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A. Experimental Studies - Waves, Turbulence, and Radiation

1. LINEAR WAVE CONVERSION OF RESONANCE CONES NEAR

LOWER HYBRID RESONANCE

National Science Foundation (Grant GK-37979X1)

Mario Simonutti

Introduction

In Quarterly Progress Report No. 113 (pp. 93-104) we described a derivation, based

on the moment equations for electrons and ions in the electrostatic approximation and

without collisions, of the differential equation governing linear mode conversion of a

single k z wave in an inhomogeneous magnetized plasma near lower hybrid resonance

(LHR). We also explained a technique for obtaining a numerical solution to this system

and presented a typical solution.

In this report we shall describe the numerical Fourier synthesis of a discrete spec-

trum of those single k wave solutions. This process yields a solution to the problem
z 1,2

of describing the behavior of resonance cones near LHR in an inhomogeneous plasma

with thermal effects included. This solution displays the pronounced influence of mode

conversion on the resonance cones.

RF Coupling Model

In the model for the single k z wave numerical solutions obtained in this work, RF

power couples from a boundary of imposed potential D exp(i(wt-kzz)) located in the low-

density region at x = 0. That boundary potential was taken to couple fully to the ingoing

(in the x-directed group velocity sense) long-wavelength cold-plasma mode, while the

amplitude of the ingoing short-wavelength warm-plasma mode was set identically to zero.

There were two reasons for the choice of this model. First, an antenna structure located

at the low-density edge of a plasma couples more readily to a mode whose wavelength

is closer to the vacuum wavelength range. Also, any excitation of the ingoing short-

wavelength mode damps out close to the antenna well before reaching the main body of

the plasma.

In the numerical solution the presence of the outgoing long-wavelength mode is deter-

mined by the differential equation. In general, it must be treated explicitly in the

coupling model. Except in extreme cases of small k z and/or small density profile scale

lengths, however, the numerical solution shows that this component is present in neg-

ligible proportions. This result leads us to the important conclusion that complete con-

version from the cold-plasma mode to the warm-plasma mode takes place. Therefore

the outgoing long-wavelength mode need not enter at all into the coupling problem, and

we may neglect it in the coupling model.
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It can be expected that an imposed driving potential #(z) exp(iwt) located at x = 0 and

spatially localized in the z direction will launch cold-plasma resonance "cones which,

upon reaching the conversion region at higher plasma densities, will be transformed to

a warm-plasma type of oscillation.

The final processing for each single kz wave solution produced is a normalization

such that the contribution to the total potential D from the ingoing long-wavelength mode

at the boundary x = 0 (where the driving potential source is located) has unity amplitude

and zero phase angle. This qualifies the response as that driven by a source of # of

unity amplitude and zero phase angle.

Individual Components of the k Z Spectrum

A set of parameters is chosen to describe the plasma and RF driving source to be

modeled by the numerical problem. These parameters are given in Figs. XII-1, XII-Z,

and XII-3. Although most parameters are dimensionless, a practical experimental sit-

uation to which these results might apply would have the frequency of operation at

-40 MHz = w/Z2~. A relatively high magnetic field case was treated in an attempt to min-

imize finite kxa i (perpendicular wave number times the ion Larmor radius) effects under

which the moment equation theory, upon which our work is based, may be of questionable

validity.

We are now making a comparison of numerical solutions of the two dispersion

relations that follow from moment equation theory and from the hot-plasma theory

through the Harris dispersion relation. 4 Preliminary results indicate that the two the-

ories are in close agreement in their general description of the kx vs density branches

characterizing the phenomenon of wave conversion near LHR, even when kxai exceeds

unity by a considerable factor. Therefore the moment equation theory should be valid

in this treatment, and the magnetic field need not have been chosen so high in this par-

ticular case.

The density profile taken is shown in Fig. XII-1 and two single kz wave solutions for

some of the variables are presented in Fig. XII-2. A series of such solutions makes up

the spectrum of the resonance cone response. Figure XII-1 shows different upper level

density plateaus for the range of nz (=kzc/w) used in the numerical solutions for the res-

onance cone. Larger nz implies a decreased mode conversion density. As nz is

increased, a lower density plateau is taken together with a smaller x starting value on

that plateau in order to avoid numerical swamping in the regions where the solution has

exponential character. Care is taken to ensure that the solution decays several orders

of magnitude on the finite slope of the linear portion before the break to the level density

plateau is made. Although the individual nz wave solutions are for density profiles that

differ in this manner, the actual solutions for densities near and less than the mode con-

version density should be insensitive to such changes in the density profile.
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Fig. XII-1. Density profiles for the numerically generated n

component solutions. Equally spaced x reference
positions from x = a to x = f are indicated.

Several general and important points should be noted in the solutions shown in

Fig. XII-2. First, a mild maximum is displayed in the mode conversion region. Second,

the conversion density decreases for increased n z . Third, before the conversion density,

the solutions comprise an interference of two traveling waves of differing phase velocity,

and the phase velocities are both directed toward lower density. Fourth, each variable

has a different x-dependence. Fifth, the RF phase plots indicate that 0 is made up

mainly of the long-wavelength ingoing mode (a backward wave), while some other vari-

ables are made up mainly of the warm-plasma mode which indicates that the nature of the

outgoing mode is acoustic or mechanical, rather than electrical. This will be displayed

in the resonance cone solutions.

