round-trip time between the facility at x and the incident at node

j; w. is the non-travel component of service time generated at node j.

Likewise, E h.[I/v(Z-x+d(b,j))+w.] can be seen as workload generated
jeB 

from set B.

Therefore, minimization of s 2(x), if it occurs on a link, can be

viewed as equalization of workload between requests generated through

node a to x and through node b to x. When this happens on a node, it can

be viewed as the "best" equalization (or splitting) of workload we can

have.

Such an interpretation of workload equalization remains valid in a

general network. However, the condition of workload equalization is only

necessary, but not sufficient, for minimization of s2 (x), because multiple

local minima (of s 2) can exist on a general network. Another interesting

interpretation is that, suppose we want to locate two units at the same

location in a tree network and they are to operate independently to cover
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two non-overlapping node sets, balancing workload also minimizes

the second movement of service time.

It is interesting to contrast the optimality conditions of the

Hakimi median problem and the minimization of s2 (x). In the Hakimi prob-

lem, one tries to partition the node sets into A and B such that their

respective total call rates are "more or less" balanced. It is called

the median problem because the optimal location is the closest point to

the 50th percentile of total arrival rate. Minimization of s (x) parti-

tions the node sets such that their respective workloads (travel plus

non-travel time) are equalized. As will be seen in the next chapter,

when we have continuous demand on the links of the network, the Hakimi

median will be at the 50th percentile of total arrival rate if it is in

the interior of a link.
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Chapter 5

STOCHASTIC QUEUE MEDIAN ON A TREE NEWTORK

WITH CONTINUOUS LINK DEMANDS

5.1 Preliminary

In this chapter, we generalize the results of Chapter 4 dealing with

the location of the SQM on a tree network. In addition to nodal demands,

we allow demands to arise on a link in a continuous manner, following a

general probability density function. We believe that this is the first

complete analysis to include link demand, in its most general form, in

location theory on a network. Handler and Mirchandani [31] do formulate

the p-median problem on a general network with discrete nodal and contin-

uous link demands. On a tree network, they propose a solution procedure,

which is a slight variant of the Goldman algorithm [22] for the one-

median problem. However, no analysis is performed to characterize the

behavior of the average travel time as a function of the location of the

median. Minieka [57] implicitly considers link demands in a surrogate

way. Specifically, he defines a general absolute median of a network to

be a point on the network that minimizes the sum of (unweighted) distances

from that point to the most distant point on each link.

Since researchers usually associate the Hakimi median with nodal

location, we will term the point, which minimizes average travel time on

a network with continuous link demands, the minisum location. It will

become clear in the next section that the minisum location is, in general,

not found at a nodal site. We will develop the necessary machinery

characterizing the minisum location before studying the SQM problem. We

recall from Chapter 4 that the minisum location is at the root of our
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analysis.

In addition to the usual notations and problem definitions, we have

the following problem specifications.

* f = fraction of total demands originating on link k

for Z c L

* E h. + E f 1
jEN J Z-L

* Demands on a link X follow a continuous proper density

function f k(y), y E (O,Z) where k = length of link Z.

Without loss of generality, we do not allow impulses

in the density function. This is because we can always

place a fictitious node at the point where an impulse

occurs. Also,f f (y)dy = 1. By introducing f (y), we

y
have imposed an orientation on link £. We will discuss

such concerns later.

e When the orientation of a link k is well defined, we have

the following notations:

/xF k(x) = fof kjy)dy

y =f f (y)dy,
In the next section, we will first study the minisum location on a

general network in its entirety. The tree structure again, allows us to

2-prove certain convexity results on the functions t(x), s (x) and TR(x),

which play an important role in the development of an efficient algorithm

to search for the minisum location and the SQM. We will conclude this

chapter with a parametric analysis of the SQM trajectory as the total

arrival rate varies.
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5.2 The Minisum Location on a Network with Continuous Link Demands

As an analytical tool to study the SQM on a network with continuous

link demands, we need to characterize the minisum location together with

the behavior of the average travel time. Since there is no result on

this problem in the literature, we will engage in such a venture in this

section. The first objective is to analyze the minisum problem on a

general network. After recognizing the implications of a tree structure

on the minisum problem, we develop convexity results that will aid us

in locating the minisum site. The remainder of this chapter is concerned

with the SQM problem on a tree network with continuous link demands.

5.2.1 General Undirected Network:

Consider a facility located at x on link (a,b), i.e., a point at a

distance x from node a on link (a,b). A node j belongs to node partition

A(x; a,b) if the shortest route from j to x passes node a; j belongs to

node partition B(x; a,b) if the shortest route between j and x passes

node b, specifically:

A = {jeN I d(j,a) + x < d(j,b) + -m - x}

B = N - A

where ni is the length of link (a,b).

We define breakpoints as points on link (a,b) at which the node

partition changes. We observe that B gets bigger as one moves from node

a to node b. A primary region is an interval on link (a,b), in which

there is no breakpoint. When we have link demands, we also have to
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partition the link set into AL and BL. In the presence of a cycle in

a general network, we may have to split up a link in the partitioning

of AL and BL. This complicates the analysis enormously.

Again we define the primary region exactly as in Section 3.2.1. In

a primary region, we do not have changes in the node partition. However,

link partitions can change continuously. We classify each link into

one of the following three types: (i) both end nodes belong to A; (ii)

both end nodes belong to B; (iii) one end node is an A node, the other

a B node. We will consider the classification of link (i,j). Link (i,j)

has a special orientation, namely from node i to node j. When link (i,j)

is an AB link, without loss of generality, we always assume i to be an

A node and j a B node. We now consider the following cases:

Z

(i) i E A and j E A, and the length of (i,j) is Z. We

observe that there exists a point Z on (i,j) such

that for 0 < y < Z , the shortest route from y to

node a is via node i; and for Z < y < Z, the short-

est route from y to node a is via node j. Specifi-

cally,

Z + d(i,a) + x = T - z + d(ja) + x

or

Z =[d(j,a) - d(i,a) + ]/2

Note that 0 < ZY < because d(j,a) < d(i,a) + 7 and

d(i,a) < d(j,a) + £.
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We notice that the value Z remains unchanged in

the corresponding primary region of link (a,b).

When one moves across breakpoints, i may turn into

a B node, j may turn into a B node, or both may

turn into B nodes.

(ii) iE B and j E B.

Exactly the same analysis applies here, except that

Z now takes on the following value

Z [d(jb) - d(ib) + t]
z 2

A moment's thought will convince the reader that

nodes i and j remain "B" nodes as the facility moves

away from node a on link (a,b).

(iii) i e A and j e B.

Again, we can identify a point Z on link (i,j).

However, this separation point Z moves as x moves

even within the same primary region on link (a,b).

Z satisfies the following relationship:

Z + d(i,a) + x = 2 - + d(j,b) + m - x

or

Z= [m+Z+d(jb) - d(i,a) - 2x]

Also, 0 < Z < 9, because

d(j,b) +-x < d(i,a) + Z + x (j E B)

d(i,a)+x < i + d(jb) + F - x (i e A)

We see that the point Z moves continuously as x

moves within a primary region on link (a,b). In

fact, Z decreases as x increases. Therefore, more
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demands on link (i,j) will turn into BL type demands

continuously as would be expected.

From the analysis and classification above, we define type (i) links

as AL links, type (ii) links as BL links, and type (iii) links as ABL

links. We also observe that BL links remain BL links as the facility

moves from node a to node b on link (a,b). Within a primary region, we

can evaluate the contribution of service demand to the total expected

travel distance as follows:

(1) Nodal demands:

( Z h. - E h.)x + E h.d(a,j) + E h.[d(b,j) + M] = c x + c
jFA 3 jeB jEAj 1 2

where m is the length of link (a,b) on which the facility

is being considered at point x.

