Performance-Based Transmission Pricing: Alternatives and Incentives

ESD.126

Overview

- Transmission product definitions
- Performance based rates in FERC Order 2000
- Performance based ratemaking alternatives
 - Economic models
 - Incentives and benefits of each alternative
- Conclusions: Achieving both FERC and industry goals

Transmission Product Definition

- Differentiate between market-based and costbased products
- Transmission access charges are cost based
- Transmission congestion charges
 - Traditionally have been managed under a command and control process
 - Moving to market based congestion management mechanism

3

Transmission Product Definition

- Basic transmission products include
 - Firm, non-firm, ...
 - Monthly, daily, hourly...
 - Ancillary services
 - Transfer capability products may not be uniquely defined in a network
- Congestion
 - A product has economic value only when it is scarce

Performance Based Rate Regulation

- The options for setting rates or prices are
 - Competitive markets
 - Government regulation
- Performance based regulation is a form of regulation that aims to capture market incentives in the regulatory structure

5

Performance Based Rates and Efficiency

- Set rates related to competitive market prices
 - Ensures the efficient allocation of resources
- Base allowed rates on readily available data
 - Facilitates monitoring and enforcement
- Constrain the overall or average price, not prices of each individual service

- Maintains the ability to reward utility innovation

- Base rates on factors beyond the influence of any one individual utility
 - Provides incentives for cost minimization

Innovative Ratemaking in FERC Order No. 2000

Performance Rates in FERC Order 2000

- Order 888 focus on comparable access & pricing
 - Level playing field for new and incumbent participants
- Order 2000 adds focus on operating transmission system to support regional markets

7

- Expand the playing field for everyone
- Requires increased transfer capability
- Dual objectives
 - Offer incentives for efficient expansion and operation
 - Remove existing disincentives to efficient expansion and operation

Performance Rates in FERC Order 2000

- PBR is only one of the 8 transmission ratemaking topics discussed in Order 2000
 - FERC interest is in "innovative pricing" in general
- Economic benefits of PBR are to be shared by
 - Transmission owners
 - Transmission customers
 - Generation market participants
- PBR proposals can incorporate
 - Performance standards
 - Price/revenue caps
 - Price inventives

9

Background: Policy Statement on PBR

- 5 standards from FERC's 1992 Policy Statement on Incentive Regulation
 - 1. Incentive ratemaking must be prospective
 - 2. Participation must be voluntary
 - **3.** Incentive mechanisms must be understood by all parties
 - 4. Benefits to consumers must be quantifiable
 - 5. Quality of service must be maintained

Order 2000 Focus on Markets

- 5 PBR principles to harness market forces
 - PBR must focus on all aspects of RTO operation,
 e.g. not cost without service quality or reliability
 - PBR should lead to efficient operating and investment decisions, and not compromise reliability
 - PBR include both rewards and penalties
 - Rewards and penalties should be known in advance, based on known and measurable benchmarks
 - Benefits of PBR shared between RTO and customers

11

Performance Based Ratemaking

Ratemaking Objectives

- General ratemaking objectives
 - Financial revenue adequacy
 - Economic capture market forces in the price
- Short run economic efficiency for
 - Energy markets
 - Capacity commitment (generation and transmission)
- Long run economically efficient signals for
 - Location of new generation
 - Investment in transmission

13

PBR: Basic Arithmetic Relationship

$$\frac{p_1 q_0}{p_0 q_0} = \frac{FPI_1}{FPI_0} - X$$

where

- p₁q₀ is the product price at time 1 times the quantity produced at time 0
- p₀q₀ is the product price at time 0 times the quantity produced at time 0
- FPI₁/FPI₀ is the ratio of the increase in factor prices between time 0 and time 1
- X determines the sharing of benefits, between producers and consumers, from the increase in productivity.

