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A. LASER RADIATION THOMSON-SCATTERED BY AN ELECTRON BEAM

The experiment described in Quarterly Progress Report No. 79 (pages 143-144)

has been completed and the results are summarized in this report.

The purpose of the experiment was to experimentally verify the derived relationship

among the angle that the electron beam makes with the observation direction, the veloc-

ity of the electrons, and the shift in wavelength of the laser radiation. The components

involved in the experiment were completed. The observation system was scanned from

6700 A to 6800 A. The angle of observation was varied from 1100 to 1250, and the volt-

age was varied from 800 volts to 1100 volts. The experiment was done by first setting

a voltage and angle for the electron beam, making a rough calculation of the position of

the shifted wavelength, then scanning the interference filter over the scattered signal

envelope in 2. 5 A steps. The signal amplitude was recorded at each wavelength and the

wavelength of the center of the envelope was taken to be the scattered wavelength. The

results agreed within 1 A (in 150 A) with the theoretical predictions, which gives evi-

dence of the correctness of the theoretical transformation equation. Also, the amplitude

of the scattered signal agreed with the calculated value. The experiment is discussed

more fully in the author's S. M. thesis entitled "Study of Laser Radiation Thomson-

Scattered by an Electron Beam," conducted in the Department of Nuclear Engineering

and the Research Laboratory of Electronics of the Massachusetts Institute of Technology.

M. A. Samis

B. NONADIABATIC TRAPPING EXPERIMENT

1. Resonant- Particle Measurements

During the past quarter, considerable progress has been made in determining the

modes of particle escape from the nonadiabatic trap described in Quarterly Progress

Report No. 81 (pages 141-147). A new diagnostic, that of ion collection, has been added,

This work was supported by the United States Atomic Energy Commission (Contract
AT(30-1)-3285).
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and the problems of detector sensitivity mentioned in the last report have been solved by

the development of a fast low-noise miniaturized preamplifier. A new 15-period cork-

screw having a maximum perturbing field of 2 per cent was also installed. Figure XVI-6

shows the method of construction and illustrates schematically the changing pitch of the

conductors. Because of the large number of periods in this corkscrew, some of the cur-

rent windings were very closely packed. We found that displacements of the conductors

by as little as their own diameter had an appreciable effect (-10%) on the local corkscrew

field. As a result, any movement of the corkscrew windings in the course of the exper-

iment produced small (less than 10%) changes in the quantities under investigation. Qual-

itatively, however, the results obtained were insensitive to these small changes in the

perturbation.

Figure XVI-1 shows the measured amount of perpendicular energy possessed by the

beam at the end of its initial transit through the corkscrew as a function of the helix

current. With a 5:1 mirror ratio, vI/v 2 = 0. 20 is sufficient to trap the beam. With the

mirrors turned on, the beam was pulsed, and the decay of the trapped particles through

the end mirror was measured.

MIRRORS 12.5 amps

MAIN FIELD 1.98 amps

BEAM CURRENT 4.5 pA

CORKSCREW OFF

CORKSCREW ON ( 53 amps )

300 400 500 600 700 800

RETARDING VOLTAGE

900 1000 1100 1200 1300

Fig. XVI-1. Magnetic moment after first transit.
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Figure XVI-2 shows the decay curves obtained for three filling pulses. The rapid

initial decay has a time constant of approximately 2 sec, independent of the length of

the filling pulse. The time constants of the long-lived tails, on the other hand, increase

as a function of pulse length. Also, integration of these decay curves shows that the

fraction of trapped particles associated with the long-lived tails also increases with

pulse length.

The value of the short decay constant can be obtained by associating the rapid initial

particle loss with the preferential downward scattering in that region of velocity space

where particles can resonate with the corkscrew. The value of the long decay constant

can be obtained by associating the long-lived particles with those scattered into and out

of the region of velocity space above the resonant region.

The increase of the time constant and the number trapped in this long-lived group

with increasing pulse length is then due to the fact that as the filling pulse lengthens,

particles have time to diffuse farther and farther into the nonresonant region. No equi-

librium is achieved here, because the diffusion coefficient drops so rapidly away from

resonance. Since the resonant region lies closer to the loss cone, all particles must

exit by way of preferential downward scattering. Thus, when the beam is turned off, we

see, first, a rapid decay of those particles in the resonant region, followed by the exit

of the particles stored in the diffusive group.

Energy analysis of the escaping particles1 confirms that they are scattered out in

the large steps produced by resonance. This effect is especially pronounced in the case

shown in Fig. XVI-3. Here a partially wound 1600 V-beam is injected into the trap. The

top trace shows the energy analysis of the beam with no corkscrew current. The beam

is double peaked; the data show that in the uniform field region of the device, the two

components had 7 per cent and 8 per cent of their main magnetic field. When the cork-

screw is energized, the beam is trapped and the escaping particles are energy analyzed

in the lower trace. It is clear that the resonant scattering has given the escaping parti-

cles more parallel energy that the injected beam possessed.