The second and third points can be predicted by arguments based only upon the nx
wave number vs density plots for these modes and on an a priori assumption of complete

conversion. The fourth and fifth points can be predicted by these arguments, plus con-

siderations of the complex small-signal conservation theorem and of the eigenvectors

of the two modes of interest (see our report in Quarterly Progress Report No. 113). The

first point follows from the actual solution of the differential equation.

Wave Conversion of the Resonance Cones

In order to perform a discrete Fourier synthesis of a spectrum of these n z wave
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solutions, we must choose the nz spacing and maximum nz value. This then determines

the number of discrete n z components to be generated. The n spacing of these discretez
components determines the periodicity in z space of the resulting transform. This peri-

odicity length should be somewhat greater than the estimated z extent covered by the

ingoing resonance cones and outgoing converted oscillations. A guideline for the ratio
2

of z extent to x distance to the LHR region is the square root of the mass ratio,

(mi/me)1/2; a safety factor approximately three times this is taken. The choice of the

maximum nz value is determined by two factors: the regime for electron Landau damping

parallel to the magnetic field when kzvte/w approaches unity should be avoided, and as

the z extent of the driving source, spatially localized in z, is reduced higher n z com-

ponents must be included.

We took 101 components with nZ running from -60 to +60 and spaced by nz = 1. 2. Note

that relatively large nz values are included because relatively low values for Te and T i

are taken and the intended operating frequency is low (~40 MHz) in order to model a

small-scale laboratory experimental arrangement. Since the component solutions are

even in n , only the positive n components had to be generated numerically. The n = 0

solution was set identical to zero to account for the lack of accessibility for that compo-

nent.

If each of the 101 components constituting the driving source spectrum were taken

with equal amplitude, nonphysical oscillations in the z-space solutions would be intro-

duced in the discrete Fourier transform (DFT) process. In order to avoid this kind of

oscillation, an appropriate smoothing window function was taken.

W(N) = .5 (1 + cos (rTN/51)).

Each of the 101 nz components centered about nz = 0 and numbered from N = -50 to N =

+50 were multiplied by this function.

Results for four of the physical variables are presented in Fig. XII-3 in terms of the

RF amplitude and phase of the solutions as a function of z at the x reference positions

shown in Fig. XII-1. Since the solutions are even functions of z, only positive z is

shown. With 40-MHz operation, the extent of these distance scales would be 3. 1 m in z,

1. 67 cm in x. This large difference is a result of the nature of the variation with den-

sity of the cold-plasma resonance cone angle near LHR.

Figure XII-3a shows the solution for O(x, z). The x = 0 plot (position a) near z = 0

shows the form of the driving source potential, an excitation localized in z (~20 cm wide

at 40 MHz). As x increases, this pulse splits into 2 pulses of approximately half peak

amplitude. Only the pulse directed toward increasing z is shown. It travels toward

higher density at a varying angle with respect to the magnetic field which is directed

along z. The dependence of this angle on density is characteristic of the cold-plasma

resonance cones. Wave conversion converts this to an oscillation directed perpendicular
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to the magnetic field and back out of the plasma. For the D solution, this oscillation

has reduced amplitude compared with the ingoing cone. For the ion RF density Ni , how-

ever, and for the ion x component of RF velocity Vi , x the amplitude of the outgoing

oscillation increases. This follows from the acoustic nature of this oscillation generated

by mode conversion and from the conservation of small-signal power which this theory

demands.

Conclusion

Some of the basic characteristics of the influence of wave conversion on resonance

cones as described by these numerical solutions can be explained readily by basic con-

siderations of the dispersion relations, the small-signal conservation theorem, the

assumption of complete conversion, and so forth. Some important details such as the

nature of the solutions in the conversion region and of the outgoing oscillation have not

been predicted previously. The numerical solutions presented here should be useful in

providing a clear understanding of the interesting physical concepts involved in this prob-

lem. The numerical techniques should be valuable in providing quantitative information

for the design of an experiment that might provide direct evidence of the wave conversion

process through resonance cone measurements, and for the design of LHR plasma-

heating systems.

The limitations of this theory must be kept in mind. No dissipative process such as

collisions has been included. Also, the outgoing mode will not actually reach the low-

density outside edge of the plasma. It will undergo further transformation dictated by

hot-plasma theory.

References

1. R. K. Fisher and R. W. Gould, Phys. Fluids 14, 857 (1971).

2. R. J. Briggs and R. R. Parker, Phys. Rev. Letters 29, 852 (1972).

3. T. H. Stix, The Theory of Plasma Waves (McGraw-Hill Publishing Co., New York,
1962), p. 225.

4. Ibid., pp. 60-65.

QPR No. 114 108



(XII. PLASMA DYNAMICS)

2. INVESTIGATION OF THE TRAPPED ELECTRON SCATTERING

MODE IN CYLINDRICAL GEOMETRY

National Science Foundation (Grant GK-37979X1)

Charles A. Primmerman, Lawrence M. Lidsky, Peter A. Politzer

Introduction

In toroidal geometry the existence of a class of trapped particles executing "banana

orbits" has a profound effect on plasma response, resulting in a whole new class of

unstable oscillations. 1 One such instability is the trapped electron scattering mode first

derived by Coppi, 2 and investigated by Coppi and Rewoldt.3 This mode is driven by reso-

nant interaction with trapped electrons and has a potential profile singularly well suited

to the scattering of deeply trapped particles, hence the appellation "scattering mode."

