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Abstract

This thesis presents a new architecture for controlling active material actuators in-
spired by biological motor recruitment. An active material is broken down into many
small fibers and grouped together to form one large actuator. Each of these fibers
is held in a binary state, either relaxed or contracted, using a small local controller
which responds to a broadcast input signal from a central controller. The output force
and displacement of the actuator is a function of the number of contracted fibers at
any point in time. This architecture enables the creation of large-scale, controllable
actuators from highly non-linear active materials.

The key innovation enabling the central controller to coordinate the behavior of
very many small identical units is to randomize the behavior of each unit. This the-
sis explains how a collection of active material motor units responding in a random,
uncorrelated fashion to broadcast commands will exhibit a predictable response that
can be stabilized with feedback control and observed using a Kalman filter. Various
control strategies will be presented and discussed, including open-loop plant behavior,
linear feedback, optimal control, and model-based look-ahead control. Performance
metrics such as accuracy and convergence time will be analyzed using dynamic pro-
gramming and other control techniques. Parallels will also be discussed between this
control problem and similar control problems in the field of swarm robotics.

The stochastic, recruitment-like actuator architecture is demonstrated in shape
memory alloy actuators, each composed of 60 individual elements, having a displace-
ment of over 20 mm and a peak force of over 100 N. Control of displacement, isometric
force and stiffness are demonstrated using the observer-controller framework. Two
actuators are used in an antagonistic fashion to control the stiffness and position of
a 1-DOF arm joint.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Artificial Muscle Actuators

The development of new and better actuator technologies is a widely recognized chal-

lenge facing the robotics community today. People believe that there are better tech-

nologies possible for actuation because the natural example of biological muscle is so

compelling. Muscle is an actuator that is well-suited to human tasks such as manipu-

lation and locomotion, that is lightweight, powerful and can fit into form factors that

cannot be achieved with electric motors. Inspired by this example, many researchers

have sought to produce actuators that mimic the basic properties of muscle. These ac-

tuators, including shape memory alloys (SMAs), dielectric elastomers, piezoelectrics,

conducting polymers, and polymer gel actuators, produce local stress in response to

local energetic input, delivered in the form of charge, heat or chemical energy [3], [24],

[38]. Because the material response is intrinsic, the force, displacement and stiffness

of the actuator can be tuned by tailoring size, shape and configuration of the active

material, in a fashion similar to skeletal muscle [67], [34].

1.2 Control Challenges

The goal of this thesis is to address some of the obstacles to progress in the area of

control of artificial muscle actuator materials. Most conventional actuators, such as



motors, solenoids, and capacitive actuators produce force by exerting an electric or

magnetic field on a moving or static charge. Because the propagation times associated

with electromagnetic fields and electron conduction are so short, it is possible to

describe the distributed force produced by these actuators in terms of lumped model

parameters, such as the armature torque constant of a permanent magnet motor. As

a result, feedback control of electromagnetic field-based actuators is very successful

based on models that can safely abstract away localized behavior in the actuator.

One of the principal difficulties faced in controlling the output of many new ar-

tificial muscle-like materials is the fact that in order to elicit an intrinsic response

from the material, energy must be moved locally into and out of the material, often

by thermal diffusion or mass diffusion of chemical species [7]. This diffusion behavior

can dominate the response of the material, becase the amount of time it takes to

diffuse into a bulk material increases with the square of the diffusion distance [44].

Additionally, the thermodynamic effects central to the actuation process, such as

phase transitions, or reaction-diffusion effects, can further complicate models of ac-

tuator behavior. As a result of these intrinsic difficulties, as well as gradients due to

leakage and non-uniform boundary conditions, it can be difficult to uniformly control

the intrinsic material state at all points within the actuator [39]. Critical dimensions

of these active materials, such as film thickness or wire diameter, must be thin to

enhance diffusive transport. Often, composite construction techniques must be used

to increase the local energy mobility to the point where diffusion delays are tolerable

[66], [4], [39]. There have been successful attempts at closed-loop control of active

materials, including polymer gels [44], conducting polymers [39], and shape memory

alloys [37], [62]. Nonetheless, these good results are obtained either by reducing the

feedback gain so that the closed-loop bandwidth is sacrificed for stability, or by re-

ducing the size of the active material element being controlled so that the diffusion

delays associated with heat or mass transfer are negligible. They do not address the

larger question of how these materials can be scaled up to produce large forces or

displacements, on scales which require more active material than can be realistically

controlled with a servo loop.



1.3 Alternative Control Architectures

This thesis seeks to build on the state of the art in control of small-scale active

material actuators. Rather than taking on the herculean task of controlling a large

monolithic active material element with a classical feedback loop, the approach taken

in this work is to break a large actuator down into many small functional units.

The problem of producing a large force or displacement therefore reduces to the

problem of coordinating the force or displacement production of very many small

elements. Just how much force or displacement can be produced is determined by the

number of units in the actuator, not the size of each unit. The other architectural

design decision made here is to make each small functional unit discrete, so that it

is either actively contracted or passively relaxed. This further simplifies the control

problem. If the actuator is commanded to produce 50% of its peak force, it activates

50% of its individual units, rather than commanding each to a 50% response. This

is particularly useful for materials such as shape memory alloys, which produce an

output that is easier to control as a discrete on-off switching behavior than as a

continuously regulated output [56].

This architecture is inspired by the organization of muscle. Muscle is a complex

chemically-activated polymer, which activates when exposed to the correct concen-

tration of chemical species [42], [68]. Despite the fact that the activation of skeletal

muscle requires reaction-diffusion kinetics that are bound by the same performance

constraints as their artificial counterparts, the response time of muscles is fast be-

cause the triggering chemical species, calcium, is stored throughout the muscle right

next to each fiber. The muscle is organized into very thin fibers that are activated by

depolarizing the fiber membrane with a nervous impulse. The calcium, stored out-

side the fibers in small tubules in much higher concentrations than inside the fibers,

diffuses quickly into the thin fibers, which contract rapidly. The overall level of force

produced by the actuator is not modulated by fractionally activating all of the mus-

cle fibers; rather, the muscle fibers are grouped into motor units, collections of fibers

that are all innervated by a single motor neuron. The motor neurons are activated



sequentially in response to increasing nervous stimulus, so that the fraction of active

fibers can be modulated smoothly [20]. This process of activating discrete sub-units

of muscle in order to produce varied levels of output is called recruitment.

1.4 Stochastic Recruitment

Discrete, Randomized
Activation

Central
Controller Broadcast

Command co

Only Net Force
and Displacement

are Measured

Many Motor Units

Figure 1-1: The architecture of the proposed recruitment-based actuator.

We wish to develop an architecture for coordinating the behavior of actuators

made from many small discrete sub-units, without having to explicitly consider the

internal state of each and every unit, as shown in Fig. 1-1. We would like a control

architecture which broadcasts a single command to all of the units, and measures

the aggregate output of the whole actuator. This, too, draws some inspiration from

muscle, where the number of motor units in the muscle is far larger than the number

of force and displacement sensors, called golgi tendons and muscle spindles [1]. With-

out such an architecture, each small actuator must be determined one by one central

controller aware of each actuator's state [56]. In past work, great care was taken to

minimize the number of units needed to produce the range of desired outputs. Cho

et al. used data compression techniques to construct an actuator array capable of

reproducing functional grasps with a minimal set of discrete actuator units [9]. How-

ever, for a general-purpose actuator whose outputs are not specifically constrained to

one set of tasks, this approach does not work. The other approach that was specif-

L



ically avoided was the creation of networks of smart actuator units who coordinate

their outputs using distributed computation [12]. The costs associated with inter-unit

communication, as well as the costs of computational power per unit, justify avoiding

this approach if possible.

The solution we propose is to design each unit to transition between relaxed

and contracted states with a controllable probability, uncorrelated from the other

units in the actuator. Rather than sending a command signal that somehow selects

which agents activate, the central controller broadcasts a signal that modulates the

probability with that each unit will turn on. The resulting state transition dynamics,

illustrated in Fig. 1-2 are very close to deterministic as the number of units becomes

large. The "noise" in the response is also very easy to characterize, since it is the

summation of many uncorrelated random variables. This state transition noise, and

more conventional sources of disturbance, can be compensated for by feedback control.

Simple linear feedback laws are adequate to stabilize the tracking behavior of the

actuator. Beyond the simple linear laws, it is possible to use the stochastic nature

of the system response to design control laws that perform optimally, in terms of

expectation-based performance metrics such as expected convergence time.

Response of 500 two-state units to a command to turn on with 60% probability

No units 0 All units
active 0.4 I active

0.6 "Noise" a

Units responding to command y Distribution

0 50 100 150 200 250 300 350 400 450 500

Number of active units

Figure 1-2: The response of many random two-state agents to a command to turn on
with probability 0.6. All units are intially inactive.

It is also worth noting that this control architecture could be applied to a wide

variety of control problems. Already, similar stochastic, hybrid-state agent models

h



are used in describing the behavior of swarms of insects and animals [2], [19], or

large swarms of robots [33], [5], and gene networks in bacteria [27]. However, most

of the work on controlling swarms of this kind is based on synthesizing local rules for

agent behavior a priori, so that their random transitions lead to the desired aggregate

behavior. Choosing these local state transition rules in real time based on feedback

measurements is not usually attempted'. Because the framework for feedback control

presented in this thesis can be generalized from the two-state control of actuator

units to the control of any ensemble of hybrid-state units with any number of discrete

states, It is applicable to many of these other problems, and has the potential to

impact these other problems of distributed control.

1.5 Organization of This Thesis

This thesis develops a framework for modeling and control of the SMA actuators

we have built, based on a recruitment-like architecture in which the shape memory

alloy is segmented into many independent units, which transition between heated and

cooled states randomly, based on a globally broadcast command signal. In chapter

2, the design of the indivdual shape memory alloy units is introduced. These units

are described using lumped models to represent the force-length relationship in the

heated and cooled states. System identification results for this model are shown for

experimental actuator units. This single unit physical model is then used to model

the force-length behavior of the entire actuator in various configurations of units, as

shown in Fig. 1-3. Additionally, a design is presented for small circuits capable of

making random state transitions on a centrally-controlled state distribution.

Chapter 3 presents a dynamic model of the actuator behavior, based on the dis-

crete random response of each actuator unit to the broadcast command. In addition

to the 2-state problem immediately relevant to the design of actuator units, chap-

ter 3 also includes a general model of the random behavior of small units having m

states. Several probabilistic models for predicting the system response to commands

1The work by Julius, Halasz and Pappas in [27] is the notable exception to this generalization.
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A single 2 state actuator t Parallel configuration of actuator units

In each state has some effective stiffness and displacement

Serial configuration of actuator units

. .-.. ,.
Force and stiffness are summed

Displacement and compliance are summed

Figure 1-3: Chapter 2 presents an equivalent stiffness model of actuator behavior.

given in the form of a state transition graph are derived, including an exact model, a

model based on Markov chain approximations, and a model based on approximating

the expectation and covariance of the number of units making state transitions at

each point in time. This chapter also includes an in-depth discussion of the open-

loop behavior of the stochastic recruitment-based actuator. Constant feed-forward

inputs are shown to produce a response that converges on a predictable probability

distribution, as shown in Fig. 1-4.

15

10

5 1-p1-q

0
0 10 20 30 40 50 60 70 80

Figure 1-4: The isometric force output of an actuator in response to a constant
broadcast state transition graph is shown for three different sets of graph parameters.

Chapter 4 discusses feedback control in the context of the stochastic system models

developed in chapter 3. Stability criteria for possible control laws are discussed, and

probability one convergence is used as a criterion for determining which control laws

are admissible for performance comparison. The control laws are then compared

using constant policy value iteration as a means of computing the expectation and

I I



variance of the time the actuator takes to converge to the desired state. The expected

convergence time of the actuator is shown to scale favorably compared to the settling

time of the active material. An experimental example of closed-loop feedback is

presented, as shown in Fig. 1-5.

Experimental actuator step response, N = 50, , = 4 s, yd= 235 mm, A = 0.4

300

200a 2Predicted 2%
1rconvergence time

0 5 10 15 20 25 30 35

Time [s]

Figure 1-5: A plot of the closed-loop step response of a 50 unit SMA actuator to a

position reference.

Chapter 5 discusses the development of state observers for full-state feedback

control laws, in the state space observer-controller framework of Fig. 1-6. The random

dynamic model of chapter 3 is adapted so that it can be used in a Kalman filter.

This general framework for control is very useful for systems whose output is not

rich enough to allow for algebraic estimates of the number of actuator units in each

discrete state. An experimental example is given, showing how a state observer can

be used to approximate the transient dynamics of the actuator repsonse in order to

develop control laws which respond quickly to disturbances.

Chapter 6 describes in depth the prototype actuator developed for testing the

actuator architecture, depicted in Fig. 1-7. It is a single degree of freedom arm

having two antagonistic actuators, each composed of 60 shape memory alloy units.

The force and stiffness of each actuator can be adjusted to control the position and

angular stiffness of the arm's elbow joint.
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Figure 1-6:
problem.

A block diagram of the recruitment problem as an observer-controller

Figure 1-7: The 1-DOF arm developed for validating the stochastic recruitment con-
trol architecture.
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Chapter 2

Actuator Architecture

2.1 Introduction

This chapter gives an overview of the physical behavior of the recruitment-based sys-

tem architecture presented in this thesis. It demonstrates how many small binary

actuator units can be combined in serial and parallel configurations to produce vari-

able force and displacement. Each unit is modeled as a hybrid-state, quasi-static

physical system, having some Thevenin equivalent representation for the contracted

and relaxed state. The combination of the individual units into a larger actuator can

also be represented with a Thevenin equivalent model, based on the number of units

in the contracted state, No,(t), and the number of units in the relaxed state, Noff(t).

2.2 Active Material Actuator Units

Figure 2-1 shows a diagram of the individual units to be combined into larger actu-

ators. These actuator units have a hybrid-state design, that is, they have a discrete

state component si(t) which can take two states, on and off, and a continuous state

component representing the relationship between the actuator's length, di(t), and

force, fi(t). The discrete state si(t) is determined by a state machine, which con-

trols whether the actuator is contracted (on) or relaxed (off). This is a simplified

architecture analogous to the way a motor neuron controls the activation state of its



associated muscle fibers.

Broadcast q(t) Active Material
Command, u(t) st) Local Element

- Controller

(t) Length, dt) Tension
Force,J(t)

Finite State Machine

Figure 2-1: The design of an actuator sub-unit for recruitment control.

2.2.1 Units Used in This Work

We chose to use Toki BioMetal Helix wire, part no. BMX150 [10], which provided

a contractile displacement of 50% of its relaxed length, at a peak force of roughly

2 N. The wire was Joule heated and convectively cooled. The Joule heating was

accomplished using a N-type FET, wired as shown in Fig. 2-2. A driving voltage was

chosen that reliably heated the material into the austenite state when heated, in the

presence of the forced cross-flow cooling.

Broadcast q(t)
Command, u(t) Switching Signal Toldki BioMetal

Helix Element + Vd

P(t) 
I 

Finite State Machine N-Type FET

Figure 2-2: The Joule-heated shape memory alloy actuator units used for this work.

2.2.2 A Quasi-Static, Hybrid-State Unit Model

One defining characteristic of most active materials is that they are not well-represented

as either force sources or displacement sources. The elastic properties of the mate-

rial are a strong function of the activation state of the material [51], [53]. One way

of describing this state-dependent elasticity is an equivalent circuit model [55], [46].

Fig. 2-3 depicts a Thevenin equivalent model, shown an ideal source in series with an



Actual
Rigid Passive Tension and

Displacement Impedance Displacement

Figure 2-3: An equivalent circuit model for each active material element.

equivalent impedance. Many different active materials can be characterized with this

simple model. For a SMA helix, the equivalent impedance can be assumed to purely

elastic, as shown in Fig. 2-41. Each element was assumed to have some effective

resting length Ji(t), and an effective series elasticity k(t), describing the relationship

between the overall element length d (t) and the tension force fi(t):

fi(t) = ki (t)(di(t) - 6i(t)) (2.1)

The steady-state equivalent circuit model can be characterized for each of the discrete

states once the transients associated with state transitions have settled.

A static mechanical analyzer was constructed to measure the force-displacement

relationship of the SMA wire in its relaxed and contracted states. The results are

plotted in Fig. 2-5 for a sample having a 40 mm resting length in the martensite

phase. A cyclic load was exerted on the element to measure the actuator stiffness

while the actuator was heated and cooled to the austenite and martensite phases.

The force-displacement data was extrapolated as shown in the figure to determine

the relative difference in resting length, 6gf - So,. The results agree well with the

assumed purely elastic model. The difference in resting lengths is found to be 20 mm,

and the stiffnesses are found to be 93 mN/mm in the austenite phase, and 83 mN/mm

in the martensite phase. The only somewhat surprising result is that the austenite

phase is only stiffer than the martensite phase by 12%, whereas Young's modulus is

significantly higher for austenite than for martensite [54]. This is probably due to the

1There is damping associated with the superelastic effect in shape memory alloys. However, it is
complicated to model and small enough that the zero-damping system provides a decent description
of the actuator behavior.



observed fact that the pitch of the helix changes as the helical element stretches.

f = k(d - 3)

Output
Rigid Series Tension, f

Displacement, 6 Stiffness, k Displacement, d

Figure 2-4: An equivalent circuit model for the shape memory alloy actuator units.

Austenite vs. Martensite mechanical properties

25 30 35 40 45 50 55 60 65
Elongation [mm]

Figure 2-5: The results from a static mechanical analysis of the SMA wire, showing
the stiffness and the difference in resting length between the two material states.

2.3 Arranging Units to Tune Actuator Impedance

The geometric configuration of an active material actuator determines force-length

output characteristics, like a gearing ratio. This is also true of muscle [34]. Because

the lumped stiffness of an active material element scales inversely with length, it

stands to reason that a shorter actuator will be both stiffer and produce less dis-

placement. Similarly, stiffness and force will scale proportional to the cross-sectional

area of the actuator. This section will describe how the arrangement of many small

actuator units can be converted into an equivalent circuit model of overall actuator

force-length properties. The goal is to produce a quasi-passive output model similar
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in form to (2.1) governing the behavior of the whole actuator,

F(t) = K(t)(D(t) - A(t)) (2.2)

Where the F(t) is the force produced by the whole actuator, and D(t) is the actuator

displacement. The resting length A(t) and stiffness K(t) of the actuator change with

the number of actuator units N,, (t) in the on state, depending on how the units are

connected, as shown in Fig. 2-6.

A(N (t), N(t)) K(N(t), Nf(t)) Length, D(t)

Force, F(t)

Figure 2-6: The whole actuator can be modeled as an equivalent circuit whose
impedance parameters are functions of the number of discrete units in each state.

2.3.1 Serial Configurations

Length, D(t)

on on off f on on

Force, F(t)
on unit off unit on unit

Figure 2-7: A serial chain of hybrid-state units, shown in equivalent circuit form.

Much of the early work done on segmented actuators in [56], [47], [48] was based

on serial chains of small elements, as shown in Fig. 2-7. Similar work on arrays of

tendon actuators composed of individual units in series was also explored [9]. When

actuator units are placed in a serial configuration, the equivalent impedance model

for the whole actuator is simple. Because the same force is transmitted through all

actuator units, the model from (2.1) can be used for each, with a common tension

( Ir



force F(t) in each unit of the actuator. This then determines the actuator's net length

D(t),

D(t) = di(t)(t) = t) i(t) (2.3)

F(t) = ( (t) (D(t) - E i(t))

The effective stiffness K(t) can then be found from (2.3),

F ( 1\ -

K(t) = = k at) (2.4)

Similarly, the net effective resting length A(t) could be ascertained by finding the

displacement for which the force is euqal to zero. This is somewhat trivial for a serial

chain,

A(t)= i(t) (2.5)

One thing that is important about this configuration is that the compliance and

effective resting length can be written in terms of the number of units that are in the

on and off states,

A(t) = onNon(t) + offNoff(t) (2.6)

1 Non(t) + Noff (2.7)
K(t) kon koff

This means that tuning the force-length relationship of this actuator is a matter of

adjusting several linear functions of the number of units recruited into the on state.