Figure XVI-4 shows the energy analysis when the injected beam is adjusted to reso-

nance with the entrance conditions of the corkscrew. This is the condition for maximum

initial trapping and longest lifetime of the trapped particles. The almost linear slope

on the lower curve shows that under optimum trapping conditions the escaping particles

fill the loss cone of velocity space almost uniformly.

The picture of field-particle scattering in tuned helical nonadiabatic traps that has

emerged from these experiments is shown schematically in Fig. XVI-5. The trapping

resonance is the largest possible scattering that the particle can experience. It places

the injected beam somewhere between the dotted lines in the diagrams, the location

depending on the precise adjustment of the main field, the beam energy, the beam energy

distribution, and the corkscrew current. On the second forward transit, the trapped
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Fig. XVI-2. Variation of lifetime with pulse length.
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MIRRORS 12.5 amps

MAIN FIELD 1.98 amps

BEAM CURRENT 2.6 pA
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Fig. XVI-3. Energy distribution in the magnetic mirror.
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Fig. XVI-4. Energy distribution in the magnetic mirror.
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Fig. XVI-5.
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Summary of particle-corkscrew interaction.

particles that have an essentially random phase distribution are scattered either farther

away from or back into the resonance region on the third transit. Because of the

damping of the perturbation field those particles scattered downward on the second

transit are resonantly scattered in a stronger field, make a larger downward step, and

are rapidly lost. Those particles scattered away from resonance on the second transit

interact with a weak nonresonant field and experience a small-step diffusive scattering

with a lifetime that increases if they diffuse further from resonance. Unfortunately,

from the viewpoint of trapping, this diffuse group is fed by only a small part of the

injected beam. The existence of preferential downward scattering on the second transit

insures that most of the beam scatters downward into the resonance region. The best

measurement, thus far, shows 23 per cent of the total trapped particles in this diffusive

group with a lifetime of approximately 11 4sec. With 77 per cent of the trapped particles

in the resonant scattered group with a lifetime of approximately 2 - sec, the trap is

operating at approximately 2 per cent efficiency as compared with the Liouville limit set

by the experimental injected beam density.

2. Ion Detection

Figure XVI-6 shows the ion collector used in the experiment. In operation ions

produced by electrons within the volume defined by the inner screen are trapped by this

screen's -3 volt bias. Gas scattering eventually delivers a proportion of these ions to

the collector that is biased at -300 volts, both to aid in the ion-collection efficiency and
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4.1 cm O.D. GLASS TUBE

WINDINGS FIXED ON GLASS TEFLON INSULATION

FORM BY WIRE CLIPS THROUGH
HOLES IN TUBE S.S. ION COLLECTOR

(- 300 V BIAS )

- COPPER SCREEN
ION TRAP

(-3 V BIAS

DECREASING PITCH CORKSCREW S.S. V BOLASECTOR

WINDINGS OF BARE HOLLOW
CONDUCTOR TEFLON INSULATION

4.1 cm O.D. GLASS TUBE

Fig. XVI-6. Ion collector and corkscrew assembly.

to repel secondary electrons. Particles whose orbits are the tightest spirals spend less

time in mirror reflection and consequently make more ions within the collector per sec-

ond. These particles constitute the long-lived diffusive group mentioned above. Thus

lifetimes derived from ion-current measurements serve as upper limits to particle-

confinement times, and it is difficult to gather more detailed information without knowl-

edge of the distribution within the trap.

Another disadvantage of this technique is that it is very sensitive to the presence of

secondary electrons produced by the injected beam when it strikes any material surface.

These secondary electrons are mainly of low energy; consequently, their collision cross

section with gas molecules is quite high, yielding an ion current out of proportion to

their number. We have attempted to minimize this difficulty by using efficient beam

collection outside the mirrors and eliminating high secondary emission coefficient mate-

rials within the trap. In spite of these limitations, ion collection has the advantage of

the high accuracy of DC measurements, and constitutes a small perturbation probe of

conditions- within the trap.

The ion current is related to the trapped electrons by simple balance conditions.