It is difficult to investigate this mode in present Tokamaks; thus, we have investigated

it in cylindrical geometry. The advantage in using cylindrical geometry is that colli-

sionless plasmas may be produced easily in linear laboratory devices. Moreover, the

study of waves can be accomplished more easily in low-temperature linear machines

than in Tokamaks. The disadvantage with cylindrical geometry is that the theory must

be carefully reworked to confirm that the mode exists in both cylindrical and toroidal

geometry. First, we shall develop the cylindrical geometry analog to the toroidal trapped

electron scattering mode. Second, we shall report experimental observations of this

mode in cylindrical geometry.

Theory

We begin by postulating a cylindrical plasma confined by a spatially periodic mag-

netic field

B= B = B (1-E cos ), (1)

where E is a small quantity, and L is the distance between mirrors. We consider the

low p limit and look for elect rostatic modes of the form

J = r(z) exp(ime-iwt), (2)

mwhere Sm(z) is a periodic function of z depending on the magnetic-field period. In par-
ticular, we specialize to the case m (z) odd about the magnetic-field minimum. This

choice is not merely a mathematical convenience; it has important physical conse-

quences. For, while the mathematical formalism is applicable to both odd and even

periodicity, the two different periodicities result in modes with quite different properties.
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We find that only for odd modes will unstable oscillations exist at frequencies compar-

able to the electron bounce frequency fundamental.

We consider parameters such that Te > T.; w >>; >> (T/m For thesee 1 1 L Fo t
parameters the ion bounce motion may be neglected, and the ions are effectively unmag-

netized. The ion response may then be treated as an inertial response to the fluctuating

electric field

dv.
m - -eVl. (3)i dt

Bn 2 2
Using + V • (nv) = 0 and 2 -T , we have

r

ne 2S i m
n. (4)i 2 2m.w r

1

The perturbed electron density may be found in the standard manner by integrating

the linearized Vlasov equation along the unperturbed particle orbits. We consider the

frequency range

eff < W De < < be ~ w*e << Oe' (5)

Ven
where ef is the effective collision frequency for detrapping collisions eff = -- ; en De

1 2 l m VB
is the magnetic drift frequency woDe 2 + qB be is the average bounce

-mT dn
frequency; *e is the diamagnetic drift frequency e = reBn ;and e is the elec-

e
tron cyclotron frequency. We take the unperturbed distribution function to be locally

Maxwellian with both density and temperature functions of radius

ne (r)
f = exp[-d/Te(r)]. (6)

(2TT e(r)/ne )3/2

Using these assumptions and neglecting finite Larmor radius effects, we follow Horton

et al.4 to obtain

en e 1 L 3 T 1
e e e o ev fo o-w) I(t)j (7)

where
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t
I(t) = i dt' 1 exp[-iw(t'-t)]

= T l +, '/Tee ,. e Z)]

-mT dn
e_ e

-e reB n dre

d In T e
d ln ne

The time integral may be done formally by expanding M (z) in terms of bounce fre-

quency harmonics for trapped particles and transit frequency harmonics for circulating

particles. Upon performing this expansion we obtain resonant terms of the form
1

, where, for odd modes, p = 1, 3, 5, .... In contrast, for even modes p mustW - PWbe

be even. Thus we have the result that for odd modes the primary resonance is with par-

ticles which have bounce frequencies equal to the wave frequency, while for even

modes resonance is possible only for harmonics of the bounce frequency.

We continue by substituting the expressions for n. and ne in Poisson's equation

2- e L/2 dz ':
-V = (n -ne), and by operating with J-L/2 B ( (z), to get a quadratic form. The

o z

resulting equation has no simple analytic expression except when c << ", (w be). If we

examine this low-frequency limit and make the additional assumptions XDe = 0, m. - o,

the quadratic form reduces to

,e(rl-) 1 )F ,

1 2 3 2_3 3 = 0, (8)
4r 2E3/2-2 8rr E W te

E te

where ote is the average transit frequency defined by te = (2Te/me) 1/2 and L1' 2' 3

are positive definite integrals. By taking w = r + iy; << wr, Eq. 8 yields

3/2 24rrE 3ate L1

( 1- o):e 2

(9)

3 (\r)w 2
2 or 3

(1-1) 2 T E Ote
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Computation of the integrals 1,3 , 3 reveals that Eqs. 9 do, in fact, satisfy the

assumed inequalities wr << *e' (be) and y << r . For instability we must have y > 0,

which requires

2
3 < 11 < 1. (10)

This instability condition is the same as that obtained by Coppi in toroidal geometry.

