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A. WORK COMPLETED

1. EFFECTS OF NOISE ON CEPSTRAL ESTIMATION OF ECHOES

This study has been completed by E. M. Portner, Jr. In August 1967, he submitted

the results to the Department of Electrical Engineering, M. I. T., as a thesis in partial

fulfillment of the requirements for the degree of Master of Science.

A. V. Oppenheim

B. SOME PROPERTIES OF THE CEPSTRUM

1. Introduction

The cepstrum has been defined I as the Fourier transform of the logarithm of the

amplitude spectrum of a signal. It has been found that it provides a very effective tech-

nique in machine analysis of speech,2 particularly as far as pitch extraction of voiced

sounds is concerned.

An interpretation of the cepstrum in terms of a general formalism for separation of

convolved signals has also been proposed,3 and new applications of the same technique,

again in the field of speech analysis, seem to be possible. 4

Investigation of the mathematical properties of the cepstrum has not yet been

carried out extensively, although some properties have already been shown for both con-

tinuous and discrete signals. 5' 6

This work was motivated by the desire both for a better understanding of the mathe-

matical properties of the cepstrum, and for testing Oppenheim's speculation that the

cepstrum might be used in a model accounting for pitch perception, at least at the level

of psychoacoustics.

The unifying idea of these two points of view is that the cepstrum could synthetically

express the temporal features of a periodical waveform (such as the period of a sine

This work was supported in part by the Joint Services Electronics Programs
(U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E),
and in part by the National Aeronautics and Space Administration (Grant NsG-496).
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wave) and, in some cases, be more convenient or suitable for measurements than other
functions (such as the simple inverse Fourier transform of the energy spectrum). One
might observe that the signal itself is the best expression of its temporal features, but
the point is that in many cases the actual waveform of the signal is not known or avail-
able. The signal might be added to noise, and we know that, in this case, the autocor-
relation function provides a good means for detecting the period of the signal. 7 Suppose
now that the only information available about the signal is its short time energy spec-
trum, 1(t, w), weighted by some function of o. [This could be the case physically (for
example, compressed band speech transmission, model of the peripheral auditory sys-
tem, etc.).]

Vie shall show that there is a large class of weighting functions to which the cepstrum
is almost insensitive, whereas the simple inverse Fourier transform is not. Therefore,
the cepstrum might, in this case, be a more convenient way of looking at the time prop-
erties of the signal.

In the following discussion, before showing this, the analytical properties of the
cepstrum will be considered in some generality.

2. Analytical Computation of the Cepstrum

According to definition, the cepstrum can be written

c (t, T) =) log o(t, ) ejT dw, (1)

where f(t, c) is the square of the magnitude of the short-time spectrum of a signal x(t).
We have decided to consider the short-time spectrum rather than the infinite-time

spectrum because it is more general and appropriate for a physical interpretation and
computation of the cepstrum. It can be defined 8 ' 9 as

F(t, o) = x(X) g(t-k) e - j k dk, (2)

where x(X) is the signal, and g( ) is a weighting function that, for the moment, can be
considered as the impulse time response of a linear physical system, which satisfies
the causality condition: g(X) = 0, X < 0.

f(t, o) in (1) is given by

D (t, W) = IF(t, ) 12 . (3)

Incidentally, we notice that the inverse Fourier transform of f(t, w), in w, is the short-
time autocorrelation function 9 (t, T).
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(t, ) 1 + (t, w) eJot do. (4)

Although 1(t, 0) in (1) has now been defined, Eq. 1 seems to need some more discus-

sion and elaboration. In fact, the integral in (1) is not well defined from a mathematical

point of view, the reason being that -1(t, w) diverges as c goes to infinity, since f(t, o)

in general tends to zero as w tends to infinity. We know, however, that the behavior

of D(t, c) at infinity affects the behavior of its Fourier transform only around T = 0; if

we decide, therefore, to ignore the cepstrum around T = 0 (that is, the limit as T - 0)

we may find a different expression for it which is better defined from a mathematical

point of view. Such an expression exists, in fact, and has already been used.5

S+co ~t(t, o)
c(t, T) = - e d e; T 0. (5)

To show its validity one can use the generalized Fourier integral 1 0 11 in order to handle

the original integral (1) at very high frequencies; one can further use the theory of dis-

tributions and generalized limits. 1 2 , 13

From now on we shall use (5) as the correct analytical expression of the cepstrum.