The time rate of change of the number of trapped particles, N T , is

dN IA A A N N
dNT - f T L T T
dt - q T A-A T TH

g g

where I_ is the injected beam, f is the fraction of the beam trapped by the initial cork-

screw resonance, and T, T , and TH are the transit, gas-scattering, and helix-decay

times, respectively. The A T , A L refer to the areas on the velocity surface of area A

where particles are trapped by the magnetic mirrors or lost through the mirrors. Since
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gas scattering is assumed to be isotropic in velocity space, a scattered particle has

equal probability of landing anywhere on the velocity surface. Since the area associated

with the loss cone is smaller than the total area, the probability of scattering out of the

trap is reduced by AL/A. Similarly, the probability of scattering into the trapped

region is reduced by AT/A. The ion-balance equation is

dN+ NT I+

dt T+ q

where I+ is the collected ion current, and T+ is the ionization time. In the steady state

we have

T ATf+
STA

I_ g
I

+ T+ 1 AL 1 (3)

T AT
H A g

With no corkscrew

I= IT) AL (4)

Notice that the ion current is larger than one would expect on the basis of the beam

alone. The factor (AT/AL) is due to the gas trapping of particles scattered out of the

beam on its passage through one mirror and out of the other. When the corkscrew is

turned on, we have

TH

I = If + (5)+ A w s r y f
+

under the assumption that TAT/AT << 1 and TH < A T , which is certainly true for aT g AL g
5:1 mirror ratio, where AT/A = 0.9 and A/AL = 10. Taking the ratio of Eq. 5 to Eq. 4,

we get

I+ (helix on) A L fT HL H (6)
I+ (helix off) - A T

Figure XVI-7 shows an experimental measurement of I+ as a function of helix

current. The rise in I+ at 32. 5 amps corresponds to the measurement of wind-up as a

function of helix current from retarding potential measurements shown in Fig. XVI-1.

The critical nature of the adjustment to obtain the best trapping is illustrated by the

narrowness of the peak. At the peak we can assume that f = 1 and obtain an estimate of

particle lifetime in the trap.

QPR No. 82 200



(XVI. INTERACTION OF LASER RADIATION WITH PLASMAS)

(Ar I+ (helix on)
TH - + A I+ (helix off) T,

and

TH = 18. 2 Lsec.

This is quite consistent as an upper limit on the long-lived group decay measured by the

pulse technique. Because the function f is unknown away from the peak, this lifetime

MIRRORS 12.5 amps

MAIN FIELD 1.89 amps

BEAM CURRENT 3.2 pA

ION CURRENT ZERO 12.0 nano A

0 10 20 30 40 50 60
HELIX CURRENT (amps )

Fig. XVI-7. Ion current produced by corkscrew trapped particles.

estimate is the only piece of quantitative information obtainable from curves such as are

shown in Fig. XVI-7; however, the adjustment of the system parameters for optimum

trapping is indicated by the peak in such a trace and this was used an an optimizing

criterion for the pulse measurments.

The second peak in Fig. XVI-8 shows that trapping occurs for currents higher than

the corkscrew design current. This is due to the design equations for the corkscrew

field which require

QPR No. 82

70 80 90 100

201



(XVI. INTERACTION OF LASER RADIATION WITH PLASMAS)

I ° cos Xo = constant,

where Io is the helix current, and Xo is the field-particle phase of a particle in the

design orbit. As I° increases the design orbit shifts toward Xo = Tr/2. Since the beam

is adjusted for a specific entrance phase, increasing Io shifts the beam into an unstable

orbit. For sufficiently high currents, the unstable beam particle can be wound up and

completely unwound in the first few turns of the corkscrew. The phase of these unwound

particles is indeterminate. A simple consideration of the forces on the unwound particle

shows, however, that it takes up a phase near rr/2. This is near the phase of the design

orbit, and the beam can be wound up again.

3. "Dissociation" Experiment

We have shown that the dominant loss mechanism for particles that have been trapped

by means of a resonant nonadiabatic perturbation is the resonant scattering occurring

when a trapped particle experiences a local resonance with the perturbation. It has been

suggested 3 , 4 that one can avoid this loss by dissociating the injected particles so that

they can no longer satisfy the resonance relation

qBop(z)
vi 2 (7)

where p(z) is the varying pitch of the perturbation super-imposed on a uniform field, B .

For molecular ion injection, the velocity of the dissociated ion is the same as that

of the injected molecule, but its mass is decreased by half. Thus for this particle, Eq. 7

becomes an inequality,

qBoP(z)
v1< (8)

2r(m/2)

and no local resonance is possible. Notice that Eq. 8 can be rewritten

q(2B ) p(z)
v <  rm (9)

Now, if we design a corkscrew (that is, specify p(z)) to trap a particle of velocity v

and mass m in a magnetic field B o , and then study the interaction of the same particle

with the corkscrew in a field 2B o , Eqs. 8 and 9 tell us that we are studying the

dissociated-particle interaction. Figure XVI-8 shows the situation in velocity space

with a loss cone equal to that in our experiment. In a full-scale injection experiment,

molecular ions of mass Zm and velocity v/2 are trapped by a resonance on the inner

velocity surface. Dissociated ions will remain on the same velocity surface, but since

their mass is decreased by two, their resonance region is located on the outer surface

in this figure.
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v11 /v

Fig. XVI-8. Velocity-space diagram of "dissociated" particle experiment.