But, although this low-frequency result is attractive because of its simplicity, its prac-

tical usefulness is suspect. We have noted that this mode is driven by resonance with

particles that have bounce frequencies at the wave frequency; thus, we expect that the

waves with largest growth rates will occur for w - (Wbe)' not for w << (be) . The low-

frequency result itself confirms the view that the low-frequency oscillations are least
2important, since the dependence of the growth rate on the real frequency is y oc W . An
r

additional problem with our low-frequency result is that to obtain it we have ignored the

important effect of noninfinite ion inertia.

To obtain more physically meaningful theoretical predictions, we have solved the

equations numerically, including the effects of finite kDe and m i . The results of this

numerical solution are shown graphically in Fig. XII-4, where we have plotted y

against wr for fixed 1 (solid curves) and for fixed w*e (dashed curves) for three dif-

ferent values of E. All frequencies have been normalized to Ute the average transit

frequency. We note that all three sets of curves exhibit similar behavior: for the

usual situation in which n and T decrease with increasing r so that 11 > 0 we see that

there is a small region of unstable frequencies. As E increases, this instability region

shifts to higher real frequencies and larger growth rates. This behavior is easy to

explain qualitatively. We expect that the real frequency will be w (be) and since

(Wbe) - te' the real frequency should be proportional to E. We might expect

also that the growth rate would somehow be directly related to the fraction of trapped

particles, which would make y dependent on ?. We observe that the center frequency

of the unstable band is slightly greater than ( be), a result that is affected by the exact

form of 4m(z). For these curves we have used (m(z) = sin L-. Since in a sinusoidal

well the bounce frequency decreases as the turning point comes closer to B ax , we

expect that j (z) peaked closer to Bma x will yield lower real frequencies. This expec-

tation is confirmed by numerical computations. In all cases the maximum growth rate

is small, y <.05 wr , and occurs for ri 0.

Examining the family of curves for various We , we observe that the largest growth

rates coincide with w .We Since we have not solved for the radial eigenmode, the

matching of the two sets of curves in Fig. XII-4 determines the radial location of the

instability. But, for the parameters of Fig. XII-4, chosen to approximate our
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experimental conditions, the high mode number implied by w = Oe vitiates the matching

criterion: for almost any value of il we can find a mode number that allows w = W ,e.
Thus we expect the frequency and radial location of the mode to be primarily determined

by the r~ family of curves. To facilitate comparison with experimental results, the

theoretical predictions for the trapped electron scattering mode in cylindrical geom-

etry are summarized in Table XII-1.

Table XII-1. Theoretical predictions for the cylindrical
trapped electron scattering mode.

1. Frequency Wo = We (be

2. Dependence on Mode exists only
Collision Fre- for Veff < W
quency

3. Azimuthal Propagates with electron
Variation diamagnetic drift veloc -

ity v6  rwe/m

4. Radial Variation Standing wave. Localized
about T _ 0

5. Axial Variation Standing wave. m (z) odd
about Bminmin

6. Dependence on r cc 'Jc
Trapping Well

y increases with increasing E

Experiment

The experimental device is illustrated in Fig. XII-5. In uniform field operation

12 magnets produce a field of ~1 kG flat to within ~5%. To produce 4 concatenate

trapping wells, 4 magnets are independently controlled to produce a field that can be

reasonably approximated by Bz = B(l -Ecos z), where L = 0. 5 m, and E may be

varied from 0 to 0. 4. The main deviation of the field from sinusoidal is that the minima

are somewhat broader than the maxima. The plasma is an RF discharge argon

plasma produced by a Lisitano coil driven by 3,0 W of microwave power at 3 GHz. The

plasma formed typically has n ~ 1010 1011/cm 3 ; T ~ 5-10 eV; T " 0. 2 eV; n dn
I e - dr

-1
1-2 cm . The ions are sufficiently collisional that they do not execute trapped par-

ticle orbits. The neutral pressure may be varied so that the electrons are either col-

lisional or collisionless with respect to bounce frequency orbits. Since the flow out of

the ends of the machine is limited by the slow ions, the end plates charge negatively;

thus, the bulk of the electrons are confined electrostatically, making many transits

QPR No. 114 114
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netic field shown for E = 0. 25.
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Fig. XII-6. (a) Potential fluctuation spectrum at low collision
frequency. Upper curve: trapping well with
E = 0. 2. Lower curve: uniform field.

(b) Potential fluctuation spectrum at high collision
frequency. Upper curve: trapping well with
E = 0. 2. Lower curve: uniform field.
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of the machine before they are lost. These electrons form a good analogy to the circu-

lating electrons in toroidal geometry.

At sufficiently low collision frequency we observe a dramatic change in the plasma

noise spectrum upon the application of a trapping magnetic field. The situation is illus-

trated in Fig. XII-6a, where we have plotted the spectrum with and without a trapping

well. The upper curve is for a trapping field with E = 0. 2, ( be) z 1 MHz; the lower

curve is for uniform field. We observe that for the trapping field case there is a

tenfold increase in the noise level at frequencies near ( obe) and that a coherent mode

appears at a frequency somewhat below ( Abe). For comparison, we show the same

curves in Fig. XII-6b at higher collision frequency. We see that the spectrum for the

uniform field case has changed but little; while for the trapping-well case the noise

enhancement near ( be) has almost entirely disappeared. For still higher collision

frequencies the spectra are identical.

