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1.1 Introduction
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Our objectives are to produce microscopic theories
and to effect the statistical mechanics for electronic
systems that are constrained by finite sizes,
quenched disorder, and/or surfaces and for semi-
conductor systems that exhibit a multiplicity of
structures on surfaces or in bulk. In these systems,
the microscopic degrees of freedom, electronic or
structural, are strongly coupled and therefore their
correlated behaviors determine the mesoscopic and
macroscopic properties. Examples are the
enhanced conductivity of an electronic system, the
different step arrangements of a vicinal semicon-
ductor surface, or the different surface or bulk struc-
tures of a semiconductor alloy. All of these are
among the results obtained in our research. The
correlated fluctuations of the degrees of freedom
are dominated, at low temperatures by quantum
effects, at higher temperatures by thermal effects,
and in mesoscopic systems by quenched impurity
and boundary effects. Furthermore, competing
interactions between these degrees of freedom
often cause frustration, namely an inability to satisfy
all of the interactions, thereby injecting entropy into
the system and causing a highly complex and
degenerate free energy landscape.

Renormalization-group theory, introduced by K.G.
Wilson for critical phenomena, is a microscopic
theory that can address these effects. In our
research we have developed this theory for elec-
tronic conduction and semiconductor systems.
Renormalization-group theory is, when systemat-

ically pursued, an almost guaranteed procedure for
solving a complex physical problem by repeatedly
thinning out the degrees of freedom. Because the
calculation remains a physical description at every
length scale, it is ideally suited for the inclusion of
the effects mentioned above. Another used method
that is well suited for finite-size boundary con-
straints, quenched impurities, and frustration, is our
recently introduced hard-spin mean-field theory.

1.2 Renormalization-Group Approach to
Highly Correlated Electronic Systems

Project Staff

Alexis Falicov, Professor A. Nihat Berker

The metal-insulator transition, metallic magnetism,
heavy-fermion behavior, and high-To super-
conductivity are all finite-temperature effects that
result from the strong correlation of electrons in
narrow energy bands. It is therefore of significant
interest to study finite-temperature phenomena in
strongly correlated electronic systems. Accordingly,
we have performed the finite-temperature statistical
mechanics of the tJ model of electronic conduction
in d dimensions, obtaining the phase diagrams,
electron densities, kinetic energies, and correlation
functions using renormalization-group theory. While
zero-temperature properties of the tJ model have
been studied by a variety of methods, the finite-
temperature behavior of the model had been
essentially unexplored, especially in d=3, where we
now obtain a rich structure.

We find that the renormalization-group method is
very well suited for the statistical mechanics of an
electronic conduction system. The work described
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here constitutes an important step for the statistical
mechanics of mesoscopic systems and quantum
dots, as descibed in section 4.3 below.

Our renormalization-group calculation automatically
yields the global finite-temperature phase diagram
and statistical mechanics of a generalized tJ model,
defined, on a lattice with one spherically symmetric
orbital at each site i, by the following Hamiltonian:

-f3- = t X (cio cj+cj cio -)

<ij > , ao

-J I Si.Sj+V ninj + . n i ,
< Ij > < ij > I

where, at each site i, ci,t and ci, are the electron
creation and annihilation operators with

z-component of spin o-= 1ort, no, = citc, and Si are
the electron density and spin operators, and
ni= nj+n,. In this Hamiltonian, the consecutive
terms respectively represent the electron kinetic
energy, nearest-neighbor antiferromagnetic inter-
action (for J > 0), nearest-neighbor Coulomb inter-
action, and chemical potential. The traditional tJ
Hamiltonian obtains for V/J = 0.25.

We find no finite-temperature phase transition in
d=1 and a finite-temperature critical point termi-
nating a first-order boundary in d=2 (figure la).
The first-order boundary in d=2 represents phase

0.4

0.2

-1.5
Chemical Potential g/J

separation between electron-rich and hole-rich
phases. As the hopping strength t is increased, this
phase separation vanishes around t/J a 0.25, as
seen in figure 1b. This result addresses a currently
controversial issue in the theory of strongly coupled
electronic systems.