(2) Link demands:

(a) for all Z = (i,j) c AL, Z # (a,b)

L= f [ y+d,(i,a)+x]f (y)dy + [Z -y+d(j,a)+x]f (y)dy]
0

O= Z

where Z [d(j,a) - d(ia) + Z].'z 2

We simplify L as follows:

L= f {x + d(j,a)+ + [d(i,a) - Q - ,a) 2y (Z )}

where Yz(Z ) =fZ 9yf (y)dy
0

and

yk =f y f (y)dy

Note that Z does not depend on x, the only term
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in L dependent on x is f x.

(b) 9 = (ij) 6 BL. Z J (a,b).

L =f [9[y+d(i,b)+m-x]f (y)dy+f(--y+d(j,b)+ -x)f (y)dy]

where Z = [d(jb) - d(ib) + 9]
Z, 2

L Z =-f x+ f .[m+ ,+ d(j,b) + [d(i,b) -, - d(j,b)]F (Z ) -y+ 2y Z(Z )]

Again, L depends on x only through -f Z x.

(c) 9 = (ij) £ ABL. Z # (a,b).

L= f f [y+d(i,a)+x]f (y)dy + [Z-y+d(j,b)+m -x]f (y)dy]
O fZ

where Z = [r + Z + d(j,b) - d(ia)] - x

L =ff [(l-F (Z ))(P+m+d(j,b) - x) + (d(i,a)+x)F (Z ) + 2y (Z )] -f y

There are many x-dependent terms in L .

(d) Z = (a,b) = m. We assume triangular inequality

holds.

L = f [ (x-y)f (y)dy + (y-x)f (y)dy)

= fm[xF (x) - x(l-F (x)) + yZ - 2yp(x)]

The objective, as in the traditional Hakimi median

problem, is to minimize the total expected travel

time t(x) on the network.

t(x) = c1x+c2+ L L + L L + E L + L
1EAL kEBL tEABLI

#m Z,#m 9#im
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Definition: A point y on link (a,b) = m is called the minisum location

on a general network with continuous link demand if t(y) < t(x) for all

x on G(N,L).

However, it is not possible to determine the curvature of t(x) even

in a primary region. The intuitive reason is: even within a primary

region where no change of nodal partition takes place, the AL portion of

an ABL link is "defecting" to become a BL portion - continuously. This

movement induces concavity in L . Our definition of a primary region

allows infinitesimal shifting of the probability mass from "A" demands

to "B" demands. This can be seen in the case of the nodal-demand-only

network, where t(x) is linear in a primary region and concave across a

breakpoint. The contribution to t(x) from link (a,b), however, is convex

in x, and therefore the curvature of t(x) is not determined. The impli-

cation of this is that there may exist multiple minima of t(x) even in a

primary region. This makes the search procedure more difficult. One may

have to solve for all the zeroes of t(x) in a primary region and then

over all the primary regions. This involves the identification of break-

points (as discussed in Berman Larson and Chiu [3 ]) and searches over all

primary regions.

We conclude this section by stating a negative result:

Theorem 5.2.1: The curvature of t(x) is undetermined over a primary

region in a general undirected network with continuous link demands.

Proof: We will consider each component of t(x):

(1) nodal contribution c1x + c2 linear;

(2) link contribution, t e AL or BL; L is linear in x;
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(3) link contribution Z E ABL, recalling that Z =

1 -
2 (m + Z + d(j,b) - d(i,a)) - x.

dLz

dx = [2F (Z) - 1]f

d2L

2 f(-2f (Z )) < 0 == L concave;
dx

(4) link contribution Z = m = (a,b).

dL
m i2F (x) - 1)fdjx= m m

d2L
m = 2f f (x) > 0 = L convex.dx m m -im

Therefore, we cannot determine the curvature of t(x) over a primary

region.MHowever, it is' likely that t(x) is concave because the contribu-

tion of the second derivative comes from, hopefully, many ABL links and

only one (a,b) = m link which is convex.

2-
d t(x) = 2[- E f f (Z ) + f f (x)]
dx ZEABL m m

where

z = (M + 2 + d(jb) - d(i,a)) - x.
k, 2

Except for abnormally large values of f and f (x), we can heuristically

check only the breakpoints for the optimal minimum location. We also

observe that in a tree network, there is no ABL link; therefore, t(x)

is convex over the entire link.
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Before we specialize the minisum problem in the tree network, we

pause for some numerical examples illustrating the type of link classifi-

cations discussed above. Figure 5.2.1 shows link (a,b) serving as a

bridge between two sub-networks, A and B. All links/nodes in A(B) are

A(B) links/nodes. There are no ABL links for facilities located on link

(a,b). Figure 5.2.2 shows link (i,j) as an ABL link when the facility

is located at x on link (a,b). The length of each link is indicated next

to the edge. The point Z separates link (i,j) into two segments: for

y on (i,j), 0 < y <Z demands in this segment will be served by a faci-

lity at x on (a,b) via node i and node a; for y on (i,j), ZP < y < 2

demands are served via node j, then node b to point x. We calculate

Z = 2-x. The implication is that more demands on link (a,j) become "B"

demands as x moves from node a to node b.

Figure 5.2.3 shows link (i,j) as an AL link. However, part of link

(i,j) has its shortest route to node a via node i and the rest through

node a via node j. Here, Z = 2.5 on link (i,j) from node i. For y on

link (i,j) and 0 < y < 2.5, the shortest route to facility x on (a,b) is

via node i; for 2.5 < y < 4, the shortest route is via node j.

We will now specialize our effort on tree networks. The first

objective is to characterize the minisum location and the associated

average travel time. An efficient algorithm, similar to that of Mirchan-

dani and Handler [31], is developed to locate the minisum location on a

tree network. We will prove parallel convexity results of the functions

s2 and TR. This chapter ends with parametric analysis on the SQM loca-

tion as arrival rate varies.
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A B/

k

Figura 5.2.1 No ABL Links associated

With Locations on (a,b).

4z

rr4,,,N- 2 e

Figure 5.2.2 Segmentation of

Link (i,j), an

ABL Link.

Figure 5.2.3 Segmentation of

Link (i,j), an

AL Link.
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5.2.2 On a Tree Network:

A general expression for the expected travel time, when the facility

is located at x on link (a,b) a m, is

t(x) = [ Z h.d(j,x) + Z f d(y,x)f (y)dy +f y-xlf (y)dy]/v
jEN k ZEL yet yEm m

We are considering the location on link (a,b) = m. For a tree net-

work, the node partitioning A and B depends only on the link on which

the facility is located, and not on the exact location x on the link.

We now define the node and link partitioning specializing on a tree:

A E {jilj e N and d(j,a) < d(yb)}

B E N - A

AL E {IP E L, 9.# m, and for all y E Z, d(y,a) < d(y,b)}

BL E L - AL

BL E BL - {m}

In words, the node in set A communicates with points on (a,b) via node a.

The set of nodes B communicates with points on (a,b) via node b. AL and

BL are the corresponding link sets. We have included link (a,b) in BL.

As mentioned earlier, we have to define an orientation for each

link when we integrate its continuous demands along its length.
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Definition: Z(a) = approaching ((a,b)) node of link t. Z(r) = receding

(from (a,b)) node of link Z; i.e., d(,(r),a) = d(Z(a),a) + Z. Note that

in a tree network, d(j,b) = d(j,a) + m for j E A, and d(j,a) = d(jb) + m

for j E B. We also define m(a) = a, m(r) = b as a convention.

When we integrate the link demand density, we always move from node

Z(a) to node 9(r). We will now express t(x) in terms of the node and

link partitions:

t(x) = {[( h. - E h.) + ( E f - E f )]x + 2f x F (x) -v jeA I jeB J tEAL B m m

x

- 2f yfm(y)dy + Z h.d(j,a) + Z f zyt + E f d(Z(a),a)}
SjN J ZEL ZEL

One can write:

t(x) = t0 x + t0 + - [2f xF (x) - 2f yf (y)dy]

where

t0 = t(x) jx=O

dt(x)
0 dx x=0

We want to emphasize that A, B, AL and BL remain the same for all x on

(a,b) = m in a tree network.