The cutoff of the observed modes above a certain collision frequency is a very pro-

nounced effect, as illustrated in Fig. XII-7. Here we have plotted amplitude at 650 kHz

against pressure with and without a trapping well. We note that at the highest pressures

the amplitudes are the same. As the pressure is lowered, the fluctuation level

increases slightly for the uniform-field case, but for the trapping-well case the level
-5

rises sharply at a neutral pressure of ~2 X 10-5 Torr. Also noted on the curve is

the pressure at which veff = W. We see that the wave amplitude rises sharply for

V eff/w < 1/3.

1.0 O

0
0

0.8 - O Amplitude at 600 kHz, trapping well E =0.2

A Amplitude at 600 kHz, uniform field

O

0.6

0O

0.4
0

0.2 O

0

S A A .Z eff/u=1

0
1 2 3 4 5 6

p X 10
- 5 

Torr

Fig. XII-7. Potential fluctuation of amplitude vs neutral
gas pressure.
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The results are similar for all values of E above E = 0. 1. We see typically one or

more modes excited, with the primary mode at a frequency somewhat below (Wbe) . The

oscillations are observed to decrease rapidly as the collision frequency becomes com-

parable to the wave frequency. The fact that the primary mode occurs for frequencies

slightly below (wbe) is a point of minor disagreement with the theory, which predicts

that the largest growth rates occur for frequencies slightly above ( wbe ) . We have, in

fact, observed oscillations at frequencies above (Wbe) , but at considerably lower ampli-

tude than those at lower frequencies. These high-frequency waves can be easily observed

only within a narrow band of Veff, so that the lower frequency waves are suppressed

while the higher frequency waves are still unaffected by collisions. Since waves appear

at frequencies both above and below ( wbe), it seems likely that the predominance of the

latter results from the saturation mechanism rather than from the linear growth rate.

The oscillations at frequencies w > (obe ) have such high mode numbers that, even

though they have higher linear growth rates, they may saturate at lower amplitude than

the oscillations at frequencies slightly below (Wbe).

The amplitude of even the strongest oscillations is small. Typically e /T e ~ 0.01-

0. 1%; 'n/n ~ 0. 1%. These relatively low-level fluctuations are to be expected, since

the predicted growth rates are small, and, as we shall show, the oscillations are highly

localized, high mode number waves that should be susceptible to nonlinear stabiliza-

tion at low amplitude. The amplitudes that we have observed indicate that for our linear

device this particular mode has no significant consequences for enhanced diffusion or

energy transport. It is tempting to extend this conclusion to Tokamak geometry, but

we must exercise caution in making such an extension, since the saturation mechanism

in Tokamaks may be different from that in cylindrical geometry.

We have examined in detail the spatial characteristics of the coherent modes excited

in the presence of trapped particles. Figure XII-8 shows crosscorrelation functions

taken for a mode at 900 kHz for various azimuthal probe spacings. We observe that

the wave propagates azimuthally, and from the correlation data we calculate a mode

number m = 12. Typically we have observed mode numbers m ~ 6-12; in all cases

the waves propagate azimuthally in the direction of the electron diamagnetic drift. In

Fig. XII-9 we plot mode number as a function of frequency for an extended series of

measurements. Also plotted is a calculated best estimate for W = w.,. All measure-

ments were taken under nominally similar conditions, but the parameters necessary for

computing w*e were not monitored continuously; thus, there is perhaps an error of

20% in the calculated curve w = We,. Also, the difficulty in measuring such small wave-

lengths results in a +1 error for the highest mode numbers. Nevertheless, even with

these errors taken into account, the data support the view that W = W.e as predicted

by theory.

We observe that the oscillations are radial standing waves localized within a
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0 6 s 0 6 ps

d=0 d =0.16 cm

0 6ps 0 6 ps

d = 0.32 cm d = 0.48 cm

Fig. XII-8. Crosscorrelation, functions at various azimuthal
spacings, d. r= 0.9 cm, m= 12.

region. Ar ~ r The fluctuation amplitude vs radius is shown in Fig. XII-10 where
m

we have also shown 1 as a function of radius. The method of plasma production pro-

duces an 1l profile that has a broad minimum in the range r ~ 1-1. 5 cm. We find that

the mode amplitude is always peaked in this region of minimum 1 in agreement with the

theoretical predictions.

The relatively short azimuthal wavelengths r 0. 5 cm) and strong radial localiza-

tion have hindered efforts to obtain axial phase information. We have measured ,rms

however, as a function of z along the entire machine length, and we find that ~rms is

periodic in a manner consistent with the assumption that Sm(z) is odd about Bmi n. To

further investigate the axial dependence, we measured the crosscorrelation function

between probes at certain selected axial locations. These data are shown in Fig. XII-11.