2.3.2 Parallel Configurations

When many actuator units are placed in parallel, the displacement of all units is equal

to D(t), which is assumed to be greater than the resting length in either the on or

off state, so that all units are in tension. The total force produced is the sum of the
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Contracted units

Relaxed units

Figure 2-8: In the parallel configuration, each unit's force and stiffness sum to produce
an overall output.

force produced by each unit,

F(t) = E k(t)(D(t) - 6i) (2.8)

This means that the total stiffness is also a function of the stiffnesses of each individual

unit,

K(t) = E ki(t) = konNon(t) + koffNoff(t) (2.9)

The effective resting length of the actuator is a little more difficult to calculate. The

effective resting length can be found by setting (2.8) equal to zero,

A(t) E ki = Z kSi (2.10)

A(t) = ( kisi) (EkY 1

One interesting practical case occurs when the actuator displacement is smaller than

the resting length in the off state, D(t) < 5of. This occurs very frequently when

using the Toki BioMetal helical elements, because of the extremely large difference in

the resting lengths between the martensite and austenite phases. In this case, many

units do not actually contribute to the actuator force or elasticity, but rather remain

slack. The resting length A(t) is always equal to the resting length in the on state,



6o,, and the stiffness varies linearly with Non(t),

A(t) =

K(t) = konNon(t)

(2.11)

(2.12)

Figure 2-9 shows the force-displacement curve for such an actuator, indicating the

point on the curve where the off units become taut and contribute to the tension

force.

Actuator force-displacement curve as a function of recruited units
350

Slack units engage

300 - >1
N A =N

250 -

Z 200

J 150

100

50 - NA = 0 .2 * N

0

0 5 10 15 20 25 30
Displacement [mm]

Figure 2-9: The modeled force-displacement curve as a function of the number of
contracted units.

2.4 Summary

This chapter has outlined the physical architecture of an actuator made of many

discrete units, and the specific design of a shape memory alloy actuator unit that

will serve as the basis of all further experimentation. Both the serial and parallel

actuator configurations described here produce lumped, quasi-passive system models

whose parameters can be expressed as linear functions of the number of units in each

state. One configuration parameter that was not discussed in this section was the

possibility of a variable pennation angle, that is, the angle made between the direction

of output motion and the alignment of the actuator units. Exploration of this would



be interesting future work.

Many improvements could be made to the fundamental SMA actuator unit used as

a building block in this thesis. One easy improvement that can be made is to modulate

the current, rather than simply choosing a constant driving voltage. A simple pulse

width modulation scheme could be used to increase the current when the actuator

transitions from the off state to the on state, so that the phase transition is sped up.

This has been shown to work in previous, related studies [9]. It would be interesting

to attempt some kind of closed-loop compensation based on the thermistor effect, as

Teh and Featherstone demonstrated in their recent work [62]. This was not attempted

because the helical SMA wire might pose some difficulty. The spring contacting itself

may cause some change in the element's resistance. Still, it remains an interesting

future avenue of inquiry.





Chapter 3

Modeling Stochastic Recruitment

as a Random Process

3.1 Introduction

The previous chapter outlined a physical model of the actuator units, assuming that

they were at steady state. This chapter develops a dynamic model of the actuator

as it responds to state transition commands. The key to developing control laws for

this system is in developing a good model for describing how many individual random

state transitions impact the overall dynamics of an ensemble of units.

The first model developed in this chapter describes the state transition behavior of

a single unit, which is modeled as a random finite-state agent. Conditions are outlined

defining when this model adequately describes the output of each unit, based on the

transient dynamics of the underlying active material. This model is then used to

build a model of the dynamics of the whole ensemble of actuator units, based on a

state space consisting of the number of units in each state. Both the unit model and

the ensemble model are generalized to m states.

In addition to exact process models, two approximate models are introduced. The

first of these is a m-order Markov chain model whose state is the probability distribu-

tion on the state of any randomly selected agent. This model is useful for describing

the open-loop response of the actuator to a constant state transition graph. The



properties of the open-loop response are discussed mathematically and experimen-

tally. The second approximate model keeps track of the expectation and covariance

of the number of units in each state, rather than the whole distribution. This model

can be used to express the state transition dynamics as a linear state-space system

with additive random noise.

The specifics of generating uncorrelated, random state transitions in software or

hardware will not be discussed in this chapter; all of the results from this thesis were

generated using prepackaged software pseudo-random number generators, which were

more than adequate for guaranteeing the required stochastic behavior of each unit.

Unlike more advanced problems of random number generation requiring cryptographic

security, the requirements placed on the behavior of each unit are mild, as only uncor-

related, random state transitions are needed. For those interested in more specifics,

Appendix A explores how minimalistic random, uncorrelated state machines can be

implemented using a small number of digital logic gates.

3.2 Modeling Stochastic Recruitment as a Ran-

dom Process

3.2.1 A Single Unit Model

A recruitment-based active material actuator is made up of many small units, each

controlled by a two-state machine. If the state transitions of this machine are inten-

tionally randomized, then the behavior of each unit can be expressed as a random

Markov process, having a state vector s(t) E {off, on}. The random transitions be-

tween the on and off states are determined by two parameters: p(t), the probability

of transitioning from off to on at time t, and q(t), the probability of transitioning

from on to off.

In general, the dynamics of units having m states could be considered, having

a state s(t) e {1 ... m}, and a state transition graph A(t), as shown in Fig. 3-1.

This time-varying state transition matrix A(t) can be thought of as the conditional
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Figure 3-1: An illustration of the state transition matrix A(t).

probability of the agent's future state as a function of the present state,

Aij(t) = Pr{s(t + 1) = ii s(t) = j} (3.1)

The steady-state output of a single unit is determined by its finite state machine,

but the transient behavior is based on the continuous-state reponse of the physical

system, as illustrated in Fig. 3-2. These dynamics are assumed to be stable and

repeatable, so that the discrete state always determines the output of the unit. In

the case of the recruitment-based SMA actuator, the physical state of the actuator

is a sharply nonlinear function of temperature, as discussed in §2.2.1. Consequently,

constant-power resistive heating will produce the same output very reliably, as long

as the equilibrium temperature of each SMA element is significantly higher or lower

than the two-phase temperature region. The units' stable output behavior could also

be a result of some local closed-loop regulator, as it was in the case of the work of

Cho et al. on SMA actuator arrays driven by thermoelectric heat pumps [56], or Teh

and Featherstone's minor loop force control [62].

The time scale on which the output of an actuator unit is determined by discrete

state s(t) is illustrated in Fig. 3-3. A two-state machine which delivers different

state-dependent inputs (such as current) to the active material, so that within some

time AT,, the physical output of the unit y(t) converges to the steady-state values,

shown in the figure as h,, and hof, as if these steady-state values were references fed

State Transition Matrix
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Figure 3-3: An illustration of how a simple system could be hybridized. If the time
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Figure 3-4: The discrete system approximation.

to a feedback loop. The output y(t) can be treated as a static function of the discrete

state s(t), as shown in Fig. 3-4, provided that the time delay between discrete time

intervals is greater than the continuous settling time AT,. The output of a each unit

can also be a vector y(t), as it would be in the case of many parallel actuators whose

force and stiffness are both considered:

fon 1 (3.2)
Lkon J

hOff [foff

The time evolution of the finite state s(t) can be described using some vector

(t) = [ x1(t) 2 (t) ... X,m(t) ]T, an m-dimensional vector representing the proba-

bility that the agent is in any particular state,

xi(t) = Pr{s(t) = i} (3.3)

Using (3.1) the time evolution of each individual unit could be described in terms of

x(t) and A(t),

1(t + 1) = A(t)x(t) (3.4)

Recall that in the case of the actuator units, having states off and on, the state

___ _____ ___



transition matrix is determined by two parameters, p(t) and q(t),

A(t) = 1 - q(t) p(t) (3.5)
q(t) 1 - p(t)

The probability distribution over the state of a single agent has one free parameter,

which we will write as Xon(t),

Xt£) X on(t) Xon(t) (36)
- x off(t) 1 - Zo(t) (3.6)

This simple, one-agent random process model forms the basis of a model for the

dynamic behavior of the whole ensemble.

3.2.2 An Ensemble of Many Agents

Now, consider the case of NTotal identical units, all making discrete state transitions

based on the same broadcast state transition matrix A(t). It is impractical to estimate

the full state of the system in terms of some "master" NTOtal x 1 discrete state

distribution vector S(t) = [sl(t) s 2(t) ... SNTotal (t)]T. This approach scales poorly,

and also makes little sense if the units are effectively anonymous. Instead, it would be

more reasonable to represent knowledge of the system states in terms of a m x 1 vector

N(t), corresponding to the number of agents in each discrete state as illustrated as a

histogram in in Fig. 3-5. This is often called a population model, because it closely

resembles models for populations of herd animals, insects or fish [2], [61]. Because

the number of agents is conserved, the state distribution N(t) for the two-state model

has one free parameter, Non(t), as x(t) did in (3.6),

Non (t) Non(t)
Noff (t) NTotal - Non (t)
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3.2.3 Ensemble Output

It was shown previously in §2.3 that the output characteristics of the actuator, such as

the equilibrium position A(t) and the stiffness K(t), can be defined as linear functions

of the number of units in each discrete state for some geometric configurations. These

outputs could be represented as a vector Y(t),

NTotal

Y(t)= Y y(t) (3.8)
i=1

Because the output of each unit is determined by the state, Y(t) can be written as a

weighted sum of the elements of N(t), or as N(t) multiplied by an output matrix H,

NTotal

Y(t) = hS(t)N (t) = h1Ni(t) + A2 N2 (t) + ...hmNm(t) = HN(t) (3.9)
i=1

One thing worth considering here is that the space of possible state distributions

operates under constraints that provide information about the system's state. This

is why the two-state system was described in (3.7) by one free parameter, Non(t). In

general, conservation implies that a constraint exists in the form of a pseudo-output

for the system,

NTotal Ni(t) + N 2 (t) + ... + Nm(t) (3.10)

= 1 1 ... 1 ]N(t)

This pseudo-output can be appended onto the output matrix, and it is principally

useful for increasing the rank of H. For example, the force of an actuator may be

foff in the off state, and fo,, in the on state. This single output is not enough

to uniquely specify the state based on a force measurement. However, when the

conservation constraint is added, H has full rank and could be used to produce an
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algebraic estimate N(t) from the output Y(t),

H= fon foff (3.11)

.- 1

N(t) = ifon fo E f(t)
1 1 NTotal

Nn(t) = E f(t) - NTtal fon

fon - foff

3.2.4 Ensemble Time Evolution

The time evolution of the state distribution vector N(t) as a function of A(t) is far

more complicated than the Markov model derived for the single unit. It is best un-

derstood by introducing an intermediate random variable Tij(t) equal to the number

of units transitioning from state j to state i at time t. The lattice diagram in Fig. 3-7

illustrates the relationship between these intermediate variables and the components

of N(t + 1). The probability of any number of units transitioning in this manner is

dependent on the number of units Nj(t) in the originating state j. Because it is the

summation of many binary random decisions, the probability distribution over the

number of transitioning agents is binomial,

Pr {Tij(t) = k Nj (t), Aij (t)} = Ai )k(1 - A ij (t))Nj - k (3.12)k()
The future value of Ni is equal to a sum of the number of agents departing for state

i from all states, as illustrated in Fig. 3-7,

m

Ni(t + 1) = E Tij(t) (3.13)
j=1

This, in turn, implies that the probability distribution of N (t + 1) conditioned on the

present state N(t) and the transition matrix A(t) is the convolution of the distribution



Departure as a Random Variable

N2 (t)1

3

1 Tu(t)= N2 (t)
k=1

Arrival as a Random Variable
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N2 2(+)= k Trk(,)
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Figure 3-7: A lattice diagram illustrating the relationship between the number of

agents departing a single state and the number of agents arriving in a single state.

over the independent transitions from the agents in each state,

Pr {N(t + 1) = ki N(t),A(t)} =Pr{Ti(t) = 1...N(t) Nl(t), Ail(t)}

® Pr {Ti(t) = 1...N 2(t)l N 2(t), Ai2(t)

(3.14)

0 Pr {Tim(t) = 1...Nm(t)I Nm(t),Aim(t)}

For a two state system with states on and off, this convolution is easy to compute

because there are only two independent transitions that can be made, Tof-fon(t) and

Tono,,f(t). The probability of some number of on agents at time t + 1 can be written

as a function of the state transition parameters p(t) and q(t),

Pr{To-ffon(t) = al Noff(t),p(t)} =

Pr {Ton-of(t) = bl Non(t), q(t)} = (

Noff (t)

Non (t)

b

p(t)a(1 - p(t))Nof(t)
- a

q(t)b(1 - q(t))Non(t)
- b

Because the number of agents transitioning into the on state is the difference of these

two random variables, the probability distribution over a future state conditioned

on the present state is just the convolution of these two distributions. In the two-

state case, this is simple enough; however, it becomes impractical very quickly to

(3.15)

__



calculate the probability of arriving in some state for a system with many states.

Calculating the joint probability function for the number of agents arriving in two

different states i and j involves the computation of joint or conditional probabilities

for the intermediate variables Tik(t) and Tjk (t), and convolution over the joint event

space:

Pr { Tk(t) = a, Tjk(t) = bI Nk(t), Aik (t), Ajk(t)} = (3.16)

Nk(t) Aik (t)aAjk (t)b(1 - Aik(t) - Ajk(t))Nk- a- b

a b

Alternatively, the joint probability of arrival in some state could be computed using

the conditional probabilities of departure based on the fixed outcome of one state

transition,

Pr {Tik(t) = al Tjk(t) = b, Nk(t), Aik(t), Ajk(t)} = (3.17)

(Nk(t) - b 1 -Aik (t) ) a - Ai(t - Ajk(t) Nk-a - b

a ( - Ajk M1 - Ajk(t)

This can be generalized to computing the joint or conditional probabilities for all

transitions as a multinomial random variable. Unfortunately, it is apparent that

calculation of a probabilistic time evolution model based on this complete state rep-

resentation quickly becomes difficult as the number of agents and the number of states

increases, as it requires a sequence of convolutions be performed for every possible

future state.

3.2.5 In Summary

A random process model for the time evolution of both a single random agent and

an ensemble of random agents has been derived. However, the explicit calculation

of the probability distribution for a future state conditioned on the present state is

complex and involves performing many successive convolutions. The remainder of



the chapter focuses on two simpler models of the system behavior that shed more

light on the properties of its dynamic response. First, a m-order Markov chain model

will be introduced in §3.3. This model is useful for predicting the open-loop behavior

of the system, and for relating the control problems we are interested in to control

problems in the greater community of distributed control researchers. The second

model, covered in §3.4, is a two-moment approximation of the ensemble random

process model. It is far more computationally efficient than the explicit calculation

of probability distributions for N(t), and it is capable of modeling the propagation of

an estimated state trajectory for the model, as well as the estimation uncertainty.

3.3 A m-Order Markov Chain Model

Rather than calculating the probability distribution over all possible state distribu-

tions N(t + 1), a slightly coarser but much simpler model for the ensemble behavior

is to consider the probability distribution over each state for a single unit, x(t), as

representing the whole ensemble. Knowledge of x(t) does not guarantee that the num-

ber of agents in some state N(t) can be predicted exactly. Instead, it can only be

predicted as a Bernoulli random variable whose probability distribution is a function

of x(t),

Pr{Ni(t) = k _(t)} = N Total (t)k(1 - j (t))NTotal- k  (3.18)
k

Correspondingly, one could estimate a maximum a posteriori likelihood value for x(t)

given N(t) using the probability distribution in (3.18). This estimate, -(t), is equal

to the number of agents in each state divided by the total number of agents,

S(t) = N(t)INT otal (3.19)

The expected value of N(t) can be expressed as a function of x(t),

E{N(t) x(t)} = NTotal_(t) (3.20)

!L 
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The covariance of N(t) can also be computed,

Cov{Ni(t), Nj(t) I (t)} = NTotalXi(t)(Sij - Xj(t)) (3.21)

Here 6ij is the Kronecker delta function. There are several reasons why using 1(t) as

a state variable for describing system behavior makes more sense than using N(t), if

little feedback information is available. First, it is easy to predict the future behavior

of x(t) given an initial condition and a broadcast command, using (3.4). In the

absence of other information, such as a measured ensemble output, this will provide

a good guess of long-term behavior. Second, as NTotal becomes large, the law of large

numbers will guarantee that the true value of N(t) will approach its expected value.

This can be shown by computing the covariance of N(t) divided by the total number

of units NTotal, in a manner similar to (3.21),

Cov N (t) Nj(t) xt) (6t - (t)) (3.22)
NTotal ' NTotal NT Notal

As NTota l becomes large, these terms all approach zero as 1/NTota l . The behavior of

the system starting from some initial probability distribution x(0) can be found by

applying (3.4) recursively,

x(t) = A(k) x(O) (3.23)
k=0

It is worthwhile to note that this model, which relies only on an initial estimate of

x(t), will have bounded covariance at any point in time. Of course, estimation of

any bounded random process should be possible with bounded covariance. After all,

there is a clear maximum and minimum number of agents that can be in any state.

In this case, though, the interesting thing is that the value of the estimate does not

approach any kind of entropy limit as time passes. If, for example, the estimate of

N(t) approached a uniform distribution instead of a multinomial distribution, then

the boundedness of the covariance would not be remarkable. Instead, the a priori

prediction of N(t) based on some initial value x(0) will remain more or less equally



valid throughout time.

3.3.1 Behavior given a constant state transition graph

One special case of particular interest is the case when the broadcast state transition

matrix is held at some fixed value A. If this is true, then (3.23) reduces to a simpler

expression,

x(t) = A tx(0) (3.24)

Naturally, this implies that the steady state behavior of x(t) will be determined by

the eigenvalues of A. According to the Perron-Frobenius theorem, if A represents

a conservative Markov chain, the eigenvalues are very constrained [15]. The largest

eigenvalue of A, A1, will be equal to 1, and it will correspond to a unique eigenvector

u 1. This stationary distribution describes the steady-state behavior of the ensemble

output. From (3.20), we know that the expected state distribution given x(t) could

be calculated for this stationary distribution,

E{N(ss)I x(ss) = 1,} = NTotalU1 (3.25)

Based on the matrix output model from (3.9), the expected steady state output can

be found from this,

E{Y(ss)I g(ss) = 4I} = HNTotalu1  (3.26)

Recall that the two-state transition graph to be broadcast to the actuator units has

two free parameters, p and q, corresponding to the constant probability per time

step of transitioning from off to on and from on to off, respectively. The largest
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eigenvalue of this matrix can be computed:

A(t) = I -q p (3.27)
q 1-p

U1= p+q (3.28)

p+q

3.3.2 Rate of convergence to steady state

Eigenvalue decomposition can also be used to describe the transient behavior of x(t).

The time evolution model from (3.24) could be rewritten in terms of the eigenvalues

Al... Am and the corresponding eigenvectors, u...Lm:

x(t) = Au _ ) (3.29)

The steady-state behavior of the system will be dominated by the eigenvector ul

corresponding to the largest eigenvalue A1 = 1. The time it takes to approach this

steady-state behavior is dominated by the second-largest eigenvalue of the constant

state transition matrix A, A2. For the two-state case, the second-largest eigenvalue

A2 is:

A2 =1 - p - q (3.30)

In the general m-state case, it is difficult to say anything about the value of A2

without directly computing it. The state transition matrix A is not symmetric, nor

is it positive, properties which would greatly aid in the construction of bounding cases

for eigenvalues.

3.3.3 Covariance in transient and steady state cases

Using (3.21), the covariance of N(t) can be calculated at any point in time. At

steady state, this covariance depends only on the first eigenvector of A. The value of

the other eigenvectors are still important; they determine how the magnitude of the



correlation between the present and past values of N(t) conditioned on x(t).