Lemma 5.2.1: t(x) is convex for all x on a link in a tree network.

2--
Proof: d 2 t(x) - f f (x) > 0 .'. t(x) is convex.

dx2 v
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Lemma 5.2.2: t(x) is convex along any path in a tree, where x is the dis-

tance measured from one end of the path.

Proof: Since t(x) is convex on a link, we need only concern ourselves

with the behavior of t(x) across a node. Proof techniques are the same

as in the case of nodal-demand-only. We now have to consider the changes

in A, B as well as AL and BL. The definitions of in and out derivatives

at a node along an implied path are the same as in Section 4.2.3.

Consider a path i - j - k. We associate A', B', AL', BL' with link

(i,j) and A", B", AL", BL" with link (j,k). The lemma is proved if

t(j). < t(j) along i - j - k. Let

in - out

C = Z h. - E h.

1 jsA jcB J

CL = Z f - E f
1 £ 9.kEAL sEBL

C =C. + CL

and

T' = length of link (i,j)

't = length of link (jk)

We will refer links (ij) and (j,k) as links V2 and ".

Definition: A(j; ik) = set of nodes connected to j (including node j)

when we remove links (i,j) and (j,k). AL(j; ik) = set of links connected

to node j when we remove links (i,j) and (j,k).

When there is no ambiguity, we simply refer to A and AL. It is easy

to show that
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A" = A' U A, B' = B" U A

AL" = AL' U AL U {W'}

BL' = BL" U AL U {Z'}

Note that t(x)' - [C + CL + 2f F (x)], when x is on link m. Along
v 1 1 mm

i - j - k,

- ' 1 '
t(j). -[C + CL + 2f ]in V 1

because on link (i,j), Fz, (x) , =1,

- ' 1 " "1 " "
out = [C + CL + 2f P,,Fz,,(x) ] = - (C1 + CL 1).

If I it I

We can show that C1  C + 2 Z h , CL1 = CL + 2 E f + 2f

. t(j) [C + CL + 2f ,] +- [2 E h + 2 Z f ] > t(j).
out v 1 1 V p AAL - in

t(j).in

Since t(x) is convex on any path of a tree, lemma 4.2.8 applies to t(x).

Suppose i,j are two adjacent nodes on a tree network, and t(i) < t(j).

Then t(x) > t(j) for all x on (j,k), where k # i.

5.2.3 An Efficient Algorithm to Locate the Minisum Point on a Tree with

Continuous Link Demands:

We will make several observations before presenting an efficient

algorithm to locate this "extended" Hakimi median.
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" We can lump all mass f (of link k) at a distance y

on link 2 from node Z(a) (the approaching node of t);

t(x) becomes

x
t(x) {( h - h.)x + 2f xF (x) + 2fmf yf (y)dy + E +h.d(j,a)}

jEA jEB J 0 jEN

where A , B and N include all the fictitious nodes with

mass f on link t at a distance y. from node Z(a). We

have, then, essentially a discrete-nodal-demand version

of the classic Hakimi median problem except for two non-

linear terms. Mirchandani and Handler make a similar

observation in [31].

" Another more useful observation is to lump all mass f

on node Z(a) for each R. m; t(x) becomes

t(x) = E{( h. - E h.)x - f x + 2f xF (x) - 2f yf (y)dy
v in mm m f mjEA j EB0

+ constant terms)

where h includes all the link masses f z where j = Z(a)

(except for link (a,b) = m).

9 If the minimum of t(x) occurs on the interior of link

(a,b), t(x)' = 0 or

+
E h. - Z h. - f + 2f F (x)=0

jcA J jEB in mm
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or

E h. + f F (x) = Z h. + f (1 - F (x) = 1/2
jsA3 mm jeB ta m

since

Sh. + E h+f =1
jEA jeB3 m

and

0 < F (x) < 1 for x 6 (0,m).
- m -

The point x is truly a median in the probabilistic sense.

Intiutively, if we move the facility away from x, we are

sacrificing more than half of the demands into making a

longer trip to the facility. Thus, we will increase the

expected travel time. Handler and Mirchandani make the

same observation in [311.

9 The minisum location is at node j if the following is true:

along any path through node j, t(j). < 0 and t(j) > 0.in - out-

This is because t is convex along any path on a tree net-

work. We now explore the implications of this observation

and develop a meaningful algorithmic procedure to detect

such situations. Consider the situation in Figure 5.2.4.;

node j is our point of focus. There are k links incident

on node j; the adjacent nodes are j1 , j2' ''' . The

aggregated weights of branch j. and link (j., j) are de-
k1

noted by W(J ). Note that E W(J.) + h = 1. We investi-
1 ~ i=l1

gate the implications of t(j)! > 0 and t(jo > 0 as we
in o ut

move along a path through node j, say j ->.j -* j q
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(i) t(j) . < 0 implies W(J ) < -2in-

(ii) t(j) > 0 implies h. + Z W(J.) > -.
out - i.q . i -2

Before we make these inequalities operational, we make the following

definition and observation:

Definition: The degree of a node j = d(j) = number of links incident on

node j.

Definition: An end of a tree is a node with degree one.

We know that:

(a) a tree has at least two ends;

(b) deleting an end and its lone link in a tree network

will result in a new tree.

Now consider the following operation: start from an end node in branch

j and aggregate its weight together with its link weight to its adjacent

node; delete this end node and its lone link. Suppose we continue this

operation up to node j and update the nodal weight of node j (after the

gradual deletion of branch jiand link (j1 , j)) by h + W(J) and test

whether this aggregated weight exceeds 1/2. Repeating this procedure

with another branch j , we will encounter a situation where the updated

h. exceeds 1/2 (as guaranteed by inequality (ii) above). We know that
J

node j is the desired minisum location.

The following procedure locates the minisum point of a tree net-

work:

(1) Locate an end of a tree, say i, with its connecting

link (i,j) = Z;
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Ji J2 k

/ \

/ \

Figure 5.2.4 Minisum Location at Node j.

F2 (x)

1/ft 1/ - --

x -

Figure 5.2.5 Graph of F (x) and y.

/

/
/
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(2) Check h. > 1/2. If yes, node i is the minisum location;

if no., go to (3).

(3) Check h + fz > 1/2. If yes, locate the minisum point

on link (i,j) = Z; if no, update h. to h. + h + h..
J 1 Z J

(4) Check h. > 1/2. If yes, node j is the minisum point;

if no, delete node i and its link (i,j). Go to (1).

Since there are only a finite number of links and nodes, the above algo-

rithm converges in a finite number of steps.

We still have to specify the operation in step (3), namely, to locate

the minisum point on link (i,j) = Z. We have to find a point y, such that

Z hk + f kF z(y) = 1/2.
kEA

Note that, according to our construct, set A consists of the single node

i whose node weight h. has been updated to include all the node and link

weights of the subtree T., i £ T., after the removal of link (i,j).

Therefore, we wish to find such that

f kF (y) = 1/2 - h.

or

y = F [l/f, (1/2 - h.)].

Figure 5.2.5 shows the graph F z(x). Note that, according to our algorithm,

h. < 1/2, h. + f > 1/2
1 1/ 2

which imply 1/f (1/2 - h.) > 0 and 1/f (1/2 - h.) < la y exists because Fgjx)
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Find an end node, i,
and its associated
link (ij) = e

Figure 5.2.6 Flowchart: Minisum Location On a

Tree Network with Continuous Link Demands.

The minisum location
is at x on (i,j)
with:

x = Ft (1/f (1/2-h )
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being a cumulative probability distribution function, is monotonically

non-decreasing. Also, there is no discontinuity in F (x) since no

impulses are allowed. Figure 5.2.6 shows the flow chart of our algorithm.

5.2.4 A Numerical Example

We will illustrate our minisum location algorithm with a numerical

example, as shown in Figure 5.2.7. Nodal weights h. are shown next to
J

the nodes. Link lengths and link weights are shown next to the links as

length/weight. The algorithm iterates by randomly selecting an end of

a tree (one may streamline the algorithm by selecting an end with the

largest weight).