In d=3, we find a remarkably complex multicritical
phase diagram, with a novel phase and multiple
reentrances at different temperature scales, as
seen in figures 2 and 3. This phase diagram exhi-
bits antiferromagnetic (a), electron-rich disordered
(D) and hole-rich disordered (d) phases separated
by first- and second-order phase boundary lines.
These boundary lines are punctuated by critical
points (C), critical endpoints (E), tricritical points (T),
and special multicritical points (M).

The antiferromagnetic phase of the filled system is
unstable to a small amount of doping by holes (by
about 5 percent in figure 3). One novel aspect is
the appearance, close to a narrow phase sepa-
ration of hole-rich and electron-rich phases, of a
new phase (which we have called "T"), occurring at
low temperatures in a narrow interval of doping.
This phase, to our knowledge never seen before in
finite-temperature phase transition theories, is the
only volume of the extended phase diagram in
which, after repeated length rescalings of the renor-
malization-group, the electron hopping strength t
does not renormalize to zero. In fact, all the inter-
action constants (t,J,V,p) renormalize to infinite
strengths, while their ratios eventually remain con-
stant, a typical behavior for the renormaliza-
tion-group sink of a low-temperature phase. A
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Figure 1. (a) Typical cross-section of the calculated global finite-temperature phase diagram for the two-dimensional tJ
model, with t/J=0.2 and V/J=0.25. Between the electron-rich (D) and hole-rich (d) disordered phases, a phase-
separation boundary terminates at a critical point (C). (b) Calculated critical temperatures 1/J, as a function of relative
hopping strength t/J, in two dimensions. It is thus seen that finite-temperature phase separation occurs only for low
values of t/J.

162 RLE Progress Report Number 136

(a) t/J = 0.2
V/J = 0.25

SC

d D

I iI
-2-2

n



distinctive feature is that at this sink, which as usual
epitomizes the entire thermodynamic phase that it
attracts, the electron density < n1 > has the non-unit,
non-zero value of 2/3. This feature makes strong-
coupling conduction possible by having the system
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non-full and non-empty of electrons, and has also
not been seen previously. The occurrence and
characteristics of our newly discovered phase are
quite suggestive.
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Figure 2. Typical cross-section of the calculated global finite-temperature phase diagram for the three-dimensional tJ
model, in the temperature and electron chemical potential variables. First- and second-order boundaries are shown
respectively with dashed and full curves. Figures 2b and 2c are respectively the blow-ups of the small rectangles in
figures 2a and 2b. The corresponding temperature versus electron density phase diagram is in figure 3.

0.6 0.7
Electron

0.8 0.9
Density <ni>

Figure 3. Typical cross-section of the calculated global finite-temperature phase diagram for the three-dimensional tJ
model, in the temperature and electron density variables. The phase separation boundaries of the first-order phase
transitions are drawn with dashed curves; the unmarked regions inside these boundaries are the coexistence regions of
the phases marked at each side of the regions. The second-order phase boundaries are drawn with full curves. The
temperature versus electron chemical potential phase diagram corresponding to this figure is in figure 2a.
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Another feature is the appearance of several
islands of the antiferromagnetic phase. The islands
are bounded by first- and second-order phase tran-
sitions adorned by the various special points
already mentioned above. Thus, a multiply reen-
trant phase diagram topology obtains. The anti-
ferromagnetic phase also occurs as a narrow sliver,
within the disordered phase reaching zero temper-
ature between the antiferromagnetic and "T"
phases. The appearance of the antiferromagnetic
islands at dopings in the neighborhood of the "T"
phase indicates that, when the electron hopping
strength t strengthens under rescaling, antiferro-
magnetically long-range correlated states acquire
substantial off-diagonal elements, which lowers the
free energy of the antiferromagnetic phase. On the
less dense side of the boundary of the "T" phase, a
lamellar sequence of antiferromagnetic slivers and
disordered inlets occurs, at several temperature
scales, as seen in the blow-ups of figures 2b and
2c.