In our experiment we can study the escape of these dissociated particles in a partic-

ularly simple fashion. We adjust the apparatus so that the trapping resonance lies on

the outer surface of Fig. XVI-8 and inject a beam of electrons with v 1 /v = 1/2 and

v/v = 0. Since these electrons are on the inner velocity surface, they cannot be trapped

by the corkscrew resonance; however, while they pass through the region between two

magnetic mirrors, gas scattering will trap some of them. In other words, gas

scattering will populate the inner velocity surface with a low density of electrons. We

can then study the nonresonant effects of the perturbation on these particles. Because

the surface is thinly populated in a continuous fashion and the perturbation will cause

only a small change in the gas-scattering equilibruim, the sensitive ion-collection

technique was chosen as the initial diagnostic.

Figure XVI-9 shows a measurement of ion current as a function of electron

beam current with no corkscrew. The linearity of the curve is predicted by

Eq. 4 as
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I =I (10)

The gas within the apparatus was not known precisely, but the slope of this curve yields
-6

its average ionization cross section. For p = 2 X 10 Torr and a mirror ratio of 5,

+(?) = 2.4 X 10 - 1 7 cm 2 .

For comparison, the ionization cross section for 1600-volt electrons on CO 2 is

-17 2

a+(CO ) = 7.8 x 10 cm .

Since the residual gas in the apparatus is probably composed of heavy molecules, the

low ionization cross section indicates approximately 30 per cent collection efficiency.

0.90 r-

0.80

0.70 -

0.60 -

0.50 -

0.40 -

0.30 -

0.20 -

0.10

0 I I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60

HELIX CURRENT (amps)

Fig. XVI-9. Calibration curve for ion collector.

Since the corkscrew does not contribute to the trapping, f = 0 in the particle-balance

equations. Therefore the dependence of the ratio of ion-to-electron current on pressures

as shown in Fig. XVI-10 is given by

I /A 1

I T A T
- + AL

A TH

(11)

The main pressure dependence is from T+, but as the corkscrew is turned on and TH
decreases from oo, the slope of the curve in Fig. XVI-10 is seen to change. The ratio
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of ion current with the corkscrew off to that with the corkscrew on is given by

T
I+ (off) A g

1 + (12)
I+ (on) 1 AL TH

In Fig. XVI-10 the slight downward slope, as pressure is increased, is hidden in

the fluctuations caused by the fact that the system pressure could only be varied in

a gross manner by blanking off the pumps. The first and last points were the most

6 -

5

ION CURRENT

4 ELECTRON CURRENT

z O
3 -

2

ION CURRENT ( CORKSCREW OFF )

ION CURRENT ( CORKSCREW ON) ( 25 amps

0 I I I I I I
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

PRESSURE ( x 10
- 6 

TORR)

Fig. XVI-10. Pressure variation of ion current.

stable, and they do show a small downward slope of the correct magnitude (-3%).

The general agreement between Figs. XVI-9 and XVI-10 and Eqs. 1-6 serves as

an indication of the validity of these equations.

In order to study the dissociated-particle interaction, an x-y recorder was used to

record the ion current as a function of helix current. Then Eq. 12 was used to obtain

the lifetime of particles attributable to the helix scattering as a function of helix current.

Figure XVI-11 shows the result plotted on a log-log scale. A power law fits the data

over a sevenfold increase in the perturbation strength. At higher currents the ion cur-

rent saturated because the helix itself began to trap particles. At lower currents the

perturbation of the gas scattering was too weak to be seen accurately, but the curve does

break away from the law in the direction of longer lifetime, as one would expect.

The surprising aspect of this result is the 3/2 power dependence of the lifetime. The

diffusion theories that have been advanced to cover the nonresonant scattering2 , 3 regime

led one to expect
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S - 2
Bo0THa\ B .

O) 2/

(13)

The result of this experiment indicates a much faster loss of particles than

had been predicted on these earlier theoretical bases. A confirmation of this

100.0

80.0

60.0

40.0

20.0

3 2
a(-(BI)2

6 7 8 9 10

Fig. XVI-11. Lifetime of "dissociated"
electrons.

20 30 40 50 60 80 100
HELIX CURRENT

behavior by another diagnostic technique is clearly required to determine the

origin of this enhanced loss.
J. F. Clarke
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