(1) Select end node 7, h7 = 0.019 < 1/2

link (7,10) with weight 0.04

0.019 + 0.04 = 0.059 < 1/2

h + hl0 + f(7,10) = 0.019 + 0.002 + 0.04 = 0.061 < 1/2

update h0 -+ 0.061 Figure 5.2. 7 (b)

(2) Select end node 3, h3 = 0.298 < 1/2

link (3,2) with weight 0.03

0.298 + 0.03 = 0.301 < 1/2

h3 + h2 + f(3,2) = 0.298 + 0.12 + 0.03 = 0.448

update h2 -+ 0.448 Figure 5.2 .7 (c)

(3) Select end node 2, h2 = 0.448 < 1/2

link (2,1) with weight 0.06

0.448 + 0.06 = 0.508 > 1/2

Minisum location is on link (2,1)
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3/.04 .005 .006
'4/.045 2/.04

.027 4 56

3/.04 4/-04

.002 10 .026 8 2 .116

6/.04

7 .019

4 5
(b)

10 8 9

.061

.-448

4 5 (c)

10 8 9

Figure 5.2.7 Example: Minisum Location on a Tree

Network with Continuous Link Demands.
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(4) The probability density function for demands on

link (2,1) is uniform: f(y) = , < y < 2. There-

fore the mini um location is on link (2,1) at a

distance x from node 2, where x satisfies:

0.06f 1 dy + 0.448 = 0.5
0

0.03x + 0.448 = 0.5

x = 1.73

Therefore the minisum location is on link (2,1) at a

distance 1.73 from node 2.

Before moving on to the next topic, we would like to point out that

no restriction has been imposed on the form-of the link density functions

except for continuity. This is expected since we can impose nodal demands

by successively approximating the demand density using fictitious nodes.

Therefore, the forms of the density functions should not come into the

analysis. Finally, the median does not necessarily coincide with a node.

5.3 Properties of s2 and TR on a Tree Network

Having characterized the minisum (average travel time) function over

2 -
a tree network, we proceed now to examine the behavior of s and TR. The

minis.um location problem is appropriate under the assumption of infinite

server capacity. We now go back to the world of queueing and its effect

on the location of facilities.

Techniques of proof are similar to those in Chapter 4. The non-

polynomial terms (in x) introduced by link demands, however, do produce
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complications in the analysis. All the convexity results do carry over

in this case.

All notations and conventions are the same as in the case of the

minisum location problem studied in Section 5.2. In addition, we have a

non-travel related component of the service time, w for each link Z E L

and w. for each node j £ N. We assume that w and w. both have finite
J J

means and second moments, and are stochastically independent of travel

time and the location of the facility. Z has the same distribution at

each point on the same link Z. A constant travel speed, v, is observed

on all links and a a factor is assumed to account for round trip travel

time. We will first study s (x) and then TR(x).

5.3.1 Properties of s2 (x) on a Tree Network:

For a facility located at x on link (a,b) = m, we can write s2 (x) as:

s 2(x) = h. [w.+S/v d(j,x)] 2+ Z f k [w +S/v d(y,x)]2 f y)dy
jEA Z ZEL yEf

Z#m

+ f mf [w m+3Ivjy -Xj 2 f m(y)dy
yEm

With the same nodal and link partitions A, B, AL and BL, we can write

s 2(x) as follows (note that m = (a,b) e BL):

s 2 (x) 2 /v2 + [ 2 /v2 C4 +2/v C6 + 22/V2 CL 4 + 2a/v CL6 + 22/V2 CL8 x

+ 48/v fm w F (x)x - 48/v f w yf (y)dy + K
0
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where

C = E h.d(j,a) - Z h.d(j,a)
jEA jEB

C = E h.w.
6 jEA

CL = E f )d(Z(a),a)
ZEAL

CL6 fw
ZeAL

CL8 =
ZEAL

E h.w.
j EB J

- E f d(Z(a),a)
ZEBL

- E f w

ZEBL

ZEBL

2 2 2 2
K= constant= 2/v E h .[d(j,a)] +26/v E h .w .d(j,a) + Z h w.

jeN jEN jEN

2 2 2 2w(~~a+f+ a2/V E f X[d((a),a)] +2/v.E fiw d(k(a),a)+ E f w^ ~ ~Z
YEL YEL

2 2 2 2 2+ s /v E fyZ + 2a/v E f w y + 2 /v E f Zd(Z(a),a)Y
Z ZEL LEL

We remind our readers of the convention that: (i) m(a) = a, m(r) = b,

therefore d(m(a),a) = 0; and (ii) all integration along a link is performed

from Z(a) to Z(r).

The following observations allow us to write s 2(x) in a more conven-

ient form:

x
- [Fm -f Yfm(y)dy]

0 x=0
= 0

d F yfm(y)dy] = F (x)
dx[0 x=0 x=0

= 0

* Let G0 represent the value of a function G evaluated at zero.
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Therefore:

2 2 2 2 2' 2 xs (x) =I/v x + s0 x + s0 + 4/v f w [F (x)x - yf (y)dy]
S O m m m0 m

70

The first result concerns convexity of s2 x) on a link.

Lemma 5.3.1: s 2(x) is convex over a link on a tree network.

2 2 2'
Proof: = + 4/v f w f (x) > 0.

dx2  v 2  m m m

Before we investigate the behavior of s2 (x) over a path, we will dis-

cuss a subtle point concerning the direction of integration along a link.

This is of concern to us because the direction changes on certain links

when one moves across a node.

Consider a link Z = (i,j) with length Z. We have defined y =

J yf (y)dy, where we integrate from i = k(a)(y = 0) to j = Z(r)(y =

We want to point out the following identity:

Y=y=

yf (y)dy + yf (y)dy = k

I= Yf ~~Y=
y=0 .y=0

where

f k(y)= f (7-y) y 6 (0,J).

In words, the expected distance measured from i, plus that measured from

j equals the length of the link k. This is a trivial but subtle identity.

It is important when one moves across nodes and the associated parameters

(C's and CL's) defining s2 x) change.
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We will write y=

y (i j) = yf (y)dyi

y=o
and

y=i

y Qj + i) = yf (y)dy.
J

y=0

The following lemma describes the behavior of s2 (x) across nodes in

a tree network:

Lemma 5.3.2: s 2(x) is convex along any path in a tree network.

Proof: Proof techniques are similar to earlier proofs on nodal-demand-

only networks. Since s2 (x) is convex on a link, we need only concern

ourselves with the behavior of s2 x) across nodes.

Consider a specific path i - j - k. We need to prove:

s (j). < s (j) along i-j-k.in -out

We denote the associated parameters and partitions with (') and (") when

we are on link (i,j) and link (j,k) respectively. The length of (i,j) is

9' and that of (j,k) is ". A and AL are defined in Section 5.2.2. It

is not difficult to verify that one can relate the relevant (') and (")

parameters as follows:

C4 = C4 + 2 Z h d(pj) + ' h
ps:A psN

C = C + 2 E h w
6 6 p
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CL = CL4 + 2 E f d(Z(a),j) + 2 E f
EEAL z#z?

ZL

CL6 = CL6 + 2 E fw, + 2f ,wz,
6 6 EAL

CL8 = CL8 + 2 Z + [y ,(i + j) + y -* i)]f

-CL 8 + 2 E f y + f ,2
8 .EAL 2.P

where the node set A and link set AL are defined in Section 5.2.2.

sj)u = 262/v2 x
out x=0

+ 26 /v2 C + 28/v C + 2 2/v2 CL + 23/v CL + 2 2/v2 CL
4 6 4 68

x=O

= 26 /v2 C + 2$/v C + 22/v2 CL + 2a/v CL + 2S /v2 CL

+ 2 2/v2 '[ E h + E f +f +4 /v f
pEN P ZEL

222 2

+[4g2/v2 E h d(p,j)+48/v E h w +462/v 2 E f d(2(a),j)+46/v E f w +

+ 4a2 /V f]y

pLAL

2 2
= 2S /v x _

x=Z'

2'
+ s0 + 4 /v f ,w,,F, (x)

x=2.'
+ positive constant

= s (j)in + positive constant > s (j)i.