Alternative Types of PBR

- Price Cap
 - England-Wales RPI-X
- Upper/lower bound
 - Variable 'X'
- Static benchmarking
 - Define average performance value, or
 - Define performance envelope or frontier
- Dynamic benchmarking
 - Allow frontier to change over time

15

Price Cap Regulation

- Price cap
 - Regulator sets maximum revenue per unit of service
 - Price cap changes with time based on the increase in factor prices less a factor for increased productivity: $(FPI_1/FPI_0) X$
- Common indices used for (FPI₁/FPI₀)
 - Retail price index: RPI
 - Producer/consumer price index
- 'X' factor
 - Estimated for sharing the productivity gains between the transmission provider and customers
 - Subjective, set via negotiation and debate

Price Cap Regulation – Benefits

• Simplicity: Regulators

- Use retail/wholesale, consumer/producer price indices
- 'X' value remains set for many years
- Light-handed regulation rate reviews are evenly spaced and infrequent

• Transmission provider

 Provides clear target for improvements and time frame within which to achieve them

• Transmission customer

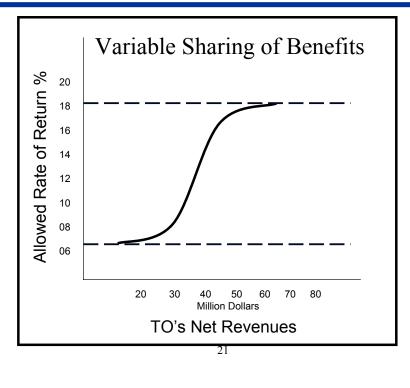
- Known and easily forecasted rates for specified periods

17

Price Cap Regulation – Drawbacks

- Setting initial baseline for price cap is complex, contentious and difficult to adjust later
- Incorrectly determining 'X' can degrade incentives
 - Too high may discourage investment by transmission provider
 - Too low may inflate the cost of getting energy to the market, and so impede wholesale power market development and future investment in generation

Price Cap Regulation - Variations


- Standard RPI-X
 - The index is based on the individual firm's prices for the different products offered
 - See Jaffe and Kahn reading
- Yardstick regulation
 - Industry average costs used for index
 - Use other firms' prices for an external reference rate level
 - Forced to compete with each other regardless of whether they actually compete in the same product markets

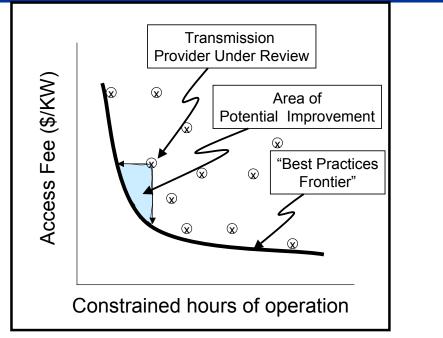
19

Upper/Lower Bound

- A variant of price cap regulation
- Allowed rate of return is bounded by upper and lower limits
- 'X' is not fixed gains from improved productivity are shared proportional to the level of productivity improvement
- Implementation one option is the 'S' or logistic curve (next slide)

Upper / Lower Bound

Upper/Lower Bound – Benefits

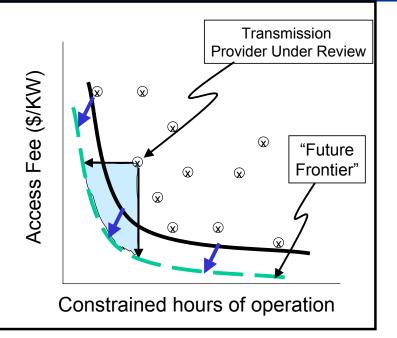

- Improved incentives benefits to operator increase with improved operational efficiency
- Light-handed regulation once initial conditions are set
- Flexible easier for regulator to work within a range (upper and lower bounds) than to set a single value
- <u>Drawbacks</u> same as for Price Cap