This requires that integral (5) exist. The conditions under which it does exist relate to

the class of functions that have a Fourier transform, but we shall not consider the prob-

lem in this generality.

We could ask, however, if integral (5) exists for the class of functions that we are

interested in. And since, at present, our interest is confined to short-time spectra of

periodic signals with a finite number of Fourier coefficients, the answer to this question

seems to be affirmative. A sufficient requirement is, for example, that the Fourier

transform of the weighting function is rational and has both poles and zeros in the left

half-plane, which is in fact the case for the weighting functions that we are going to use.

3. Cepstrum and Autocorrelation of Single Sine Waves Weighted by a

Fixed Function

The short-time energy spectrum 15(t, o) of a single sine wave can be written as fol-

lows:

2
(4i, W) = cos (w0x+IF) w(x) ej

cox dx (6)

A very reasonable choice for the weighting function seems to be an exponential such
-at

as w(t) = e (t >-0), because of the resulting simplicity for both the analytical compu-

tation and the physical measurement of 1(y, c). [By physical measurement of the energy

spectrum we mean what is referred to in the literature as "simultaneous spectral
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analysis."1 2 ]As far as this is concerned, the choice of weighting function which we have
made corresponds, for w >> a, to the use of symmetrical bandpass filters, all having the
same equivalent lowpass filter, whose system function is W(w) = 1/(a+jw). The short-
time energy spectrum, in fact, can be computed simply by taking the envelope of the out-
put of such a set of bandpass filters, all in parallel, the signal being the input. The
parameter o in b(t, c), in this case, has to be interpreted as the center frequency of
our bandpass filters.

Analytically, in case of a single sine wave and according to (6) we have

1

00

1(, T) = 4wo0

2 2
cos + cos - sin

0 4 1) + ( +
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0
e

a a
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0

cos 0 T- e0 T > 0.

Expressions (3) and (4) have been plotted in Fig. X-l for the value a = 0. 25. Only
C0O

two different values of the phase 4 have been considered, namely = 0 and - 2'
which correspond to some sort of limiting case.

The abscissa of the first positive maximum for both c(Q, T) and c(, T) clearly
corresponds to the period of the signal. We notice that the two different values

of the phase for such an abscissa produce a shift that decreases (relatively to
the period) as o0 increases. We might call this relative shift the "phase effect"
on the cepstrum and autocorrelation of a single weighted sine wave.

Both (t, T) and c(t, T) have been computed, and the phase effect has also been con-

sidered, in the cases of the sum of two and three sine waves of different frequencies.

These computations show that both (t, T) and c(t, T)preserve many of the qualitative fea-

tures of the periodic signal. In particular, both (t, T) and c(t, T) have a maximum cor-

responding to the period T of the signal, provided that T is of the order of magnitude

QPR No. 87

- LTao

CO

S0 )

7T 0

(8)

138



(X. STATISTICAL COMMUNICATION THEORY)

ARBITRARY
UNITS

-- + (o, r )
S - 0.25

- (r/2, ) O

(a)

ARBITRARY
UNITS

-

/ \
/ \
/ \I t

\-+ C(O,r)
/a 0.25

\ -- * C(/2, 0

1 0 1.5 2. 0

(b)

Fig. X-1. (a) Short-time autocorrelation function of a single sine wave (W0 )

with a fixed weighting function. Only two values of the phase Q
(which accounts for the parameter t) have been considered,

= 0 and i =-, corresponding to limiting cases. The initial

maximum ( = 0) has been omitted for scale reasons.
(b) Cepstrum of a single sine wave calculated for the same con-

ditions as in (a). Since the cepstrum tends to oo as T

approaches zero, this part of the graph has been omitted for
scale reasons.

or less than the "length" of the weighting function. We already know that the autocor-

relation function preserves some of the fundamental temporal features of a periodic

signal. On the basis of the examples considered, the conjecture can be made that the

cepstrum, too, reveals some of the main temporal features of a periodic signal.