+ 4 /v f ,,w ,,FP,,(x)
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s is the out derivative at node i on link (i,j).
0

Lemma 4.2.8 applies to s2 x) because s2 (x) is convex along any path;

namely, when s2 x) starts increasing in a direction, it will never

decrease again.

5.3.2 Properties of TR on a Tree Network:

The objective of this section is to prove that TR, when finite, is

convex along any path on a tree network with continuous link demands.

Methods of proof are similar to those in Chapter 4. Continuous link

- - 2demands, however, introduce non-polynomial (of x) terms in t, s and s

which make the analysis more complicated. Since the contribution from

nodal and link demands to TR are non-additive, we cannot use the methodology

of the minisum problem in Section 5.2. Since proving the convexity of TR

across a node is easy, we have tried to consider infinitesimal movement,

Ax, along a link and imagine that we are crossing a "node" with weight

f(x)Ax (when f(x) is the demand probability density function). However,

2
the functions t, s and s change across x, whereas they remain constant

across a node. Taking the limit of Ax going to zero leaves us with the

evaluation of TR(-)". Therefore, we are forced to take the direct approach

of showing the positivity of TR(-)". The method of proof is that of

"divide-and-conquer". We will divide the expression for TR(-)" into

several components and prove that each of them is non-negative. The

proof of convexity of TR across a node parallels that in the case of nodal-

demand-only, given the convexity of s and t. First, we will derive the

algegraic expression for TR(-)". The analysis that follows is lengthy and

we will provide a recap at the end of the discussion. We will again
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2 - -suppress the argument x in s , s, t and their derivatives.

2-- 2 -
d TR(x) X -- 3 - -2 2 " -

2 = [1-Xs] [N(x,x)] + -y [1-Xs] a s t + t
dx22

where

N(x, X) = N1 (x) 2 + N2 (x)X + N 3 (x)

and

2 2" - 2'-' 2 2 -' 2N (x) (s) s - 2 ss 2 t + 2a s (t )

2'-' - 2"
N2(x) = 2a s t - 2s s

N 3(x) = s2"

"2
t = f f (x) > 0,

v mm

where the facility is at x on (a,b) = m.

Since we are only concerned with the location at which 1 - As > 0,

2 -- 2 2-" -" -- "
and -- (1-As) Ss t + t > 0, TR(x) > 0 if we can show that N(x,X) > 0.

The reason for separating out terms involving t is that t may be zero

(if density is zero at x) and will not contribute to the positiveness of

TR(x)

Had there been no link demands, substituting s = 22 /v2 gives us

exactly the same expression for TR(x) as the nodal-demand-only case. The

next step now is to separate the non-polynomial terms (of x) in s , s

and s 2' from N(x,X) and prove positivity of the two components.
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From Section 5.3.1, we can write s 2(x as

2 2 2 2' 2
s (x)= /v + s0 x + s0 + 4/v fm m[F (x)x-f yf (y)dy]

2 ' 2 2 2'
s(x) = 2 /v x + s0 + 4/v fmwmF m

2 = 2 2
s W) =2 /V +4a/v f wf (x

mm M

Let

2 2 2 2 7' 2
s (x) = / x + x+s0

2 ' 2 2 2'
s (x) = 22 /v x + s 0

s2 "= 22 2/

N(x,X) can be written as

N2 2 2
N(x,X) = N (xX + N (xX + N Wx + 4a/v f w M(X,X)

1 23 m m

where

=- 2 2" - 2'-' 2 2 -' 2
N(x) = (s) s - 2 s s t + 2 2 s (t )

N 22'-' - 2"
N2(x) = 2S s t - 2 s s

N3 (x) = s

and

M(x,X) = [M (x)X2 + M2(X + M3

-2 2 C2') 2
M (x)() f (x) - 2 S s t F (W + 2 t) K (x)
1 m m m
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M 2(x) = 2 t F m(x) - 2 s fm (x)

M3(x) = fm(x)

K (x) = xF (x)
x

4 yf m(y)dy.
0

Collecting terms, we have:

M(x, x) = [fm m (x)Xs(1-AT)+ 2t'F (x)X(1-Xs)+ 26 (t') 2K 2

-x(_s2 2 2C

= m(x) (-s)2+2t'Fm(x)A(l-s)+ 282 2(,) 2Km (x)

K (x) > 0 for all 0 < x < m
in-

because
fm x

yf m(y) dy < x ffm (y) dy = xF (x).
0 0

Also note that t' > 0 when one moves down the tree from the minisum loca-

tion. Therefore,

M(x,X) > 0 for X E (0, 1/s)

We still have to show the positiveness of

^ 2
N 1x2 + N2 (x)X + N3(x).

We compute

N2 22 2 2-2 S 2 2"s2

2-'2 2' 2 2 2 2
= 46 (t ) [(s ) - 46 /v s ].
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A A A

Recalling the expressions of s and s 2, we compute (s (x)) _

462/v2 s (x) = (S2 2 4 /v2 s to be independent of x. This is non-
00

positive if we can show that

2 2 2 2 2' 2
s (x) = S /v x + s0 x + s2 > 0 for all x.

We will do this by following the derivation of s 2(x,

2 2
s (x) = s (x) + 48/v f m [F (x)x f yfm y)dy].

0

s2 (x) consists of contributions from:

(i) nodal demands;

(ii) link demands (except link m = (a,b));

(iii) demand on link m = (ab) .

Nodal demands = Z h.[w.+ S/v(d(a,j)+x)]2+ E h.[W.+ /v(d(a,j)-x)]2
jEA 3 jEB

Link demands = f f [w, + /v(d(Z(a),a) +y+x)] 2f(y)dy +
JzEAL 0

+ E f [w +/v(d(Z(a),a)+y-x) ] 2f (y)dy
ZsBL 0

Nodal and link contributions to s 2(x) (except m = (a,b)) are polynomial

in x and are positive for all values of x. Demands from link (a,b) =

fm[ [wm+ /v(x-y)]2f (y)dy + [wf+ m/v(y-x) 2 m(y)dy]. It can be

broken into polynomial terms in x and "others". Polynomial terms will

contribute to s 2(x.
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2 22_ 2 2 2 -
Polynomial terms of demands from link (a,b) = f [ 2/v x -(2p /v y +2fp/vw )x+

2 2 2 -- 2
/V y + 2/v w y + ] is positive for all values of x if and only if

m m m M

2-2 2 2 2 2 2 2 2
(2 /y ym+ 2/v w) -46 /v (wm + /v ym+ 2a/v wmYm]

4 4 - 2 2 2 2 - 2 2
((ymm m - 0

2 - 2 2 - 2
which is true because y - (y ) , w - (w ) are the variances of respective

mImn m

random variables.

We have shown that the polynomial terms of s 2(x) include contributions

from (i) nodal demands, (ii) link demands (except link (a,b) = m), and

(iii) demands from (a,b) -- each of which is positive for all values of x.

Therefore,

s2(x) > 0 for all x

and

"' 2 2 22
(s) - 4 /v s0 < 0.

Recap: Starting with the second derivative of TR(x) with respect to x:

d2TR(x) - -[-3Nx2 + 2 2-" -
2 2[-s] N(x,AX) + 1(1-As)- s2 t +t .

dx 2  2l s

Our attention is on locations of G with finite TR; i.e., (1-Xs) > 0.

Terms involving t are positive. To show positiveness of N(x,X), we have

(o x trm 2i 2' 2"
separated out the non-polynomial (of x) terms in s , s and s and

proved them to be positive. The polynomial terms (both in X and in x)

are positive after we have proved that the "radical" of the quadratic

(in X) function is non-positive. That was done by recognizing that the
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contribution from nodal and link demands to the polynomial terms in s2(x)

is positive for all values of x. The above discussion leads to:

Lemma 5.5.3: TR(x), when finite, is convex on any link down a tree rooted

at the minisum location.