As illustrated, probes A and C are located symmetrically across a field maximum,

and probes C and B were located symmetrically across a field minimum. The probes

were carefully aligned along a field line by using emitting probes, and crosscorrelations

were taken between them. We observe that for the pair A, B the crosscorrelation func-

tion is the same with B delayed as with A delayed; thus, there is no detectable axial
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Fig. XII-11. Axial crosscorrelation functions for probes positioned
as shown in the magnetic field.
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propagation. But we observe that the potential at A is 1800 out of phase from that at B.

The results for probes B and C are identical: There is no evidence of axial propaga-

tion, but there is a 1800 phase shift in the potential between B and C. These results

indicate that ~ (z) is odd about the field minimum and about the field maximum. The

simplest function satisfying these two features is Sm(z) = sin z
We varied the trapping well depth to determine the dependence of wave frequency and

We varied the trapping well depth to determine the dependence of wave frequency and

600 F

Fig. XII-12. Frequency of the largest amplitude
trapped electron wave vs IE.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. XII-13.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Amplitude of the largest trapped electron wave vs -.
Solid line: a computer generated least-squares fit.
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amplitude on E. In Fig. XII-12 we have plotted the frequency of the primary trapped

electron mode against J for a particular set of machine conditions. We observe that

the frequency increases linearly with \ as predicted from the fact that ( be) C

Note, however, that the frequency is not directly proportional to NF, since the curve

does not have a zero-frequency intercept. In Fig. XII-13 we have plotted wave ampli-

tude against \Fr for a single series of measurements. The dependence on 'IT is not

so smooth as for the frequency. The scatter in points on the amplitude vs TE curve

results mainly from the shifting mode number as we go to higher 0N[ and from the dif-

ficulty in maintaining identical plasma conditions for the largest values of E. To better

determine the amplitude dependence on \, we did computer generated least-squares

fits of the data. The solid curve in Fig. XII-13 is a least-squares fit giving the rela-

tion 4 cc (T)1.5, a dependence that is consistent with theoretical predictions.

Conclusion

We have investigated in cylindrical geometry oscillations occurring at frequencies

comparable to the electron bounce frequency. We found that these oscillations are

small-amplitude, drift-type waves, propagating in the electron diamagnetic drift direc-

tion and having w w, 'e. The oscillations were observed spatially to be strongly

localized radially and to be periodic along the magnetic field. Both amplitude and fre-

quency were found to increase with increasing trapping-well depth. The oscillations

are consistent in almost all features with the theoretical predictions for the trapped

electron scattering mode in cylindrical geometry. We therefore identify the oscillations

as belonging to the trapped electron scattering mode.
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B. General Theory

1. STUDY OF THE FEASIBILITY OF HEATING A TOKAMAK

PLASMA BY PARAMETRIC DECAY OF LOW-FREQUENCY

ELECTRON PLASMA WAVES

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Abraham Bers, Charles F. F. Karney

Introduction

Briggs and Parker 1 have found that it is possible to excite lower hybrid waves in

an inhomogeneous plasma with sources at the boundary of the plasma. In a previous
2

report we showed that waves on this branch, but at somewhat higher frequency
2  1 +Me cos ) e cos 2  , can be used as the pump of a parametric inter-

pl m pe

action and can excite electrostatic ion cyclotron (EIC) waves. In this report we examine

the feasibility of using this as a method of heating the plasma of a Tokamak to ignition

temperatures.

We shall assume that we can meet the finite pump extent criterion for the interac-

tion, which was outlined previously.2 Since a nonzero ion temperature causes the EIC

waves to ion-cyclotron damp, we shall assume that on the time scale of the discharge

(~1 s) all energy converted from lower hybrid frequencies to EIC waves eventually con-

tributes to heating the ions. Strongly nonlinear mechanisms (for example, trapping) may

also contribute to ion heating, and thereby considerably shorten the energy transfer time

to the ions.

Tokamak Example

We pick an example of a Tokamak that might be typical of a future "scientific feasi-

bility experiment." The parameters that we choose are:

H plasma

R=6m

a= 2m
14 -3

n= 10 cm

B = 100 kG

T = 10 keV
e

T= s

8 -1 10 -1 11 -1
In this example 0. = 9.5 X 10 s , . = 1.3 X 10 s , W = 9.6 X 10 s , =1 8p pe e

12 -1 5 -1
1.8 X 10 s , c = 9.8 X 10 ms . Our goal is to heat the ions by AT.= 5 keV. This

S 1
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would correspond to taking the ion temperature from where ohmic heating left off (say,

at T. = 5 keV) to ignition point (~10 keV).
1
The calculations that follow are under three further assumptions. First, this is the

only form of supplementary heating. In an actual experiment it might well be that this

form of heating would be used in conjunction with some other method such as neutral

injection. Second, these parametric decay processes do not affect the resistivity of the

plasma. It may be, however, that the presence of these waves leads to anomalous

resistivity and so to additional heating from the plasma current. Third, linear conver-

sion mechanisms (electron damping and wave conversion) are not important. So in these

respects we are presenting "worst-case" calculations.

Overall Energy Balance

With these parameters, we find that to heat the ions by ATi in a time T will require

an average power of

nKAT i 2rR rr(a/2) 2
= 10 MW. (1)

This is the power that must be provided to the ions. In arriving at this figure we have

assumed that only the inner 1/4 of the plasma (radius a/Z) is heated. It has been

shown 2 that a density gradient does hinder the parametric interactions, and so we

expect significant heating only in the central, nearly homogeneous parts of the

plasma.