Cov{Ni(t), N (t + 1)1 (t), A} = NTotalXi(t) Aii5i Ajkk (t) (3.31)
k=1

The summation over k can be recognized as the time evolution of x(t),

Cov{Ni(t), Nj(t + 1)1 x(t), A} = NTotalzi(t) (Aiiij - xj (t + 1)) (3.32)

In the steady state case, x(t + 1) = (t) = U,

Cov{Ni(t), Nj(t + 1)1 x(t) = u~, A} = NTotalUli(t) (Aiisij - ulj) (3.33)

The diagonal terms of this autocovariance matrix are dependent on the magnitude of

the diagonal transition probabilities. For the two-state system, the covariance at the

present time and the one-step-ahead autocovariance are as follows:

Cov{N(t)| x;(t)} = NTot alX ono(t)(1 - xn(t)) i 1  -1 (3.34)

Cov{N(t), N(t+ 1)1 (t), A(t)} = (3.35)

S1- p-q p- -

jq-1- 1 - p-q

Notice that the diagonal elements of the one-step-ahead autocovariance matrix con-

tain factors of A2 = 1 - p - q. The role that the second-largest eigenvalue has in

determining the autocovariance of the two-state system is apparent here. A state

transition matrix with a fast convergence rate A2 - 0 will cause the state distribution

to exhibit relatively little autocovariance. A slow convergence rate ( A21 > 0) will

yield higher autocovariance.



Open-Loop Ensemble Behavior with a Constant Input
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Figure 3-8: A simulation of 5 trajectories having different initial conditions and the

same value of x,, all converge to the same distribution.

3.3.4 Rate of state transitions at steady state

Another possibly important performance metric which the Markov chain model can

be used to predict is the number of state transitions which occur when the system is

at steady state. The number of units which do not transition at any point in time

can be found by looking at the transition probabilities along the diagonal of A,

m

E{NTrans(ss)l x(ss) = ui} = NTotal (1 - Aii)u i  (3.37)
i=l

Notice that, like the steady-state autocovariance in (3.33), the expected number of

transitions per unit time at steady state is a function of the steady state probability

vector u I and the diagonal elements of A. In the two-state case, the rate of transitions

can be found as a function of p and q,

2NTtapq
E{N Trans(ss)l p, q} = (3.38)

p+q

I - -



3.3.5 Application: open-loop input planning for control

Finite-state Markov chain models have been used commonly to describe the behavior

of multi-agent systems, including swarms of robots [11], [33], [32], [40], [43], [60],

animals, [2], insects [5], robots interacting with insects, [19], and bacteria [26], [27].

They are also in use among these communities for the open-loop synthesis of systems

that exibit a desired collective behavior [18], [8], [59]. A similar analysis and control

system synthesis can be performed in the context of recruitment. It is illuminating

because it highlights some of the advantages and drawbacks of this general approach

to distributed control, as well as to the system at hand. Suppose that a controller

having no feedback information is left with the task of recruiting an ensemble of 2-

state on/off agents into a desired distribution Nref . Equation (3.28) demonstrated

that the state transition dynamics have a steady-state component in the response, so

p and q could be chosen so that some desired number or fraction is expected according

to (3.18),

p+q NTotp+ (3.39)
p+q NTotal

Unlike most feed-forward control problems, where initial conditions must be known

for controlling the system, this broadcast control will guarantee that the expected

number of agents will be on or off, irrespective of the initial condition x 0. Figure 3-8

illustrates this, showing an ensemble of 200 units, with a desired state distribution

of 125 on agents, 75 off agents. However, (3.39) does not completely specify p

and q. For example, setting p - 0.125 and q = 0.075 will drive expected fraction

of recruited agents to the desired distribution. The control policy p = 0.250 and

q = 0.15 will also accomplish this. Performance factors other than expected value,

such as convergence time, error variance, and steady-state energy costs may be of

interest, and the multiple policies satisfying (3.39) can be further analyzed to find

the policy with the most applicable performance trade-offs. The following section

presents an analysis of these different performance factors are affected by variations

in policy parameters, based on the analysis from §3.3.1-§3.3.4.
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3.3.6 Performance Trade-offs in open-loop response

Convergence rate and steady state distribution are independent. In order

to show this, the state transition graph parameters can be rewritten under a change

of variables. It then becomes clear that there is a factor which impacts convergence

rate but not steady state distribution. The control policy parameters p and q can be

rewritten in terms of three variables, 0, po and q0,

P = /po (3.40)

q = 3qo

Po + q0 = 1

When the transition probabilities are scaled in this way, the steady-state distribution

xs, is independent of 3,

S= (po+qo) P0 (3.41)

- 3(po+qo) J qo

However, (3.30) shows that the rate of convergence A2 still depends on 3,

1 -p- q = 1 -0(Po + qo0) = 1 - / (3.42)

This means that /3 is a free parameter with which the convergence time can be arbi-

trarily varied while still satisfying the steady-state condition imposed in (3.39). In the

most extreme case, /3 is chosen to be 1, so that A2 = 0. In this case, z(t) converges to

u 1 after only one time interval, according to (3.24). Figure 3-9 shows x(t) converging

to steady-state. Notice that for several values of A2 , the same steady-state behavior

is produced by each policy.

Convergence rate and variance are independent. Open-loop stochastic re-

cruitment guarantees only that the expected number of on agents in steady state

No,(ss) will be equal to Nnf. There will be some error at steady-state, which can be



characterized by the variance of N°. One striking and perhaps counter-intuitive fea-

ture of these feed-forward control policies is that this variance will not depend on the

rate of convergence. This can be proven by examining the variance of N,,o(s)/NTotal

As previously discussed, the predicted value of N(t) as a function of x(t) is a Bernoulli

random variable, so the variance at steady state normalized by the total number of

agents is given by

Var No(ss) = u(1- 1 ) pq (3.43)
NTotal NTotal (p + q) 2 NTotal

The / scaling argument from (3.41) and (3.42) can be applied to the variance

calculation. The numerator and denominator of (3.43) both vary by a factor of /2, SO

the variance is independent of the convergence rate, A2 = 1 - / at which the aggregate

output converges to its steady state probability distribution,

/ 2poqo Poqo- (3.44)
/ 2 (p0 + qo) 2 NTotal NTotal

This is an important observation; it means that nothing is to be gained by taking

"baby steps", that is, selecting very small values of p and q in hopes of improving

the accuracy of recruitment in exchange for a slower rate of response. For example,

Figure 3-9 shows three policies having values of A2 = 0.0, 0.2, 0.5. The probability

distribution of N,(t) given x(t), superimposed vertically on the plot, converges to

the same distribution at the steady-state. This result also implies that the only way

to improve the accuracy of this control system for any value of NTef is to increase the

number of agents, NTtal. Despite this, it is worthwhile to note that there is an impor-

tant relationship between the autocovariance of N(t) and A2 , as (3.35) demonstrated.

The practical implication of this in the context of control is in the power spectrum of

the error. A feed-forward broadcast command which causes x(t) to converge slowly

toward u, will have a very broad autocorrelation function, and consequently a very

narrow frequency distribution. In contrast, feed-forward broadcast command which

causes x(t) to settle rapidly will have a very narrow auto-correlation function, and

much more high frequency content in the error power spectrum.
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Figure 3-9: A graph showing the minimal impact of convergence time on the steady-
state variance

The steady state transition rate depends on convergence rate. In a physical

system, there is often a significant energy cost associated with switching agents from

one state to another. For example, a mobile robot switching between patrolling two

different areas will expend energy in driving from place to place. A shape memory

alloy actuator has significant latent heat associated with the phase transition used for

actuation, so spurious phase transitions are costly. As a consequence, it may be useful

to consider the expected number of state transitions per unit time when formulating

a control policy. We can apply the scaling argument again to (3.37), NTrans(ss) can

be rewritten in terms of 3po and 3qo.

E (ss) 3po, } = 22NTotapoqo = 3(2N Totalpoqo) (3.45)
E (po + qo)

It is clear in this expression that the most energy consuming steady-state is the middle

point, i.e. po = qo = 0.5, and that an increase in 3 implies more expected transitions

per unit time in the steady state.

In summary, the results of the scaling analysis, shown in Table 3.1, show that

there is a clear trade-off between between the rate at which the system converges

and the expected number of transitions at steady-state, but not in the overall output

covariance.



Table 3.1: Scaling of Performance Measures Versus 3

Performance Measure Dependency on 3 Goal

E(N°,O) none Nref

Var(N,) none 0

Convergence Rate A 1 - 0

E(Nfan") P(2Npoqo) 0

Figure 3-10: An actuator made from 60 parallel SMA springs.

3.3.7 Experimental example

In order to demonstrate the actual response of a recruitment system to an open-loop

input, an actuator made of 60 SMA units placed in parallel was used to produce force

at a constant displacement. Each unit was controlled with a small 2-state agent,

which received a constant state transition graph from a central controller. The SMA

spring in each unit was heated with Joule heating when the unit was in the on state.

This actuator, shown in Fig. 3-10, produced a force ranging from 0-30 Newtons,

depending on the number of activated elements. Several plots of step response are

shown in Fig. 3-11, for inputs having values of A2 ranging between 0 and 0.8, for

a steady state distribution of 60% on and 80% on, respectively. It is difficult from

these plots to distinguish the impact of A2 , probably because the lag due to the

output behavior of the material is dominating the time constant of response, adding

an additional dominant low-pass filtering characteristic. As A2 becomes large (for

example, A2 = 0.8 is shown), the effect of this parameter can be noticed.

Figure 3-12 shows the steady-state response of the actuator to commands with
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Figure 3-11: Open-loop response of the SMA actuator to constant feed-forward input
commands.
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Figure 3-12: Average and variance of the steady-state response to open-loop input.
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varying steady-state distributions and rates of convergence. The relationship between

the output force and the steady state eigenvector is very linear. There was no dis-

cernable relationship between the rate of convergence and the steady-state behavior,

as predicted. Based on this data, each actuator unit exerted approximately 0.5 N

of force in the on state. The variance of the steady-state output is also plotted in

Fig. 3-12, alongside the variance predicted by the model. The measured variance

was found to be much smaller than the variance predicted by the model. There are

two likely causes for this reduction in variance. First, the physical response time

of the actuator was longer than than the transition time interval, set to 2 seconds.

It took approximately 5 seconds for each unit to transition entirely from relaxed to

contracted state, and the transitions were made every second. Consequently, the

SMA activation dynamics acted as a sort of low-pass filter, smoothing the output and

reducing the variance. The other likely cause was that the time window over which

each output was averaged was roughly 80 seconds, which may not have been long

enough to pick up on longer-term random trends. In order to see the full effect, one

could increase the length of the time intervals, and take a much larger sample of data

to avoid missing variance due to extremely low-frequency trends in the output.

3.3.8 In Summary

This section has shown that a Markov chain model based on the probability dis-

tribution of a single unit's state is useful for predicting the open-loop behavior of

ensembles, and for the synthesis of open-loop inputs that drive the system toward a

desired distribution, irrespective of the initial conditions of the ensemble. However,

these open-loop inputs will not cause the system to settle with zero error, nor are they

robust to disturbances or modeling errors. To account for these factors, closed-loop

control is needed.



3.4 Moment-Based Models

In the previous section, the use of a single-unit probability distribution x(t) as a

sufficient statistic for describing the ensemble was examined thoroughly. Another

reasonable approximation of the ensemble behavior is to examine the expection and

covariance of the state transition dynamics as a function of the present state distri-

bution N(t). It is simpler to compute the expectation and covariance of the state

transition behavior than it is to deal with the whole probability distribution, and it

also has the advantage of utilizing the available information about the system state

than the m-order model. This approximate model has the dual usefulness of being

representable as a linear, time-varying model, shown in Fig 3-13, treating all of the

state evolution uncertainty as an additive, independent random signal, under the

right assumptions and bounding estimates. In future chapters, this moment-based

process model will be used for synthesizing control laws, and for online estimation of

the state distribution in full-state feedback control laws.

3.4.1 Expectation and Covariance of State Transitions

Going back to (3.12), the state transitions were modeled in terms of the random

variables Tij(t), the number of agents transitioning from state j to state i at time

t. The expectation of Tj(t) conditioned on Nj(t) and Aij(t) was found to be the

following:

E{Ti (t)I Nj(t), Aij(t)} = Ai (t) Nj (t) (3.46)

Because the value of N at time t + 1 is equal to the sum of all agents arriving in that

state, the expected number of agents in state i can be found:

m

E{Ni(t + 1)1 N(t), A(t)} = AikNk(t) (3.47)
k=1

Written in vector form, this becomes a matrix multiplication,

E{N(t + 1)1 N(t), A(t)} = A(t)N(t) (3.48)
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Figure 3-13: The moment-based model, illustrated as a block diagram

The expected future output Y(t + 1) can be predicted in a similar fashion,

E{Y(t + 1)1 N(t), A(t)} = HA(t)N(t) (3.49)

3.4.2 State Transition Covariance

The covariance of the state transition variables Tik(t) and Tjk (t) can be calculated

using the multinomial distribution,

Cov{Tik (t), Tjk(t)I N(t), A(t)} = NkAik (t)(j - Ajk(t)) (3.50)

Here Jij is the Kronecker delta function. In a manner analogous to the expectation,

each element in the covariance matrix of N(t + 1), Q(t), is a sum of the terms from

(3.50),

Cov{Ni(t + 1), N (t + 1)| N(t), A(t)} = Qij(t) = I NkAik(t)(ij - Ajk(t))
k=1

With a little rearranging, this can be written as a matrix equation,

Q(t) = diag{A(t)N(t)} - A(t) diag{N(t)}A(t) T

(3.51)

(3.52)

These two moments are simple to compute and could be used in a variety of ways.

In §4.5.3, this model will be used to construct control laws based on expected future
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error. In §4.7, possible uses of this model in the context of optimal control laws will

be mentioned. This model will also be used in §5.2 to construct approximate models

suitable for use in a Kalman filter.

3.5 Chapter Summary

This chapter has shown how a system made up of many hybrid-state units, such as

the actuator under discussion, can be described as a random process, whose state

at any point in time is the number of units recruited into each discrete state. The

random process model, which can be thought of as a state-space model with some

state vector, probabilistic time evolution dynamics, and a linear output function, will

be used to synthesize closed-loop control laws in chapter 4. It will also be used to

construct full-state observer-controller systems in chapter 5.

The lengthy discussion of open-loop dynamics was included partially in response

to the very large body of literature devoted to modeling all kinds of real systems as

ensembles of random finite state agents. The open loop behavior of the actuator,

while not of supreme interest to the design of an actuator, remains an interesting are

of study, and an interesting point of connection between this work and the work of

others.





Chapter 4

Feedback Control

4.1 Introduction

The goal of this thesis is to find a scalable way to control the summed output of

many small binary units within a large distributed system. Specifically, the task at

hand is to coordinate the behavior of actuators made from small compliant active

material "motor units," placed in series or parallel, as shown in Fig. 4-1. One

method of eliciting a varied response from many identical units is to randomize the

behavior of each unit, which can be done using very simple hardware, as Appendix

A demonstrates. A central controller determines the probabilities for transitioning

between the relaxed and contracted states, and broadcasts these to all of the units.

Chapter 3 demonstrated that the system dynamics imposed by this architecture are

predictable using a variety of simple models. This chapter will explain how these

models can be used to obtain convergent control of the system.

The process of developing control laws for stochastic recruitment systems occurs

in several steps. First, in Section 4.3, sufficient conditions for probablity 1 conver-

gence will be presented. This criterion is a straightforward and useful probability

guarantee that can be made about a random system such as this one. Then, Section

4.4 will present quantitative metrics for performance that can be used for comparison

between control laws that converge with probability 1, paying specific attention to

how the system performs relative to the transient dynamics of the underlying units,



A single 2 state actuator unit Parallel configuration of actuator units

In each state has some effective stiffness and displacement

Serial configuration of actuator units

Force and stiffness are summed
Displacement and compliance are summed

Figure 4-1: A diagram of the basic configuration of the 2-state actuator units.

and scalability of the system as units are added. Section 4.5 will go through several

different heuristic control laws, which are compared by evaluating the expected con-

vergence time to a neighborhood centered on a reference state Nref, as a function of

the initial state distribution, N(O). These results are also compared to results from

numerically computed optimal control laws. This chapter ends with an experimental

illustration of how well the performance indicators predict the true system behavior.

4.2 Control problem statement

The practical control problem under consideration is to regulate the force, displace-

ment, stiffness, or compliance of a serial or parallel network of small actuator units,

as shown in Fig. 4-1. Each unit has two states, on and off, in which the active

material is contracted or relaxed, respectively. The measured force or displacement

Y(t) produced by the actuator is measured and used to produce an estimate of the

number of units in each state, N(t) 1 . The simplest way that this estimate could be

found is if the rank of the output matrix H for predicting Y based on N is equal to

the number of states, m. Then the pseudo-inverse of H could be used to produce an

estimate N(t),

N(t) = H#Y(t) (4.1)

'In this chapter, the estimate of the state distribution, N(t), assumed to be accurate and feasible

to compute. A more thorough treatment of state distribution estimation can be found in chapter 5.

-h



Stochastic control system behavior
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Figure 4-2: The desired control system response, while not exactly prescribed in the
transient region, should settle to the desired state after a reasonably short number of
time steps.

In the case of a two-state actuator with one output, for example, force, H can be

made full rank if the number of units is constant, enabling the algebraic solution of

the output equation for an estimated state distribution, as in (3.11),

F(t) = fonNon(t) + FoffNoff (4.2)

N T ot al = Non + Noff

H = f foffi

The state estimates are then fed into a control law, a function which outputs two

values, p(t) and q(t). These values are the parameters defining a state transition

matrix A(t), which is broadcast as a command to all of the units.

4.2.1 Defining a Target Set

It is useful sometimes to think about the reference or target as a set of states, rather

than a single state. For example, one may wish to produce a force within 2% of

a desired value. Several state distribution vectors may satisfy this output. The

nomenclature Nef will be used to refer to the nominal desired value, and the set R

to refer to all states within some margin of error E of the desired state:

R = {N: iNo,, - Nnef E} (4.3)

I I



This notation is very useful for discussing the convergence behavior of control laws.

4.3 Convergence Guarantees

A typical first step in the synthesis of control laws for any system is finding the general

class of laws that satisfy a convergence or stability criterion. Once this basic property

has been established, discussion about the relative performance of control laws within

this class is possible. There are many notions of stability often used in this manner.

A few are listed here:

1. Hurwitz stability (for linear systems with negative eigenvalues) [45]

2. Lyapunov stability (convergence to a point in state space) [57]

3. Barbalat's lemma (convergence to an invariant set in state space) [57]

4. Contracting coordinates (convergence to any particular solution of the system

dynamics) [35]

For many stochastic systems, including the ensemble of recruited agents specific

to this problem, these notions of convergence are not applicable, because all of these

criteria rely on deterministic state evolution models. Instead, designers of stochastic

control laws must rely on techniques:

1. The method of nonnegative supermartingale functions, that is, proof that the

expected absolute output error looking forward in time is always less than the

presently known output error, as presented by Doob [13].

2. Stochastic Lyapunov functions, a variant on the nonnegative supermartingale

approach based on the state of a random process, rather than the output, thus

making guarantees about the state space rather than the output space. This

was proposed by Kushner [31].

3. Probability 1 convergence, or proof that the probability of being in the stable

state approaches 1 as time increases [6].



4. Exponential probability 1 convergence, a variant of Pr{1} convergence that

guarantees an exponential bound on the probability of being in the stable state

as time increases [6].

In this thesis, exponential probability 1 convergence was chosen for selecting con-

trol law candidates because clear sufficient conditions for exponential Pr{1} conver-

gence exist, and because exponential Pr{1} convergence provides useful guarantees

about the computation of control law performance metrics.

Convergence in Probability

SIIII 1II 1 1111 Itit R

1 2 3 4 5 6 7 8 9 10 11

Figure 4-3: A random process which converges exponentially with probability 1 is
one for which the probability of being in a target set R approaches one exponentially.

