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Abstract

Practitioners agree that unreliable links, which fluctuate between working and not working, are an
important characteristic of wireless networks. In contrast, most theoretical models of radio networks
fix a static set of links and assume that these links work reliably throughout an execution. This gap
between theory and practice motivates us to investigate how unreliable links affect theoretical bounds on
broadcast in radio networks.

To that end we consider a model that includes two types of links: reliable links, which always
deliver messages, and unreliable links, which sometimes deliver messages and sometimes do not. It is
assumed that the graph induced by the reliable links is connected, and unreliable links are controlled
by a worst-case adversary. In the new model we show an Ω(n log n) lower bound on deterministic
broadcast in undirected graphs, even when all processes are initially awake and have collision detection,
and an Ω(n) lower bound on randomized broadcast in undirected networks of constant diameter. This
clearly separates the new model from the classical, reliable model. On the positive side, we give two
algorithms that tolerate the inherent unreliability: an O(n3/2

√
log n)-time deterministic algorithm and a

randomized algorithm which terminates in O(n log2 n) rounds with high probability.



1 Introduction
A fundamental feature of radio networks is the presence of unreliable links, which sometimes deliver packets
and sometimes do not. Unreliable links can be caused by radio communication gray zones [24], multipath
propagation, and interference from unrelated networks or electromagnetic devices. As the authors note
in [26], something as simple as opening a door can change the connection topology of a network, and it
is common in real network deployments to occasionally receive packets from distances significantly longer
than the longest reliable link [4]. Unreliable links are so pervasive that virtually every ad hoc radio network
deployment of the last five years uses link quality assessment algorithms, such as ETX [13], to cull unreliable
connections from those considered by higher-layer protocols. By contrast, many theoretical models of radio
networks assume a fixed communication topology consisting only of reliable links.

In this paper, we explore the impact, in terms of algorithmic time complexity, of introducing unreliability
into a theoretical model for radio networks. We consider a dual graph model, in which there are two types
of communication links: reliable links that always deliver messages, and unreliable links that sometimes
deliver messages and sometimes do not. The unreliable links are an abstraction that captures a variety of
realistic phenomena. Our goal is to produce a model that is simple enough to be amenable to theoretical
analysis, yet still captures the diversity of complex radio behaviors necessary to keep results applicable to
real world deployment.

As a first step towards understanding the effects of unreliability we study the fundamental problem
of network-wide message broadcast in the dual graph model. Broadcast is a powerful primitive: it can
be used to simulate a single-hop network on top of a multi-hop network, greatly simplifying the design
and analysis of higher-level algorithms. The broadcast problem has been extensively studied in a variety
of models and settings, but mostly in reliable models (see Section 2.2 for an overview of existing work).
We show that broadcast in the presence of unreliable links is strictly harder than broadcast in the reliable
model. For example, in undirected reliable graphs it is possible to broadcast in O(n) rounds [2, 5], while
we show that unreliable links increase the round complexity to Ω(n log n) under the same assumptions. For
randomized algorithms the stretch is even worse: in the reliable model it is possible to complete a broadcast
in O(D log(n/D) + log2 n) rounds with high probability in graphs of diameter D [20], while we show
that there is a dual graph network of diameter 2 in which randomized broadcast requires Ω(n) rounds (this
result appeared originally in [22] as a brief announcement). On the other hand, we show that broadcast can
still be solved with reasonable efficiency in the dual graph model: we give an O(n3/2

√
log n) deterministic

algorithm for broadcast in directed dual graphs, and a randomized algorithm that broadcasts in O(n log2 n)
rounds with high probability. A lower bound from [11] implies that our deterministic algorithm is optimal
up to a polylogarithmic factor for directed dual graphs; a gap remains for undirected graphs.

2 Models for Radio Networks
Many different models for wireless networks have been considered in the literature; we refer the reader
to [28, 29] for a comprehensive survey. In this section we introduce our dual graph model. Then we briefly
review several other models and explain how they compare to the dual graph model.

2.1 The Dual Graph Model
Fix any n ≥ 2. We define a dual graph network, or simply a network, to be a pair (G,G′) consisting of
two directed graphs, G = (V,E) and G′ = (V,E′), where V is a set of n nodes and E ⊆ E′. The set E
represents the set of reliable communication links and E′ the set of all links, both reliable and unreliable.
We assume that V includes a distinguished source node s, and that every other node is reachable in G from
s. We call a network undirected if for every edge (u, v) in E (resp. E′), the edge (v, u) is also in E (resp.
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E′).
We define an algorithmA to be a collection of n processes, which are either deterministic or probabilistic

automata. (See [27] for one possible definition of automata that satisfy our requirements.) We assume that
each process p ∈ A has a unique identifier IDp from a totally ordered set I , ∣I∣ = n. We often write “process
i” to mean the process with identifier i.

In order to define how algorithmA executes on network (G,G′), we must associate processes with graph
nodes. Formally, our definition of an execution presupposes a bijection proc from V to A. We assume that
an adversary controls the definition of proc. The distinction between graph nodes and processes is important
for our lower bound results in Sections 4 and 6. However, we generally blur this distinction in our upper
bounds in Sections 5 and 7, writing, for example, “node v sends” when we really mean “process proc(v)
sends”.

An execution of algorithmA on network (G,G′) with a mapping proc proceeds in synchronous rounds,
1, 2, . . .. In each round, some input may arrive at each process proc(v) from the external environment. Then
proc(v) may or may not send a message. If it sends, its message reaches the processes at all of v’s outgoing
neighbors in G, some arbitrary subset of v’s outgoing neighbors in G′ that are not outgoing neighbors in G,
and v itself. The subset of G′-neighbors that the messages reaches is chosen by the adversary.

When no messages reach a process p, it receives ⊥, indicating silence. When exactly one message
reaches p, it receives the message. When two or more messages reach p, it experiences a collision. Collisions
can be handled in several ways; we list the possible collision rules in order of decreasing strength (from the
algorithmic point of view).

(CR1) If two or more messages reach p (including its own message, if it sends), then p receives⊤, indicating
collision notification.

(CR2) When p sends, it always receives its own message, regardless of whether or not another message
reaches it. (This amounts to assuming that a process cannot sense the medium while it is sending.)
If two or more messages reach p and p does not send, then it receives collision notification (⊤).

(CR3) When p sends, it always receives its own message; when two or more messages reach p and p does
not send, it hears silence (⊥).

(CR4) When p sends, it always receives its own message; when two or more messages reach p and p does
not send, it receives either ⊥ or one of the messages. (Which of these it receives is controlled by the
adversary.)

After process p receives, it changes state before beginning the next round.
Another important modelling decision is whether or not all processes start in the same round. Here

we consider two rules: the synchronous start rule has every process begin in the first round of the execu-
tion; the asynchronous start rule activates each process the first time it receives a message, either from the
environment or from another process.

In our upper bound results, we use the weakest assumptions, that is, collision rule CR4 and asynchronous
start; our lower bounds use the strongest assumptions, collision rule CR1 and synchronous start. In each
case, this serves to strengthen the results.

The definitions of executions and related concepts still make sense if algorithm A is probabilistic. But
now, in addition, we can define probability distributions on executions based on the random choices made
by the processes ofA. To do this, we specify a particular class of (deterministic or probabilistic) adversaries.
Recall that, in general, an adversary may choose the proc mapping, the processes that are reached by each

2



message, and (for collision rule CR4), the particular collision behavior. An adversary class defines precisely
what the adversary is allowed to choose and what information is available to it in making its choices. For
algorithm A and any particular adversary in the specified class, we can generate an execution probabilisti-
cally using the random choices of the processes of A together with the adversary’s choices. In this way, we
obtain a probability distribution on executions. Then for algorithm A and an entire class of adversaries, we
obtain a collection of such probability distributions, one for each adversary in the class. In our lower bound
results, we consider very restricted adversaries, whereas our algorithms work with respect to more powerful
adversaries.

2.2 Other Models
The standard static model. The most common theoretical model for radio networks features a single
network graph G, which is static and captures both transmission and interference. A collision occurs at a
node when two or more of its neighbors send simultaneously; typically Collision Rule 3 is assumed, that is,
no collision detection is available. The communication graph may be directed or undirected.

For directed graphs with no collision detection and asynchronous start, the best deterministic upper
bound known is O(nmin

{
log2D, log n

}
), obtained by combining the algorithms from [20, 12], and the

best lower bound is Ω(n log n/ log(n/D)) [20]. In [12] the authors give an optimal randomized algorithm
that requiresO(D log(n/D)+log2 n) rounds with high probability, matching the randomized lower bounds
of [23, 1], which also hold for undirected networks with synchronous start. In undirected communication
graphs with synchronous start it is possible to broadcast in O(n) rounds [2, 5]. This is clearly optimal
in n, and [21] shows that this bound is tight even for networks of constant diameter. Interestingly, the
Ω(n log n) lower bound in Section 6 applies even for undirected graphs with synchronous start, giving a
clear separation between the models. The construction may appear superficially similar to the Ω(D log n)
lower bound of [3], but it differs significantly (the lower bound of [3] does not apply when spontaneous
wakeup is allowed).

