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1. BASAL OPTIC PROJECTION IN THE FROG (Rana pipiens)

National Institutes of Health (Training Grant 5 TO1 EY00090)
Bell Laboratories (Grant)

Edward R. Gruberg, Keith L. Grasse

[Keith L. Grasse is with the Department of Psychology, Dalhousie University,
Halifax, Nova Scotia. ]

We have investigated the physiology and anatomy of the basal optic projection
(BOP) using single-unit extracellular recording and HRP injections.

With the animal on its back and using a ventral penetration through the upper
mouth, we have been able to record routinely single units in the BOP which are
driven primarily by the contralateral eye. We have found 3 classes of units:

(1) those responsive to stimuli moving in a vertical direction, (2) those respon-
sive to stimuli moving in a horizontal direction, and (3) those responsive to
changes in ambient 1ight but not to moving stimuli. A1l directional units have sig-
nificant maintained activity. Vertical units increase firing to either slow upward
movement or slow downward movement; stimulus motion in the opposite direction gives
a reduced response. Horizontal units increase firing either to slow naso-temporal
movement or to slow temporo-nasal movement. They, too, give reduced responses in
the opposite direction. A1l these units yield broad tuning curves of response vs
direction. A wide variety of sizes and shapes of stimuli elicit responses. The
best response is obtained for most units when stimuli are moved with angular vel-
ocity in the range of 0.1° to 1°/sec. Those units which did not respond to
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moving stimuli had maintained activity that was greater in the dark than in the
light.

For HRP injections, electrophysiological recordings were first made to ascer-
tain location and depth of the BOP in each animal. Since the target region is very
small, we injected HRP solution in volumes of 1/2 nl or less. We have followed
efferent fibers from the BOP through the posterior commissure to the opposite side.
We have also followed a set of stained fibers which course caudally through the
ipsilateral ventral medulla. We have not been able to trace the terminal fields
of either set of fibers. We have found ipsilateral efferent projections to the
BOP from three principal areas: the posterolateral tegmental field, the posterior
nucleus of the thalamus, and a wide extent of the ventral thalamus, particularly
in the anterior part. HRP-filled cells in the retina are primarily found in the
ganglion-cell layer; however, in keeping with Montgomery et al. (1979), some large
displaced ganglion cells are also stained.

2. OLD AND NEW DIRECTIONS IN THE THEORY OF COLOR CONSTANCY
Bell Laboratories (Grant)

Michael H. Brill
[M.H. Brill 1is now with JAYCOR, Alexandria, Virginia.]

It has recently been shown that any visual-processing algorithm aimed at
attaining color constancy will, in fact, attain it only for restricted spectral
classes of illuminant spectral power distributions (SPDs) and ref]ectances.] Be-
cause color constancy is attributed to chromatic adaptation, it is therefore ap-
propriate to ask what physically reasonable spectral classes insure that an
accepted model of chromatic adaptation — that of Von Kries — will restore object
colors in human tristimulus space to illuminant-invariant positions in the space.

That Von Kries adaptation is responsible for color constancy was suggested
by Judd.?
in illuminant SPD I(X) by scaling each tristimulus function qj(k) in a canonical
basis (j = 1,2,3) so that a matte-white reflectance maps to a particular tristimu-
lus vector (e.g., [1,1,1]). This is mathematically (although not mechanistically)

In Judd's model, chromatic adaptation compensates for changes

equivalent to Land's Retinex ratio computations3
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Qj(r,I) J I r() qj(k) dx

QJ-(W,I) - f I()\) W(}\) qj(x) dx = (i)j(r’l)’

where r is a colored-object matte spectral reflectance, w is a reference matte-
white reflectance, and Qj(r,I),Qj(w,I) are the tristimulus values for light I
reflecting from r and w, respectively. Clearly, if r = w, the adapted tristimulus
vector ¢ is (1,1,1), and is independent of I(A). In summary and extension of our
previous work7 with G. West, we now present spectral conditions under which‘g is
illuminant-invariant even when r # w, following empirical observations of the in-

var‘1'an<:e.4'6

Related invariants are also presented, which may be useful in devel-
oping interdependent 1lighting and pigment standards for partially controlled
viewing environments. Finally, the relation of the present formulation with other

models of color constancy is discussed.

a. Conditions for Invariance of{g

The spectral sensitivities qj(x) of the eye's photoreceptors can be taken as
the primaries of Judd,8 Vos and walraven,9 or Brown and Wa1de]O Let the reference
white have a nonselective reflectance spectrum w(X) = 1 over the visible wavelength
range. Several natural pigments have approximately this property.H

Suppose the illuminant SPD is constrained to be a linear combination of N

basis functions sk(k) with coefficients a,:

N
I() = Z

(x), (1)
& Kk

where the a, are constrained so that I(A) 2 0 for all A. The basis functions are

derivable by a principal-components analysis on the SPDs of natural illuminants

such as black-body spectra and Abbott-Gibson dayh'ghts.]2
Let each spectral reflectance r()X) be expressed as an expansion

r(x) = r (), (2)

nZO "n'n

where the coefficients o, are characteristic of a particular reflectance, and the
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basis functions rn(k) are universal to all reflectances in the "illuminant-invari-
ant" class. Let the reflectance-basis functions be constrained by the conditions:

r (A) =1 (3a)
and

FE () r () dr =8y, (1<k<eo, 1<2<3N), (3b)

where gﬂ(k) = qj(x) si(k) and & = (j-1)N + 1.