4.3.1 Sufficient conditions for Pr{1} convergence

Probability of Reaching the Target Set, R, at Time t+1

o°p,.I,,9

0 State distribution, N Nr '"a

Figure 4-4: In order to converge with probability 1, the control law must guarantee
that system reaches the target state with nonzero probability in bounded time.

Two sufficient conditions exist for proving probability one convergence for a ran-

dom process. First, the set of target states R to which the system converges must

Target
Uncertain Future Set, R

State, N (t+1)

Known Present
State, N (t)

d -- t



be reachable with some nonzero probability from any starting state, after a finite

length of time. For the two-state example, one way to guarantee this would be to

ensure that if the number of units currently in the on state, Non(t), is less than the

desired number N r f, then the probability of transitioning from off to on must be

non-infinitesimally greater than zero and less than one:

Non(t) < Nof : 6 < p(t) < 1 - , 0 < q(t) < 1 - 6 (4.4)

Noff(t) < NTotal - N r e f : 0 p(t) < 1 - 6 < q(t) 1- 6

6>0

If these restrictions are observed, then the probability of reaching R will be non-zero

at any point in time, as shown in Fig. 4-4. The probability of reaching the desired

state can be bounded from below by some Pmin, which can be found by considering

the least likely state transition behavior possible given some command. This would

be the joint probability of all units transitioning from off to on given a command to

turn on with minimal probability p(t) = 6,

Pmin = NTotal (4.5)

The second sufficient condition needed to ensure convergence with probability 1

is that the system must halt all state transitions when the state distribution N(t) is

within the target set R, so that the target set of states is absorbing2,

N(t) e R : p(t) = 0, q(t) = 0 (4.6)

Because of this, the probability of being in the target state at time t + 1, conditioned

on being in the target state at time t, is 1. It is possible to bound the probability of

being outside of the target set at any point in time recursively, by conditioning on

2 A set of states is absorbing if, once entered, the system never leaves. It is essentially equivalent
to the noation of an invariant set.
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whether the system is in the target state one time step prior:

Pr{N(t) R} = Pr{N(t) V RI N(t - 1) E R} Pr{N(t - 1) E R} + (4.7)

Pr{N(t) R I N(t - 1) V R} Pr{N(t - 1) 0 R}

Pr{N(t) R} < (1 - NTotal ) Pr{N(t - 1) R}

Thus, the probability that the system is not in the target set diminishes exponentially.

4.3.2 Properties of Pr{1} Convergent Control Laws

The guarantees provided by probability one convergence are subtle. The fact that a

control law makes a system converge with probability one does not necessarily mean

that it is a good control law, in any sense. For illustration, say that Alice is trying to

locate a long lost friend Bob by picking up the phone and dialing random ten digit

numbers until Bob answers. This could be represented as a control problem, if the

system state is defined to be whether or not Alice has reached Bob. The control

policy would then be:

* Bob has not been reached: Alice dials a random 10 digit number.

* Bob has been reached: Alice stops dialing numbers.

Assuming that Bob has a US phone number, then this control policy will converge on

Alice finding Bob with probability one, since there is a non-zero probability that she

dials the right number every time she randomly selects the right one. By any practical

performance metric, say, the amount of time it takes, or the amount due on Alice's

next phone bill, it is an insane proposition. If Bob has one number among the 10

billion numbers Alice could dial randomly, then the expected number of tries it takes

Alice to reach Bob friend is 10 billion. The real benefit obtained from proving proba-

bility one convergence is that many practical performance metrics can be calculated

- specifically, performance metrics that taking the general form of the expectation of



J(N(O)) =g(N(O)) + g(N(1)) + g(N(2)) + g(N(3)) +

0 0

* S

Figure 4-5: The cost functional J is evaluated for a specific state trajectory by sum-
ming a cost-per-stage in every state through time.

a summed, non-negative, bounded function of the state at any point in time,

J(N(O)) = E g(N(t)) N(O) (4.8)
t=0

0 < g(N(t)) < G (4.9)

A cost function of this kind, essentially an integration of cost along a state trajectory,

as shown in Fig. 4-5, is in the commonly used form of a discrete time functional, often

used for Hamiltonian optimal control. All such performance metrics are guaranteed

to be bounded. The proof of this bound follows:

Proof. The cost of any state at any point in time g(N(t)) is bounded from below

and above, 0 < g(N(t)) < G, and is identically zero when the system state N(t) is in

the target set R. The expected cost can be bounded by the following expression:

0<E g(N(t)) N(0) V R < G Pr{N(t) V R I N ( 0 )  R }  (4.10)
t=0 t=0

If the probability of not being in the target state is 1 at time t = 0, then (4.7) can

be bounded as an explicit sequence,

Pr{N(t) V RI N(0) V R} < (1 - 6NTota)t (4.11)

d L



Applying this bound to (4.10), we find that the total cost can be bounded by a

convergent series,

00o G
0 < E Eg(N(0)) N(0) 0 R < G (1- oa 6 )t = NTotal (4.12)

t=0 t=0

This ends the proof. The boundedness of the cost function is very important be-

cause it is necessary for the convergence of many iterative methods of estimating and

optimizing J.

4.4 Computing Expected Convergence Time

One very simple cost function to use for a system such as this is the expected time

it takes the system to converge. This can be expressed in the summed, non-negative

form just discussed. The cost of any state is defined to be 1 if the system has not

reached the target set, and 0 if it has,

g(N) = -- R (4.13)
1, N R

Optimal control problems of this kind are often called stochastic shortest path prob-

lems. The computation of numerically optimal control laws will be discussed, but

it is also useful to compute the cost of heuristic control laws. These heuristic laws

are much cheaper to compute in real time than the numerically estimated optimal

control laws, and their performance is comparable. Chapter 4 of Bertsekas' Dynamic

Programming and Optimal Control is a fairly good reference on this topic; It covers

everything in this section and the previous section regarding proofs of convergence,

boundedness of cost functions, and iterative computation of cost functions [6].
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Figure 4-6: If the process is Markov and the cost-per-stage g is solely a function of

the state, then the expected future cost can be treated recursively, and estimated
iteratively.

4.4.1 Iterative Cost Function Computation

The fact that the state trajectory is determined by a Markov process makes it easier

to compute, if the cost is solely a function of state and not of time. Consider a cost

function in the form:

J(N(O)) = E g(N(t)) N(O)
t=0

(4.14)

If the cost at the present state is known, then the right hand side can be split into

two terms:

J(N(O)) = g(N(0)) + E E g(N(t)) N(0) (4.15)
t=1

The sum remaining inside the expectation brackets is the expectation of the cost

function starting one step ahead,

(4.16)J(N(O)) = g(N(O)) + E { J(N(1))I N(O)}

= g(N(0)) + J(Nk)Pr{N(1) = Nk N(O)}

Here Nk is each element of the set of possible state distributions, and J(Nk) is the

cost function assuming that N k is the initial state distribution of the ensemble. This

recursive expression is called Bellman's equation. Because J depends on state, and
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not on time, Bellman's equation can be thought of as an identity that the cost function

must satisfy. It can also be used to iteratively estimate J by successively iterating

the computation of J in each state, starting with an initial estimated cost function

Jo which is used to compute J1 , and so on, until the estimate converges on the true

value:
Ji+l(N) = g(N) + E Ji(Nk)Pr{N(t + 1) = N} (4.17)

k

This estimation method, called constant policy value iteration, is convergent because

the control laws we are choosing converge with probability 1. Figure 4-6 illustrates

the recursive estimation based on a truncated cost series.

4.4.2 Second Moment Approximation

Once the cost function is estimated, it is also possible to compute the second moment

of the same functional [58]. This second moment cost function looks like this:

J2(N(0)) = E ( g (N(t)) N(O) (4.18)
t=0

The first cost term can be taken out by binomial expansion,

J 2 (N(O)) = g(N(O)) 2 + 2g(N(O)) BE g(N(t)) N(O) (4.19)

t=1

= (N(0)) 2 + 2g(N(0)) E NJ(N(1))j N(0)} + EJ2(N(1))l N(0)}



Substituting in (4.16), this can be reduced to a Bellman-like equation,

J2(N(0)) = g(N(0)) 2 + 2g(N(O))(J(N(O)) - g(N(0))) (4.20)

+ E J2 (Nk) Pr{NkI N(0)}
k

= 2g(N(O))J(N(O)) - g(N(0)) 2 + k J(ik) Pr{XkI (0)}
k

This second moment equation then can be iteratively approximated via the same

method of guesses (constant policy value iteration) to find the variance of any control

law.

4.5 Comparing Several Control Laws

Iterative cost function approximation is intended as a tool for the synthesis of good

control laws. The logical way to design a control law for some application is as follows:

1. Define a control problem in terms of the desired outcome and a system model.

2. Define a convergence criterion which all control laws must satisfy.

3. Define a performance metric for the comparison of laws.

4. Propose multiple control law candidates satisfying the convergence criteria spec-

ified, and compare the performance of the candidate laws.

Thus far, this chapter has followed this template. The control laws that follow are

intended as exemplar laws demonstrating the upper and lower performance bounds

that can be expected from reasonably well-posed control laws. The first control law

attempts the most naive control strategy, which, incidentally, resembles the open-loop

input plans most closely, and requires the least amount of information to implement.

The other control law candidates look more like traditional control policies: linear

feedback and feedback based on the moment model from §3.4.2. The last control law

considered is the numerically computed law minimizing the expected convergence

time to the desired set R.
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4.5.1 Minimal Feedback Laws

0

;3$.=4
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Minimal Feedback Control Policy State Distribution

Fixed probability per unit time
of reaching the target set, R

PDF of future state does not
depend on the present state

0 State distribution, N N 0b1

Figure 4-7: The probability per unit time of convergence for the minimal feedback

law is constant, as shown by this plot of the probability distribution of Non(t). at

any point in time.

One simple control law which serves as a good bounding case is the law which seeks

to drive the system toward the desired state Nref as fast as possible using an open-

loop input like those discussed in §3.3.5, with the exception that when the system

reaches the desired set of states, the command is broadcast to cease all transitions.

It is analogous to a bang-bang positioning stage that has a dead reckoning sensor, so

that the controller can halt when the desired output has been reached. The control

policy can be expressed in terms of the transition graph parameters p(t) and q(t),

p(t) = , N(t) R (4.21)
0, N(t) R

'yr y on
, N(t) R

(t) = 
Toal ref

o, N(t) R

The second-largest eigenvalue of the open-loop response to this control law, A2 , as

computed in (3.30), is zero. As a corollary, the covariance between successive predic-

tions of N(t), as calculated in (3.35), is also zero. Thus, this law has an independent

chance of reaching the target set R at every point in time. This chance can be cal-

culated by integrating the probability distribution over the target set, as depicted in

Fig. 4-7. Because the odds of reaching the target state are independent at any point

t



in time, and because the system will stay in the target state once it is there, the

distribution of convergence times should be exponential.

The minimal feedback law is described here because with any amount of useful

information from the system, such as the magnitude of the output error, the perfor-

mance of the minimal feedback law should be improved upon. Appendix B contains

a more in-depth analysis of minimal feedback laws, and lays out the rationale for

why the particular law presented here (choosing p and q such that A2 = 0) is a good

bounding case candidate for comparison.

4.5.2 Linear Laws

Linear Control Policy

0
0

Nota

Error, N(t) - N or

Figure 4-8: An illustration of the linear feedback control policy.

The first proposed control laws for the feedback control of stochastic recruitment

actuators was in the form of proportional feedback [64]. The units are commanded

to transition unilaterally from the state with too many units to the state with too

few, with a probability proportional to the error, as shown in Fig. 4-8,

k Nonl -Non(t)p(t) NTotal

0,

k Y Off- (t)q(t) = N
NTotal

0,

Non(t) < Non -

-ref

Noff(t) < ~ -

Noff(t) > N eOff~-

The choice of gain k in a linear control law is limited by the convergence criteria

(4.22)

(4.23)
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outlined above. These criteria could also be posed in terms of a nonnegative su-

permartingale bound, as we showed in [63]. Practically, the gain k always produces

convergent results for 6 < k < 1, though the best performance for target states near

the middle of the state space for the two-state problem is about 1.4. It would be pos-

sible to investigate some kind of gain scheduling for this system, but simpler solutions

were found in the form of moment-based control laws.

4.5.3 Moment-Based Laws

The most direct approach to control law derivation is motivated by the moment-based

model from §3.4.2. These control laws seek to reduce the expected future error as a

function of the present state and the state transition graph parameters,

ENl e - N(t + 1)1 N(t), A(t)} = Nef - A(t)N(t) (4.24)

Suppose it is desirable to guarantee that the expectation of this error decreases over

time exponentially. This can be expressed as a constraint on the value of A(t):

E{N ref - N(t + 1)1 N(t), A(t)} = a(Nef - N(t)) (4.25)

Nref - A(t)N(t) = ca(Nref - N(t))

A(t)N(t) = cN(t) + (1 - c)Nref

Here a is a design parameter that affects the rate at which the system converges.

This also means that the error, represented as a random variable, is a nonnegative

supermartingale, or non-positive sub-martingale, depending on the initial sign of the

error, because it is defined in such a way that the value of the expected one-step-ahead

error is always a fraction of the present error. One practical factor determining the

choice of a is the avoidance of overshoot. Figure 4-9 shows the probability distribution

on the future state of a two-state system, with one law predicting no expected error

(a = 0) and another predicting some expected error, but no overshoot. For the two-



state system under full-state control, the moment-based control law can be computed,

p(t) ={ (1

q(t) = {(1

- N) N o-N"'(t), Non (t) < N -E

0, Non (t) > No"e -

a- Non (t) , No0 (t) < N J - 6

0, Noff(t) > Nef -
- "of -€

This is very similar in form to the linear control laws proposed above. The term

introducing the non-linearity in the denominator could be thought of as a kind of

state-dependent gain, which demonstrates why further inquiries in the direction of

gain scheduling were abandoned as probably redundant.

The Significance of a in the Moment-Based Control Law

Increasing a reduces the
a=O risk of overshoot

N~,(t)

State distribution, Noon

0 Nf NTotal

Figure 4-9: The probability of overshooting the desired state, shown hatched, can be
reduced by increasing the value of a.

4.5.4 Optimal Control Laws

The definitive bookend case for comparison of control law performance is the optimal

control law. This law can be computed numerically for any initial state and any target

set using value iteration, as previously discussed. Rather than using the same control

policy for every iteration of cost approximation, as was done in (4.17), the state

transition parameters p and q are optimized for each state at iteration to minimize

the expected future cost. The cost estimate Ji and the values of p and q for each

(4.26)

(4.27)



state converge simultaneously on the optimal cost and the optimal control policy,

Ji+ (N) = g(N) + min Ji(Nk) Pr{N(t + 1) = NkI N(t) = N,p, q}} (4.28)

The output of this algorithm is an optimal expected cost function J*(N), and a vector

of values for p and q defining the optimal state transition graph from each state.

4.5.5 Comparing Expected Settling Time

The four control laws just introduced were compared for the case of an actuator

having 200 two-state agents, being driven to a desired state of Nref = 125 ON units,

with a margin of error of E = 2 units. The control law parameters were chosen as

follows:

1. A minimal feedback control law.

2. A linear feedback control law, k = 1.4. This gain was tune by observing perfor-

mance over a range of target states and a range of initial conditions.

3. A moment-based feedback control law designed to set the expected future error

to 0 (a = 0).

4. The numerically computed feedback control law minimizing the expected con-

vergence time.

Figure 4-10 shows the results of expected settling time for these three laws. All

three laws are expected to converge, from any initial condition, to the target within

5 time intervals. Recall from §3.2.1 that the length of the time interval here is

determined by the settling time of the continuous-time dynamics, ATs. The moment-

based control law performs strictly better than either of its competitors, with an

expected convergence time never exceeding twice the continuous settling time of the

underlying physical units. The minimal feedback law appears to perform surprisingly

well compared to the linear feedback law. However, the close performance is only

skin-deep. The variance of the convergence time, plotted in Fig. 4-11, shows that the



minimal control law exhibits much more variance than either of the two laws that

utilize feedback information more intelligently. The reason for this huge performance

advantage is that the linear and moment-based control laws reduce the commanded

transition probabilities as the system nears the desired state. The variance in the

number of units transitioning becomes correspondingly smaller. Being close counts for

something, in other words. Another way of looking at these performance comparisons

is a histogram of simulation results. Figure 4-12 shows a histogram of simulation

results for the three control laws under consideration. The difference between the

minimal, linear and moment-based control laws is evident from the shape of the

distribution. The convergence times of the minimal control law are, as discussed in

§4.5.1, exponentially distributed with a long "tail," reflecting the predicted increase

in variance.

Expected Convergence Time, NTo=-200, N ef=125
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Figure 4-10: A comparison of expected convergence time for the minimal, linear and
moment-based control laws, NTotal = 200, Noe = 125

The optimal control law performed predictably better than the other control laws,

with the exception of the moment-based control law. Here, the difference between the

expected convergence time of the two control laws was so small that the numerical

computation of the cost function was not accurate enough to distinguish the two for

most initial values of Non. Figure 4-13 shows the same performance comparison made

_



Convergence Time Variance, otal=200, N =125
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Figure 4-11: A comparison of the convergence time variance for the minimal, linear,
and moment-based laws.

in Fig. 4-10 between just the optimal and moment-based laws. This is good news; the

numerically computed optimal control law requires a look-up table, or a parametric

approximation, to implement. It is far simpler to use the moment-based law as an

acceptable replacement.

The final quantitative comparison that is useful to understand is the behavior of

the expected convergence time as the number of units increases. Figure 4-14 shows the

expected convergence time as a function of the initial state for the moment-based, zero

expected error control law having 200, 400, and 2000 units. For an even comparison,

the window of acceptable error was held constant at +/-1% of the total number of

units. The resulting plot shows that the expected convergence time decreases as the

number of units increases. Remember that the shortest time in which the system can

converge is 1 interval, so the vertical asymptote as NTotal increases is actually in the

middle of the plot, not at the bottom where J = 0. The fact that the scaling is within

a single time interval of the minimum value is impressive and encouraging. It implies

that the overhead due to coordinating all of the finite state agents is a small (less

than a multiplicative factor of 2), and that this overhead factor decreases as NTotal

is increased.
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Figure 4-12: Convergence time histograms for 10,000 simulations of the minimal,
linear, and moment-based laws, illustrating the reason for the much higher variance
of the minimal control law.
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Figure 4-13: The performance of the numerically optimal control law for the system
is barely distiguishable from the moment-based control law.
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Figure 4-14: Expected convergence time for the moment-based control law, showing
the performance improvements as NTota l increases.



4.6 An Experimental Example

To confirm that the predictions of expected convergence time are accurate, an ex-

perimental actuator composed of 50 segments of SMA wire placed in a serial chain

was constructed. This chain, shown in Fig. 4-15, had a total active displacement of

approximately 350 mm. Each individual element was a helical spring looped back

and forth through a rigid plate, supporting approximately 4 N of force. The wire

used was Toki BMX 150 SMA helix, purchased from Toki BioMetal [10]. The units

were wired on a bus to a National Instruments data acquisition card, and controlled

using a central control program written in C. The control program measured only

the output displacement of the actuator at a constant load using a potentiometer

attached to a capstan, then computed the state transition probabilities according to

the moment-based law, with parameter a set to 0.4. The state transitions of each

unit were simulated in the central computer, and then the state of each unit was sent

through the bus. The units were individually controlled with field effect transistors,

so that when each unit was in the on state, 300 mA of current passed through the

SMA spring. All of the units were cooled using forced air convection. To determine

the time interval for sampling and control, the step response of all units in the actu-

ator activated simultaneously was measured, and is shown in Fig. 4-16. A settling

time of 4 s was chosen. This is shorter than the true settling time ATs, but it was

within 10 percent of the steady-state, so the control law was able to cope with the

modeling error due to shortened sampling intervals. Based on this 4 s time interval,

the expected convergence time of the actuator was calculated, and is shown in Fig.