How much power is required in the pump to achieve this power flow into the EIC

modes? (Remember that we assume that all energy in the EIC modes goes into heating

the ions.) Power in the pump is partitioned between the EIC mode and the idler (another

lower hybrid mode) according to the Manley-Rowe relations

Pidler _idler

(2)
P EICEIC

Assuming that all the power in the pump is parametrically converted, we have

P W
pump pump

(3)
P OEICEIC

(This depletion of the pump's energy is balanced by power flowing into the plasma from

the sources.)

A lower limit on pump frequency is set by the requirement that linear wave
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conversion does not take place before the center of the plasma. Simonutti and Parker

have used the fluid equations, 3 and the results of more recent work with kinetic theory

indicate that wave conversion should not take place (for the range of kz with which we

are concerned) as long as

pump ~ LH

Here, wLH is the maximum lower hybrid frequency in the plasma. Since Ti - Te OEIC
is normally restricted to lie between the first and second ion cyclotron harmonics,

. < < 201.. (5)
1 EIC 1

For the plasma that we are considering wLH= Wpi = 14 n0. So from Eq. 3 we have

P > 140 MW in order to get a power flow of 10 MW to the EIC waves. Note,
pump 1

however, that most of this 140 MW would end up in the idler at a frequency a little below

the pump frequency. Then it might be possible for the idler to act as a pump. This

"cascading" process can continue with the idler of one interaction acting as the pump

for the next, until the lower hybrid frequency is reached. If this does happen, the ratio

of the power in the EIC waves to that in the pump is increased to

PEIC pump - LH
P((6)

P ump pump
pump

So with opump = 2LH we see that we must provide a power P = 20 MW to the pump in

the form of RF energy. It might be argued that this coupling to the EIC waves would

be more efficient if opump were chosen to be greater than 2 wLH. But this cascading

must be regarded as being somewhat speculative whatever pump frequency is chosen,

and 1/2 should probably be considered an upper limit on the fraction of the pump power

coupled to EIC waves.

Excitation of the Pump

Briggs and Parkerl started by assuming an electric field at some small distance

(~a me/m i ) inside the plasma, where the waves are propagating. In the very low density

region the waves are evanescent. Since this region is extremely thin, we assume that

the fields at the plasma boundary tunnel into the propagating region with negligible attenu-

ation. We shall assume that the fields at the plasma boundary are imposed by an array

of waveguides, as shown in Fig. XII-14. These waveguides support TE 0 1 modes with

a polarization as shown, and the phase of the mode of each waveguide is shifted by 4

from the previous phase. The geometry is a planar analog of a Tokamak with the x, y,

and z directions corresponding to the radial, poloidal, and toroidal directions. The
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x PLASMA W

(N-I) D

x

Ay

[:: [-
Fig. XII-14. Two views of the waveguide array.

main effect that is not evident with this geometry is the focusing of the RF fields as they

propagate toward the center of the plasma.

The field set up in this fashion will have an n and n of order unity. Inside the
y z

plasma a local nx is defined by the local dispersion relation (in the WKB limit). For

lower hybrid waves nx  mii7/m >> 1, and for this reason we neglect the y variation

of the fields. The z variation of the fields is given in Fig. XII-15. By Fourier analysis

of this field pattern, we obtain its spectrum

E z(k )I = E NW sinc

where sinc (x) =

Note that we

sin (x)/x.

are taking

si ND k
Wk ) 2 k D2( -)

N sin.- k
2 zD

IEz(kz ) 12 is sketched in Fig. XII-16.

a somewhat simple view of the situation. We assume that

Ez(z)

Eoei(N-)*

(N-I)D0 D

Fig. XII-15. Electric field at x = 0.

the plasma extends right up to the wall of the containing vessel. In reality there would be

an appreciable region of effective zero density of thickness (wall radius) - (limiter
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Ez(kz)l2

EoNW

- ACCESSIBLE PORTION

/ OF THE SPECTRUM

/ (l<nz <2)

-1 "- /o ' - 2r k
2" 2r W
ND D (n,=4)

Fig. XII-16. Spectrum of the electric field at x = 0.
( = r/2 and D = 7W.)

radius) which would considerably modify the fields at the plasma boundary. Results of

Purl and Tutter suggest that efficient coupling is still possible in this case. The other

defect of our excitation scheme is that no atterrpt is made to match the waveguides

to the plasma. Purl and Tutter 5 have proposed a scheme which should stop the plasma

from presenting a strongly varying impedance to the waveguide.

In order to choose W we should see what 4z components are going to get into the

plasma. On the one hand, we have to satisfy the accessibility condition as given by

Parker 6 and others. For plasmas in which pe2 Q2 << 1 we may take this condition tope e
be

k cz
n = >1. (8)
z W.