Explicit-interference models. Several works (e.g., [15, 16]) model a network using two graphs, a trans-
mission graphGT and an interference graphGI . It is typically assumed thatGT ⊆ GI . Unlike transmission
edges, interference edges can only cause collisions, and messages cannot be conveyed along them. (In con-
trast, in the dual graph model all edges can convey messages.) A collision occurs at node u when at least
one of its GT -neighbors and at least one of its GI -neighbors broadcast together. The transmission and in-
terference graphs are both static. A completely different approach is the SINR model [18, 25, 17], in which
processes receive messages only when the ratio of the signal to the sum of the noise and other signals ex-
ceeds some threshold. The SINR model is geometric: the strength of the signal is assumed to degrade as
a function of the distance between the processes. We refer to [30] for a recent treatment of interference in
wireless networks.

Models that feature uncertainty. The closest model to the dual graph model in the literature is the
dynamic-fault model of [11], in which edges of the directed communication graph can fail and recover
dynamically during the execution. If one takes G′ to be the entire graph and G to be the subgraph induced
by edges that never fail, the model of [11] is equivalent to dual graphs, except for one aspect: in [11] it is
not assumed that G is connected, and instead the broadcast is only required to reach those processes that are
reachable from the source in G. It is shown in [11] that deterministic oblivious algorithms require Ω(n2)
rounds to broadcast in dynamic-fault graphs; however, the notion of obliviousness used there is a very strong
one, and does not allow the behavior of processes to depend on the round in which they first hear the mes-
sage. In contrast, in Section 5 we give an O(n3/2

√
log n) broadcast algorithm in which processes use no

information except the current round and the round in which they first receive the message (and their label).
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Classical model (G = G′) Dual graphs (G ∕= G′)
SS + U O(n)[5] Ω(n)[21]

O(n3/2
√

log n)

Ω(n log n)
SS + D

O(nmin
{

log n, log2D
}

)
[20, 12]

Ω(n log n/ log(n/D))[20] Ω(n3/2)[11]AS + U
AS + D

Table 1: Bounds on deterministic broadcast

Classical model (G = G′) Dual graphs (G ∕= G′)
O(n log(n/D) + log2 n)[12] Ω(n log(n/D) + log2 n)[23, 1] O(n log2 n) ?

Table 2: Bounds on randomized broadcast (for any combination of assumptions with no collision detection)

The authors of [11] give a deterministic oblivious algorithm that requires O(nmin {n,Δ log n}) rounds in
dynamic-fault graphs of in-degree Δ. This algorithm outperforms ours when Δ = o(

√
n/ log n); however,

it requires that all processes know (an upper bound on) the in-degree Δ of the interference graphG′, whereas
our algorithm requires no such knowledge.

In addition, [11] shows an Ω(n3/2) lower bound for non-oblivious deterministic broadcast in directed
dynamic-fault graphs. This lower bound carries over to the dual graph model, and implies that the algorithm
we give in Section 5 is within O(

√
n) of optimal for directed graphs. The authors later return to worst-case

dynamic-fault graphs in [10], where they strengthen the requirement on broadcast and require it to reach all
processes, even those that are not connected to the source by a fault-free path. For the stronger broadcast to
be possible, it is assumed that in every round there is some functioning link between a process that has the
message and a process that does not. This model does not admit a deterministic algorithm, but the authors
give an O(n2/ log n) expected-time randomized algorithm.

Tables 1, 2 summarize the best known upper and lower bounds for broadcast in the classical and dual
graph models, assuming synchronous start (SS), asynchronous start (AS), directed (D) or undirected (U)
communication graphs. Results shown in bold are presented in the current paper.

A comparison of the models. It is easy to see that the dual graph model generalizes the standard model,
but what is its relation to the explicit interference model (GT , GI)? The explicit interference model is static,
but on the other hand, the dual graph model does not feature edges that only cause interference and cannot be
used to send messages. Nevertheless, the dual graph model is at least as general as the explicit-interference
model, as the following easy lemma shows.

Lemma 1. Any algorithm that broadcasts in T (n) rounds in all dual graphs of size n under some collision
rule CR1–CR4, also completes broadcast in T (n) rounds in all explicit-interference graphs of size n under
the corresponding collision rule.

Finally, the dynamic-fault model of [11] is slightly more general than dual graphs, since it allows for the
possibility of nodes that are not reachable from the source on a fault-free path.

3 The Broadcast Problem
The broadcast problem requires the dissemination of a message from the process at the distinguished source
node s to all processes. We assume that the message arrives at the source process prior to the first round of
execution. We assume that the processes treat the message like a black box; i.e., that they behave the same
regardless of the message contents.
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We say that algorithmA solves the broadcast problem in network (G,G′) provided that, in any execution
of A in (G,G′), with any assignment proc of processes to nodes, the message eventually arrives at all
processes. We say that A solves the broadcast problem within k rounds in network (G,G′) provided that,
in any execution ofA in (G,G′), with any assignment proc of processes to nodes, the message arrives at all
processes within k rounds.

Now consider a probabilistic algorithm A and a fixed adversary class. Recall that A generates a col-
lection of probability distributions on executions, one for each adversary in the specified class. For any q,
0 ≤ q ≤ 1, we say that probabilistic algorithm A solves the broadcast problem in network (G,G′) with
probability q provided that the following holds: When A executes in (G,G′), using any adversary in the
specified class, with probability at least q, the message eventually arrives at all processes. We say that A
solves the broadcast problem within k rounds in (G,G′) with probability q provided that: WhenA executes
in (G,G′), using any adversary in the specified class, with probability at least q, the message arrives at all
processes within k rounds.

We say that network (G,G′) is k-broadcastable, where k is a positive integer, if there exist a determin-
istic algorithm A and a mapping proc such that, in any execution of A in (G,G′) with proc, with collision
rule CR1 and synchronous starts, the message arrives at all processes within k rounds. In other words, k-
broadcastable captures the intuitive notion that there is a way to resolve the contention in the network such
that the message can be propagated to all nodes in k rounds. Note that, if (G,G′) is a directed or undirected
k-broadcastable network, then the distance from the source to each other node inGmust be at most k. Also,
every directed or undirected network in which all nodes are reachable from the source (as we have assumed)
is n-broadcastable.

4 Bounds for 2-Broadcastable Networks
In [22], three of the authors proved the following theorem, which provides a lower bound on the number of
rounds required for broadcast in an undirected 2-broadcastable network. In this theorem and elsewhere in
this section, we assume collision rule CR1 and synchronous starts.

Theorem 2. Let n ≥ 3. There exists a 2-broadcastable undirected network (G,G′) such that there is no
deterministic algorithm A that solves the broadcast problem within n− 3 rounds in (G,G′).

Proof. Let G consist of an n − 1-node clique containing the source node s and a “bridge” node b, plus
one additional “receiver” node r that is connected only to b. Thus, the bridge node b connects the clique
to r. More specifically, G = (V,E), where V = C ∪ {r}, ∣C∣ = n − 1, s, b ∈ C, s ∕= b, r /∈ C, and
E = {{u, v}∣u, v ∈ C, u ∕= v} ∪ {{b, r}}. Let G′ be the complete graph over V . It is easy to see that the
network (G,G′) is 2-broadcastable: proc(s) sending followed by proc(b) sending will always deliver the
message to all processes.

In the executions we will consider, we assume that, in every round, the adversary resolves the commu-
nication nondeterminism as follows:

1. If more than one process sends, then all messages reach all processes and thus all processes receive
⊤.

2. If a single process at a node in C−{b} sends, then its message reaches exactly the processes at nodes
in C. Thus, all processes at nodes in C receive the message and the process at r receives ⊥.

3. If only proc(b) or only proc(r) sends, then the message reaches all processes, so all processes receive
the message.
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Now assume for the sake of contradiction that there is a deterministic algorithmA that solves the broad-
cast problem within n − 3 rounds in network (G,G′). Suppose that the set I of process identifiers is
{1, . . . , n}. For every i ∈ {2, . . . , n− 1}, we fix an execution �i of A, with the communication rules listed
above, in which IDproc(s) = 1, IDproc(r) = n, and IDproc(b) = i. The values of proc for other nodes are
also fixed, according to some default rule.

Claim 3. For every k, 0 ≤ k ≤ n − 3, there is a subset Ik ⊆ {2, . . . , n − 1} such that all of the following
hold:

1. ∣Ik∣ ≥ n− 2− k.