4-17. The initial condition from which the system was started in trials is marked on

the plot, along with the predicted settling time of approximately 18 seconds. The

trajectories of 5 control step responses are plotted in Fig. 4-18. All of the trajec-

tories had settled or were within a few percent of settling by the predicted settling

time. Straggler trajectories are possible, of course, but one thing that was clear in

both simulation and experiment was that most of the experimental runs that failed

to converge within the anticipated time window were very close to the desired point,



Figure 4-15: The experimental apparatus, consisting of 50 shape memory alloy ele-

ments placed in series.
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Open loop step response (all units turned on)

Time [s]

Figure 4-16: The response of the actuator when all units are simultaneously con-
tracted, showing the system settling time.

but not completely settled. This agrees with the observation that the variance in

the rate of transitions decreases dramatically for small errors, so that the response

will be very small but not unpredictable. The experiment was a success from the

Value iteration calculation, N= 50, r = 4 s,yd= 235 mm, A = 0.4

2% convergence time from
S 150 mm to 235 mm

S 50 100 150 200 250 300 350 400

. y [mm]

Figure 4-17: A plot of the expected settling time for the actuator.

standpoint of verifying that the dominant factor constraining the performance of the

actuator was the physics of the active material itself. The estimated cost functions

did a good job predicting the performance of the actuator, and inspired confidence

that they could be used as design tools for speculating on the performance of actuator

design candidates.

; - -i --- -- -i---- - ------------- --( I-~l~l!-~"-l-ii-ill- i~ii_.. . _ii- i . - i;i-ii~;~i~i~iiyji~~i~i~~;--~-i-lii.ii~C



Experimental actuator step response, N= 50, r = 4 s, yd = 235 mm, 1= 0.4
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Figure 4-18: Five experimental tracking trajectories, showing the reference position
and the expected 2% convergence time, for reference.

4.7 Generalization to Many States

The framework presented in Chapter 3 was all given in general terms, for state ma-

chines with m states, not two. In higher dimensions, the control problem becomes

more complicated, but it remains tractable. The two-state problem generalizes to the

problem of an ensemble of NTotal independent m-state agents, transitioning based on

A(t). The controller must choose more than two parameters defining A(t), based

on an estimated state distribution which becomes more difficult to estimate than the

simple inversion proposed in (4.1). Chapter 5 discusses the general problem of pro-

ducing state estimates from linear system outputs. Nonetheless, if problems of state

estimation are addressed, then many of the same design approaches can be used to

synthesize and evaluate control laws.

4.7.1 The Target Set

Previously, the target set, R, was defined in terms of a desired state Nr"f. While

this could still be the case, it may also make more sense to look at convergence of

the output for a system whose states may number more than the number of outputs.

The error considered is no longer the error between the expected future state and the

desired state, but the error JHN - Yref I between the expected future output and the



desired output,

R = N : HN -y ref < (4.29)

= N : H(N - Nef)l < E

Other than this, not much has to change in the examination of convergent control

laws. The same criteria still apply: ability to reach R in bounded time with non-zero

probability, and the ability to stop the system once in R.

4.7.2 Control Law Synthesis

The moment-based control law framework is particularly useful for synthesizing con-

trol laws in m states, because it provides a hard constraint on the parameters of

the state transition matrix A(t). For example, the future expected error could be

constrained to zero,

E{Yref - Y(t + 1) N(t), A(t)} = 0 (4.30)

Yref - HA(t)N(t) = 0

Unless H has full rank, this will not completely constrain A(t). The remaining free pa-

rameters could be eliminated in several ways, either heuristically or via optimization.

One heuristic approach would be to trim all transitions that are blatantly counterpro-

ductive. For example, the probability of leaving a state with too few agents should be

zero, or the probability of entering a state with too many agents should be zero. This

will reduce by half the parameter space. Free parameters could also be accounted for

by minimizing the a priori variance of the future state, perhaps using the trace of

Q(t), as defined in (3.51), while applying (4.30) as a constraint using the constraint

vector A,

A(t) = arg min AT (HAN(t) - Yref) + E E Nk(tA(t) (1 - Ajk(t)) (4.31)
AA j=1 k=1



When this is simplified, it reduces to the problem of minimizing the a weighed sum

of the negative squared terms of A(t),

A(t) = argmin A (HAN(t) - ref) - ENk(t) Z Ajk (t)2 (4.32)
A,A k=l j=1

Of course, this minimization is tricky because of the many equality and inequality

constraints placed on elements of A(t),

m

E Ai = 1 (4.33)
i=1

0 < Aiy(t) < 1 (4.34)

Halasz and Berman's 2007 paper deals with minimization under these constraints

to some degree for the problem of open-loop transition graph planning [18], but

to date the problem of general, closed-loop control using this framework remains

open. Alternative approaches exist that do not pose control choice as optimization;

Chattopadhyay and Ray have developed algorithms for choosing an open-loop graph

A(t) which works in the presence of arbitrary upper bounds on the elements of A(t)

[8]. While it is beyond the scope of this thesis to pursue many-state control laws, it

is quite possible that some of the techniques being applied in that area for open-loop

command planning could be adapted for use in closed-loop control.

4.7.3 Control Law Performance Evaluation

The calculation of cost functions for large state spaces is very costly, because it

involves marginalizing the future cost over all possible future states iteratively. There

are, however, other techniques which will suffice. For example, Monte Carlo sampling

methods can be used to approximate the expected future cost by generating 30-

100 one-step-ahead simulations. This process, when repeated iteratively, appears to

converge on the correct expected cost function. Figure 4-19 shows a picture of the

cost function for an ensemble of three state agents, trying to reach a reference state.



The number of agents in the third state, N3(t), is constrained by the total number of

agents, so it is not shown. The upper diagonal is outside the range of possible states

(Nl (t) + N2(t) > NTotal). The state transition graph parameters were "pruned" by

eliminating unwanted transitions, then constrained by (4.30).

Optimal Cost Function for a Three State Recruitment Problem

[n~

10 20 30 40 50 60
NI(0)

Figure 4-19: The expected convergence time of a three-state recruitment law mini-

mizing expected convergence time for 60 units to a reference of [10 20 3 0 ]T.

4.8 Conclusion

This chapter has shown that the problem of synthesizing control laws for actuators

in the stochastic recruitment framework is straightforward, once good models of the

random dynamics are applied and basic convergence criteria are accounted for. Be-

cause stochastic recruitment can be posed rigorously in the framework of control of

discrete stochastic processes, the development of feedback control laws for this archi-

tecture can be related to the much larger literature on optimal control of stochastic

processes.
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The potential impact of this work on other problems in coordinating the ensemble

behavior of swarms has yet to be delved into. To date, I have found no other re-

searchers pursuing this line of reasoning within the framework of closed-loop stochas-

tic control, although Augung Julius, Adam Halasz, and George Pappas have recently

come up with some very promising work applying simple switching control laws to

two-state control problems in the regulation of bacterial gene expression [27]. One

future direction that will definitely be pursued in this area is the formulation of con-

trol laws for constrained control problems such as theirs. This may also necessitate

abandoning probability 1 convergence as a criteria for admissible laws, in favor of the

more forgiving ergodicity criteria needed for posing this control problem as one of

expected cost-per-stage.





Chapter 5

State observation

5.1 Introduction

The core theoretical result presented in this thesis is the control of an ensemble of

random, hybrid-state units in a state-space framework, as shown in Fig. 5-1. In

chapter 4, control laws were formulated under the assumption that the distribution

of states among agents, N(t), is measurable. This prompts a natural follow-up chapter

on the feasibility of measuring or estimating N(t) given only the outputs Y(t) that are

to be controlled. The modeling of populations of discrete-state units using a Kalman

filter is common among researchers studying population distributions of real animals

[61]. The application of these techniques to ensembles of artificial systems appears to

be quite novel, however.

This chapter demonstrates that it is possible to construct a simple linear esti-

mating filter that can serve as a state observer for stochastic recruitment systems.

This is done by implementing a Kalman filter based on a simplified, moment-based

model of the ensemble of agents. The relative ease with which an observer can be

constructed for stochastic recruitment controllers is a significant argument in favor

of this approach to control of ensemble outputs from distributed systems. The use-

fulness of state observers will be demonstrated by showing how higher-order finite

state machine models can be used to approximate the transient switching dynamics

of the hybrid-state units. These higher order models, which require the use of state



observers, ensure that system performance does not suffer from large time delays

caused by waiting for the transient state transition outputs to settle.

Figure 5-1: One key appeal of the stochastic recruitment control framework is the

ability to represent a complex distributed ensemble of finite state agents (shaded, cen-

ter) in terms of a simple lumped model using the aggregate number of agents in each

state instead of complete knowledge of each agent's state. This state distribution can

be estimated using a Kalman filter, by observing the true output of the recruitment

system.

5.1.1 Review: Linear State Observers

In order to be clear on concepts and terminology, we will review briefly the practical

mechanics of state observation for discrete-time systems. A state observer is a virtual

system model that is augmented using feedback from sensor measurements to approx-

imate the true behavior of the system. For example, consider a linear, time-varying

(LTV) system with a state vector N(t) and a measurement vector Y(t), which can

be described by a difference equation, as was shown in (3.48) and (3.9),

(5.1)N(t) = A(t)N(t - 1)

Y(t) = HN(t)
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The time evolution of an estimate N can be assumed to behave in a similar fashion:

N(t) = A(t)N(t - 1) (5.2)

Y(t) = HN(t)

However, one would expect that this model would inevitably diverge from the true

system behavior if the estimated state is perturbed even slightly from the true state,

or if there is a small discrepancy between the system model and the true system. An

observer utilizes feedback from the error between the output prediction Y(t) and the

measured output Y(t) to correct this:

N(tlt - 1) = A(t)N(t - 1) (5.3)

L(t) = HN(tlt - 1)

(t) = N(tlt- 1) - K(t)((t) - Y(t))

If the estimated output Y(t) is identical to the true output Y(t), then the feedback

term is identically zero, and equations (5.2) and (5.3) are identical. If they are

different, then feedback matrix K(t) should be chosen to drive the estimated state

toward the actual state. Of course, ensuring that this happens is the hard part

of observer design. The choice (or existence) of K(t) that guarantees a good state

estimate has been discussed at great length in a variety of contexts, such as the

observability matrix, as the stability of the error system N(t) - N(t), as a problem of

contracting coordinate systems, and as a problem in optimal control. For the purposes

of this review, we will not go into much detail. The important thing to remember is

that at the end of the day, some matrix K(t) is computed and incorporated into an

observer-controller.
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w(t)

N(t-1) z(t)

Figure 5-2: The system to be observed by the Kalman filter, represented as a finite dif-
ference equation. The time evolution of the estimates is represented as multiplication
by a matrix and addition with a random variable.

5.1.2 Observation as an Optimal Control Problem

Rudolf Kalman and his contemporaries i viewed the problem of state observation

within the framework of optimal control [28], [29]. They assumed that a system of

the form of (5.1) had some "drift" associated with state update that could be written

as an additive noise signal w(t), a random variable with zero mean and a covariance

matrix Q(t). They assumed that any uncertainty in the output could similarly be

expressed as an additive noise signal v(t), a random variable with zero mean and a

covariance matrix R(t):

N(t) = A(t)N(t - 1) + w(t) (5.4)

Y(t) = HN(t) + v(t)

E{-(t)} = 0; Cov{w(t)} = Q(t)

E{v(t)} = 0; Cov{v(t)} = R(t)

Figure 5-2 shows a block diagram of this estimated model. Kalman famously showed

that there is a recursive formula for computing the linear observer gain K(t) which

minimizes the expected squared state estimation error E{jN(t) - (t) 12. This gain

1Many people, despite their substantial contributions to the development of optimal filters, were
not lucky enough to have their names attached so ubiquitously to the end product.
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is computed as a function of a time-evolving estimation error covariance matrix, P(t):

P(tlt - 1) = A(t)P(t - 1)AT(t) + Q(t) (5.5)

S(t) = HP(tlt - 1)HT + R(t) (5.6)

K(t) = P(tjt - 1)HTS(t) - 1

P(t) = (I - K(t)H)P(tlt - 1)

The intermediate variable S(t) represents the covariance of the estimated output

Y(t). Kalman's choice of K(t) is not validated by an explicit error stability criterion

as before, but is rather a question of whether the minimum estimation covariance

attained by the cost function is small enough that the estimate is useful. At any point

in time cost function, E{jN(t) - _N (t)12}, is equal to the trace of P(t). Therefore,

if the trace of P(t) grows too large, then the best possible estimate of the system's

state given the outputs defined by H is not good enough to provide useful information

about the system's state.

5.1.3 Bayesian Filtering and the Kalman Filter

Another, more rigorous approach to observing the hidden state of a random process

is the Bayesian estimator. A Bayesian estimator treats a state estimate as a proba-

bility distribution over all possible states of a system. Rather than tracing the time

evolution of the system with a deterministic model having additive noise, as shown

in Fig. 5-2, a Bayesian estimator models the time evolution of a system in terms of

conditional probability distributions, from the previous state estimate to the current

state estimate, and from the current state estimate to the current output estimate,

as depicted in Fig. 5-3. Information is incorporated into the state estimate by con-

sidering the measured output as a random event, whose a priori probability can be

determined from the output model. Bayes' rule, a simple statement of reciprocity

between conditional probability distributions, is used to compute a recursive a poste-

riori state estimate conditioned on both the prior state and the current measurement.
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Interestingly, when the Bayesian estimator framework is applied to a Gauss-Markov

Previous Estimate A Priori Estimate Output Prediction

Dynamic Model Output Model

Pr(N(t)IN(t-1)) Pr(Y(t) N(t))

q- -1

Figure 5-3: A recursive Bayesian a priori model for a random process, written in

terms of conditional probabilities.

random process (a LTV random process with Gaussian noise), the resulting estimates

are identical to the estimates produced by the Kalman filter. In other words, the dis-

tribution obtained over all possible states is a Gaussian distribution with a mean of

N(t) and a covariance of P(t). This duality is important because it implies that the

Kalman filter is statistically correct in a much higher sense for Gauss-Markov pro-

cesses. In Kalman and Bucy's 1961 paper, the authors point out that the equivalent

statement in optimal filtering parlance is that the Kalman filter is an optimal linear

observer for any process having noise on any distribution [29]. However, the Kalman

filter is only optimal over all linear and non-linear feedback observers only if the

process noise is Gaussian.

The practical implication of the duality between classical filtering and Bayesian

filtering is that the quality of an estimate produced by a Kalman filter is contingent

on how "close" the additive process noise is to Gaussian. If the noise distribution has

one central "peak" and light "tails", then the Kalman filter is a reasonable method

of calculating observer gains for a LTV system. At this point, the relevance of this

discussion to the recruitment problem is apparent. The state behaviors of many

finite state machines making independent, identically-distributed state transitions

will, by the central limit theorem, exhibit ensemble behavior that becomes very close

to Gaussian as their numbers increase. The expected behavior of the system will be

in the form of a linear update law. Thus, Kalman's equation for calculating filter
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gain is an eminently reasonable approach to the design of observers for stochastic

recruitment control systems.

5.1.4 Chapter Outline

The remainder of this chapter will be devoted to showing how a moment-based model

of the actuator units' state distribution can be cast in the framework of a Kalman

filter estimator, and examining the properties of the filter that results. The model

that was introduced in §3.4 will be revisited and approximated so that a bilinear

model of estimation covariance is possible. The Kalman filter implementation will

be presented, along with a discussion of filter behavior. The a priori estimation

covariance will be shown to converge if a constant command is given to the system.

General convergence is difficult to prove; however, this has not been a problem in

simulation or experiment.

The latter half of this chapter is a look at a practical application for state observers

for stochastic recruitment control. The two-state actuator model that is the main

focus of this thesis is augmented with additional discrete states to model some of

the continuous-state dynamics of the actuator units. The augmented models require

a Kalman filter to produce state estimates for control. The resulting controller is

able to function at a much faster update rate, and consequently is better able to

actively resist disturbances applied to the actuator. An experimental example is given

demonstrating the ability of the observer-controller to reduce the sampling time of a

force-controlled actuator.

5.2 Adapting the Moment-Based Process Model

for Observation

Section §3.4 showed that it is possible to predict the expectation and variance of

N(t + 1) from the current state, N(t) and the current command, A(t) by computing

the moments of the transitions to and from each state. These moments are then
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summed to produce the expectation and covariance of N(t + 1),

E{N(t + 1)1 N(t), A(t)} = A(t)N(t) (5.7)

Cov{N(t + 1)1 N(t), A(t)} = Q(t) = diag{A(t)N(t)} - A(t) diag{N(t)}A(t)T

The difference between the model from §3.4 and the model needed for a Kalman filter

is that some additional independence constraints must be enforced on the model if

the conventional Ricatti equation form for time evolution of the a priori estimation

covariance can be used. An illustrative way to see this is to represent the knowledge

about the present state N(t) as an unbiased estimate N(t) to which a zero-mean

estimation error variable e(t) with covariance P(t) has been added,

N(t) = N(t) + e(t) (5.8)

E{e(t)} = 0 (5.9)

Cov{e(t)} = P(t) (5.10)

When computing the time evolution, the expectation and covariance from (5.7) can

be viewed as multiplication by a matrix and addition of a zero-mean noise signal w,

representing the uncertainty in the state update,

N(t + 1) = A(t)N(t) + w(N(t), t) (5.11)

E{w(N(t), t)} = 0 (5.12)

Cov{((N(t), t)} = Q(N(t), t) (5.13)

The additive noise w depends on the present state distribution N(t), as evidenced by

(5.7). When the time evolution of an estimate is computed, this state-dependence

becomes problematic because w and e are coupled,

N(t + 1) = A(t)N(t) + A(t)e(t) + w(N(t) + e(t), t) (5.14)
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The covariance of A(t)e(t) is easy to compute:

Cov{A(t)e(t)} = A(t) Cov{e(t)}A(t) T = A(t)P(t)A(t)T  (5.15)

The covariance of w( +e(t)) is much more difficult to express. What is really needed

is some upper bound wv(t) whose covariance Q(t) is independent of N(t), and which

provides a conservative estimate of the state update covariance. Fortunately, conser-

vation dictates that the number of agents in each state, Ni(t), is always nonnegative

and smaller than NTotal,

0 < Ni(t) < NTotal  (5.16)

This bound can be used to construct an upper bound on the covariance of the number

of transitions to any two destination states i and j from a single originating state k,

as calculated in (3.50),

Cov{Tik (t), Tjk(t) N(t), A(t)} = NkAik(t)(ij - Ajk(t)) (5.17)

0 < Cov{Tik(t), Tjk(t)I N(t), A(t)} < NTotalAik(t)(6ij - Ajk(t))

In turn, the elements of Q(t) found in (3.51) can be bounded,

m

Cov{Nj(t + 1), Nj(t + 1)1 N(t), A(t)} = Qji(t) = E NkAik(t)( ij - Ajk(t)) (5.18)
k=1

m

0 < Qij(t) < NTotal S Aik(t)(Sij - Ajk(t))
k=1

In other words, the covariance of the bounding additive signal wv(t) is calculated by

assuming that all of the agents are in every state. This assumption overestimates the

total uncertainty by a factor of the number of states, m, but it achieves indepdence

of the state distribution N(t). Using the bounding model, the a priori calculation of

the estimation expectation and covariance is the standard LTV process model used
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for constructing Kalman filters,

N(t + 1) = A (t)(t) + A(t)e(t) + i(t) (5.19)

N(t + 1) = A(t)N(t) (5.20)

e(t + 1) = A(t)e(t) + wi,(t) (5.21)

Cov{e(t + 1)} = P(t + 1 t) = A(t)P(t)A(t)T + Q(t) (5.22)

5.3 Modeling output behavior

The other area where the model from §3.4 fails to provide enough detail for the

Kalman filter is in the output covariance. We need a way to model the covariance

of an output prediction, S(t), in a manner similar to the additive assumptions made

above.