Static Benchmarking

- Concept Evaluate individual performance by comparing the performance of all providers
- Objective Define an 'envelope' that bounds the performance of all providers (see next slide)
- The frontier
 - Reflects the best possible performance for measured performance attributes
 - Provides information to regulators and providers on the trade-off between the attributes

23

Static Benchmarking: Two Attribute "Best Practices" Frontier



Dynamic Benchmarking

• Acknowledges the productivity index, or "best practices frontier," will improve and shift with changes in technology

25

Dynamic Benchmarking: Two Attribute "Best Practices" Frontier

Benchmarking – Benefits

- Provides information on individual elements of productivity improvement
 - Regulators can monitor performance more directly
 - Providers know specifically what needs improvement
 - All participants can see the trade-offs

27

Benchmarking – Drawbacks

- Difficult to create a realistic and comparable sample of transmission providers, in order to obtain the "best practices frontier"
- Dynamic difficult to estimate the rate of improvement in performance attributes for the "future frontier"
- Increased data reporting burden on transmission providers
- Increased data analysis burden on regulators

Comparison of PBR Incentives

- Transmission operating costs
 - PBR gives incentives to minimize operating costs, especially at the front end of each review period, to capture benefits early
 - Bounds: as reach upper bound, may have incentive to over-invest to maximize net revenues
 - Benchmarking: may have perverse incentive to optimize one attribute at expense of others (not as strong with dynamic form)

29

Comparison of PBR Incentives

- Transmission expansion and connection
 - Incentives depend on which parameter is used as the measured service unit, i.e. kW or kWh
 - kWh basis provides incentive to maximize throughput, improve TTC and ATC
 - kW basis provide incentive to connect kW (tradeoff with responsibility for congestion from increased trade)

Comparison of PBR Incentives

- Transmission congestion
 - Price cap: If the transmission provider is responsible for both congestion and investment, the incentive is to minimize total cost
 - Bounds: Little incentive to minimize congestion incentive is on return on investment
 - Benchmark: Strong incentive to minimize congestion, if congestion is a monitored attribute
- Ancillary services
 - Minimize the cost of marketable services in order to compete with other providers

31

Summary: Possible Performance Measures

- Operating efficiency, production costs
- System reliability
- Congestion management
- Balancing markets
- Efficient investment
- Innovation (e.g. use of new technologies (FACTS))

Summary: PBR Benefits

- Provide incentives to operators to improve operating efficiency
 - Congestion management
 - Transfer capability, TTC and ATC calculation
- Provide incentives for efficient investment
 - Incentives to invest in new technologies-FACTS
 - Incentives to invest in R&D real-time monitoring
- Provide means to share productivity savings between producers and consumers

33

Summary: FERC Objectives

- Introduce market forces while preventing monopolist abuse – regulate but bring in market incentives
- Ensure customers have access to non-discriminatory service at just and reasonable rates
- Ensure that transmission owners have the opportunity to earn a reasonable rate of return

Summary: Implementing PBR

- Difficult to initiate the process
 - Determine capital asset base
 - Calculate 'X' or 'best practices frontier'
- PBR and incentive rate structures require
 - Clearly defined products and services
 - Clearly defined property rights
- PBR can be an effective tool for light-handed regulation of transmission service

35

Conclusions

- Transmission pricing and RTOs at FERC
 - FERC is seeking innovative proposals from industry and encourages regional differences
 - Focused on the collaborative RTO process
 - Self-defined role of *facilitator* not initiator
- The benchmarking PBR options are consistent with FERC desire for a collaborative process
 - Identification of individual attributes facilitates discussion
 - Options along frontier provide flexibility

Conclusions

• Companies must initiate the process, and request that FERC grant performance based ratemaking

- ComEd and Alliant ITC/MISO proposal

- Pricing proposals must explain
 - Consistency with Order 2000
 - How proposal will facilitate all markets (see earlier quote)
 - Meet the 5 PBR principles stated in O2k
 - Implementation process
 - Monitoring, data requirements

37