2. For every i ∈ Ik, process i does not send alone in the first k rounds of �i.

3. For every j ∈ {1, . . . , n} and every i1, i2 ∈ Ik, process j is in the same state after k rounds of �i1
and �i2 .

Proof. By induction on k. The base case, k = 0, is trivial, taking I0 = {2, . . . , n− 1}.
Assume the claim holds for k, 0 ≤ k ≤ n − 4; we show it for k + 1. By the inductive hypothesis, part

(c), each process j, j ∈ {1, . . . , n} is in the same state after k rounds in all executions �i, i ∈ Ik. Therefore,
the same set of processes send in round k + 1 of all such executions. Let B be the set of identifiers of these
processes. If B = {i} for some particular i ∈ Ik, that is, if exactly one process, process i, sends, then we
define Ik+1 = Ik ∖ {i}. Otherwise, we define Ik+1 = Ik.

By construction and the inductive hypothesis parts (a) and (b), parts (a) and (b) hold for Ik+1; it remains
to show part (c). Fix any process j. We show that j receives the same thing in round k+1 of every execution
�i, i ∈ Ik+1, and therefore, using the inductive hypothesis part (c), is in the same state after round k + 1 in
all of these executions. There are several cases:

1. ∣B∣ = 0.
Then j receives ⊥ in each execution �i, i ∈ Ik+1.

2. ∣B∣ > 1.
Then j receives ⊤ in each �i, i ∈ Ik+1, because we are using collision rule CR1.

3. ∣B∣ = 1.
Let B = {j′}. We consider subcases:

(a) j′ ∈ Ik+1.
Then j′ ∈ Ik and B = {j′}, so Ik+1 is defined to explicitly exclude j′. So this case cannot
occur.

(b) j′ = 1, that is, j′ is the process assigned to the source node s.
Then if j ∕= n, then j receives process j′’s message in each �i, i ∈ Ik+1, whereas if j = n, then
j receives ⊥ in each such execution.

(c) j′ /∈ Ik+1 and j′ ∕= n.
Then j′ is not the identifier assigned to the bridge b in any of the executions �i, I ∈ Ik+1, and
j′ is not assigned to the receiver node. So if j ∕= n, then j receives process j′’s message in each
�i, i ∈ Ik+1, whereas if j = n, then j receives ⊥ in each such execution.

(d) j′ = n, that is, j′ is the process assigned to the receiver node r.
Then j receives process n’s message in each �i, i ∈ Ik+1.
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Thus, in every case, j receives the same thig in round k + 1 of every execution �i, i ∈ Ik+1, which implies
part (c).

To conclude the proof of the theorem, we use Claim 3 for k = n − 3. Consider some i ∈ In−3. By
Claim 3, part (b), the bridge process i does not broadcast alone in the first n − 3 rounds of �i, preventing
process n from receiving the message during these rounds. This contradicts the assumed time bound for
A.

As shown in [22], the deterministic lower bound above can be generalized to a probabilistic lower bound,
as follows. As before, we assume CR1 and synchronous starts.

For this theorem, we consider a restricted class of adversaries: Each adversary selects only the proc
mapping. It resolves communication nondeterminism using the deterministic rules specified in the proof of
Theorem 2. It resolves collisions using CR1.

Theorem 4. Let n ≥ 3. There exists a 2-broadcastable undirected network (G,G′) such that there do not
exist a probabilistic algorithm A and integer k, 1 ≤ k ≤ n− 3, where A solves broadcast within k rounds
in (G,G′) with probability greater than k/(n− 2).

Proof. Fix (G,G′) as in Theorem 2. Fix some probabilistic algorithm A and integer k, 1 ≤ k ≤ n − 3.
Assume for contradiction that A solves broadcast within k rounds in (G,G′) with probability greater than
k/(n− 2).

For any deterministic algorithm, the proof of Theorem 2 exhibits a subset Ik ⊆ {2, . . . , n − 1} with
∣Ik∣ ≥ n− 2−k such that, for every i ∈ Ik, process i does not send alone in the first k rounds of �i. For the
probabilistic algorithm A, each way of fixing the random choices (using a predetermined choice sequence)
yields a deterministic algorithm, and so also yields a subset Ik with the same properties with respect to the
�i defined for these fixed choices.

From the probability distribution of random choices, we derive a probability distribution of subsets
Ik ⊆ {2, . . . , n− 1}, each with at least n− 2− k elements.

Claim 5. There is some i ∈ {2, . . . , n − 1} such that, with probability at least (n − 2 − k)/(n − 2), the
subset Ik derived from the probability distribution of random choices includes i.

Proof. Let J be the set of n − 2 − k-element subsets of {2, . . . , n − 1}. For any i ∈ {2, . . . , n − 1} and
J ∈ J , define mi, J = 1 if i ∈ J , 0 otherwise. Then for any J , Σim(i, J) = n − 2 − k. For any J ∈ J ,
write pJ for the probability that Ik = J . Then

Σi,J(pJ ⋅m(i, J)) = ΣJpJ(Σim(i, J)) = ΣJpJ(n− 2− k) = n− 2− k.

Now suppose for contradiction that for every i, the probability that the derived Ik contains i is strictly
less than (n− 2− k)/(n− 2). That means that, for every i,

ΣJ(pJ ⋅m(i, J)) < (n− 2− k)/(n− 2).

Then

Σi,J(pJ ⋅m(i, J)) = Σi(ΣJ(pJ ⋅m(i, J))) < (n− 2)(n− 2− k)/(n− 2) = n− 2− k.

Thus,
Σi,J(pJ ⋅m(i, J)) < n− 2− k,

which is a contradiction.
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Now fix i as in Claim 5 ; that is, such that, with probability at least (n − 2 − k)/(n − 2), the derived
subset Ik includes i. Then process i does not broadcast alone in the first k rounds of any of the executions
�i associated with the random choice sequences that give rise to subsets Ik that include i. Note that all of
these �i are executions in which IDproc(s) = 1, IDproc(r) = n, and IDproc(b) = i, and the other values of
proc are determined by a default rule.

Now define the adversary to fix IDproc(s) = 1, IDproc(r) = n, and IDproc(b) = i, and to determine the
other values of proc by the same default rule. Then whenA executes with this adversary, with probability at
least (n−2−k)/(n−2) the random choices prevent process i from broadcasting alone in the first k rounds.
Because i is associated with the bridge node, it follows that with probability at least (n − 2 − k)/(n − 2),
the message does not get to process n within k rounds. This contradicts the success probability assumption
for A.

Notes: The Ω(n) deterministic lower bound in Theorem 2 is matched by a deterministic round-robin
broadcast strategy, which succeeds in O(n) rounds in (directed or undirected) graphs of constant diameter,
and hence, in k-broadcastable networks for any constant k.

Bar-Yehuda et al. [2] proved a linear-round lower bound for deterministic broadcast in certain 2-broadcastable
networks. Their proof uses our collision rule CR4, which allows nondeterministic collision resolution with-
out collision detection. This gives the adversary more power than CR1 as used in our proof of Theo-
rem 2. Kowalski and Pelc [] observed that the lower bound of [2] does not work with CR3, which provides
deterministic collision resolution without collision detection; in fact, they presented an O(log(n))-round
deterministic solution, for the particular graphs used in [2]. They also presented O(log(n)) probabilistic
algorithms for these particular graphs, using CR4.

5 Deterministic Upper Bound
We describe a deterministic algorithm that solves the broadcast problem inO(n3/2

√
log n) time. To strengthen

the upper bound we assume the weakest assumptions from Section 2: a directed dual graph, Collision Rule
4, and asynchronous start. For simplicity we assume that n ≥ 3,

√
n/ log n is a power of 2, and that

I = {1, ..., n}, where I is the unique id set in our model.
Our algorithm follows the standard broadcast strategy of cycling through selection objects of exponen-

tially increasing sizes; c.f., [6, 7]. A selection object is a broadcast schedule for every node, parameterized
by the number of nodes participating, which guarantees that if the correct number of nodes participate, each
node will be isolated and will be the only node to broadcast in some round. Broadcast algorithms that follow
this strategy are typically concerned with isolating all frontier nodes, nodes adjacent to some node that does
not have the message yet.

In the reliable model, when a frontier node u is isolated and broadcasts alone, all of u’s neighbors
receive the message. Thereafter, node u is no longer a frontier node; even if u continues broadcasting, its
transmissions cannot interfere with the progress of the message, because all its neighbors already have the
message. Thus, in the algorithms of, e.g., [6, 7], nodes continue to cycle through selective families forever,
and never stop broadcasting. The different selector sizes are used to ensure that at least one selector matches
the size of the frontier, ensuring that all frontier nodes will be isolated.

In the dual graph model the situation is more complicated; there is no clear-cut “frontier”. Suppose
that node u has some G′-neighbors that have not received the message, but all of its G-neighbors already
have the message. Informally, node u no longer contributes to the progress of the algorithm, because the
adversary can prevent it from getting the message out to new nodes (its G′-neighbors); in this sense u is
no longer a frontier node. However, u can still interfere with the progress of the algorithm, because its

8



broadcasts can cause collisions at nodes that do not have the message. Due to this difficulty, we allow
processes to participate in each selection object exactly once, limiting the interval during which they can
cause interference. This strategy has the additional advantage that nodes eventually stop broadcasting. It
requires, however, a more nuanced argument to establish the message’s progress.