Up to this point, we have not constrained r()), but only represented it as
an expansion in a complete set of functions. Now, we define QE =/ gzﬁx) dx =
<g£> for 1T < £ < 3N, and constrain the coefficients pn(] < n < 3N) such that

JERI pkj-])N+1 O5-1) N4k Then r(A) can be written

N
r(x) = pgro(A) + o KZ1 PRT (A)
2N

+ py Y ootr (X)) (4)

N1 kg Kk

%y 0

+ p! pir (A) + p r, (A).

2Ny sner KK k=§N+1 k' k

Here, the numbers Po? pi, p&+], péN+], pk(k>3N) are the signature of the reflec-

tance in question, constrained only by the condition 0 < r()) < 1 for all X.
Applying all the conditions above, one can show that the Von-Kries-

adapted tristimulus values for reflectance r under illuminant I are

¢J(P,I) = po + QI(J‘])N'*‘]‘ (5)

This expression is independent of the illuminant coefficients s and hence is
manifestly illuminant-invariant. It also happens to be independent of all reflec-
tance coefficients except Pos P1° Pr+t> and Pon+1

To find a set of reflectance-basis functions {rk} satisfying Eq. 3 1is
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straightforward. Choose any complete set of independent functions {pm(A)}. Take
as the first 3N reflectance-basis functions linear combinations of the first 3N
of the functions pm(k) such that

3N
& bQ/m <pm(>\) €1(>\)> = 6.“2’, . (6)
m=1
. . . 3N 3N
where (bﬁm) is the 3N X 3N transformation matrix from {pm}] to {rg}] . Clearly,
(bzm) is the inverse of the matrix (<pm£j>), and can be computed by standard meth-

ods if (<pm§j>) is not singular. (This nonsingularity is a necessary constraint

on {pm}fN, and in return requires the set {gi}?N to be linearly independent.)
Then, for 1 < k < 3N,

3N
I by (0). (7)

m=1

r(A)

Once these basis functions are found, more {r } — the orthogonal complement
of {EQ} — can be found b/ the Gram-Schmidt method, but may be unnecessary if the
first 3N functions {p }] are chosen as the first 3N principal-component reflec-
tance spectra for a large ensemble of natural pigments. (In fact, Cohen's anal-
ysis]3 on 433 Munsell pigments showed that they are adequately represented by
only three principal components — about zero rather than about the mean spectrum

as is usually done.)

b. Related ITluminant Invariants

Having established conditions for the illuminant invariance of Von-Kries-
adapted tristimulus values, we now enumerate (in Table XXVIII-1) some related
functions of tristimulus values Qj(r,I), Qj(w,I) that have come to our attention
as illuminant invariants, together with spectral conditions sufficient for each
invariance.

Within Table XXVIII-T, ¢j, wj’ and H form a hierarchy of invariants. When
illuminant invariance of ¢j fails, the adapted chromaticity coordinates wj (func-
tions of ¢k) may still be invariant. If this fails, H (a hue analogue and
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Table XXVIII-1.

Miscellaneous iliuminant invariants.

ITiuminant Invariant

Sufficient Spectral Conditions for Invariance

(V) 1) | a0
Egs. 2, 3, and k-invariance of coefficients | Eq. 1 any
h o= Q3(r91) - Q](Y,I) pk = pk+2N + pO(pk_pk+2N) K= 1 N
G 1) - 4y 1) PN ™ PraaN  PoPianPiaan’
Q.(r,I) Egs. 2, 3, and 4 Eg. 1 any
65000 = gDy
J gy B (a constant)
3
= "C)\
vy ¢j///k§1 B B e
H o= (Pamp)/ (o) B et 4 )
371772 N
= - - be ™"
S = (gmag)Ry + (gaDRy
+ (A]-XZ)R3
where Rj = In ¢j :
_ 2 -[x=\_ /o]
T = (Ry-Ry)™ - SG(Q) (Ry*Ry) B o 0
where
2(0y=2p)°
G(Z\/) = 2 >

L(kz—x3)A] + (k3—x])kz

+ (x]-xz)xgj

det(R), where (R) has components
i a *
Rjk = ]n ¢j(rk,1) (J,k_15233)

*
In this last entry (column 1), the e

are arbitrary nonwhite reflectances (not
the basis functions of sections b and c).