Another restriction on the range of k z is given by the condition that the pump not be elec-

tron Landau damped before reaching the center of the plasma, or

Y
a < 1. (9)

Here, vgx , is the x component of the group velocity for these waves which is approx-

imately w/k, and y is the damping rate of the mdde which is approximately w(w/kz Te ) 3

X exp (-w/2kzV Te. With these expressions (9) gives w/kz vTe > 4. For the plasma that
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we are considering, C/VTe - 8. Then (9) gives nz < 2. In order to optimize the frac-

tion of the spectrum of kz that is admitted, we choose parameters so that the first zero

in the envelope occurs at nz = 4, or

2 _ 4c 
(10)W c

In this case we note that W = Xfree space/4, which is reasonable for the small dimen-

sion of a waveguide supporting a TE 0 1 mode. If c = 2opi, (10) gives W = 1. 8 cm.

We assume then that all kz satisfying

1 < InzI < 2 (11)

get into the center of the plasma and act as pumps (see Fig. XII-16). For D >> W, the

number of peaks in the kz spectrum that get in (from Eqs. 10 and 11, and:Fig. XII-16)

is approximately D/2W.

Impedance of Plasma

Having determined what waves will get into the plasma, we must calculate how much

power they carry. In the quasi-electrostatic approximation the power flow for a single

mode in a lossless medium 7 is

-(K + K ) • k 1ij 3]
S = o o k2 + k2k " (12)

k k ak

For a cold plasma K.. is independent of k, so

K.. = 0. (13)
ak 1

We are primarily concerned with the power flow in the x direction (that is, from the

sources into the center of the plasma).

2K k
1 -2 I k

S = EOIE w x (14)

Note that for given Sx , w, and kz

1 1

S (K 11 (15)

kx (KiK I)
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which is the same as the WKB amplification factor given by Briggs and Parker.1

Evaluating (14) near the plasma boundary, say at w (x) > w, with K1  1 - pi/ = I,e2 2
K -W /w -1 and k -k , yields

pe x z

S =+ EoIEI . (16)x 2k oz

If we define the impedance of this mode so that

x = IEz 2/z, (17)

then

Z = kz /EW. (18)

In order to get the x-directed power flow in any part of the spectrum, say, between

k1 and k2 , we perform

k JIE (kz )I dkz
2Z 27 r k (19)

1

where we use the spectrum at x = 0. Equation 19 gives the power flow/unit width in the

y direction. We perform this integral over the part of the spectrum that is admitted

(see Fig. XII-16), that is, for nz from -2 to -1 and from 1 to 2. As long as N is large,

we can split the integral up into a sum of integrals over individual peaks, and assume

that the spectrum envelope sinc (Wkz/2) is constant for each peak. If the ith peak is

centered at kzi, the power flow for this peak is approximately

EQN2W 2 0 2NND _NE 2 Wo sinc2 (Wki ,)o sinc 2 (Wkzi/2) sinc - kz) dk 2D kzi
27 Z(ki) i\ / z 2D kzi

SZ(kzi) 0
(20)

To perform the sum over peaks we multiply (20) by the number of peaks (D/2W) and

replace sinc 2 (Wkzi/2)/kzi by its value at kzi. = 3r/4W (n = 3/2), which for convenience

we take to be its average over the sum. Then the x-directed power flow is approximately

NE2 2NE2 W E
o o DWS

x 2D 2W 4

1 NE 2W2E o (power/unit width in the y direction). (21)
16 0 0
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Size of the Waveguide Array

Now the problem is to see what parameters in (21) will give a total power flow of

P = 20 MW. The extent of the waveguide array in the y (poloidal) direction is Ay, and

and in the z direction ND. Now P = SxAy, so the area, A, of the waveguide array is

given by

P 16PD
A = NDAy = ND 22 (22)

x EWEW
o O

W was found from (10) to be approximately 1. 8 cm. D will normally be determined by

such factors as the separation of the magnet coils; we take its value to be 10 cm. We
10 -1

take w to be twice the lower hybrid frequency or ~2 X 1. 3 X 10 s E is determined

by factors such as breakdown in the waveguides. It also depends on how well matched

the waveguides are to the plasma; if the waveguides see a near short-circuit at their

throats, the fields inside the waveguides will be much greater than Eo . Here we take

E= 1 kV/cm.

Using these numbers in (22), we arrive at a figure of 40 m for A. The total sur-

face area of our Tokamak is (27rR X2,Ta)~ 500 m 2; so the waveguide array should cover

approximately 8% of the area of the Tokamak.

Conclusion

We have shown that it should be possible to heat the ions in a large Tokamak by

RF radiation at approximately twice the maximum lower hybrid frequency of the plasma.

The energy is coupled into the plasma by a waveguide array that would have to cover

approximately 8% of the area of the Tokamak wall. We assume a mechanism for heating

that involves parametric coupling to electrostatic ion cyclotron waves, which subse-

quently ion-cyclotron damp or nonlinearly transfer their energy to the ions.

Two aspects of the calculation leading to this conclusion should be examined in

greater detail. One is the possibility of energy "cascading" down in frequency, which

we postulate as a mechanism for coupling approximately half of the energy of the pump

waves into EIC waves.8 The second is that we need a detailed knowledge of how best to

match a waveguide with a plasma when there is an intervening vacuum layer.
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