In the following, we use the notation [k, k′], where k′ ≥ k ≥ 1, to indicate the interval {k, ..., k′}, and
use [k], where k ≥ 1, to indicate [1, k]. We continue by defining Strongly Selective Families (SSFs), the
selection objects used in our algorithm.

Definition 6 ([8]:). Let k ≤ n. A familyℱ of subsets of [n] is (n, k)-strongly selective if for every non-empty
subset Z of [n] such that ∣Z∣ ≤ k and for every element z ∈ Z there is a set F in ℱ such that Z ∩F = {z}.

Erdös et. al. provide an upper bound on the size of these objects [14]:

Theorem 7 ([14]). For any n ≥ 3 and for k ≥ 2, there exist (n, k)-strongly selective families of size
O(min

{
n, k2 log n

}
).

Let smax := log(
√
n/ log n). For each s ∈ [smax], let ℱs be an (n, ks)-SSF of size ℓs = O(k2

s log n),
where ks = 2s. (By [14] we know such families exist.) We fix some total ordering ℱs[1], ...,ℱs[ℓs] on
the ℓs sets that comprise each family ℱs. Furthermore, we assume that ℱsmax is the round robin sequence,
which isolates every node in the graph. Thus, ℱsmax is an (n, n)-SSF. (We can assume this because ℓsmax =
Θ(k2

smax
log n) = Θ(n).) We now define our algorithm, which we call strong select.

The Strong Select Algorithm Assume without loss of generality that nodes have a access to
a global round counter.1 The algorithm divides the rounds into contiguous groups of length
2smax − 1 called epochs. The first round of each epoch is dedicated to the smallest SSF ℱ1; the
next two rounds are dedicated to ℱ2; the next four rounds to ℱ3, and so on. In general, we go
through 2s−1 sets of each SSF ℱs in each epoch.
When a node first receives a message, it waits, for each s ∈ [smax], until ℱs cycles back to ℱs[1].
It then participates in the SSF ℱs for a single iteration, broadcasting in any round in which its id
is included in the corresponding SSF set. That is, after it starts participating, in round r of epoch
e, a node with id i broadcasts iff i ∈ ℱ⌊log r⌋+1[

(
(e− 2) ⋅ 2⌊log r⌋ + r

)
mod ℓ⌊log r⌋+1 + 1]. After

participating in one complete iteration of an SSF, the node stops participating in that family. Each
node participates in exactly one iteration of each SSF used in the algorithm.

For a given SSF ℱs, we use the term iteration to describe a complete cycle through ℱs[1], . . . ,ℱs[ℓs].
Note that each iteration of ℱs is spread out over ℓs/2s−1 epochs. We also remark that in a given epoch it
could happen that a node participates in some selector families but not in others, because it is waiting for
those other selector families to cycle back to their first set.

Analysis. Fix a network (G,G′) and an execution � of the algorithm in the network. Define f(n) to be the
log-factor in the size of the SSFs: formally, f(n) is a function such that f(n) = O(log n) and for each SSF
ℱs used by the algorithm, ℓs ≤ k2

sf(n).
The proof involves an amortization argument, where (roughly speaking) we show that in every suffi-

ciently long interval the algorithm always makes progress: either many new nodes receive the message for
1To see why this is without loss of generality, note that the source can label every message it sends with its local round counter.

When any other node is first activated by receiving a message, it adopts the round number on the message, and labels all future
broadcast messages with its local round counter.
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the first time, and a lot of progress is made; or few nodes receive the message for the first time, but then
these nodes only have to contend with each other, and they will quickly be isolated and get the message out
to other nodes. To formalize this, we define the density of an interval [r, r′], denoted den(r, r′), to be the
number of nodes that receive the message for the first time in the interval, divided by r′ − r + 1:

den(r, r′) :=

# nodes that receive the message
for the first time during [r, r′]

r′ − r + 1
. (1)

Given an SSF ℱs, let cs(r, r′) denote the number of complete iterations of ℱs that fit in the interval
[r, r′]. Finally, we fix two constants that are used throughout the proof: we define a density threshold

� :=
1

12f(n)2smax
=

1

12f(n)
√
n/ log n

,

and let T be the smallest round such that den(1, T ) < �, that is, the round in which the density over the
entire execution first drops below �. We will eventually show that the algorithm terminates no later than
round T .

We begin by showing that each node that participates in one of the last iterations of some SSF ending
by round T is isolated.

Lemma 8. Consider the last c := min {4, cs(1, T )} iterations of ℱs in the interval [1, T ], for some s ∈
[smax]. Every nodes that participates in one of these c iterations broadcasts alone at some point during the
iteration.

Proof. Let P be the number of nodes that participate in one of the c last SSFs. Let ℓ′s = ℓs (2smax − 1) /2s−1

be the number of rounds required to complete an iteration of ℱs: family ℱs contains ℓs sets spread out over
ℓs/2

s−1 epochs (with 2s−1 sets from ℱs in each epoch), and each epoch requires 2smax − 1 rounds. Any
node that participates in one of these c iterations must receive the message for the first time in the interval
[T ′, T ] where T ′ = max {1, T − 6ℓ′s + 1}. Therefore, if we denote by R the number of nodes that receive
the message for the first time in [T ′, T ], then P ≤ R. Note also that den(T ′, T ) < �, otherwise we would
have den(1, T ′) < � and T would not be minimal. It follows that

P ≤ R
(1)
≤ den(T, T ′) ⋅ (T − T ′ + 1) < � ⋅ 6ℓ′s

=
6k2

sf(n) (2smax − 1)

12f(n)2smax ⋅ 2s−1

(ks=2s)
< ks.

We have shown that the total number of participants in any of the last c iterations is less than ks;
therefore, the number of participants in each individual iteration is also less than ks (because each node
participates in just one iteration). From the definition of an SSF, each participant in any of the last c iterations
will be selected to broadcast alone in the network.

Lemma 9. No node receives the message for the first time in the interval [T ′, T ], where T ′ = max {1, T − 1/�+ 1}.

Proof. If one or more nodes receives a message in this interval, then den(T ′, T ) ≥ 1
T−T ′+1 ≥ �, contra-

dicting the minimality of T .
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Theorem 10. The strong select algorithm solves broadcast in O(n3/2
√

log n) rounds in any directed (or
undirected) network (G,G′), with collision rule 4 and asynchronous starts.

Proof. We first show that every node receives the message by the end of round T .
Assume for contradiction that some node has not received the message by round T . Since all nodes are

reachable from the source in G, there exist two nodes u, v such that u has the message by round T and v
does not, and (u, v) ∈ E. This means that node u has not been isolated prior to round T ; we will show
that node u cannot have received the message prior to round T , deriving a contradiction. The proof involves
repeatedly using Lemma 8 to show that node u cannot have received the message by the last iteration of
selector families of decreasing size, pushing forward the round in which node u first received the message
until eventually we exceed round T ′ = T − 1/�, obtaining a contradiction to Lemma 9.

Formally, we show by backwards induction on s that for all s = smax, . . . , 1, node u did not receive the
message by round T − 2ℓ′s. Here, as in the proof of Lemma 8, we define ℓ′s = ℓs(2

smax − 1)/2s−1 to be the
number of rounds required for a complete iteration of ℱs. Note that T − 2ℓ′s may be negative, in which case
the claim trivially holds.

Induction base: for s = smax, suppose that T − 2ℓ′smax
≥ 0 and suppose by way of contradiction that

node u received the message by round T − 2ℓ′smax
. Since ℱsmax cycles back every ℓ′smax

rounds, node u
started participating in ℱsmax no later than round T −ℓ′smax

; by round T it has had enough time to participate
in a full iteration of ℱsmax . However, recall that ℱsmax is an (n, n)-SSF; any node that participates in a full
iteration of ℱsmax is isolated. Since we assumed that u has not been isolated by round T , it cannot have
received the message by round T − 2ℓ′smax

.
Induction step: suppose that node u did not receive the message by round T − 2ℓ′s, and suppose by

way of contradiction that u received the message by round T − 2ℓ′s−1 ≥ 0. Observe that since ℓ′s−1 =

22(s−1)f(n)(2smax − 1)/2s−2 and ℓ′s = 22sf(n)(2smax − 1)/2s−1, we have ℓ′s = 2ℓ′s−1: two iterations
of ℱs−1 fit inside every iteration of ℱs. Since node u did not get the message by round T − 2ℓ′s = T −
4ℓ′s−1, and we assumed for contradiction that it got it by round T − 2ℓ′s−1, it participates in one of the last
min {4, cs−1(1, T )} iterations of ℱs−1. From Lemma 8, node u is isolated, yielding a contradiction. This
concludes the induction.