(XXVIII, NEUROPHYSIOLOGY)

function of wj) may still be invariant. The hierarchical invariance of ¢j’ wj’
and H is illustrated in Table XXVIII-1 for exponential illuminant SPDs and equal-
spread Gaussian tristimulus spectra. In this development, there is clearly a
tradeoff between degree of invariance and number of invariants: Whereas a reflec-
tance is represented by three numbers ¢j, it is represented by only two numbers

wj and by only one number H.

Another aspect of classification of the invariants in Table XXVIII-1 is the
number of tristimulus vectors required to compute each invariant. The entry h is
the only one-point invariant (requiring only one object color in the visual field).
A11 the others are two-point invariants (requiring one nonwhite reflectance and a
matte white) except det(R), which is a four-point invariant (requiring three non-
white reflectances and a matte white). det(R) is the most difficult invariant to
verify in Table XXVIII-1, but it was arrived at first. *

It may be noted that, subject to the given spectral conditions, the quantity
S is proportional to 1/(1 + 02) (where o is the spread of a Gaussian reflectance
spectrum), and hence S is an indicator of object-color saturation. T does not
have such a straightforward interpretation, but is included for completeness:

A11 functions of ¢j that are two-point invariants under the given spectral assump-
tions are functions of S and T. Since S and T are functions of only one vector ¢,
they are actually one-point invariants in ¢-space. a

Since H, S, T, and det(R) are all functions of ¢j’ they also partake of the
invariance properties of ¢j presented at the outset of this report. The new
invariance depends on the tristimulus functions being equal-spread Gaussians — a
tolerably good approximation that has been used for heuristic purposes previous-
1y.]5
length itself) may improve the approximation, and does not otherwise affect the

Interpreting A as a monotonic function of wavelength (as opposed to wave-

formalism.

c. Connection with Other Theories of Color Constancy

In the last ten years, several models of color constancy have emerged that
incorporated explicit spectral constraints. Of these, the models of Weinberg]
and Buchsbaum17 proceed from a general methodology hereafter called the "method

of inverses":
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Suppose the illuminant spectrum is a function of three parameters and X,
where the form of the function is known but the parameters are allowed to vary
in the illuminant-invariant paradigm. Then

I(x) = f(a,b,c3A),

where the form of f is known a priori, and a,b,c are unknown.
Suppose the reflectance is likewise constrained:

R(A) = g(A,B,C51),

where the form of g is known a priori, but A,B,C are unknown.

Let the tristimulus functions be qj(k) (j=1,2,3), and let the eye be given
two sets of tristimulus values, one set ij for the reference reflectance (whose
parameters AO,BO,C0 are known) and one set Q. for the test reflectance (A,B,C are
unknown). Both reflectances are under the same light (with parameters a,b,c).

Then

0, = 7 a500) Flasbacin) g(AgsBy,Cosn)

and

Qj = [ dx qj(k) fla,b,c31) g(A,B,C3A).

These six equations in the six unknowns a,b,c,A,B,C can, in principle, be solved
at Teast in local regions of the parameter space, if f and g are sufficiently
well behaved.

Buchsbaum uses the method of inverses with

1) =a-s0), RO =A-r().

Weinberg's theory uses

2

and, in particular, cites the example of Gaussians, v(A) = (1,x,A7). (Here A is
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a monotonic function of wavelength and a = (a,b,c), etc.)

Properties of Buchsbaum's and Weinberg's models differ in several ways:

(i) Buchsbaum's model allows additional degrees of freedom from illuminant
and reflectance basis functions whose products are always metameric (the eye is
18 and the end of Brilll?
(more realistically the latter, since human tristimulus functions are not trigo-

blind to them). For such degrees of freedom, see Brill

nometric). Of course, Von Kries's model allows such degrees of freedom also, as
is apparent from Brill and Nest7 and section a of this report. On the other hand,
Weinberg's theory does not allow additional degrees of freedom in I(A),R(X): No
reflectance can be a metameric black when it has to hide from a probing delta
function in illuminant, and delta functions at all visible wavelengths are mem-
bers of the class of spectra assumed by Weinberg's eye ("protomers," to use his
terminology).

(i1) Weinberg's model provides a structure within which illuminant-invariant
computations can proceed given two unknown reflectances, not only when a known
and an unknown reflectance are given. To see this, note that the tristimulus
values for a reflected light k (k = 1,2) are

Q5 =/ A qj(k) exp[(atA, ) - v(A)].

To compute three illuminant-invariant quantities from two reflectances
k = 1,2, solve separately the triads of equations in the unknowns a + Ak (in
general, a very difficult task) and then subtract the solutions vectorially. The
result, A, - Aq, is illuminant-invariant.