Y(t) = H(N + e(t)) + v(t) (5.23)

R(t) = Cov{v(t)} (5.24)

Y(t) = E{Y(t)} = HN (5.25)

S(t) = Cov{Y(t)} = HP(t)HT + R(t) (5.26)

One of the terms on the right hand side of (5.26) is due to the state distribution

uncertainty, P(t); the other, R(t), is the result of actual variability in the output of

the agents. In general, R(t) should be nonsingular in order for S(t) to have full rank

[17]. The value of these terms must be calculated based on variation in the output of

individual units. Hitherto the system has been assumed to consist of identical agents

having identical outputs in each state. However, manufacturing imprecision could

result in some output variability among the physical properties of each one. This will

result in some measurement uncertainty that is a function of the number of agents

in each state. Consider for a moment the case in which each sub-unit in the system

has an output that can be characterized in each state as having some independent

variance, The expected value of the output is equal to HN(t), as previously defined.
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state kth expected output kth output variance

1 Hk 'Ykl

2 Hk2 Yk2

m Hkm Ykm

The output variance of each output is a function of the state,

m

VarfYk} = Rkk = E Njj (5.27)
j=1

For example, consider an actuator made of many small actuator units connected in

series, whose lengths have been trimmed by hand. Each unit produces approximately

20 mm of displacement, but manual error has introduced a standard deviation of 4

mm into the output when contracted, and 2 mm when relaxed. The covariance of

this single output would then be a scalar,

Var {E 6(t)} = 1.6 x 10-5 - Non(t) + 4 x 10-6 . Noff(t) (5.28)

In order to neatly fit within the Kalman filter framework, it may be useful to come

up with a good bounding case for this output variance. This can be accomplished by

noting that the number of agents in each state is bounded. Consequently, the output

variance is bounded by the following relationship:

m

Rkk = Njkj _ NTotal max 7kj = Rkk (5.29)
j=1

This bounding case is very similar in form to the bound assumed for the per-stage

update covariance, Q (t), in (5.18).

5.3.1 Conservation Constraints on the Output

In section 3.2.3, we mentioned that the space of valid state distribution vectors N(t)

is smaller than the whole vector space, due to conservation. This can be translated
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into a linear constraint on the estimates of N(t), and further into a pseudo-output

whose value is always known,

m

E Nk(t) = NTotal (5.30)
k=1

[1 1 ... 1 ]N(t) = NTotal

This linear constraint is useful for constraining the estimate of N(t) to make sure that

it is physically consistent. The pesudo-output matrix to be appended to the physical

outputs will be defined as Ho,

m

HoN(t) =E Nk = NTotal  (5.31)
k=1

This output can be used for "feedback" to constrain the modeled system behavior.

From here on we will assume that all output matrices include this appended row

of ones. Based on the definitional constraints on A(t) associated with being a con-

servative Markov chain, each column of A(t) must sum to one. This means that

HoA = Ho for all valid state transition matrices.

HoA = Ho (5.32)

HoA -1 = Ho

These constraints have some practical implications on the output covariance of the

system due to uncertainty in the state estimate. Specifically, the uncertainty as to

the total number of agents is unaffected by the time evolution process. This is a

direct consequence of the definitional constraints on A. Recall that the component

of the output covariance S(t) due to a priori estimation uncertainty is determined by

H and P. For the pseudo-measurement, the component of the output covariance can

be written as a matrix So(t),

So(t) = HoP(tlt - 1)H T (5.33)
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Substituting (5.22) into P(t t - 1), the output covariance can be expressed in terms

of the prior estimation covariance and Q or Q,

So(t) = HoP(t - 1)H T + HoQ(t)H T  (5.34)

The added uncertainty per stage caused by time evolution is the term containing

Q(t). Expanding this in terms of the definition of Q, we find that the identities from

(5.32) simplify this expression,

HoQ(t)H T = Ho diag{A(t)N(t)}H T - HoA(t) diag{N(t)}A(t)T H T  (5.35)

= Ho diag{A(t)N(t)}H T - Ho diag{N(t)}H T

Because Ho is a row of ones, post-multiplying a diagonal matrix by H T has the effect

of "undoing" the diagonalization,

HoQ(t)H T = HoA(t)N(t) - HoN(t) (5.36)

= HoN(t) - HoN(t)

=0

A similar result can be obtained for Q, because nowhere in (5.35) or (5.36) was the

value of N(t) important. Assuming that there are NTOtal agents in each state therefore

has no effect on the validity of the identity.

5.4 Properties of the Kalman filter for recruitment

systems

Now that we have a good idea of how to construct models for estimation covariance

update and for output covariance prediction, we can assemble a Kalman filter to
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observe the recruiment system:

P(tlt - 1) = A(t)P(t - 1)A(t)T + Q(t) (5.37)

S(t) = HP(tlt - 1)HT + R(t)

K(t) = P(tlt - 1)HTS(t)- 1

N(t) = [I - K(t)H] A(t)N(t - 1) + K(t)Y(t)

P(t) = [I - K(t)H] P(tlt - 1)

The properties of this filter must now be examined to ascertain whether or not the

filter is adequate to the task of producing estimates with bounded covariance.

5.4.1 Underlying Covariance Bounds

In general, LTV systems with additive noise are not bounded in either the first or

the second moment. However, the underlying recruitment process is guaranteed to

be bounded, both in terms of N(t) and in terms of Y(t). There are a finite number

of agents, each with states having bounded outputs. The summed distribution has

compact support. Consequently, we would expect that any estimator should output

a prediction with bounded covariance. For example, if a constant state transition

matrix were applied to the graph, it would be possible to arrive at a reliable a priori

prediction of N(t) based on the right-hand eigenvalues of A(t), as was shown in §3.4.

Because A(t) is a matrix of nonnegative elements whose columns sum to one, the

Perron-Frobenius theorem guarantees that the equilibrium probability of being in

any state can be represented by the elements of u1,

Au1 = ,1 (5.38)

lim Pr{s(t) = i} = uli (5.39)
t-+oo
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The expected state distribution and covariance can again be calculated:

lim E{N(t)I _(t), A} = NTotalU (5.40)
t-oo

lim Cov{N(t) I x(t), A} = NTotalUli ( 6 ij - ulj) (5.41)
t-oo

These expressions are clearly bounded, as each element of u I is bounded. It would

be reassuring if the Kalman filter formulation of this problem preserved the bound-

edness of the estimate, in terms of first and second moments, as well as the overall

scaling relationship that both are proportional to NTotal . Fortunately, both of these

properties can be demonstrated for a system with a constant state transition graph.

5.4.2 Examining the Convergence Behavior of the Filter

We would like to show that the moment-baased model converges in the absence of

any a posteriori information to the same expected value as the underlying, intrinsi-

cally bounded random process. Further, we would like to show that the covariance

converges to a bounded value. It is acceptable to converge to a bounded value that

is larger than the value found in (5.41), but it must exhibit the same scaling rela-

tionship, that is, each element of P must scale with NTotal in the steady state. The

a priori moment-based model predicts that the expected value of N(t) should evolve

according to the linear dynamics

E{N(t + 1)} = AN(t) (5.42)

Clearly, the equilibrium value of N is equal to the value obtained in (5.40),

N(ss) = ANTotalU1 = NTotalu1 (5.43)
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Finding the equilibrium covariance is a little more complicated. In (5.22) above, the

time evolution of the a priori estimation covariance was found to be:

P(t + 1) = A(t)P(t)A(t)T + Q (5.44)

The standard method for finding equilibrium values of a Ricatti equation (this is a

special, simplified case of the Riccati equation) is to use a fractional decomposition,

as in §4.9.2 of Grewal and Andrews [17],

P(tlt - 1) = U(t)V(t) - 1  (5.45)

Under this decomposition, the time evolution of P can be written as a linear equation,

U(t + 1) 1= (t) U(t) (5.46)V(t + 1) V(t)
A QA- ] U(t)
0 A -  V (t)

The values of U and V that produce a steady state value of P are those satisfying

the eigenvalue problem:

U UD
S(t) = (5.47)

V VD

Here D is a diagonal matrix of eigenvalues. The complete solution to this eigenvalue

problem is difficult, but we can easily determine a value for D, because I is in block

diagonal form,

AU + QA-TV = UD (5.48)

A-TV = VD (5.49)

It is clear from (5.49) that V is related to the eigenvalues of A, and that D is related

to the eigenvectors of A. In fact, we can show that V is the matrix of right-handed
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eigenvectors of A, and that D is equal to the inverse of the corresponding eigenvalues:

A = A -1

A-1 = EA-10-1

A -T = O - T A - 1O T

A - T O - T = E - T A

V = O - T

D = A -

Motivated by this observation, we will express P in a different set of coordinates,

corresponding to the eigenvectors of A,

r(t) = E-lp(t)O-T (5.50)

On an element-by-element basis, this new matrix F can be written in terms of pre-

and post-multipliction of P by right-handed eigenvectors of A,

eA = iei

Fij (t) = eP(t)e (5.51)

The time evolution of any element of F can be traced by pre- and post-multiplying

(5.22) by ei and _j,

P(t + 1) = AP(t)AT + QT

fTP(t + 1)j = _TAP(t)ATej + _TQ j

= AeTP(t)ej Aj + T Qe

rij (t + 1) = AiA rij(t) + J Qf

(5.52)

(5.53)

(5.54)

(5.55)

Thus, this change of coordinates decouples the time evolution of each element of F.

If each element converges to a bounded value in steady state, then P must also be
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bounded. The eigenvalues of A are all between -1 and 1. The largest eigenvalue,

A1, is equal to one, and unique by the Perron-Frobenius theorem [15]. Thus, for all

elements except rFl, the recursive sequence of values converges to some steady state,

lim rijW(t) = (5.56)
t-+oo 1 - AiAj

For the special case element Fll, this does not hold. However, The identities from

(5.35) turns out to be quite useful. Remember that the left-handed eigenvector cor-

responding to an eigenvalue of 1 is equal to a column of ones. Using this, we can

rewrite the time evolution of Fll:

11(t + 1) = 1-1- F1 - (t) + eQe (5.57)

= F11(t) + HoQH T

= rll(t) + 0

Thus, the value of Fll is not affected by time evolution. The corresponding intuitive

statement here is that the uncertainty in the total number of agents does not change

with time, and is consequently equal to the initial uncertainty. If the initial variance

is bounded, then it is bounded for all time.

5.4.3 In Summary

In this section, we have shown that under a few modeling approximations, the recruit-

ment process can be represented in a form that can be observed using the Kalman

filtering framework. The information needed to construct the filter is not difficult

to obtain, consisting mainly of empirical variance data from the physical system. In

the latter half of this chapter, we will show how this can be applied to improve the

performance of real systems.

116



5.5 Experimental Example

5.5.1 Decreasing Sampling Time

One important abstraction that was adhered to in chapters 3 and 4 is the discrete-state

abstraction. This guaranteed that the force or displacement produced by each motor

unit is solely a function of the discrete agent's state. Figure 5-4 shows this simple two-

state model. This approach sacrifices speed and responsiveness for simplicity. In order

to credibly make the assumption that the output of the SMA element is determined

by the discrete state of the agent, the sampling interval for measuring the ensemble

output and issuing commands must be long enough to allow any transient continuous-

state behavior to settle down, as we discussed in §3.2.1, and illustrated in Fig. 3-3.

Because of the discrete-state abstraction, all of the performance metrics given in the

previous chapters are benchmarked against the characteristic response time of the

local continuous-state behaviors. For example, all of the expected convergence times

computed in §4.5.5 had a hard minimum value of 1 outside of the target set, as was

shown in Fig. 4-14.

Random State Machine Continuous Unit Dynamics

Figure 5-4: The hybrid dynamics imposed on a single unit consist of a random finite
state machine that changes the command given to an SMA unit, whose continuous-
state dynamics are assumed to settle after some transient.

It seems quite reasonable to object to this as a hard constraint on the performance

of the control system. In principle, it should be possible to respond immediately to

a measured disturbance, without having to wait for the output to settle. However,

simply decreasing the sampling interval, with no other changes to the model or control

law, is disastrous. If this is done, the algebraically determined state estimates from

(4.1) do not account for the transient response. The classical control analogy here

would be as if there were an unmodeled real zero in the plant one was trying to
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control; this zero would become an additional pole in the system response which

could hurt performance, or simply make the system unstable. Figures 5-5 and 5-6

show the result of taking the 60 unit parallel SMA actuator and attempting to control

isometric force, having cut the sampling time from 2 seconds to 0.5 seconds without

making any other alterations. The natural result is that the system overshoots its

desired target. settling only after a long, oscillatory decay. The control laws are

still convergent in probability in this case - there is still a chance that the system

output could pause long enough on the desired value, as demonstrated in the figures.

However, performance is very degraded and practical tracking may be useless.

Proportional Law Tracking Response, K = 0.8, AT = 2.0 s
30

20

10

0
0 20 40 60 80 100 120 140 160 180 200

Time [s]

Proportional Law Tracking Response, K = 0.8,AT = 0.5 s

0 20 40 60 80 100 120
Time [s]

140 160 180 200

Figure 5-5: The tracking results of a proportional law (top) when the sampling time is
chosen to agree with the transient settling behavior of the SMA units, and (bottom)
when the sampling time is much less than the transient settling time of the SMA
units.
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Expectation Law Tracking Response, X = 0.2, AT = 2.0 s

0 20 40 60 80 100 120 140 160 180 200
Time [s]

Expectation Law Tracking Response, X = 0.2, AT = 0.5 s

0 20 40 60 80 100 120 140 160 180 200
Time [s]

Figure 5-6: The tracking results of a moment-based law (top) when the sampling

time is chosen to agree with the transient settling behavior of the SMA units, and

(bottom) when the sampling time is much less than the transient settling time of the

SMA units.
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5.5.2 State Augmentation

There is a way to improve upon the behavior of the two-state model, if the continuous-

state output of the active material units during state transitions is repeatable. If this

is the case, then one could subdivide the discrete time intervals on which the control

system operates, assigning output values at the intermediate time intervals based on

measurements of the transient behavior, as shown in Fig. 5-7. These intermediate

output values could then be assigned to augmented delay states, depicted in Fig.

5-8. A Kalman filter could then be used to keep track of the number of units that

have recently made state transitions, thus compensating for their partial output. One

potential difficulty lies in the behavior of units which transition from off to on and

then rapidly back to off again, within the settling time of the unit. In this case, some

kind of partial transition model would be needed, corresponding to the graph edges

leaving the intermediate states in Fig. 5-8. Some combination of carefully choosing

the destination of these graph edges and tuning the output model should be able to

adequately approximate rapid switching behavior.

Delayed Response of an SMA Motor Unit

1

Command
Commandan

S0.5 to relaxto contract

-4O

0 2 4 6 8
Discrete Time Steps

Figure 5-7: An example of unmodeled continuous dynamics. A controller that as-
sumes that each motor unit has two states will not account for the physical delay
associated with activating the SMA.
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Original Discrete-State Model

P

i-p 1-q

q

Augmented Discrete-State Model

1-q

i-p - -q

1-p

Figure 5-8: One way of addressing unmodeled dynamics is to introduce additional
states into each agent that can be used to produce a more fine-grained model of the
agent's continuous-state behavior. Notice that units are free to turn on or off with
exactly the same probability; the only system behavior that changes is the value of
the predicted transient output.
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5.5.3 Control Law Modifications

Because the modified system state transition graph still has only two parameters, p(t)

and q(t), the control law used to take advantage of the finer-grained dynamic model

is relatively simple. One strategy is to look ahead at past the transient dynamics

at what will happen if no state transitions are commanded. The augmented state

transition matrix corresponding to the graph in Fig. 5-8 is shown as an example:

A(t) =

1 - p(t)

p(t)
0

0

0

0

0

0

1 - q(t)

0

0

q(t)

0

0

0

1 - q(t)

q(t)

0

0

0

0

1 -q(t)

q(t)

0

0

0

p(t)

0

0

1 - p(t)

1 - p(t)

p(t)

0

0

0

0

(5.58)

If no state transitions are commanded, i.e. p(t) = q(t) = 0, then the only state

transitions are due to the delay states. This state transition matrix will be called A 0,

(5.59)

From any state, all of the transients will have settled after two time steps. Motivated

by this observation, A(t) could be chosen so that the state distribution, once settled,

matches the desired distribution,

A0A(t)N(t) = Nref (5.60)
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This strategy produces very stable control laws. Another strategy which yields faster

but less stable performance is the "overdrive" strategy, choosing A(t) so that the

one-step-ahead output is equal to the desired output,

HA(t)N(t) = Yref (5.61)

Because this policy has a tendency to command more state transitions than needed in

order to minimize one-step-ahead error, it may produce unpredictable results if there

are pure delays in the system output, such as a unit which takes a moment between

when it is activated and when it begins to exert force. It will also be sensitive to

output inaccuracy. A solution somewhere between these two would be a control law

based on limited lookahead LQR, in the form:

A(t) = arg min H A(t + j)N(t) - yef (5.62)
A(t),A(t+1),A(t+2) k=O j=0

The control law chosen for implementation was the lookahead law from (5.60), in the

interest of stability.

5.5.4 System Identification

For the experimental actuator, the dual problem of identifying a discrete state transi-

tion model and an output model for the transient states was solved by first identifying

the outputs from the intermediate transitioning states, assuming that the system was

fully settled. The two-state actuator model was augmented to include 9 transient

states between off and on, and 9 more transient states between on and off, for a

total of 20 states. It is possible to activate all of the units at once by sending a

command with p(t) = 1 and q(t) = 0, and vice versa. The output force, shown in Fig.

5-9, was fit to a 1 x 20 output matrix, assuming that each agent's identical output

was contributed to the overall force. Figure 5-10 shows a plot of the output model.
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Transient actuator response to "All ON/OFF" commands

15

10

5

0
60 70

Figure 5-9: This data shows
turn all units on or OFF. It
with 9 delay states.

- U..

0.

80 90 100 110 120 130 140
Time Intervals [x 0.5 s]

the transient response of the actuator to commands to
was used to train an augmented state transition model

2 4 6 8 10 12
State

Figure 5-10: The modeled output of a single agent, fit with least squares to the state
trajectory inferred from the ON/OFF switching sequence broadcast to the actuator.
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5.5.5 Identifying Transient Behavior

Rather than go through a complex, iterative process designed to minimize the number

of states needed to most closely fit the output, we settled on an ad hoc method of

approximating the transient system behavior. The time intervals between commands

to turn on and commands to turn off were varied slowly, so that the whole ensemble

of units passed through all of the possible transient states while transitioning. The

most appropriate state transition behavior for these partial state transitions was

determined by picking the output state minimizing the prediction error. The data

from the transient switching is shown in Fig. 5-11, along with the prediction gleaned

from the model. The edges obtained are shown in Fig. 5-12. This method of system

identification was not by any means optimal. It was chosen because it was simple to

construct and simple to reproduce. More in-depth methods of model order choice,

and output approximation would definitely yield better results.

Model Fit to Training Data

6 Measured
t - - - Model Fit

5. I
4

0 0 320 --- $i - ,

300 310 320 330 340 350 360 370 380
Time [s]

Figure 5-11: The system identification data for the fast transient switching behavior,
showing the model prediction.

5.5.6 Observer-Controller Performance

The tracking performance of the observer-controller is shown in Fig. 5-13. While the

tracking behavior is not that much faster than the results for the top plot in Fig. 5-6,

the ability to respond quickly to disturbances is improved. The bottom plot of Fig.

5-13 is interesting because it shows that the model does not always have the correct

estimate of the output, even when the output error is zero. This is much like any
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Empirically Identified State Transition Graph

Figure 5-12: This graph was identified by measuring the settling time of the actuator

when turned on or off with controlled delays. The solid lines represent the default
behavior of each unit, i.e. the behavior if no state transition is commanded. The

dashed lines represent the transition that will be made if a transition is commanded.
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other problem in adaptive control. Because the output used for control is the same

as the output used for observation, an unobservable error is not a problem because

the controller will not respond to it.