We have shown that node u did not get the message by round T−2ℓ′1 = T−8f(n)
√
n/ log n > T−1/�.

Since we assumed that u did get the message prior to round T , it follows that u got the message for the first
time in the interval [max {1, T − 1/�+ 1} , T ], contradicting Lemma 9. This completes the first part of the
proof; we can now conclude that every node receives the message no later than round T .

To conclude the proof, consider the interval [1, X], where we defineX = n/� = 12n3/2f(n)/
√

log n =
O(n3/2

√
log n). If den(1, X) ≥ �, then n nodes receive the message during the interval [1, X]. On the other

hand, if den(1, X) < �, then by definition T ≤ X , so again all nodes receive the message no later than round
X . In both cases the broadcast is complete by round X , and the algorithm terminates in O(n3/2

√
log n)

rounds.

A Note on Constructive Solutions The (n, k)-SSFs of size O(min
{
n, k2 log n

}
) used in strong select

are derived from an existential argument [14]. The smallest-size constructive definition of an (n, k)-SSF,
from a 1964 paper by Kautz and Singelton [19], is of size O(min

{
n, k2 log2 n

}
). Replacing the SSFs in

our algorithm with the variant from [19] would increase our time complexity by only a
√

log n-factor.

6 Deterministic Lower Bounds
In this section, we present two lower bounds for deterministic broadcast algorithms. For both algorithms,
we assume collision rule CR1 and synchronous starts. The following bound is a straightforward adaptation
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of the result presented as Theorem 4.2 of [9]:

Theorem 11. There exists a
√
n-broadcastable directed network (G,G′), such that every deterministic

algorithmA that solves the broadcast problem in (G,G′) has an execution in which it takes Ω(n3/2) rounds
until the message arrives at all processes.

It follows that our upper bound in Section 5 is tight to within a factor ofO(
√

log n). However, this lower
bound construction depends heavily on the fact that the network is directed. If the graph were undirected,
processes could provide feedback to their neighbors when they receive the message; this would break the
reduction to the SSF lower bound which is at the core of the lower bound from [9].

We proceed with an Ω(n log n) lower bound that handles undirected networks. It remains an open
question whether this bound is tight.

Theorem 12. There exists an undirected network (G,G′), such that every deterministic algorithm A that
solves the broadcast problem in (G,G′) has an execution in which it takes Ω(n log n) rounds until the
message arrives at all processes.

In the following proof, we say a process is about to be isolated after a given finite execution if it will
send in the next round, and is the only process that will do so.

Proof. Let the set V of nodes be {0, 1, . . . , n− 1}, where 0 is the source node. We assume for simplicity
that n− 1 is a power of 2, n− 1 ≥ 4. We divide the nodes into layers Lk, k = 0, . . . , n−1

2 , where L0 = {0}
and for each k, 1 ≤ k ≤ n−1

2 , Lk = {2k − 1, 2k}.
We construct a dual graph (G,G′) with vertex set V . The reliable graph, G, is a complete layered graph,

with edge set E given by:

{{0, u} ∣ u ∈ {1, 2}} ∪ {{u, v} ∣ ∃k : u, v ∈ Lk and u ∕= v}
∪ {{u, v} ∣ ∃k : u ∈ Lk and v ∈ Lk+1} .

The unreliable graph, G′, is the complete graph over V : E′ = {{u, v} ∣ u ∕= v}. Note that by design, when
process proc(u) trasmits, where u ∈ Lk, its message can reach the processes at any subset of the nodes that
includes Lk−1 (if k > 0) and Lk+1 (if k < n−1

2 ).
We assume that the identifier set I includes a distinguished identifier i0 that is assigned to node 0, that

is, that proc(0) = i0.
We construct an execution � and mapping proc in stages numbered 1, 2, . . . , n−1

4 . At Stage k, 1 ≤ k ≤
n−1

4 , the construction assigns processes to the nodes (2k − 1 and 2k) in layer Lk, and constructs a longer
prefix �k of �. For any k, let Ak be the set of identifiers of processes that are assigned to nodes in layers
L0, . . . , Lk, by the end of Stage k. Our construction will ensure that, by the end of �k, exactly the processes
with identifiers in Ak have received the broadcast message. Moreover, �k ends with some process in Ak
about to be isolated.

As a base case for this construction, in Stage 0 we construct an execution �0 in which all G′-edges
are used in every round, ending with the first round after which i0 is about to be isolated. There must be
some such round, since otherwise no process other than process i0 will ever receive the message. We define
A0 = {i0}. Note that by the end of �0, only i0 has the message, because it has not yet sent alone.

Now we describe Stage k + 1, 0 ≤ k ≤ n−1
4 − 1, which assigns processes to the two nodes (2k + 1

and 2k + 2) in layer Lk+1, and extends �k to �k+1. For each pair of processes {i, i′} ⊆ I − Ak, we define
an extension �i,i′ of �k, in which we assign processes i and i′ to Lk, arbitrarily assigning one of the two
processes to 2k + 1 and the other to 2k + 2. We first define �i,i′ for any {i, i′}, and then describe how we
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choose the particular pair i, i′ that is used to construct �k+1. For convenience we number the rounds of �i,i′
after �k as 0, 1, . . ..

In round 0 of �i,i′ , we know that exactly one process sends, and it belongs to Ak. The adversary
allows this message to reach (and so, to be received by), exactly the processes in Ak ∪ {i, i′} (by using the
appropriate G′ edges). Thereafter, we use the following adversary rules to determine where messages reach.
Collisions are handled according to CR1, our strongest rule.

1. If more than one process sends, then all messages sent reach everywhere, and all processes receive⊤.

2. If a single process j ∈ Ak sends alone, then its message reaches exactly the processes with ids in
Ak ∪ {i, i′}, so exactly these receive it.

3. If a single process j ∈ I − (Ak ∪ {i, i′}) sends alone, then the message reaches all processes, so they
all receive it.

4. If either i or i′ sends alone, then the message reaches all processes, so they all receive it. (We include
this rule for completeness; this case will not arise within the number of rounds we will consider.)

5. If no process sends, then all processes receive ⊥.

These rules are designed so that, until either i or i′ sends alone, only the nodes in Ak ∪ {i, i′} will have
the broadcast message. It is easy to verify that the adversary can always follow the rules above regardless of
the process assignment to nodes 2k + 3, . . . , n− 1 (which we have not yet committed to at this point).

Having defined �i,i′ for all possible pairs {i, i′}, we must choose the pair {i, i′} that will actually be
assigned to layer Lk and used to define �k+1. We do this by constructing a sequence of candidate sets of
process identifiers, C0, C1, . . . , Clog(n−1)−2, where C0 = I −Ak, and each candidate set in the sequence is
a subset of the previous one. Informally speaking, the identifiers in each Cℓ are the candidates that remain
after we take into account behavior through round ℓ. The process ids i and i′ will be elements ofClog(n−1)−2.

We begin with C0 = I − Ak and construct the remaining candidate sets inductively. Observe that
∣C0∣ = ∣I−Ak∣ ≥ n−1

2 , because we apply this construction for only n−1
4 stages and add only two processes

to Ak at each stage.
We maintain the following inductive property for each candidate set Cℓ (where 0 ≤ ℓ ≤ log(n−1)−2).

Property P (ℓ)

(1) ∣Cℓ∣ ≥ n−1
2ℓ+1 .

(2) Let j ∈ I , and let {i1, i′1} and {i2, i′2} be two pairs of elements of Cℓ. Suppose that j is either in neither
subset or in both. Then process j receives the same values (either⊥, ⊤, or an actual message) in rounds
1, . . . , ℓ of �i1,i′1 and �i2,i′2 .

(3) Let i, i′ ∈ Cℓ. Then neither i nor i′ sends alone at any of rounds 1, . . . , ℓ of �i,i′ .

Part (1) of P (ℓ) will be used to ensure that we can extend Stage k to Ω(log n) rounds. Part (2) ensures
that neither of the processes assigned to layer Lk learns the identity of the other process, and also that none
of the processes assigned to layers greater than k learns the identities of the processes assigned to layer k.
Part (3) says that the candidates that remain after round ℓ have not yet sent alone, after �k.

Suppose we already have a set Clog(n−1)−2 satisfying P (log(n−1)−2). Conditions (1) and (3) together
imply that there exist i, i′ ∈ Clog(n−1)−2 such that neither i nor i′ sends alone in any of rounds 1, . . . , log(n−
1)− 2 of �i,i′ . We arbitrarily choose one such pair {i, i′}, and define �k+1 to be the prefix of �i,i′ ending at
the first time when either i or i′ is about to be isolated; this extends �k by at least log(n− 1)− 2 rounds.
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Inductive construction of C0, . . . , Clog(n−1)−2 Property P (0) is clearly true for C0. Suppose we have
already constructed Cℓ, where 0 ≤ ℓ ≤ log(n− 1)− 3, such that P (ℓ) holds, and let us construct Cℓ+1. We
begin by defining two sets:

∙ Sℓ+1 is the set of remaining candidates i ∈ Cℓ such that if we assign i to layer Lk, then i will send in
round ℓ + 1. Formally, Sℓ+1 is defined to be the set of ids i ∈ Cℓ such that for some i′ ∈ Cℓ, i′ ∕= i,
process i sends in round ℓ+1 of �i,i′ . (By Part 2 of P (ℓ), this set is equivalent to what what we obtain
if we replace “for some i′” with “for every i′”.)