We have calculated electron densities, kinetic ener-
gies

< Tij > =

< cit + c + C ci tc + Cjltcil >

and nearest-neighbor density-density and spin-spin
correlation functions by summing along renormal-
ization-group trajectories and matching to the densi-
ties of phase sinks. The kinetic energies reflect the
conductivity of the system as seen from the sum
rule

Tr dw Re[oo,(w)] = redTr o dw Re[ (w) 2ha < Tij >

where o-,,(w) is the frequency-dependent conduc-
tivity, e is the electronic charge, and a is the lattice
spacing. Thus, the conductivity, as expected, goes
to zero in the dilute and dense limits (figure 4).

1.3 Statistical Mechanics of
Mesoscopic Systems and Quantum
Dots

Project Staff

Alkan Kabak~iolu, Alexis Falicov, Professor A.
Nihat Berker

Our electronic-system renormalization-group calcu-
lations are now being merged with (1) finite-system

calculations, for a variety of boundary conditions,
using methods that we have perfected in previous
work on surface systems, and (2) quenched impuri-
ties, including pinning potentials, in the interior or at
the boundary, using methods that we have devel-
oped in the work of section 4.4 below. Thus, the
statistical mechanics of mesoscopic systems and
quantum dots will be achieved.

Our calculations yield the entire statistical
mechanics of the systems that are studied,
including for the first time the kinetic energies
(figure 4). The kinetic energy is related by a sum
rule to the ac conductivities, as mentioned above.
However, a direct calculation of ac and dc conducti-
vities by renormalization-group theory would be a
highly desirable and needed contribution. We
intend to pursue this by combining the renormaliza-
tion-group rescaling behaviors of the hopping
strength and the local correlations. Using this
approach, it should be possible to calculate the
conductivities across a specific realization of a
mesoscopic system for any arbitrary distribution of
contact points at the boundary. This is made pos-
sible by the real-space formulation of the renormal-
ization-group theory, which stays closely coupled to
the physical description of the system at each step
of the calculation.

The effect of a magnetic field will also be added to
the Hamiltonian. Thus, for different physical real-
izations, the kinetic energies and conductivities will
be calculated as a function of magnetic field
strength and temperature, yielding an accessible
first-principles study of these "magnetofingerprints"
of mesoscopic systems.

1.4 Collective Phenomena in Systems
with Quenched Impurities and
Frustration

Project Staff

Alexis Falicov, Daniel P. Aalberts, Professor A.
Nihat Berker

Our studies of systems with quenched randomness
and frustration have yielded (1) new phenomena
that are very generally applicable and (2) highly
developed theoretical tools to deal with such effects
in electronic and semiconductor systems. These
theoretical tools consist of the renormaliza-
tion-group theory, which we have perfected for the
study of systems with quenched randomness, and
the hard-spin mean-field theory, which for the first
time conserves frustration and which in fact was
introduced in these studies. Frustration, which sig-
nifies the lack of a unique local minimum-energy
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Figure 4. Electron kinetic energies in the tJ model, calculated by renormalization-group theory, at temperature 1/J=2
across the phase diagram of figure 3. These kinetic energies are related to the conductivities by the sum rule given
above.

state due to competing interactions, appears to
underly phenomena in systems ranging from spin-
glasses (where, as we have discovered, a chaotic
rescaling behavior results) to liquid crystals and to
high T, superconductivity.