4. Use of an e-dependent Weighting Function

We shall now extend the computation of the short-time energy spectrum 1(t, w)to the

case of an w-dependent weighting function w(t,w) (t>0). This case is physically
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interesting because it corresponds to the evaluation of the short-time energy spectrum

obtained by means of a set of bandpass filters that do not have the same system function

(except for the center frequency), unlike the case of a fixed weighting function. For
-kotinstance, if the weighting function e (t > 0) is used, a set of bandpass filters results,

all having the same Q factor, instead of the same band, B, as in the case of the func-
-at -kwttion e (t > 0) which was previously considered. The function e (t > 0) itself does

not correspond to a lowpass filter, but formally it can be considered as such, and used

for generating the bandpass filters. The parameter w, in fact, corresponds physically

to the center frequency of these bandpass filters. In some cases we call it w c, in order

to avoid possible confusion.

If the system functions of the bandpass filters in the two cases (e - at and e - kwt) are

compared, we have

1
Case a H Bp( ) = a << W , c > 0

a + j(W- c)

1
Case b HBP() = ; k << 1, o > 0.

kwc + j(W- c )

In case a the band and the maximum amplitude do not depend upon o ; furthermore,
c

if the input is a single sine wave, the total spectral energy + i'(t, c) dw is a constant,

that is, it does not depend on the frequency wx of the input (provided that a << Cx)
In case b we have Q = const. =l/2k; the maximum amplitude of the system function

is inversely proportional to the center frequency; and the total spectral energy, when

the input is a sine wave of frequency wx , is inversely proportional to x. Therefore,

we can say that, in case a, a "correctly weighted" energy spectrum [1a(t, w)] is gen-

erated, whereas, in case b, the energy spectrum [Db(t, c)] clearly has an attenuation

at the higher frequencies.

One can show, however, that by multiplying b(t, w) by a factor proportional to w,

a correctly weighted energy spectrum is restored, in the sense that the total energy

(the input being a single sine wave) becomes a constant as in case a.

We assume therefore that 4b(t, w), "compensated" by the factor w, is the correctly

weighted energy spectrum of case b.

Let us, however, compute the cepstrum c(t, T) and the simple Fourier transform of

D b(t, w) without any compensation. The simple Fourier transform of -b(t, w) will now be

called o(t, T), in order to distinguish it from the short-time autocorrelation function

previously considered (4).

We shall show that, in the case of the cepstrum, there is no substantial difference

when Db(t, w) is or is not compensated by the factor w, while in the case of G(t, T) there

is.
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The mathematical expressions for a single sine wave are the following (the phase

accounting for the parameter t):

-kc 0kT

T(0, T) = e 4k [cos wOkT-k sin wOkT] (T>0) (10)

-kw0k -

( , ) e [cos w0kT+ksin o0kT (T0) (11)

4k(l+k ) O0

c(O, ) =- 1 +2e Ok cosok- (r >0) (12)

S , T = Z-k0k cos 0k (T>0), (13)

where

Ok 2

We do not show the graphs of these expressions since they are not substantially dif-

ferent from those of Fig. X-1 for a reasonable choice of k, such as 0. 05. It can be

shown, however, that in this case the relative shift of the maxima with the phase (which

we have called the "phase effect") does not depend on wO"
In the case of two sine waves with the same amplitude,

x(t) = cos (cl t+ ) + cos (qw 1t+ + y); q > 1,

the mathematical expressions, for q = 0, y = Tr, are

2
y

S [(y-1 )2 +k][(y+1)2+k2][(y-q)Z+kZqZ][(y+q)2+kq] 
(14)

M y-1 y+l y-q y+ q
7 + + 2 22 2 (15)

b( )  y (y-1)2 + k2  (y+l)2 + k (y-q) + kq (y+q) + k q

where

y = -k = 0, y = T.