∙ Nℓ+1 is the set of remaining candidates i ∈ Cℓ that will send in round ℓ+ 1 if we do not assign them
to layer Lk. That is, Nℓ+1 is the set of nodes such that for some j, j′ ∈ Cℓ where i ∕∈ {j, j′}, process
i sends in round ℓ + 1 of �j,j′ . (As above, by Part 2 of P (ℓ), this also holds if we replace “for some
j, j′” with “for every j, j′”.)

Note that for every i ∈ Cℓ− (Sℓ+1∪Nℓ+1), process i will not send in round ℓ+ 1 regardless of whether
or not it is assigned to layer Lk.

Now we are ready to define Cℓ+1. We consider cases based on the sizes of Sℓ+1 and Nℓ+1.

Case I: ∣Nℓ+1∣ ≥ 2, that is, there are at least two processes that would send in round ℓ+ 1 if they are not
assigned to layer Lk.

In this case we omit two such processes from the candidate set: we define Cℓ+1 := Cℓ − {j, j′},
where j, j′ are the two smallest elements of Nℓ+1.

Case II: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ ≥ ∣Cℓ∣2 . Then we set Cℓ+1 := Sℓ+1.

Case III: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ < ∣Cℓ∣
2 . Then we set Cℓ+1 := Cℓ − (Sℓ+1 ∪Nℓ+1).

That is, if at least two processes would send in round ℓ+ 1 if they did not receive the message in round
0, then we omit two such processes from the new candidate set. This guarantees that, in the remaining
executions we will consider, they will not receive the message in round 0 and will therefore send in round
ℓ+ 1, so everyone will receive ⊤ in round ℓ+ 1.

On the other hand, if at most one process would send in round ℓ+ 1 if it did not receive the message in
round 0, then we determine the candidates based on the number of processes that would send in round ℓ+ 1
if they did receive the message in round 0. If at least half would send in round ℓ + 1, we include exactly
those that would send. This ensures that, in the remaining executions, at least two of these will receive the
message in round 0 and will send in round ℓ+ 1, again causing everyone to receive ⊤ in round ℓ+ 1.

The remaining case is where at most one process would send in round ℓ + 1 if it did not receive the
message in round 0, and strictly fewer than half would send in round ℓ+ 1 if they did receive the message in
round 0. In this case, we include exactly those that would not send if they received the message, omitting the
possible single process that would send if it did not receive the message. This ensures that, in the remaining
executions, the processes that receive the message at slot 0 will not send at slot ℓ + 1. Other processes,
however, may send at slot ℓ+ 1.

Claim 13. Property P (ℓ+ 1) holds for Cℓ+1. That is,

1. ∣Cℓ+1∣ ≥ n−1
2ℓ+2 .
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2. Let j ∈ I , and let {i1, i′1} and {i2, i′2} be two pairs of elements of Cℓ+1. Suppose that j is either in
neither subset or in both. Then process j receives the same values (either⊥,⊤, or an actual message)
in rounds 1, . . . , ℓ+ 1 of �i1,i′1 and �i2,i′2 .

3. Let i, i′ ∈ Cℓ+1. Then neither i nor i′ sends alone at any of rounds 1, . . . , ℓ+ 1 of �i,i′ .

Proof. For Part 1, note that ∣Cℓ∣ ≥ n−1
2ℓ+1 , by Part 1 of P (ℓ). If ∣Cℓ∣ is even, the result then follows by easy

calculations based on the three cases in the definition of Cℓ+1 from Cℓ. If ∣Cℓ∣ is odd, then the calculation
is straightforward for Cases 1 and 2(a). The argument for Case 2(b) is slightly more involved. We know
that ∣Cℓ∣ ≥ n−1

2ℓ+1 . We know that n−1
2ℓ+1 is even, because ℓ ≤ log (n− 1) − 3. Since ∣Cℓ∣ is odd, we have

∣Cℓ∣ ≥ n−1
2ℓ+1 + 1. Also, since ∣Sℓ+1∣ < ∣Cℓ∣

2 , we have ∣Sℓ+1∣ ≤ ∣Cℓ∣−1
2 . So we have

∣Cℓ+1∣ = ∣Cℓ∣ − ∣Sℓ+1∣ − 1 ≥ ∣Cℓ∣ −
∣Cℓ∣ − 1

2
− 1 =

∣Cℓ∣ − 1

2
.

By the lower bound on Cℓ, the right-hand side is

≥
( n−1
2ℓ+1 + 1)− 1

2
=

n

2ℓ+2
,

as needed.
Part 3 follows from Part 3 of P (ℓ) and the cases in the definition of Cℓ+1.
In remains to show Part 2; for this, fix j, i1, i′1, i2, i

′
2 as in the hypotheses. Part 2 of Pℓ implies that j

receives the same values in the first ℓ rounds; we consider what happens in round ℓ+ 1. We consider cases
as in the definition of Cℓ+1.

Case I: ∣Nℓ+1∣ ≥ 2. Then in both �i1,i′1 and �i2,i′2 , two processes in Nℓ+1 do not receive the message in
round 0 and so send at round ℓ+ 1. It follows that j receives ⊤ in round ℓ+ 1 in both executions.

Case II: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ ≥ ∣Cℓ∣
2 . Then both i1 and i′1 send in round ℓ + 1 in �i1,i′1 and both i2

and i′2 send in round ℓ+ 1 in �i2,i′2 , so again j receives ⊤ in round ℓ+ 1 in both executions.

Case III: ∣Nℓ+1∣ ≤ 1 and ∣Sℓ+1∣ < ∣Cℓ∣
2 . Here we must carefully consider which processes send in

round ℓ + 1. We know that neither i1 nor i′1 sends in round ℓ + 1 of �i1,i′1 , and neither i2 nor i′2 sends in
round ℓ+ 1 of �i2,i′2 . Also, we know that each process in Ak chooses whether/what to send based on its own
state after �k, its receipt of the message in round 0, and whatever values it receives in rounds 1, . . . , ℓ. All
of this information is the same in �i1,i′1 and �i2,i′2 , using Part 2 of Property P (ℓ) (here, each element of Ak
is always in neither of the two sets). Therefore, it behaves the same in round ℓ+ 1 of both executions.

We now consider two sub-cases.
Subcase IIIa: ∣Nℓ+1∣ = 0. Then no process in I − (Ak ∪{i1, i′1}) sends in round ℓ+ 1 of �i1,i′1 , and no

process in I − (Ak ∪ {i2, i′2}) sends in round ℓ+ 1 of �i2,i′2 . Since neither i1 nor i′1 sends in round ℓ+ 1 in
�i1,i′1 , and neither i2 nor i′2 sends in round ℓ+ 1 in �i2,i′2 , it follows that in this subcase, no process in I−Ak
sends in round ℓ+ 1 of �i1,i′1 or �i2,i′2 .

We are left to consider the processes in Ak. If no process in Ak sends in round ℓ + 1 then j receives
⊥ in both � executions. If two or more processes in Ak send in round ℓ + 1, then by the adversary rules,
both messages reach all processes, so j receives ⊤ in both executions. If exactly one process in Ak sends,
then by the adversary rules, the message reaches exactly the processes in Ak ∪{i1, i′1} in �i1,i′1 , and reaches
exactly the processes in Ak ∪ {i2, i′2} in �i2,i′2 . Since j is either in both sets Ak ∪ {i1, i′1} and Ak ∪ {i2, i′2}
or neither, the message reaches j either in both executions or in neither execution. Thus, either j receives
the message in both executions, or it receives ⊥ in both executions.
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Subcase IIIb: ∣Nℓ+1∣ = 1. Then a single process n1 ∈ Nℓ+1 sends in round ℓ+ 1 of both � executions.
This follows because we have explicitly omitted n1 from Cℓ+1, ensuring that it does not receive the message
in round 0 in �i1,i′1 or �i2,i′2 , which implies that it sends in round ℓ + 1. By the adversary rules, we know
that n1’s message reaches all processes, hence reaches j, in both executions.

Now we consider the processes in Ak. If no process in Ak sends in round ℓ + 1, then j receives the
message from n1 in round ℓ + 1 in both executions. If one or more processes from Ak sends, then by the
adversary rules, their messages reach all processes. So then j receives⊤ in both executions (because the Ak
message(s) collide with the n1 message).

Combined, these cases establish Part 2 of P (ℓ+ 1), thus completing the proof of the claim.