This is without loss of generality because we can always place a

fictitious node with zero weight at the minisum location when it is on

the interior of a link. We can then perform the same rooting operation

as was done in Chapter 4. Following a similar argument to prove convexity

of TR(x) along a path on a tree with nodal demand only, we have:

Lemma 5.3.4: TR(x), when finite, is convex on any path along nodes of

increasing depth in a tree rooted at the minisum location.

Proof: Since TR(x) is convex on a link down a tree rooted at the mini um

location, we need only show that along i-j-k:

TR(j) > TR(j).out - in

-X -22 ' -- ' 2- '
TR(j) =- [l-As(j)] [s (j) (1-As(j))+AS t(j) s (j)] + t(j)out 2 [out out out

since 1 - As(j) > 0

-2
sOj), s (j) continuous at node j

s2(j) > s (j).out- in

t(j) > t(j).out - in

we have TR(j) ou> TR(j) in
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In the next section, we will examine the appropriateness of the

Trim and Search Algorithms as applied to the case of a tree network with

continuous link demands. We will also trace the trajectory of the SQM

when the total network intensity X is varied.

5.4 Locating the SQM and Parametric Analysis on a Tree Network with Con-

tinuous Link Demands

5.4.1 Locating the SQM:

With loss of generality, we can assume that the minisum location is

located at a node. If it lies on the interior of a link, we can always

place a fictitious node there and assign it a weight of zero. The weights

and density functions of the two newly created links can be easily adjusted.

Therefore, as before, we will root our tree network at the minisum loca-

tion. Due to the convexity nature of t(x) on a tree network, t(x) > 0

when we move down this rooted tree.

We recall from Chapter 4 that all the developments require only the

I 1 2 2
evaluations of TR(x) , t(x) , s ), s (x) and do not depend on the exact

form of these functions. The heart of the analysis lies in the facts that

2 I
TR(x), t(x) and s (x) are convex and t(x) > 0 down the rooted tree. All

the conditions are met exactly in the case of a tree network with contin-

uous link demands. The only departure is when one has to locate the SQM

on the interior of a link. In that instance, we solve the following

equation (for x):

A(x,X) = 0

In the-case of nodal-demand-only, A(x,X), for fixed X, is quadratic in x,

thus we can solve for x easily.
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With continuous link demands, we no longer have a quadratic function.

The functional form of A(x,X) depends on the demand probability density

functions. We will have to use a numerical routine to find the roots of

A(x,X) = 0. The constant C in all the equations should be replaced by

2' 2 2-' 22
t(x) . The X independent test (s ) - 86/v (t ) s > 0 can be readily

applied to the Trim Algorithm also. We can apply the same analysis and

algorithms exactly to a tree network with continuous link demands. This

is a very pleasing situation, tobe able to extend the same methodology to

a much more general problem.

5.4.2 Parametric Analysis of the SQM as X Varies

We perform all the parametric analysis using A(x,X) and the DTX(x,X)

profiles. Instead of looking at them as a function of x, which are quad-

ratic for A(x,X) in the nodal-demand-only case, we treat them as a func-

tion of X for fixed values of x. A(x,X) is still quadratic in X; DTX(xX)

maintains the same functional form when we replace C by t(x) , which is

positive down the rooted tree. The fact that the DTX(x,X) profiles in

X space do not intersect hinges on the convexity of TR(x) only, and not

on its functional form. Figures 4.3.3 and 4.3.4 apply exactly to our

present situation. The only difference is that in the nodal-demand-only

situation, t = C for all points on the same link. Thus the DTX(x,X)

profiles intersect at X = 0. However, in the presence of continuous link

demands, t is no longer a constant for x on the same link. Convexity of
-1

t implies that t will increase down the tree. Therefore, the DTX(x,X)

profiles may not even intersect at X = 0.
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5.5 A Numerical Example: The SQM on a Tree Network with Continuous

Link Demands

We will construct a numerical example to illustrate the essence of

our trim and search procedures. We also compute the range of X over which

each node (and each link) is the optimal median. Figure 5.5.1 shows the

tree network (together with all the relevant parameters) under examination.

The tree is rooted at the minisum location, which happens to be a node

(node 2). However, there is no loss of generality since we can always

place a fictitious node of zero weight at the minisum location. We assume

a uniform demand density function for each link over which the arrival

rate is non-zero. Table 5.5.1 shows the value of s2 at some of the nodes.

We now apply one version of our trim algorithm, testing the value of s2

at each node in order of increasing depth from node 2.

Details of the trim procedure are as follows:

(1) At node 2, s2 = 1402.

(2) At node 3, s) 66

-At node 3 s immediate successor of node 2.
At node 1, s 2= 1223, r

We eliminate link (2,3) and node 3.

We move down from node 1 to node 4.

(3) At node 4, s2 = 879.

We move down from node 4 to its immediate successors.

(4) At node 10, s2 is very large.

Eliminate branch 10.

At node 5, s 2= 936, but s 2(4) = -33.28 < 0 along link (4,5)out

Therefore we have to include link (4,5), but we can

eliminate branch 5.
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Minisum Location
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Figure 5.5.1 Numerical Example: SQM on a Tree Network

with Continuous Link Demands.

.04

'6/.01



163

TABLE 5.5.1

Values of s2 for Selected Nodes
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The Median Seeking Path (MSP) is the residual subtree 2-1-4-5. Fig-

ure 5.5.2 shows this MSP.

To perform the search procedure, we need to know the specific value

of X. Instead of locating the SQM for only one value of X, we perform

parametric analysis to find all the ranges of A. Table 5.5.2 lists all

the relevant data for computing the ranges of A. The equation we use is:

2 2 -2 2]2 +[2 4 -1- 2-j
A(x,A) = [s/v t s +- t (s) - s s ]A + [s -- t s]A + - t

v v v

2 - 2'
where we have suppressed the argument x in s , s, s and t

Using Table 5.5.2, and solving A(x,A) for A, we have the following

range parametric for A (refer to notations in Section 4.4).

A(2) = {A 1 A; = {10

A(l~) = (A2 'X 3 8'A(1) = 8 $A 9

A(4~) = (A ,A5  6 ' 7

A(2,1) = (A1,A2) A(124) ( 3( x 4)

A(4,xM) U A(x4) = (X5, 6)

A(4,1) = (X7,18); A(1,2) = (A9, 10

where

A = 0 x2 = 0.0004857

X3 = 0.001524 A = 0.003388

X5 = 0.011406 x6 = 0.02457

A7 = 0.03373 x8 = 0.0366678

A = 0.03828 x1 0= 0.03925
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2

4

5

Figure 5.5.2 MSP Associated with Figure 5.5.1.
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TABLE 5.5.2

Values of
2' - -'

s ,S, t

Node j 2 1 4

out in out in out

32' -97.44 -81.36 -81.20 -43.44 -33.28

t 0 - 0.02 - 0.06 + 0.08 0.22

s 25.48 25.52 26.36
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1 1 1 1

s (xm) s471s 2

Each shaded area corresponds
to DTX profiles of points on
the same link.

1
3 5
3 5

DTX(2, )out

DTX(4,N) in

2 4

7 9

6 8

DTX(1,X)in
0 DTX(4,)out

10

DTX(1,%) out

DTX(xm'

Figure 5.5.3 DTX Profiles of Numerical

Example in Figure 5.5.1.

DTX (x,
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2'2 2 -2 2
Note that x is the point on link (4,5) where (s ) - 8 /v 2 (t) S = 0. We

solve this equation for x and find x = 0.96. We sketch the DTX profiles
m m

in Figure 5.5.3 to show the relationship among the 's.

We can find the optimal location given any value of X E (XA,x10 ) by

referring to Figure 5.5.3 and solving A(x,X) = 0 for x, knowing on which

link x lies.