Observer Controller Tracking Response, AT = 0.5

0 20 40 60 80 100 120 140 160 180 200
Time [s]

Kalman Filter Output vs. Ground Truth

0 20 40 60 80 100 120 140 160 180 200
Time [s]

Figure 5-13: The top plot shows the tracking behavior of the observer controller. The
bottom plot shows the estimated number of on units comared with the actual number
of on units.

5.6 Conclusion

The example in this section demonstrates that even for a two state actuator, a state

observer can be a useful tool for control. For the larger problem of controlling random

state machines, the usefulness is much broader. A central controller dispatching tasks

among a swarm of robots could be greatly aided by estimates of the robots' state

based on partial measurement. A more complex gene regulation problem than the

two-state lac operon controller proposed by Julius et Al [27] could be regulated even

in the absence of rich outputs. This particular aspect of the work in this thesis is
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the newest and most exciting in its potential application to other, similar distributed

control problems.
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Chapter 6

Application: An Antagonistic,

Variable Stiffness Robot Arm

6.1 Introduction

This chapter offers an example demonstrating how recruitment-based actuators can

be used to control a robot arm using recruitment control. The physical outputs pro-

duced by active materials, as discussed in chapter 2, are not ideal force or displacement

sources, because of the material's intrinsic elasticity. In fact, some actuator configu-

rations, such as the parallel configurations discussed in §2.3.2, produce no change in

actuator displacement as units are recruited, only a change in stiffness. Producing

stable and controllable motion with such an actuator is possible using an approach

called equilibrium point (EP) control.

A joint that is actuated by antagonistic, elastic actuators, shown in Fig. 6-1, will

have an equilibrium position, that is, a joint angle at which the spring-like forces

exerted by the two antagonistic actuators sum to zero. The ability of the joint to

resist disturbances is determined by the sum of the stiffnesses of the two actuators,

plus whatever active force is exerted using feedback. If the passive stiffnesses and

resting lengths of the elastic actuators can be specified, then this could be used as a

technique for controlling not only the position of a joint, but also the passive joint

stiffness. A variable stiffness robot arm could be used for tasks previously requiring
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Agonist

Disturbance

Rest Length A Torque
Stiffness K,

Angle 0 e
Rest Length A Stiffness K, Stiffness K,

Antagonist

Figure 6-1: A schematic diagram of equilibrium point motor control. Two antag-
onistic actuators are shown here as equivalent stiffnesses and displacements, which
change based on the control inputs. The control inputs to the system vary D 1, D2 ,
K 1 and K2 . The equilibrium point achieved by the two actuators will be a stable
point of attraction for the joint.

active impedance control, or it could be used to alter its passive dynamics, such the

resonant frequencies of the arm.

The idea of using equilibrium point control for robot arms has been discussed for

several years in the robotics community, and recently several groups have produced

actuators that implement equilibrium point control using cams and variable stiffness

springs [65], [49]. Hitherto, there has been no report in the literature of any high-

resolution, variable stiffness active material actuators capable of equilibrium point

control, although the notion of making such an actuator has been discussed by the

authors and others [46], [36]. This work is based on an implementation of recruitment-

based stiffness modulation in active material actuators. Two actuators made from

60 parallel SMA elements are configured antagonistically about a joint, whose equi-

librium point is varied with feedback control. The ability of this control scheme

to recover from disturbances quickly and without exciting undersirable closed-loop

behaviors is demonstrated.

Section 6.2 gives a brief background on the history and theory behind equilibrium

point control in muscles, and a discussion of how EP control can be used to improve

130

-2 J.-2, . ' 4 --. , ! ........ ......... ~ '-' --;-- ~---- t; ;i^ ;; ---.---i;i i ;--:-;i;:i;i-~~r~i--- ;-



the performance of active material actuators, similar to ways theorized to improve

the performance of muscle. Section 6.3 introduces the I-DOF arm constructed to

demonstrate equilibrium point control. The results of the experiment are shown in

section 6.4.

6.2 Equilibrium Point Control of a Single-DOF Joint

6.2.1 Overview and History of EP Control

One remarkable feature of the musculo-skeletal system is the use of passive muscle

stiffness as a stabilizing mechanism. It is well known that the brain's control over

limb motions is accomplished using more than neural feedback loops. Bizzi and Polit

reported an experiment in which monkeys could still perform simple pointing tasks

in the presence of disturbance forces after their proprioceptive feedback loops were

cut at the spinal column [52]. The best explanation for this phenomenon is that the

antagonistic muscles pulling on each joint act as tunable springs in equilibrium when

the limb is in its desired posture, as shown in Fig. 6-1. The antagonistic muscles can

be co-contracted to produce more or less net stiffness on the joint, while remaining

in the same equilibrium position. Many variants on the equilibrium point hypothesis

have been proposed; a good summary can be found in an article by McIntyre and

Bizzi [41].

Equilibrium point hypotheses provide a good explanation for the ability of muscles

to resist high-frequency disturbance forces, which the body would be unable to do

using muscle reflexes [22]. Biological feedback systems suffer from time delays due to

the inherently slow chemical processes governing nervous action and muscular activa-

tion. However, the elastic restoring force about the joint's co-contracted equilibrium

point does not depend on sensory feedback, and so it can respond more quickly than

any reflex mechanism.
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6.2.2 Applying EP Control to Active Material Actuators

The same control architecture which explains the improved closed-loop response of

muscles can also be used to improve the performance of artificial muscles. Many

artificial muscle materials suffer from time delays due to the physics of energy delivery,

such as ion diffusion in conducting polymers or thermal phase change energies in shape

memory alloys. A closed-loop controller for a single-joint antagonistic actuator, shown

in Figure 6-2, will exhibit a great deal of phase lag in the forward path associated with

force production, and so the loop gain must be limited to reduce the risk of instability.

This will greatly reduce the ability of the control loop to resist high-frequency external

disturbances.

Desired Disturbance
Position Force

Control Force + Limb
Production Inertia

(slow) +

Joint Position

Figure 6-2: A block diagram for a typical SISO controller for simple disturbance
rejection. Notice that any delays associated with force production in the actuator are
inside the position feedback loop.

Instead of using a standard SISO feedback loop to control the joint position, one

could use artificial muscles as tunable springs rather than as force generators to mimic

a biological equilibrium point control law. The block diagram in Fig. 6-3 shows a

controller that uses the EP framework to specify the equilibrium point of the joint

and the stiffness about this point. The time delays associated with activating the

active material still affect the rate at which the antagonstic actuator stiffness can be

changed. However, this affects only the rate at which the equilibrium point of the

actuator system responds to a reference input. The elastic restoring force about the

equilibrium point will still respond quickly to any disturbance.

The key to implementing an equilibrium point control law is a mechanism for

reliably changing the stiffness of two antagonistic actuators. The models developed

in chapter 2 demonstrate that an actuator made up of many parallel units is well
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DesiredDePosiredtion Disturbance
Position Force

Force
+ Stiffness + + Limb

EPControl Modulation Inertia
(slow)

Passive
Stiffness

Joint Position

Figure 6-3: A block diagram for an equilibrium point controller. A slow, task-oriented
control loop (labeled "EP Control") determines the stiffness and desired equilibrium
position of the plant. The passive actuator stiffness then provides a restoring force
similar to a proportional feedback loop, shown in bold lines. The time delays as-
sociated with stiffness production occur outside this virtual proportional feedback
loop.

suited to this task. Figure 6-4 shows a diagram of an artificial muscle actuator made

up of many small parallel units, much like a muscle. Each small unit is held in a

binary state, either relaxed or contracted. Because the contracted units govern the

overall length of the actuator, the relaxed units will slacken and will not contribute

to the overall stiffness of the actuator. The stiffness is therefore proportional to the

number of active units, Non(t), as previously shown in (2.11).

Contracted units contribute to the stiffness
A

Relaxed units are slack

Figure 6-4: This is a figure of a single actuator, composed of many parallel springs.
The relaxed springs are long enough that they do not contribute any tension to the
actuator output.

6.2.3 Calculating EP Parameters using Recruitment

In order to control the equilibrium position of a joint with antagonistic, variable-

stiffness actuators, a controller must first compute the actuator stiffnesses and dis-
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placements in the equivalent circuit model that will produce a desired equilibrium

angle and joint stiffness. These stiffnesses and displacements can then be expressed

in terms of the number of SMA springs in each actuator that must be contracted in

order to achieve these properties. Each actuator is modeled as having a rest length

A and a stiffness K. If the two actuators are attached to the joint at a radius r, then

the rest position of the joint Oe can be calculated by setting the net torque around

the joint to zero,
KIA1 - K 2A 2

e =- (6.1)
r(Ki + K 2)

The total stiffness of the joint Kj is also a function of the actuator stiffnesses,

dcr
Kj = = r 2(Ki + K 2 ) (6.2)dO

By manipulating equations (6.1) and (6.2), the joint equilibrium position and the

joint stiffness can be independently specified using K1 and K 2,

Kj A 2 ± roe
K 1 = r2  + A2  (6.3)

r2 A1 +A2

K 2 =- KA 1 -rOe (6.4)
r 2  

1 ±A 2

These stiffnesses are then modulated by controlling the number of recruited units,

using (2.11). In this study, the controller sought to maximize the stiffness of the

actuator at the desired equilibrium angle. This was done by always keeping one of

the two actuators maximally contracted, adjusting the position by selectively relaxing

units on the other actuator. The maximally contracted actuator was determined by

separating the joint space down the middle at the point when the two actuators are

maximally contracted,

0 sep = Ki,maxA1 - K2,maxA2 (6.5)
r(Ki,max + K2,max)

134



If the desired equilibrium point Oref is greater than this separating angle, then KI is

maximized while K2 is modulated by relaxing some units,

K2,ref (t) = Ki (t) A 1 - rref (6.6)
A2 + ref

The feedback law is in the form of (4.26), using the current stiffness divided by the

maximum stiffness as an estimate of the number of contracted units,

p(t (1 - K2 f (t)-K 2 (t) K 2 (t) < K2,ref (t)- (6.7)
pt- M K....-K2(t) ' (6.7)

q(t) - K 2 (t )

q(t) = (1 - a) K2 (t)K2 ref(t) , K 2(t) > K2,ref(t)+

0, K 2(t) < K2,ref(t)+ E

6.2.4 Adaptive Compensation for Slow Disturbances

The equilibrium joint angle tracking can be calculated in real time because the force

F(t) and displacement D(t) of each actuator can be measured,

Ki(t) = Fi(t)/(Di(t) - A1) (6.8)

Ki(t) = F2(t)/(D2(t) - A2)

e(t) K 1A 1 - K 2 A 2e(t) =
r(K 1 + K2)

However, knowing this angle does not mean that the actual measured joint angle will

be equal to the equilibrium angle, because of disturbance forces such as gravity. One

technique which may also be useful for dealing with slow or constant disturbances

might be a slow estimator which tracks the difference 0(t) between the actual equilib-

rium joint angle e (t), which can be calculated by measuring the actuator stiffnesses

in situ, and the measured joint angle, 9(t). By subtracting 0(t) to the reference equi-

librium joint angle, the equilibrium point can be shifted to a feed-forward value O'r(t)

that reduces the output error. An estimator for this purpose could be implemented
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using an exponentially weighted moving average with time constant p,

O(t + 1) = (1 - p)0(t) + p(O(t) - Oe(t)) (6.9)

O'ef(t) = Oref(t) + (t) (6.10)

If the time constant of the estimator is chosen to be equal to or longer than the

physical time constant of the actuator response, then this estimator does not hamper

the high frequency disturbance rejection discussed above.

6.3 Apparatus Description

Figure 6-5 shows a photograph and a section view of the robot arm constructed

for this experiment. It contains two shape memory alloy actuators, each having

an array of 60 SMA units placed in parallel, each controlled with a single FET for

Joule heating using a microcontroller implementation of the recruitment architecture.

Each actuator consists of three stacked circuit boards, which slide back and forth in

channels within the arm. The actuators are cooled by a fan, which blows air through

a duct in the center of the actuator. The walls of the duct have slits which blow the

air through the array of SMA units, as shown in the section view. The force of each

actuator was measured with a load cell near the shoulder end of the arm. The angle

of the elbow joint was measured with a potentiometer. The total range of motion in

the arm is 1.8 radians.

The neutral positions of each actuator were calculated in situ by activating all

of the units on the antagonistic actuators, and perturbing the arm. The plot of

actuator torque versus displacement, shown in Fig. 6-6, was fit to a linear model,

whose intersection with the joint angle axis was taken to be the actuator's neutral

point. The force-displacement relationship of the actuator was measured in Fig. 6-7.

Just as the models predicted, the actuator stiffness varies with the number of recruited

units. The model of agonist and antagonist actuator stiffnesses were used to estimate

the number of on units in each actuator by averaging the force and displacement from
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Figure 6-5: A schematic of the antagonistic recruitment-based 1-DOF arm.



the calibrated neutral position of each actuator over a group of n samples,

/K,(t) = E =o(Di(t - k) - 6J)F (t)
E=0(Di(t - k)-

(6.11)

These values were then used with the control law from (6.6) and (6.7) to control the

equilibrium position. An estimator was implemented based on (6.9) and (6.10) to

compensate for slow disturbances.

Actuator Stiffness and Neutral Point Calibration

0.4 0.6 0.8 1 1.2 1.4 1.6
Angle [rad]

Figure 6-6: Each actuator's torque as a function of the joint angle, with all units in
the on state.

6.4 Experiment

6.4.1 Equilibrium Point Control

For the first experiment, the arm was clamped in the horizontal plane, as shown in Fig.

6-8. A reference equilibrium position was sent to the central controller, which then

used the force sensor data and the joint angle of the arm to drive the equilibrium point

to the desired value, without any adaptive compensation for constant disturbance

forces. Figure 6-9 shows the results of the equilibrium point tracking the desired

position. As predicted, the tracking response is slow because it is limited by the
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Actuator Force-Displacement Curve

50 N =60
on

40 N =40
on

S30
S N =20

20

0
0 2 4 6 8 10

Displacement [mm]

Figure 6-7: The stiffness of a single actuator as a function of number of recruited
units is shown for No,, = 20, 40 and 60 units.

activation speed of the SMA. The difference between the equilibrium point angle

and the actual joint angle is due to an unmodeled disturbance force. The overshoot

exhibited by the feedback control law is a result of using the measured stiffness of the

completely controlled actuator to determine the commands to be sent to the other

actuator, as in (6.6). This solution was chosen because it was very stable and robust

to modeling errors introduced by friction between the actuator circuit boards and

the channels they slide in. However, because commands sent to the arm are based

on tracking a moving target (a reference proportional to the changing stiffness of the

other arm), some overshoot was inevitable. A better law would coordinate the two

actuators so that their tracking was decoupled, at least when a large change in the

reference angle is commanded.

6.4.2 Frequency Response

To determine the frequency response of the closed-loop system, a slow chirp signal

was fed into the arm as a joint angle reference. The Bode plot of the actuator's joint
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Joint

Shoulder is
Clamped

Perturbation
Applied to

Arm

Figure 6-8: The equilibrium point of the arm was controlled while the arm was
clamped at the shoulder in the horizontal plane. A perturbation was applied to the
end of the arm.

Control of Equilibrium Point

100 150 200 250
Time [s]

Figure 6-9: This plot demonstrates the ability to control the equilibrium point of
the arm joint. The actual angle differs from the equilibrium point due to a small
disturbance force.
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angle to a reference is shown in Figure 6-10. The bandwidth' of the actuator was

found to be 0.126 Hz. This seems slow, but it is commensurate with the physical

response of the SMA used in the actuator. Consider, for example, that the open-

loop force response of the actuator took approximately 5 seconds to settle in the

experiment performed in Chapter 5. The fact that the actuator was able to produce a

sinusoidal reponse on the order of 10 seconds means that the control system produced

an output at remarkably close to the physical response time of the active material.

The phase of the actuator's tracking response drops off linearly with frequency. This

fact is attributable to the pure time delays associated with activation. The phase

was measured by calculating the lag between each rising and falling zero crossing in

the reference and the subsequent crossing in the response. The result, plotted in Fig.

6-11, shows that the time delay is equal to about 2 seconds, largely independent of

frequency.

Closed-Loop Gain

- 5 .................................... . :. ... .. . ......

-10o b =0.146 Hz ": " lrrr

-15 -

-20

0.05 0.1 0.15 0.2
Frequency [Hz]

Closed-Loop Phase
0

S-50 " "...

-100 .4
" "-.... * ." -.so . .: :...:".'..-

-150 * .* .

0.05 0.1 0.15 0.2
Frequency [Hz]

Figure 6-10: A Bode plot of the arm's closed-loop response to a frequency sweep.

'The bandwidth was calculated as the frequency for which the response amplitude was one half
of the reference.
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Figure 6-11: The delay between zero crossings for the sinusoidal reference joint angle
and the closed loop response.

6.4.3 Fast Disturbance Rejection

The advantage of equilibrium point control can be seen when a peturbation is applied

to the actuator. Rather than attempting to activate more units in respose to a

change in joint angle, the controller does not see the change in angle as a change

in the equilibrium position of the arm, so it does nothing. When the disturbance is

removed, the arm springs back quickly to its original position, as shown in Fig. 6-12.

The characteristic time for activation of the SMA wire is about 5 seconds; however,

the actuator returns to its unperturbed position in 0.21-0.26 seconds.

6.4.4 Adaptive Compensation for Slow Disturbances

To demonstrate the ability of this control system to track a joint angle accurately

in the face of disturbances, the arm was held in the vertical plane, and commanded

to track a square wave. The estimator for 0(t) from (6.9) and (6.10) was used to

find the offset between the equilibrium point and the actual actuator trajectory. This

value was then fed forward into the recruitment controller to alter the joint stiffnesses

accordingly. Figure 6-13 shows the measured joint trajectory, which converges to the

desired joint angle despite a large disturbance force. The true joint angle, shown in

blue, is offset by 0(t), which settles to a constant value at about the same rate as the
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Joint Angle Response to a Fast Disturbance
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Joint Torque Response to a Fast Disturbance
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Figure 6-12: The passive elasticity of the actuators enables the arm to reject high-
frequency perturbations that the closed-loop controller cannot possibly respond to.

actuator's physical reponse.

6.5 Conclusion

This chapter has shown how a simple, biologically-inspired recruitment model can be

used to design and build SMA actuators having tunable stiffness. With the ability to

significantly alter the stiffness of an actuator, equilibrium point control of an antago-

nistically actuated joint was implemented in hardware using a stochastic recruitment

control system. An adaptive, feed-forward compensation scheme was developed for

rejecting slow or constant disturbances without interfering with the high frequency

disturbance rejection peculiar to equilibrium point control.

There is much that can be done to improve upon the results presented here.

The ability to perform the same motion at varying levels of total stiffness was not

discussed, although it is not hard to imagine. Also, maximizing total joint stiffness

may not be the best way to elicit a rapid response from the arm, although it was

simple to implement and robust to simple models and sensor noise. It could be useful
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to develop feed-forward motion primitives to reduce point-to-point movement times.
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Arm Response With Adaptive Compensation for Slow Disturbances
1.4

-i . - --ry ..4 - -""'1.2 H I; II

1.2 (t) I

1
1 I-

S0.8

0.6 - - - Reference
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Figure 6-13: The arm can track a reference joint angle even with the arm in a vertical
configuration, if an adaptive estimator can be used to offset the equilibrium point
trajectory from the desired position.
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Chapter 7

Conclusions

In this thesis, I presented a novel, unified framework for controlling an active material

actuator made of many small elements as a noisy, single-input, single-output system

through the intentional randomization of each functional unit's behavior. The signif-

icance of this is that actuators of this kind can scale up much more gracefully than

those having a single monolithic element. I developed a physical model of actuators

composed of many two-state functional units, showing how the ensemble system out-

puts could be adjusted as a function of the nuber of units "recruited" into the active

state. I showed how this system can be treated as a random process if the behavior

of each unit is randomized, so that it transitions between the active and inactive

material states with known probabilities. Then I demonstrated that this process can

be controlled in a manner similar to a classical SISO control loop, based only on the

total force and displacement produced by the actuator. The ability to control the ac-

tuator improves with the number of units that are added to the actuator. I explained

how higher-order discrete-state machines could be controlled by using a state space

observer-controller framework. Finally, I presented a robot arm using two stochastic,

recruitment-based actuators to control joint position and respond to fast and slow

disturbances.