Claim 13 implies that P (log (n− 1) − 2) holds for Clog (n−1)−2. Therefore, there exist two identifiers
i, i′ ∈ Clog (n−1)−2 such that neither i nor i′ sends alone at any of the first log (n− 1)− 2 slots of �i,i′ . (Use
Part 1 to show that ∣Clog (n−1)−2∣ ≥ 2, and Part 3 to show that the processes in this set do not send alone.)
We then define �k+1 to be the prefix of �i,i′ that ends just before the first round where either i or i′ sends
alone. This gives us an extension of at least log (n− 1) − 2 slots. Note that only processes in Ak ∪ {i, i′}
have the broadcast message by the end of �k+1.

For the entire construction, we begin with �0 and construct successive extensions �1, �2, . . . , �n−1
4

.
Since only two new processes receive the message in each stage, by the end of �n−1

4
, some processes have

still not received the message. The resulting execution is Ω(n log n) rounds long, which yields our lower
bound.

7 Randomized Upper Bound
In this section we give a simple randomized algorithm for broadcast, which completes inO(n log2 n) rounds
with high probability. We assume a directed communication graph, asynchronous start, and collision rule 4,
the weakest rule.

Algorithm Harmonic Broadcast Nodes begin participating immediately after they receive the
message. If node v receives the broadcast message for the first time in round tv, then in all rounds
t > tv it transmits the message with probability pv(t), where

∀t > tv : pv(t) :=
1

1 + ⌊ t−tv−1
T ⌋

,

where T ≥ 1 is an integer parameter that will be fixed later.

Hence, for the first T rounds after receiving m, nodes transmit the message with probability 1; in the next
T rounds the message is transmitted with probability 1/2, then the probability becomes 1/3, and so on. For
t ≤ tv, we define pv(t) := 0. For convenience, we assume that the sender s receives m at time 0, i.e., ts = 0
and s starts broadcasting m in round 1.

In order to intuitively see why the algorithm works, consider a layered network with layers of different
sizes, where all nodes in a layer receive the message at the same time and where the message is propagated
to the next layer as soon as some (specific) node in the current layer broadcasts alone. All nodes in the same
layer always broadcast with the same probability. If a layer contains k nodes, nodes need tosend with proba-
bility roughly 1/k Θ(k log n) times to guarantee progress with high probability. Setting T = Θ(log n), the
described algorithm guarantees exactly this for all values of k. As small layers need to make progress faster,
the algorithm starts with large probabilities and gradually decreases them. Since each probability is used
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Θ(log n) times, it is clear that the algorithm requires at least Ω(n log n) rounds to complete. The second
log-factor in the O(n log2 n) bounds is a consequence of interference from ’old’ layers. To intuitively see
this, consider a layered network in which all layers have constant size. If we would get to a new layer every
O(log n) rounds, the sum of the broadcast probabilities of previous layers could be estimated by a harmonic
sum and would thus be of order Θ(log n). However, this sum needs to be O(1) before the currently active
layer can make progress with reasonable probability. This leads to larger intervals of roughly Θ(log2 n)
rounds on average between reaching successive layers.

Analysis
For every t ≥ 1, we define

P (t) :=
∑
v∈V

pv(t) (2)

to be the sum of the transmitting probabilities in round t. We say that round t is busy if P (t) ≥ 1, and
otherwise we say that round t is free. We begin by bounding the number of busy rounds in any execution
from above.

We define the wake-up pattern of an execution to be a non-decreasing sequenceW = t1 ≤ t2 ≤ ⋅ ⋅ ⋅ ≤ tn
of round numbers, where t1 = 0, and ti is the round in which the ith node receives the message. (That is,
t2 is the round in which the first node that is not the source receives the message, and so on.) Note that
the wake-up pattern of an execution determines the broadcasting probabilities of the nodes in every round;
therefore, to reason about broadcast probabilities it is sufficient to reason about all possible wake-up patterns
(including ones that cannot occur in any execution of the algorithm).

Lemma 14. Let B(n) be the maximum number of busy rounds induced by any wake-up pattern. Then there
is a wake-up pattern for which rounds 1, . . . , B(n) are all busy.

Proof. LetW = t1 ≤ ⋅ ⋅ ⋅ ≤ tn be a wake-up pattern that maximizes the number of busy rounds, and among
those wake-up patterns that maximize the number of busy rounds, minimizes the number of free rounds
before the last busy round. We argue that this wake-up pattern has no free rounds between the busy rounds,
that is, rounds 1, . . . , B(n) are all busy rounds.

For the sake of contradiction, suppose that there is a free round before the last busy round, and let r0 be
the last free round before the last busy round. By definition, P (r0) < 1, and since round r0 + 1 must be
busy, we also have P (r0 + 1) ≥ 1. The sum of the broadcast probabilities can only increase from one round
to the next if some new node receives the message for the first time; thus, there is some node i0 ∈ [n] such
that ti0 = r0.

Consider the alternative wake-up pattern W ′ = t′1 ≤ ⋅ ⋅ ⋅ ≤ t′n, where t′i = ti if i < i0 and otherwise
t′i = ti − 1. Let us use P (t), P ′(t) to denote the sum of the probabilities induced by wake-up patterns W
and W ′ in round t, respectively. Further, let px(t) be the sending probability in round t of a node that first
receives the message in round x (as defined in the algorithm). Because the wake-up patterns W,W ′ are the
same up to round r0 − 2, we have P (t) = P ′(t) for all t < r0. For t ≥ r0, we have

P ′(t) =
n∑
i=1

pt′i(t) =

i0−1∑
i=1

pti(t) +
n∑

i=i0

pti(t+ 1)

≥
n∑
i=1

pti(t+ 1) = P (t+ 1).
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Therefore, if round t > r0 is busy for W , then round t − 1 is busy for W ′, and the total number of busy
rounds in W ′ is at least the same as in W . Furthermore, round r0 (which was free for W ) is busy for W ′,
because round r0 +1 is busy forW . It follows thatW ′ has fewer free rounds before the last busy round than
W does, but it has at least as many busy rounds, contradicting the choice of W . (Recall that W was chosen
to be a wake-up pattern that maximizes the total number of busy slots, and among these wake-up patterns,
minimizes the number of free time slots before the last busy slot.)

The following lemma bounds the total number of busy rounds induced by any wake-up pattern.

Lemma 15. The total number of busy rounds for any wake-up pattern is at most n ⋅ T ⋅H(n).

Proof. Consider an arbitrary n-node wake-up pattern W = t1 ≤ ⋅ ⋅ ⋅ ≤ tn. We show that there has to be a
free round by time tf (n) := n ⋅ T ⋅H(n) where H(n) =

∑n
i=1 1/i, H(0) = 1 denotes the harmonic sum.

Together with Lemma 14, this implies the claim.
We prove that there is a free time round by time tf (n) by induction on n. For n = 1 the claim is

immediate.
Thus, let n > 1. For i ∈ [n], let vi be the node that wakes up (receives the message) at time ti, and let

�i be the first free round when using the i-node wake-up pattern t1, . . . , ti (that is, the prefix of W in which
nodes vi+1, . . . , vn are never awakened). By the induction hypothesis, �i ≤ tf (i) for all i < n. We want to
show that �n ≤ tf (n).

Let us first consider the case where ti+1 ≥ �i for some i ∈ [n − 1]. In this case, round �i remains free
when we consider the complete wake-up pattern W ; thus, �n = �i ≤ tf (i) ≤ tf (n).

Next, consider the case where ti+1 ≤ �i − 1 ≤ tf (i) − 1 for all i ∈ [n − 1]. For any i ∈ [n], at time
tf (n), the sending probability of node vi is

pvi
(
tf (n)

)
=

1

1 +
⌊
tf (n)−ti−1

T

⌋
≤ 1

1 +
⌊
tf (n)−(tf (i−1)−1)−1

T

⌋ < 1

(n− i+ 1)H(n)
.

For the sum of transmitting probabilities, we therefore obtain

P
(
tf (n)

)
=

n∑
i=1

pvi
(
tf (n)

)
<

n∑
i=1

1

(n− i+ 1)H(n)

=
H(n)

H(n)
= 1.

Hence, round tf (n) is free, as required.

We say that a process is isolated in a round if it is the only process transmitting in that round. In the
following, we show that a process that broadcasts in a free round is isolated with high probability, and that
as soon as the number of free rounds since a process received the message is large enough, that process is
isolated with high probability.

Lemma 16. Let t ≥ 1 be a free round and assume that node v transmits in round t with probability pv(t).
The probability that v is isolated in round t is at least pv(t)/4.
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Proof. Because t is a free round, all transmitting probabilities are smaller than 1 and thus for all u ∈ V we
have pu(t) ≤ 1/2. Let q be the probability that none of the nodes in V ∖ {v} send in round t. We have

q =
∏

u∈V ∖{v}

(
1− pu(t)

)
≥

∏
u∈V ∖{v}

(
1

4

)pu(t)

>

(
1

4

)P (t)

>
1

4
.