169

Chapter 6

FORMULATIONS OF SEVERAL QUEUEING-LOCATION PROBLEMS

6.1 Preliminary

We have indicated in Chapter 2 some issues and important system

elements one should consider in queueing-location problems. The poten-

tial for analytically interesting and practically useful research problems

is very promising. Relative lack of work in this area prompts us to

identify relevant models with potential real world applications. By

taking various combinations of the system descriptors discussed in Chapter

2, one can formulate meaningful models with increasing complexity. In

this chapter, as a first step in initiating future research in this area,

we will formulate several potentially interesting and tractable problems

selected from the broad spectrum of queueing-locational models. After

each formulation, we try to make some intelligent guesses about possible

solution techniques. Each model formulated here is defined on an un-

directed general network with discrete nodal demands.

6.2 Problem Formulations

Several interesting models will be formulated and solution procedures

will be proposed in this section. We feel that this is one of the most

exciting phases of a research process when one can speculate and "fanta-

size" about problem structure and analytical behavior of a model. The

proposed solution methodology after each formulation will be informal and

sometimes wild and unstructured -- welcome to the speculative stage of

an exciting research paradise.
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6.2.1 A Priority Queue Location Problem:

We formulate a stochastic queue median system with priority-

oriented queueing discipline in this section. Under this queueing

discipline, one categorizes customers into K priority classes, indexed

by k; the lower value of k, the higher the priority. The selection

rule for waiting customers to receive service is FCFS by priority class.

We assume no interruption of service upon arrival of high priority cus-

tomers. Again, we only concern ourselves with independent, time-homogen-

eous Poisson demands. The objective is to locate a single facility

minimizing the sum of weighted (by priority class) average response time.

In addition to the usual network structure and arrival rate X, we

have to introduce variables and parameters which are priority specific.

They are defined as follows:

Sp ik fraction of total calls from node i of

priority k; for i e N and k = 1,2,...,K

Sf k = E p ik = fraction of priority k calls; k = 1,2,...,K
iEN

K
" h. = Z p = fraction of calls from node i, i N

k=l

* wk - expected non-travel related service time

of priority k calls from node i; i e N,

k = 1,2,...,K

" vk travel speed answering priority k calls;

k = 1,2,... ,K
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For a facility located at x on G, we define the following:

* tk (
f i d(x,i)/vkfk iEFN i

= expected travel time to answer priority k calls

* sk (
1 . i i +$d(ix)/vk
fk iN ik k

= expected service time of a priority k call

wk +6 tk

where

1 -

f isNik wik

2
s

1 2
f i ik ik +S d(i,x)/v )
fk i EN kik

= second movement of a priority k call service time

2
* s (x)

2
= fksk

k=1

The above model operates as an M/G/l system with K priority classes.

It is well known [ ] that the queueing time for the kth priority class

is:

A~ -1 -l >
Qk ~ 2 s (x)(l-kl (1-k-1 if k

otherwise

6= E f . (xsk
r p r k 

Average response time for a priority k customer is

TR.k(X) = Qk(x) + tk(x)

where

= CO



172

Our objective is to find x on G, such that TR(x) is minimized, where

TR(x) is:
K

TR(x) = y k TRk
k=1

where yk are given positive constants reflecting the importance we attach

to priority k customers.

We will now make some speculative remarks about possible solution

techniques to the above priority queue location problem. We note that

s is the same in each Qk. s takes on essentially the same functional

form as that in the no-priority (or one priority) queueing median case,

except for the difference in travel speed vk of priority k. s will again

be convex (and quadratic) in x within a primary region. The only com-

plicating factor is in the denominator of Q , which consists of two terms:

1 - tyk and 1 - a k. 0' can be interpreted as the aggregated system

k -
utilization factor (=L , f.s.(x)) generated from priority one through k.

i=l1

A natural starting point (in minimizing Qk) is from the minisum-k loca-

tion -- a point on the network which minimizes ak. Another starting

point is the minisum (k-1) location. An interesting question to ask is:

Will the minimizer of Qk lie on a path between these two minisum locations?

These two minisum points are nodal because the functions Ck-l and 0k are

weighted (positively) sums (by priority) of concave functions on a link.

Therefore, for each Qk, we have these functions that one wishes to mini-

2 2.
mize: ak' k-1 and s . s is independent of the index k.

A second interesting question is: How do the weights yk s affect the

optimal priority queue median location? How would one locate all the

efficient points as the Yk's vary? Efficient points are defined in the

traditional sense of Pareto-optimality: a point x on G is Pareto-optimal
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if and only if there does not exist a point y on G such that TRk(y) < TRkjx)

for all k, with at least one of the inequalities holding strictly.

A natural restriction to impose is: y. > Y., if i < j, since one

would like to attach more weights to higher priority customers. When

Yk = 0, one can interpret this as "pruning" away class k customers. When

all Yk's are strictly positive, we would be interested in point x such

that 1 - As > 0, where s is the system-wide travel time averaged over

all priority classes. A natural starting point to search for the optimal

location is at the Hakimi median of G.

6.2.2 A Selective Pruning Problem

This problem incident is a mixture of stochastic queue and loss sys-

tems. A selected subset of nodes are designated as loss nodes. Service

requests from loss nodes will be answered by back-up units at a cost Q

regardless of server status. The remaining system will operate as a

stochastic queue system. One would like to find the optimal partition so

that the sum of the weighted (by the proportion of loss and queued

demands) response time and the cost of loss is minimized. We have the

following additional notations:

For a subset J C N, we define:

H(J) = Zh.
iEJ

and

J = N - J
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For a facility located at x on G:

t(xjJ) = H(J) E h .d(x,j)/v
jHJ

- 1 -
W(J) = J Z h.w.

H(J) 36 3

s(xlJ) = W(J) +6 t(xiJ)

/2 1 2
s (xIJ) = H()E h.i[w.i + Sd(x,j)]

X(J) = H(J)X

The response time for the stochastic queue system operating on a

subset of nodal demands h., j 6 J is:

--- A(J 2 -1-
TR(xIJ) = 2 s (xIJ)[l-X(J)s(xIJ)]

20

if 1-x(J)s(xIJ)>0

otherwise

Our objective is to find a partition of the node set (J and J), such

that the following objective is minimized:

min min {H(J) TR(xjJ) + [1-H(J)]Q}
JCN xEG

This problem is potentially very difficult to solve because the set J may

not even be comprised of contiguous nodes, and there are about 2n possible

partitionings of the set N, n = INI.
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The major difficulty that lies with this problem is that the remaining

nodes (after pruning) may not even be contiguous. This can be seen

intuitively as follows: there may exist a node with extremely large h.;
J

as N increases, the inclusion of this node in the queueing component may

leave the system infeasible (i.e., infinite waiting time). The pruning

of this "busy" node can leave the remaining nodes "non-contiguous".

There are several heuristics one may consider, one of which is to pruning

away outliers. Outliers can be defined loosely as nodes which are "far

away" from the Hakimi median. One may use exchange heuristics to "swap"

pruned and unpruned nodes. Another difficulty here is that the parameters

on a primary region (i.e., c's) as defined in Chapter 4 will change after

each exchange. A more systematic analysis of the changes in the parameter

c's is necessary to make any exchange heuristic operational -- in terms

of marginally improving the objective function.

We will introduce a more simple-minded pruning problem, which shows

more promise of tractability, in the next section.

6.2.3 A Uniform Pruning Problem:

In this formulation, a constant fraction of calls on all nodes are

rejected at a cost Q. The remainder of the calls operate in a stochastic

queue system environment. One can visualize this system as a Poisson-

Bernoulli process: upon arrival of a call for service, a Bernoulli trial

is performed to decide the manner under which this call is to be served,

whether by a back-up unit at a cost Q, or by the primary unit in a

stochastic queue environment. We have discussed this problem formulation

in Chapter 4. We define
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v(X) min TR(x,A)
xEG

and we seek a Bernoulli probability p such that the following objective

is minimized:

(1-p)v((l-p)x) + PQ.