One of our general results is that, under quenched
random interactions, all first-order phase transitions
that involve a symmetry breaking are converted into
second-order phase transitions. This amounts to
the generation of infinite correlation lengths by the
effect of impurities! This prediction, which, for
example, raises the possibility of replacing the
uncontrolled hysteresis loops of probing devices by
infinite-response functions, was originally indicated
by our general domain wall arguments. Most
recently, our detailed renormalization-group calcula-
tions have confirmed the prediction, for example
with the phase diagram of a spin-1 magnetic model
(the Blume-Emery-Griffiths model), used in the
study of electronic systems and of semiconductor
alloys. The pure (non-random) system has first-
order phase transitions at low temperatures and low
densities, and second-order phase transitions at
high temperatures and high densities. Our calcula-
tions show that, with the introduction of quenched
randomness into the interactions, first-order transi-
tions are converted to second-order transitions,
which then reach zero temperature and low densi-
ties.

1.5 Surface and Bulk Structures of
Semiconductor Alloys

Project Staff

William C. Hoston, Asad A. Naqvi,
Kabakglolu, Professor A. Nihat Berker, in
oration with Professor John D. Joannopoulos

Alkan
collab-

Ternary and quaternary semiconductor alloys can
exist in zincblende, chalcopyrite, or possibly
stannite structures, involving two interpenetrating
fcc lattices on which up to four atomic species exist.
One atomic species occupies one of the fcc lattices
while three other atomic species may (chalcopyrite,
stannite) or may not (zincblende) order on the other
fcc lattice. The structural phase diagram of these
alloys as a function of atomic interactions, composi-
tion, and temperature is of interest. In recent work,
K.E. Newman and collaborators have adapted the
spin-1 Ising (Blume-Emery-Griffiths) model to the
study of zincblende to chalcopyrite or stannite tran-
sitions. In this model, the three spin values are
each associated with a different species of atom, A,
B, or C, which exist on one of the fcc lattices. The
other fcc lattice is occupied by atomic species D.
The systems under consideration have the compo-
sition [(AB)1-xC2x]D 2. Precise values of the model
interaction strengths applicable to the semicon-
ductor alloy systems will be provided, in our work,
from the total energy calculations of Professor J.D.
Joannopoulos. The regimes of the model that are
applicable to the alloy systems include negative
bilinear and negative biquadratic interactions, and

165

0.8

A

Foo 0.4
V

_ _ I _ _



Chapter 1. Statistical Mechanics of Electronic Systems

therefore frustration, both features bringing inter-
esting complications. Newman et al. obtained
unusual phase diagrams using a cluster-variational
theory, which does not include correlated fluctu-
ations and frustration at the level of renormaliza-
tion-group theory and hard-spin mean-field theory.

In our previous works, we have studied the Blume-
Emery-Griffiths model extensively. Most recently
we have studied the negative biquadratic interaction
regimes, finding six new phase diagrams, with a
novel multicritical topology and two new ordered
phases. Thus, we have determined that the phase
diagram of this simple spin system includes nine
distinct topologies and three ordered phases.
These results were obtained by a global mean-field
theory with four independent order parameters.
Our renormalization-group theory confirmed the
occurrence of critical points inside an ordered
phase, a question that had been raised by mea-
surements on metamagnetic alloys.

However, since the fcc lattice is frustrated, analysis
beyond standard mean-field theory is required. Our
new method, "hard-spin mean-field theory", incorpo-
rates the hard-spin condition of local degrees of
freedom and thereby conserves frustration. We
have tested this method on frustrated triangular and
stacked triangular lattices with the spin-1/2 Ising
model, obtaining excellent results. We intend to
apply the method to the Blume-Emery-Griffiths
model on the fcc lattice, which is more frustrated.
We also intend to use renormalization-group theory,
which a preliminary study we have done indicates is
feasible on this complicated physical system.

Furthermore, these semiconductor alloys are
expected to have a variety of surface reconstruction
phases on different crystal facets and a variety of
step structures on vicinal surfaces. Our calcula-
tions will be extended to these effects, also using
the meandering step-Hamiltonian method intro-
duced in our previous study of vicinal silicon (100)
surfaces. These calculations for bulk and surfaces
of semiconductors integrate the electronic energy
determinations of Professor J.D. Joannopoulos with
statistical mechanics, and thereby are uniquely first-
principles calculations for physical systems.
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