In the above process, six equations suffice to solve for three of the nine
unknowns a, Aq, 52. This is possible in Weinberg's theory because the operation
of illuminant on reflectance (more appropriately conceived as the operation of
reflectance on illuminant because most generally the reflectance acts as the ker-
nel in the linear operation — e.g., for fluorescent materials) is a representation
of the translation group in three dimensions. To import illuminant-invariant
computations between unknown reflectances to Buchsbaum's theory, one must use the
tristimulus volume ratio as an illuminant-invariant quantity. That introduces
the requirement of at Teast four reflectances in the visual field, but totally
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unconstrains the illuminant (except in singular cases).19

It should be noted that, subject to the enumerated spectral constraints, all

the entries except H in Table XXVIII-1 are illuminant-invariant even when the

reflectance w is not a known reference, whether or not the action of illuminant

on reflectance has a group-theoretic interpretation.

The pattern-recognition use of invariants in the absence of a "ground-truth”

reference is at present problematic, and will be the subject of future study.
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3. TRISTIMULUS SPACES IN WHICH SCHROEDINGER OBJECT COLORS
ARE NOT OPTIMAL

Bell Laboratories (Grant)

Michael H. Brill
[M.H. Brill is now with JAYCOR, Alexandria, Virginia.]

Schroedinger] and later MacAdam2 deduced — from barycentric arguments for
Tights in tristimulus space — the spectral reflectances constituting the envelope
(optimal colors) of the object-color solid in tristimulus space.

A reflectance spectrum on the surface of optimal colors has, at every visible
wavelength, a value of 1 or 0. Furthermore, the spectrum undergoes, at most, two
transitions between 1 and 0 over the visible wavelength range.

In human tristimulus space, the transition wavelengths generate two twofolds,
one parametrizing the pass-band colors and the other the stop-band colors. The
intersection of these twofolds consists of the "end colors," each of which has
only one spectral transition and therefore can be interpreted as either pass- or
stop-band. Except for this ambiguity, the Schroedinger representation of optimal
colors is unique. Also, Schroedinger's condition of optimality is illuminant-
invariant (although the locus of the optimal colors in tristimulus space is not).

The purpose of this note, inspired by a didactic paper of G. West,3 is to
point out that Schroedinger's theorem depends on three accidents of human tri-
stimulus space:

a. The spectrum-locus twofold is a single-valued mapping from intensity
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and wavelength of the monochromatic lights.

b. The spectrum locus is simply connected.

¢. The spectrum locus is convex.

Hypothetical examples of violations of these conditions readily show failure
of the Schroedinger colors to be the envelope of the object-color solid. We
enumerate three examples below (with visible wavelength range Ae[0,27]):

a. Let the tristimulus functions be a(A) = 1, b(X) = sin (n\), and c(}\) =
cos (nx) (with n a positive integer). The resulting tristimulus space maps n dis-
tinct monochromatic 1ights into each (nonorigin) point of the spectrum locus. The
surface of Schroedinger colors, n football-shaped figures end-to-end along the
a axis, is clearly not convex, and hence does not circumscribe the object-color
solid.

b. Let the tristimulus functions be

a(r) =1

(n-m1) sin (n2) £ 2r(m-1) < n\x < 2mm and m an
(n-m+1) cos (n)) or integer with 0 < m < n

o
—_
>
~—
il

(@]
—~
>
~——
I

The spectrum locus for this space consists of n concentric cones and is
therefore not simply connected. The Schroedinger-color surface consists of n
sequentially thinning footballs end-to-end along the a axis, a nonconvex locus
that cannot circumscribe the object-color solid. Note that, in chromaticity co-
ordinates, the projection of this locus is not contained within all branches of
the spectrum locus.

c. Let the tristimulus functions be a(x) = 1, b(x) = f()) sin X, and c()) =
f(X) cos A, where (1) =1 for all X outside a narrow region about some Ao’ and
f()A) is a small positive fraction of 1 near AO. The spectrum Tocus for this tri-
stimulus space is not convex; there is a notch in the spectrum locus at Ko’ and
also in the surface of Schroedinger colors. This latter notch renders the
Schroedinger-color surface nonconvex, hence the Schroedinger surface does not cir-
cumscribe the object-color solid.

Although these pathologies have not been found in the visual domain, they
might be encountered in generalized colorimetry such as is performed by Richards4
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for other sensory modalities.

Studies uncovering analytic constraints on human tristimulus functions may,
on the other hand, help us to better understand color-matching phenomena such as
Thornton's modal wave]engths5 (450, 540, and 610 nm). At these wavelengths, mono-
chromatic 1light of unit power requires maximum mixed power of the complement to
produce white; also, many zero crossings for metameric-black spectra are near these
wavelengths.
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