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We have developed a theory of forced mode locking in the frequency domain. With

some modifications of this theory, it is possible to obtain what we believe is the first

closed-form solution for saturable absorber mode locking.

As in forced mode locking, we treat mode locking by a saturable absorber as a form

of injection locking. This means that the equivalent voltage of each cavity mode (repre-

senting the E field at a standing-wave maximum) is to be balanced by the injection-

locking voltage produced through interaction of the equivalent cavity current with the

saturable absorber. We replace the mode spectrum with a continuum; i. e., if the cavity

mode spacing is Aco, and n is the mode number counting from the laser medium line
center where n = 0, then w - lim nAw is the (continuous) index of the cavity mode. Then

n-c, a,-0
the normalized reactance of the cavity mode, xc , is also a function of w because modes

at a different "distance" (in frequency space) from the laser line center will oscillate in

general at different detunings from cavity resonance. The normalized negative resis-

tance of the laser medium is taken as r 1 -wM , where M is a measure of the

medium linewidth, and the Lorentzian denominator has been expanded. By the Kramers-

Krinig relations, a reactance has to be associated with the laser medium, -jr i-. The
:M

parameter r is assumed to depend on the power r = ro/(l +P/Ps), since it pertains to

a homogeneously broadened laser line. All impedances are normalized to the equivalent

(empty) cavity-mode resistance at resonance. Then the fundamental equation is
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(1)

On the left-hand side we have written the equivalent injection voltage produced by the

saturable absorber driven by the equivalent cavity current I. We have indicated this

voltage symbolically as a convolution because in some cases of interest this is what it

is. The analysis presented in the sequel is rigorously applicable to a traveling-wave

ring laser. I I(t) 12 may be normalized to give the power in a single traveling wave. When

adapted to a standing-wave cavity laser with the thin saturable absorber located near one

of the mirrors the absorber is exposed to simultaneous excitation of both countertrav-

eling waves, and hence is exposed to twice the power that there would be in a single trav-

eling wave. The rate equation for the population difference n between the lower and

upper levels of the saturable absorber (the standing-wave laser requires another factor

of 2 in front of Il(t) 12 ) is

n-n 2I(t) n
- - 2 n. (2)8T T 1 hA '1

Here T 1 is the relaxation time of the absorbing medium, ne is the equilibrium population

difference, a is the optical cross section, and A is the cross section of the laser mode.

If the thickness of the absorbing medium is 8 and the length of the cavity is f, then we

may define a Q associated with the absorbing medium.

o 2 anc6
Q - i ' (3)

a o

where 0o , the resonance frequency of a cavity mode, is set equal to the laser line center

frequency. This Q is a function of intensity and is obtained from Eqs. 2 and 3 as a solu-

tion of the differential equation. If the relaxation time T 1 of the absorber is fast com-

pared with the rate of change of the intensity, we may assume that the population dif-

ference is an instantaneous function of intensity, and hence we obtain an approximate

expression for the instantaneous Q of the saturable absorber.

2mn I '(t) I2 ]  e1 ce 2

oa -- ap (4)

a-
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where we have defined the saturation power for the absorber as

hio A
P = o (5)

a 2aT 1 *1

The time-independent part of the Q of the absorber may be incorporated in the cavity

loss. In the time domain the time-dependent part contributes an equivalent injection

voltage on the left-hand side of (1) which is the product of the absolute square of the

equivalent current times the current. In the frequency domain the product is replaced

by a convolution; hence, the choice of notation in Eq. 1.

We now turn to an adaptation of Eq. 1 in order to make it soluble in the case of a

fast saturable absorber. The right-hand side of Eq. 1 contains a complex coefficient.

It is clear that the imaginary parts of the coefficient may be balanced by assuming that

r
xc (W) 0 W (6)c• 1+ P M

P s

This means that the cavity modes farther and farther away from the laser medium line

center are more and more detuned from cavity resonance. Once we assume that (6)

holds, we are left with an equation possessing a real coefficient on the right-hand side

and a convolution operator on the left-hand side. Since the convolution operator has a

particularly simple form in the time domain, we transform the right-hand side of the

remainder of (1) into the time domain. We obtain the differential equation

o I(t) = -r 1 + I. (7)
o P 2 27)

Qa a M dt

We assume a solution of the form

A
I(t) = (8)

cosh -(

2
Note that A is related to the power. Indeed if we assume that the repetition rateo

of the pulses is T, we have

2
0o A 2\

Introducing (8) in (7) and balancing the terms in the hyperbolic secant and in the cube
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of the hyperbolic secant, we obtain two equations:

P s rS OM, (10)

where we have used (9) in defining the coefficient

QP
s

- P WMT
4Qo Paa

and

-r= .- (11)
WMT

Equations 10 and 11 supplemented by the dependence of the negative resistance r upon

power P,

r
r (12)

1+-
P

s

yield three equations for the three unknowns P, r, and the pulsewidth T. From Eq. 11,

we note that r is less than unity. This means that in the presence of a saturable

absorber the laser is below threshold with respect to the linear loss (loss in absence of

laser power). The laser oscillates because the bleaching of the absorber reduces the

loss below the linear loss. The equivalent injection-locking voltages have to be equal

to the difference between the voltages produced by the positive and negative impedances.

Since this combination of impedances is below threshold over the entire mode spectrum,

the injection voltages are all of the same sign. This finding has to be contrasted with

forced mode locking.1 When the center portion of the spectrum is above threshold, the

wings are below threshold and the equivalent injection-locking voltages change sign with

the progression from the center of the line to the edge.

Equation 11 may be used to eliminate r, and from the two remaining equations (12)

and (10) we obtain two equations for P/Ps and OM:

1

1 P1 _ _ _ 1
1 + (13)

rP r 2 2'
o s WMT+ o 2 T

WMT

These equations may be solved graphically, as shown in Fig. IV-1. It is clear that under

certain conditions no mode-locking solutions are found. Indeed that happens for a fixed
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Fig. IV-1. Inverse pulse length as a function of absorber Q,
with excess gain as a parameter.

excess gain parameter 1 - 1/ro when K becomes too large; that is, the Q of the

absorber becomes too small or its saturation power Pa becomes too small. The satu-

rable absorber is too "overpowering," the pulse wants to become too high and too short,

and the laser medium cannot adjust itself to it. In general, two solutions are obtained.

Since we have found two solutions in general corresponding to different pulsewidths

and intensities, we would expect at least one of these solutions to be unstable. This mat-

ter will be investigated further.
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