As discussed in Chapter 4, this is a convex problem if v(-) is convex.

The first research step in the solution of this problem is to prove the

convexity of v(-). Suppose v is convex. Our search (for the optimal p)

is reduced to finding the zero of:

F(q) = v(qX) + q Xv'(qX) + Q

where q = 1 - p

if F(1) < 0, then q = 1 is optimal;

if F(O) > 0, then q = 0 is optimal;

otherwise, one can find the zero of F(q) for 0 < q < 1.

The values of v(qX) and v'(qX) depend on the optimal location x on G,

where x and qX satisfy A(x,qX) = 0 (see Section 4.3.1).

6.2.4 A Districting Problem with Infinite Queueing Capacity:

We understand that there are no known closed form results regarding

the average behavior of an M/G/k system, where k is the number of servers.

One can only hope to use bounds and approximations to analyze problems

with light and heavy traffic intensity (X). Therefore, it is natural to

partition the network into k districts, each of which operates as an
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independent M/G/1 system. The partition itself is bound to be difficult.

We can only hope to utilize heuristic procedures and settle with "local"

optimal solutions. With the same notation as in Section 6.2.2, our

districting problem is:

min min H(J.) TR(x.jJ.)
J ,i=l,2,....,k xiEG

i=1,2,. ..,k

where
k
U J. = N
i=1

and

J. n J. = $ ioj; i=1,...,k

j=1,.. .,k.

This districting problem is at least as difficult, in terms of the

partitioning effort, as the selective pruning problem of Section 6.2.2.

As an added complexity, one has to solve for k independent stochastic

median problems. As mentioned in Section 4.5.2, minimization of s2 is

the same as equalization of workload (at least in the case of a tree net-

work). A natural partitioning is to design districts with "equal" utili-

zation factors, i.e., equalizing H(J i) s(x IJ.), where x is the optimal

stochastic median of component J.. However, one may use the respective

Hakimi median of component J. as an approximation. Equalization of utili-

zation factors takes into account, in addition to nodal weights k's, the

effect of travel time on the objective function. With this in mind, we

formulate a districting problem in a stochastic loss environment (instead
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of queue), believing the notion of equalizing the utilization factor may

lead to optimal partitioning.

6.2.5 A Districting Problem in a Stochastic Loss Environment:

Our problem here is to partition the network into k districts, each of

which operates optimally as an independent stochastic loss system (as in

Chapter 3). The objective for each sub-system is to find a point x on G,

such that

.r

R(xjJ.) is minimized

where

R(xjJ.) = [1-P(xjJ.)] t(x|J.) + P(x|J.)Q

and

P(x|J.) =

= Probability that the server of sub-system i is

busy given that the facility is located at x on G.

AH(J.) s(xIJ.)
11

XH(J.) s(xJ
1 + 1

where H(J ) and s(xIJi) are defined in the same manner as in Section

6.6.2.

The overall objective is to partition the node set N into k non-

overlapping subset J., such that the aggregated average cost to the sys-

tem is minimized. Mathematically, we have:
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min min H(J.) R(x iJ )
J. x.EG

i=1,2,...,k i=1,,... ,k

where

k
U J. = N
i=1

and

iJ. J. =$ if ifj; i=l,2,...,k,
1 J

j=1,2,...,k.

The results of Chapter 3 (equivalence of the minisum location and the

stochastic loss median) prompt us to believe that given a set of k loca-

tions on the network, the optimal partition is to allocate each demand

point (node) to its nearest service facility. This is a scheme in which we

locate (facilities) first and then allocate (demand points). Also, we

believe that a good (if not optimal) partition is to equalize the utili-

zation factor (XH(J )s(x .IJ )) of each district, where x is the optimal

loss median of district J.. A solution procedure which combines these

two observations should give us a good location-allocation scheme.

The last Chapter, Chapter 7, provides a summary of results (by Chapter)

and a few concluding remarks.
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Chapter 7

CONCLUSIONS AND SUMMARY OF RESULTS

7.1 Summary of Results

We will first summarize briefly our research effort of each chapter,

before making a few concluding remarks to end this thesis. In Chapter 1,

we discussed the need for research in the integration of queueing-like

congestion into locational decisions. Chapter 1 also contains a litera-

ture review and a road map for the entire thesis.

Originally, we intended to provide a classification scheme for problem

identification in Chapter 2. The intended scheme would categorize each

problem formulation by a vector representation to capture all the essential

system elements central to a queueing-location problem (as is done in the

queueing literature, e.g., M/G/k system). However, we feel that more

careful thinking and pioneering insights are needed before one can do

justice to such a classification scheme. A hastily put together classi-

fication may suffer from lack of elegance, modularity and permanency.

We will venture into such an ambitious effort after we have gained more

insight into problem structure in the future. Therefore, we gathered and

organized what we believe to be the essential features, central to a

queueing-location problem, into six components. We hope that these compo-

nents capture all the important system elements in most (if not all) of

the potentially interesting research problems in this area. In other

words, we stopped short of defining a classification device, but we have

provided a solid starting base for such an effort in the future.

In Chapter 3, we generalize the stochastic loss one-median problem

into an n-server-single-facility loss system. In this model, one wishes
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to locate a single facility to house n servers such that the weighted sum

of travel time (when some servers are free) and cost of rejection (when

all servers are busy) is minimized. We were able to prove the equivalence

of the minisum location and the n-server-single-facility loss location.

This equivalence is true under any topological structure and demand

distribution pattern.

Chapter 4 contains a complete analysis of the stochastic queue one

median problem ona tree network with discrete nodal demands. In this

model, arriving customers enter a queue with infinite capacity when the

server is busy. The objective is to locate a facility to minimize the

average response time (sum of cueueing delay and travel time). We have

proved certain convex properties of the average response time over a

tree network. This convexity (of response time) plays an important role

in the development of an efficient procedure to search for the optimal

facility location. We also performed parametric analysis to study the

trajectory of the optimal facility location when total system demand rate

varies. A numerical example was constructed to demonstrate that multiple

local minima (of the response time) can exist on the same link of a

general network.

Chapter 5 generalized the results of Chapter 4 to a situation where

one has, in addition to discrete nodal demands, continuous link demands

governed by general probability density functions. All the convexity and

parametric results generalized nicely to this problem. We also formulated

and analyzed the minisum location problem on a general (and a tree) net-

work with continuous link demands. It was done to provide a foundation

for the analysis of the stochastic queue one median problem. We concluded
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that, in a general network, an exhaustive search over all links and nodes

may be needed to locate the minisum point. We have also provided a

numerical example to demonstrate the procedure in the search for the

stochastic aueue median. Parametric analysis was also performed on the

same example.

In Chapter 6 we formulated five queueing-location problems, each of

which, we believe, is interesting and potentially analytically tractable.

We have also speculated on possible solution procedures and problem

structures for each of the formulated models in Chapter 6.

We will end this thesis with a few concluding remarks in the next

section.

7.2 Concluding Remarks

The main objective of this thesis has been to merge the concerns of

location theory and queueing theory. Little has been done towards the

integration of these two areas. Relative lack of work in this research

direction leaves us enormous freedom in problem selection and numerous

opportunities for innovative solution methodology. The ultimate purpose

is to introduce as much realism into a model with potential real world

application, without leaving the problem intractable. We have incorporated

a moderate degree of complexity in several instances of queueing-location

problems in this thesis.

The issue of system elements discussed in Chapter 2 provides a guide

for problem selections and future research activities. We understand

that we have just begin to scratch the surface of a very rich research

area and it is our intention to place due emphasis on location decisions

in a stochastic environment. Future research efforts should provide us
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with much insight into the interface between location and queueing theory,

and the effect of stochastic congestion on locational decisions. We hope

that we have been successful in sparking interest in this area by showing

feasibility in problem formulation and solution methodologies. It is our

belief that such research activity will eventually find its place in real

world implementation.
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