In the last two steps we used the fact that for 0 ≤ x ≤ 1/2 it holds that 1− x ≥ (1/4)x, and that P (t) < 1,
because t is a free round. The probability that v is isolated in round t is pv(t) ⋅ q > pv(t)/4.

Lemma 17. Consider a node v, and let tv be the time when v first receives the message. Further, let t > tv
be such that at least half of the rounds tv + 1, . . . , t are free. If T ≥ 12 ln(n/�) for some � > 0, then with
probability larger than 1− �/n there exists a round t′ ∈ [tv + 1, t] such that v is isolated in round t′.

Proof. Let � = t − tv. Note that � ≥ 2T because v sends with probability 1 in the first T rounds (a nd
hence the first T rounds are not free). In round t, the transmitting probability of v is

pv(t) =
1

1 +
⌊
�−1
T
⌋ ≥ 1

1 + �−1
T

=
T

T + � − 1
. (3)

Because the transmitting probability is non-increasing, by Lemma 16, for every free round t′ ∈ [tv + 1, t],
the probability that v is isolated is larger than T

4(T +�−1) . Let q be the probability that there is no free round
t′ ∈ [tv + 1, t] in which v transmits alone. As there are at least ⌈�/2⌉ free rounds, the probability q is
bounded by

q <

(
1− T

4(T + � − 1)

)⌈�/2⌉
< e
− T ⋅�

8(T+�−1)

< e−
T
8
⋅ 2
3 ≤ e−

12 ln(n/�)
12 =

�

n
.

The first inequality follows from Lemma 16 and from (3); the second inequality follows because for all
x ∈ ℝ we have (1− x) < e−x. Finally, the third and fourth inequalities follow from � ≥ 2T and from the
fact that T ≥ 12 ln(n/�), respectively.

Finally, we are ready to prove the following main theorem:

Theorem 18. If T = ⌈12 ln(n/�)⌉ for some � > 0, all nodes of the network receive m by time T =
2 ⋅ n ⋅ T ⋅H(n) with probability at least 1− �.

Proof. For any node v, let tv be the round in which v first receives the message, or∞ if v never receives the
message. Let t′v be the first round after tv in which the number of free rounds greater than tv is equal to the
number of busy rounds after tv. By Lemma 17, node v has been isolated by round tv with probability at least
1 − �/n. By a union bound argument, the probability that every node v has been isolated by t′v (assuming
t′v is finite) is at least 1 − �. We will show that whenever this event occurs, all nodes receive the message
before the first time in which the total number of free rounds in the execution equals the total number of
busy rounds. Together with Lemma 15, this proves the theorem.

Let � be the first round in which over the entire interval [1, � ], the number of free rounds equals the
number of busy rounds, and suppose by way of contradiction that every node v was isolated no later than
round t′v (if round t′v is finite) but some node has not received the message. Let U ⊆ V be the non-empty
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set of nodes that have not received the message by round � − 1. Since G is broadcastable, there exists a
directed edge (v, u) where u ∈ U and v ∈ V ∖U . If we can show that t′v ≤ � , then by our assumpion that v
is isolated by round t′v, process u receives the message by round � , contradicting the choice of u.

To that end, assume by way of contradiction that t′v > � (or t′v is infinite), that is, the number of free
rounds in the interval [tv, � ] is smaller than the number of busy rounds. By choice of � we know that the
number of free rounds in the interval [1, � ] is at least the number of busy rounds in the interval [1, � ]. It
follows that the number of free rounds in [1, tv] exceeds the number of busy rounds in [1, tv], contradicting
the minimality of � .

By setting � = n−O(1), we get T = O(n log2 n), and hence we have shown that

Theorem 19. The randomized broadcast algorithm solves broadcast inO(n log2 n) rounds with probability
at least 1−n−O(1). in any directed (or undirected) network (G,G′), with collision rule 4 and asynchronous
start.

8 Conclusion
In this paper we introduce dual graphs, a new model for radio networks. Unlike most traditional models
for radio networks, the dual graph model allows for dynamic interference and unreliable communication.
Like traditional models, the dual graph model includes a graph G of reliable communication links; but in
addition, unreliable links are represented in the form of a second graph G′, whose edges can be deployed
against the algorithm by a worst-case adversary. Algorithms for the dual graph model are therefore highly
resilient to interference, noise, and unpredictable communication links.

In the current paper we showed that for the broadcast problem, resilience to link failures comes at the cost
of higher round complexity: a lower bound of Ω(n log n) holds for a setting in which the traditional model
admits an O(n)-round deterministic algorithm. Our deterministic upper bound, at O(n3/2) rounds, does
not yet match this lower bound; nevertheless, we gave reasonably efficient deterministic and randomized
algorithms for broadcast.

A significant part of the difficulty comes from the fact that the network topology is unknown to the
processes at the time of the broadcast. In future work it is our intention to explore repeated broadcast in
dual graphs, where we hope to improve long-term efficiency by learning the topology of the graph. Topology
control in dual graphs is another interesting area for future research.
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Appendices
A Comparison of Explicit-Interference Models and Dual Graphs
In this section we prove Lemma 1. The corresponding collision rules for explicit-interference graphs are
defined the same as the originals, with the following modification: all messages sent by u such that {u, v} ∈
GI reach node v; however, if {u, v} ∈ GI ∖ GT , then node v cannot under any circumstances receive
messages sent by u. If the only message that reaches node v was sent by u, then node v receives ⊥.

Proof of Lemma 1. . We prove the claim for undirected graphs; for directed graphs the proof is similar and
slightly easier.

We show that the behavior of the adversary in an explicit-interference model can be simulated by an
adversary for the dual graph model. More specifically, given an explicit-interference graph (GT , GI) of size
n, we show that a dual-graph adversary for the dual graph Ĝ = (G,G′), where G = GT and G′ = GI ,
can cause all nodes to receive exactly the same feedback that they would receive in the original graph. The
proof is not tied down to a specific collision rule; we map every possible behavior of the adversary to the
same behavior, so the proof works for all collision rules.

In a given round, we partition the nodes based on their behavior and the feedback they receive. Let
S ⊆ V be the set of nodes that broadcast in the round. Next, let R ⊆ V ∖ S be the set of nodes that
receive a message (that they did not broadcast), and let C ⊆ V ∖ (S ∪R) be the nodes that receive collision
notification. All the remaining nodes (in V ∖ (S ∪R ∪ C)) hear only silence.

Recall that we chose G′ = GI , so all GI edges are controlled by the adversary we are constructing. We
schedule only GI edges that were involved in a collision, that is, edges {u, v} ∈ GI such that

(1) there exists w ∈ S such that {u,w} ∈ GT .

(2) u ∕∈ R, and

(3) v ∈ S.

In other words, we choose edges {u, v} such that some message (sent by some w ∈ S) reaches node u, but
node u does not receive a message; and in addition, node v sends, so it can be (at least partially) blamed for
the collision.

First, observe that whenever two or more messages reach node u in the original graph, the same messages
will reach node u in the dual graph. Also, messages sent along GT -edges reach the same nodes in both
cases. We show that it is possible for the dual-graph adversary to provide exactly the same feedback as the
explicit-interference adversary to all nodes.

I. Let u ∈ R. Then there are two cases.

(a) Node u has exactly one GT -neighbor v ∈ S and all its GI -neighbors are not in S. In this case the
dual-graph adversary does not use any of u’s GI -edges (since they are not involved in a collision),
so v’s message is the only message that reaches u. The dual-graph adversary is free to deliver v’s
message to u.

(b) Node u has at least one GT -neighbor w ∈ S and at least one GI -neighbor v ∈ S. The explicit-
interference adversary must have used collision rule 4 to deliver w’s message to u. The dual-graph
adversary is free to do the same.
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II. Let u ∈ C. Then at least two messages reach u in the original graph, and therefore also in the dual
graph. The adversary can provide u with collision notification.

III. Let u ∈ V ∖ (S ∪R ∪ C) (that is, u hears silence). Then there are two cases.

(a) At least two messages reach u in the original graph. As already explained, the same messages will
reach u in the dual graph. Since the explicit-interference adversary did not provide uwith collision
notification, it is permissible for the dual-graph adversary to do the same (under the corresponding
collision rule).

(b) No GT -neighbor of u broadcasts. Our only concern in this case is that u might now receive
a message along the GI -edges that the dual-graph adversary schedules (where previously such
edges could only cause interference). However, the dual-graph adversary only deploys a GI -edge
adjacent to u if some GT -neighbor of u broadcasts. Therefore no GI -edges of u are deployed.

IV. Let u ∈ S. Node u receives either its own message, or collision notification (under collision rule 1).
If u receives its own message, then it is easy to verify that the dual-graph adversary can do the same.
If u receives collision notification, then at least two messages reach it in the original graph; as before,
the same messages reach it now, so the dual-graph adversary is free to provide collision notification.
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