Test 3

Name	·
TOTAL	/100 points
Question 6	/22 points
Question 5	/11 points
Question 4	/10 points
Question 3	/18 points
Question 2	/09 points
Question 1	/30 points

There are seven pages (2-8) of questions in this exam.

- (1) (2 points each, 30 points total) Please provide the requested answer/data/reagents. If no reaction is expected, write "NR". Note: n-Bu = n-Butyl = -CH $_2$ CH $_2$ CH $_3$.
 - (a) pK_a of: MeH₂NH Br
 - (b) pK_a of: Me O H
 - (c) pK_a of: MeO—H
 - (d) Circle the compound that will react faster with Me₂NH:

(2) (9 points) Consider the experiment outlined below:

 \emptyset = isotopically labeled oxygen

In analogy with the discussion in class regarding the labeling studies of acid chloride, amides, etc., carefully explain what level ("high" or "low") of \emptyset incorporation you expect to observe in the recovered anhydride. Your explanation should include the mechanism for this hydrolysis reaction.

- (3) (18 points total) Methyl acetimidate (**A**) is hydrolyzed in aqueous sodium hydroxide to (initially) give mainly acetamide and methanol (eq 1). In aqueous acid, **A** hydrolyzes to (initially) give primarily methyl acetate and the ammonium ion (eq 2).
 - (a) (7 points) Write a detailed mechanism for the illustrated process. Please show all arrow pushing.

(b) (7 points) Write a detailed mechanism for the illustrated process. Please show all arrow pushing.

(c) (4 points) Briefly explain why the two reactions provide different products.

(4) (10 points) Provide a mechanism for the Hoffmann rearrangment. Please show all arrow pushing.

$$n-Bu$$
 NH_2 + Br_2 $NaOH$ H_2O $n-Bu-NH_2$

(5) (11 points) Provide a synthesis that will **selectively** convert A to B. Show all of the key intermediates and furnish all of the important reagents.