Clk 1 + k2
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{(T)}=0 =0 e 11k { cos OclkT - - sin wlkT

e 1 I szTI C O q

kc 4kq - cos qlk - D2 sin qc lkT; T >0,

(16)

where

cl = 2k(q2+1) + k(l-k )(q2-1)

sl = 2k 2 (q+1) - (qZ-1)(1-k )

c2 = 2k(q +1) - k(l-k2)(q2-1)

s2 = 2k2 (q+1) + (q 2-1)(-k 2 )

D = (q -1) (1-k 2 ) + 4k 2 (q +1)

1f- klk -kqw 1k
c()} 0  1+2e cos olk T+2e cos qolk ; T > 0. (17)LcP = 0 T 1k

These expressions, for the value q = 1. 5, have been plotted in Figs. X-2 and X-3,

while the signal has been plotted in Fig. X-4, for purposes of comparison.

We observe that the energy spectrum is attenuated at high frequencies, as expected,
and that its Fourier transform 0(T) has, in fact, lost its strict similarity to the signal
waveform. The cepstrum, on the other hand, has a waveform very similar to that of

the signal. This can easily be recognized if the signal is shifted along the time axis

until one of its major maxima falls at the origin.

What we call "similarity" mainly consists in having the same number of peaks with

approximately the same relative amplitudes for an interval of time (or T) of the order

of magnitude of the period. In computing the cepstrum, apparently, a correctly weighted

energy spectrum is in some way automatically restored. We might understand, and at
the same time generalize, this effect by looking at the manner in which the cepstrum
would have changed if a correctly weighted energy spectrum #(t, o)had been used instead
of Tb(t, o). In our case, 'D(t, w) = - .b(t, ). Since

,V (t, o) 1 +)(t, o)
- +

S(t, o) c b(t,w)

the "correct" cepstrum would differ from the cepstrum that we had computed only by a
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Short-time energy spectrum, 0b(w), of the sum of two

sine waves with the same amplitude and frequency
ratio 1. 5. The weighting function is the w-dependent

function e - 0 . 05wt (t>O0). The phases and y account
for both the phase between the two sine waves and their
shift (t) with respect to the weighting function. Also
shown is the effect of the transformation from Db(w) to

b (w)/ib(w), which was used for the analytical com-

putation of the cepstrum.
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q = 1.5
k = 0.05

* O,y (r

SC ()
G (T)

Fig. X-3. Cepstrum c(T) and the function r(t) calculated when the sig-
nal is the sum of two sine waves and for the same conditions
as in Fig. X-2. C(T) is the inverse Fourier transform of

Sb(w). As T approaches zero the functions r(T) and c(T) tend

to an absolute positive maximum and to oo, respectively.
This part has been omitted for scale reasons.

- 0-

Fig. X-4. The signal (sum of two sine waves) to which Figs. X-2
and X-3 refer. It is shown for comparison with c(T)

and c(T) in Fig. X-3. The aim is to show the similarity
between the cepstrum and the signal waveform after the
latter has been properly shifted along the time axis.

term -0. 5 to be added to the terms that multiply 1/T in (17). If we do this, the picture

of c(T) does not change in any substantial way.

This effect is far more general. In fact, if we have to weight (compensate) our

energy spectrum by any function of the kind

S
A e p w . r A, p, s, r real numbers,

instead of by o, we can easily see that the cepstrum would still not change in any

QPR No. 87

-- --

II I -- -- - - __ I I - I -- t

A nA
.

V

2.0 

V

3 .

q=1.5

144



(X. STATISTICAL COMMUNICATION THEORY)

substantial way, provided that r I and Is are of the order of magnitude of 1 or less.

Obviously, 0((T) does not have the same property.

This property of the cepstrum is physically very interesting because it greatly

enlarges the class of bandpass filters by means of which the energy spectrum of a sig-

nal can be physically computed and the time properties of the signal directly (that is,

via the cepstrum) recovered.

5. Conclusion

We have shown that (a) One can conjecture that the cepstrum is an expression that,

similarly to the autocorrelation function, reveals some of the main temporal features

of a periodic signal, and (b) The cepstrum has the original property of being almost

insensitive to a wide class of transformations of the short-time energy spectrum of the

signal, D(t, w).

We have also commented briefly on the physical significance and interest of these

results.

Both statements a and b might lead to more definite and quantitative conclusions

and, therefore, they implicitly indicate the direction of further work which seems to be

worth doing.

I am deeply indebted to Professor Alan V. Oppenheim for helping me choose this

problem and for his continued criticism and encouragement.

G. Gambardella
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