The larger significance of this work is a change in the way that distributed, multi-

agent systems are seen. Many researchers assume that the solution lies in distributed

computation. The resulting control architectures usually involve agents that have a
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great deal of computational power. The control goals are achieved through a series

of complex negotiations between each agent in the system. While the decentralized

approach has obvious benefits in some contexts, many of these problems can be solved

in the framework of a single central observer-controller, since often the desired system

behavior is posed in terms of a global output or describing statistic. I hope that the

tools for estimation and control presented here can be of use in simplifying many

problems involving the control of ensembles of hybrid-state systems.

Much remains to be done in order to rigorously pose the stochastic recruitment

control architecture as a general solution to the problem of controlling random,

hybrid-state ensembles. This work has presented some possible approaches to the

derivation of control laws assuming that the central controller has either full knowl-

edge or limited knowledge of the ensemble state of the system. It is relatively inflexible

in assuming that full control authority is available, that is, that it is possible to ar-

bitrarily control the probability of transitions between states. However, problems of

limited control authority are very much of interest. As mentioned in the conclusion

of Chapter 4, some work exists in the formulation of open-loop inputs having con-

strained state transition probabilities. This must be extended to closed-loop control

laws if this is to be presented as a general solution.

Another area that deserves some attention is the extension of the stochastic re-

cruitment control architecture to systems exhibiting higher-order random behaviors,

such as agents whose state transition probabilities are proportional to the number of

agents already in one or more states. This is needed to model systems in which multi-

agent interactions are important in determining system behavior. Also, neighbor-to-

neighbor agent interactions may introduce some degree of correlation into the agents'

behavior. Currently, the statistical models do not account for this, although it may be

useful (for instance, with regard to the problem of cross-heating SMA elements). This

kind of extension is absolutely necessary for properly describing spatially distributed

systems such as cell cultures. In such systems, describing ensemble behavior can still

be quite useful, but the local correlations may necessitate more careful modeling of

how individual agent behaviors scale up.
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In closing, I'd like to come back to the original motivation for this thesis, which

is the development of new actuators. As roboticists, the importance of this topic

is self-evident. Limits on actuation are among the key constraints placed on the

problems of locomotion, manipulation, and robot-human interaction. If the path

toward the actuators of the future were already known, a great number of additional

applications would spring up overnight. However, the challenge of developing better

actuators spans many disciplines, from materials science to biology to control systems

theory. It is unlikely that a materials researcher will develop an active material

remotely resembling an ideal force or displacement source. It is equally unlikely

that a material will be discovered having ideal scaling properties, or an ideal set of

activation dynamics. The non-ideal properties of these new materials must prompt

new and creative solutions from all other contributors to the field, including roboticists

who must work to revise their notion of what an ideal actuator is. In my work, I have

endeavored to understand the limitations of the active materials presently available,

and I have made an effort to compensate for these limitations by revising our notions

of how active materials are controlled. It is at present my best attempt; I am certain

it will not be my last attempt.

149



150



Appendix A

Simple Hardware Implementations

of Random Finite State Machines

A.1 Introduction

This appendix outlines a design for an on/off state machine that can be implemented

in a handful of logic gates, capable of transitioning from on to off and from off to

on with controllable probabilities p(t) and q(t). In the experimental work presented

in this thesis, these state machines were implemented in software in the experimental

work using a prepackaged pseudo-random number generator. However, the argument

has been put forth that this randomized architecture can be scaled down to very,

very small units with minimal computational footprints. This will possbily enable the

integration of this kind of state machine into micro-fabricated actuator devices, such

as the printable actuators demonstrated by Kim [30]. In defense of this argument,

this appendix offers one solution to the problem of producing small random finite

state machines in hardware.

A good starting point for the implementation of a random two-state machine is

a latch, shown in Fig. A-1. A latch is a circuit which sets the output pin, Q, to the

value on the input D when a rising edge is detected on the clock pin, E. One way

to command state transitions would be to set the desired state on D, while sending

a clock signal into an AND gate, as shown. The other input to the AND gate is
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Commanded State
Transition State,

Clock
AND E

Choice
Latch

Function, c(t)

Figure A-1: A two-state machine with random state transitions could be implemented
with a latch; the value of Q is the last value on D when E was high.

a random binary "choice" signal, c(t), whose probability of being high at any point

in time is controllable. Thus, each clocked command is accepted only if c(t) is high

while the clock signal is sent. This method would not work to generate simultaneous

transitions from off to on and from on to off, because only one command can be sent

at any time. However, this example implementation is presented because it is clear,

and because the feedback control laws that prove most useful make only unilateral

transitions, as demonstrated in §4.5.

Commanded State
Transition State,

Broadcast Clock
Threshold, u(t) AND

Local Noise, v(t) Latch
Comparator

Figure A-2: Random state transition choice could be implemented with a comparator
comparing a broadcast threshold to a locally generated random signal.

It is not difficult to imagine a circuit which generates a binary random choice

signal c(t) on a controllable probability distribution. Figure A-2 depicts one example

circuit. Suppose that each unit is capable of generating a uniformly distributed

random signal, say, between 0 and 1 volt, which is uncorrelated from all of the other

units in the actuator. A broadcast value u E [0, 1] could be compared to this random

signal with a comparator of some kind, generating a binary random variable c(t) with

152

-------------- ____ ------ -----



the probability distribution:

Pr{c(t) = 1} = u (A.1)

Pr{c(t) = 0} = 1 - u

This could be sampled at regular time intervals via a broadcast clock signal to de-

termine whether to make a state transition. In software, comparison with a uniform

random variable is easy to implement, assuming that a good pseudo-random number

generator is available, and that each unit's pseudo-random number generator can be

independently seeded.

A.2 Hardware Random Number Generation

Each unit needs hardware that can generate a uniformly distributed random variable

that is uncorrelated from all the other units. One way to think of this is as a stream

of unbiased bits, that is, a stream of bits where the probability of each bit being 1

is 0.5 and the auto-correlation of the bit sequence is zero for any nonzero time delay.

The equivalence of these two can be shown by looking at an interval between 0 and 2k

on a number line, where k is the number of bits sampled from the random sequence.

The most significant bit of the number being one with probability 0.5 corresponds

to the number lying in the upper half or the lower half of the interval with equal

likelihood. The distribution of the next bit down represents the odds of lying in

the upper quarter or lower quarter of each half. It is straightforward to see, then,

how having an unbiased stream of random bits is equivalent to having a uniformly

distributed random variable.

There are many ways of obtaining random electrical noise in a small circuit. With

a good amplifier, Johnson-Nyquist noise can be measured in any conductor [25]. Shot

noise, due to quantization of charge, can be measured wherever current is flowing [23].

Avalanche diode breakdown noise is easy to obtain if the diode is biased properly [21].

Any one of these noise sources could be amplified and thresholded to produce a binary
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Third Bit

Second Bit
First Bit

Figure A-3: A binary number made up of unbiased random bits will lie on a uniform

distribution. The first bit will determine which half of the range the variable lies in;

the second bit determines which half of that half, and so on.

random variable. However, in practice, these noise sources will not produce noise that

is both unbiased and without some auto-correlation at nonzero time delays. Some

noise sources, such as avalanche diode noise, tends to produce burst events rather

than a steady stream of random output. Even amplified Johnson-Nyquist noise,

which in theory is white noise, will probably pick up bias due to other parasitic

signals. This is a noted problem in the field of computer security [14]. It is often

solved by using a mixing function, a function whose purpose is to thoroughly scramble

its input so that the output appears to be uncorrelated, unbiased noise. RFC 4086,

the Network Working Group standard defining random number generation, suggests

any number of mixing functions as a good way to scramble a signal in order to obtain

these properties. Many of the mixing functions described in the standard are far

more complicated than is required in this case. They are designed to prevent an

attacker from predicting the output based on partial measurements. In this case, the

only criteria of interest relate to bias and auto-correlation, so much simpler mixing

functions can be used.

Colored Noise White
Source Shift Register Bits Noise Output

Il aTXOp llIIUI

XOR XOR Taps

Figure A-4: A linear feedback shift register is a simple-to-implement hardware mixer

made from a shift register and several XOR gates. It effectively removes bias and

auto-correlation from a random source signal.

Once mixing method sufficient for producing well-behaved random numbers is
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called the linear feedback shift register, or LFSR. Shown in Fig. A-4, it consists of

a shift register with selected taps wired into XOR gates, fed back into the input. A

binary random variable, fed into the LFSR, will emerge as an unbiased, uncorrelated

sequence', if shift register taps used for feedback are carefully chosen. This method

is used to "de-correlate" all kinds of signals. It is at the core of the cyclic redundancy

checksum (CRC) algorithm, a mainstay of communications error correction protocols

since the 1960s. Peterson's 1961 paper on the subject is a good reference on the

properties of linear feedback shift registers, and explains how to choose the shift

register taps to use for feedback [50]. Goresky and Klapper's preprint book Algebraic

Shift Register Sequences is a much broader look at this class of mixing function [16].

A.3 Making Transition Decisions in Hardware

The flip-flop, comparator and LFSR random number generators could be combined

with a digital-to-analog converter attached to all of the taps of the feedback shift

register, as shown in Fig. A-5. This circuit will make state transitions with the

controllable probability distribution from (A.1). However, better solutions exist that

do not necessitate digital-to-analog conversion, a relatively complex process compared

to the other components involved. One alternative would be to use some kind of pulse

width modulation on the command signal. Figure A-6 shows a schematic for a pulse

width modulated random state machine. Like before, a LFSR is used to scramble

the bits from a local random source. Instead of feeding the bits into a DAC, n

sequential bits could be fed into a multiple-input AND gate to construct a binary

random variable with known bias, so that the probability of the AND gate output

being high is 1 in 2n .Suppose that the clock signal sent to all of the units is a pulse

of variable width. By setting the pulse width to k times the clock period of the shift

register, the probability of pin E seeing a rising edge within the width of the clock

'There will be some auto-correlation if the sequence runs uninterrupted through all possible states
in the shift register. The number of states is large, on the order to 2 K, where K is the number of
bits in the shift register.
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pulse is equal to the joint probability that the biased signal was high at any time,

Pr{c(t) = 1} = 1 - (1 - 2-")k (A.2)

This probability can be modulated from 0 to almost 1. As we will explain in §4.3.1,

this is good enough to control the behavior of the actuator.

Broadcast
Threshold.
Signal, u(t)

Commanded State
Transition [

Clock Pulse I
State,
s,(t)

Latch

Figure A-5:
probability.

A digital/analog circuit for producing random decisions with known
The broadcast analog threshold value determines the likelihood that the

output will be high when sampled.

Commanded State
Transition

J - Variable Width
Clock Pulse "-1 i

State,
s,(t)

Latch

Figure A-6: An all-digital circuit for producing random decisions with known proba-
bility. By varying the width of the clock pulse, the probability that the output will
be high can be controlled.
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A.4 Conclusion

This brief gate-level circuit sketch shows that it is possible to make very small compu-

tational agents whose stochastic behavior is well-characterized and controllable. The

purported value of using random state machines instead of distributed computation

[12] or an addressed bus is that identical random state machines with a very small

circuit would be ideal for scaling down to the integration of possibly very small and

very fast actuator units. The end result, presented in Fig. A-6, shows that discrete,

uncorrelated random behaviors are not difficult to generate with small digital cir-

cuits. Time-tested methods of mixing physical random noise can be used to produce

unbiased streams of effectively random bits. These can be manipulated using logic

gates to modulate the probability with which a latch-based state machine makes a

transition.
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Appendix B

Minimal Feedback Policies

B.1 Introduction

One of the control law candidates discussed in §4.5 was the minimal feedback control

law, so called because it requires only the minimum amount of feedback information

necessary to prove probability 1 convergence of the control system: knowledge that

the present state is within the target set, R. This could be considered as a very rudi-

mentary output to the system, y(t), a Boolean measurement which lets the controller

know if the current output has reached the destination:

y(t) =
true,

false,

if N(t) E R

if N(t) R
(B.1)

The proposed control strategy from §4.5.1 based only on this information is to con-

strain the inputs p(t) and q(t) so that the expected future error is zero, not conditioned

on any knowledge of the present state:

p(t) = {
q(t) =

P

Nref

Nor, N(t) R

0, N(t)E R

NTotal Nref

-~0-, N(t) C R

0, N(t) E R

(B.2)
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When the system is within the target state, the state transitions are commanded

to cease, so that the target set is absorbing. This minimal law is interesting not

because of its incredible performance, but because it serves as a good comparative

case against which the performance of any other Pr {1} convergent control law should

be measured. Control laws that assume more in-depth knowledge of the state should

perform better than the minimal law. Otherwise, the additional information is not

improving the performance of the control system. The purpose of this appendix is to

demonstrate that the control law presented in §4.5.1 is the "best" minimal feedback

control law for performance comparison.

B.2 Optimal Minimal Feedback Laws

As one might imagine, there are quite a number of control laws that converge using

only the minimal feedback information provided by (B.1). Any open-loop input of

the kind developed in §3.3.1 has some chance of entering the target set R as time

progresses; more specifically, it is very likely that the state will pass through R quickly

if an open-loop input is chosen so that the expected steady-state behavior as expressed

in (3.25) is close to N e f . This appendix proves that of these many possible laws, the

one presented in Chapter 4 is the best in terms of the expected convergence time. To

show, this, we compute the expected time to converge, J, as before, but instead of

defining this as a function of the initial state N(O), it can be defined as a function of

the initial probability of each unit being on, Xon(0),

J(xon(0)) = E [ g(y (t)) X on (0) (B.3)

where g(y(t)) is a cost-per-stage function given by

g(y(t)) = y(t rue (B.4)
1, y(t) = false
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Recall that the time evolution of a single agent's probability of being on, Xon(t), can

be written as an eigenvalue decomposition as in (3.23), which, for the two state case,

looks like this:

Xon(t) = xs + (Xon(0) - xsS)A' (B.5)

xsS= Pc (B.6)
Pc + qc

A2 = 1 - Pc - qc (B.7)

The goal behind expressing the cost as a function of Xon(0) is to find the control

policy minimizing the expected convergence time for an arbitrary initial value of

Xon(O). In finding the control policy, we consider constant transition probabilities,

p(t) = Pc and q(t) = qc, and determine probability values that do not need information

about initial conditions. These state transitions are repeated until the destination has

been reached, at which point all state transitions are commanded to cease by setting

p(t) = q(t) = 0. The following recursive form of J(xon(t)) is useful for analyzing

the cost function. Let Jt be the cost-to-go from time t, that is, the partial sum of

cost-per-stage values starting at time t:

Jt = E [ g(y(k)) Xon(t) (B.8)

From this definition it is clear that Jo is equivalent to J(xon(O)). By separating the

cost-per-stage from the rest of the summation, a recursive formula of the series in

(B.3) can be formed:

Jt = E [g(y(t))] + E [Jt+iI Xon(t)] (B.9)

The stochastic nature of the cost function arises from the uncertainty about when

the exact number of desired on agents has been reached. The probability Ht of

reaching the desired state can be described using (3.18). For the present proofs, R

will be defined so that R = { [NfNTotal - N r ]T}, which makes computation of Ht
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straightforward,

Ht = P(y(t) = true I on (t)) NTotal Xon (t)N'ef (1 - Xo (t))NTotalNref (B.10)
Nref

Similarly, the probability of not reaching the desired state is defined as Ht,

Ht = P(y(t) = false I xon(t)) = 1 - Ht (B.11)

Using H, the cost-to-go Jt in (B.9) is given by

Jt = Ht + HtJt+l = H,[1 + Jt+l] (B.12)

The second term in (B.9) is the probability of not reaching the goal at time t multiplied

by the expected cost-to-go from t +1 assuming that the desired state has not yet been

reached. It is important to note that the expected convergence time J(xon(O)) takes

a finite value for a broad range of transition probabilities Pc and qc. The following

Lemma states this.

Lemma The expected convergence time is bounded, J(xo,(O)) < 00, for an ar-

bitrary initial state Xon(0) and an arbitrary desired number of on agents, No f E

{0, 1, ..., NTotal} , if the system is commanded to halt when y(t) is true, and if the

constant transition probabilities Pc and qc satisfy the following conditions:

1. A2 = - p, - qc is bounded by

IA2 < 1 - E, where c > 0 (B.13)

2. If Nonf = 0, then Pc = 0.

If Nr f - NTotal, then qc = 0.

If 1 < Noef < NTotal - 1, then 3b > 0 such that < x, p < 1 - 6.on - pc+qc -
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The first condition, (B. 13), requires that the time evolution of the probability distri-

bution xon(t) converges. See (B.5). The second conditions are natural requirements.

For example, if all the agents are to be recruited to the off state, No, = 0, there

is no point in turning on any agent, i.e. Pc = 0. If at least one agent must be re-

cruited to on, Nref > 1, transitions from off to on should not be prohibited, i.e.

pc - 0. Considering the case when all the agents are initially in the off state, pc must

not be 0, as the last condition manifests. Therefore, the convergence of J(xon(O)) is

guaranteed for all Pc and qc except for those pathological cases. It is obvious that Jt

converges for all t > 0 as long as J(xon(0)) converges. The proof of Lemma is shown

in §B.3. The following propositions are useful for finding an optimal control policy

with respect to the constant state transition probability parameters Pc and qc:

Proposition 1 Suppose that NTotal agents are independent, identically-distributed

binary-state Markov processes with transition probabilities p(t) and q(t). These pa-

rameters are held at constant values pc and qc until y(t) is true, at which point they are

set to 0. Let N'gf be a desired number of agents to recruit to the on state. Using the

Boolean feedback signal y(t) given by (B.1) alone, the cost function J(xon(t)) in (B.3)

takes an extremum with the following policy parameters for any initial distribution

Xon(0):

(p, c) N=  , 1 - (B.14)

This will be shown by demonstrating that the gradient of J with respect to Pc and qc

is zero for these parameter values.

Proof dJ/&pc can be expanded as a recursive series from any point in time by

taking the partial derivative of (B.12) with respect to Pc,

aJt [IH, + Jt+l- = -[1 + Jt+l] + It (B.15)
Ope ape ape
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Similarly, OJ/&qc can be written as a recursive series,

aJ allt Jt+lS = - [1 + Jt+] + Ht (B.16)
8qc qc aqc

These series can be shown to converge under the same conditions as Jr, when xon(t)

is bounded away from 0 and 1, using a similar argument (each term is bounded in

magnitude and discounted exponentially). The sign of each term in this series is

determined by the sign of the partial derivative of Ht at each point in time. The

other terms in the expression are probabilities, which are positive, or truncated cost

functions, which must also be positive. The derivative of Ht with respect to xon(t)

reduces to an expression in terms of Ht. From (B.10),

OHt N re f - NTotalx on(t)
= H- on (B.17)

Oxon(t) Xon(t)(1 - Xon(t))

The partial derivative of Ht with respect to p, is:

OHt NTotalxon(t) - Nore axon(t)
p--= H (B.18)

xp, Xon(t)(1 - Xon(t)) aPc

The partial derivative of Ht with respect to qc also contains a factor of NTotalXon(t) -

Ht= NTotalxon(t) - No ef Oxon(t)-qc=- He (B.19)
H - Zon o(t)(1 - x on(t)) 9q(

The control policy of (B.14) implies that the convergence rate given by (B.7) is zero,

A2 = 0. Therefore, the value of Xon(t) can be found for all t using (B.5):

XXon() = Xon(0), t=0 (B.20)
Nonef /NTotal, t > 0

Therefore, the factor NTotalXon(t) -N ef involved in (B.18) and (B.19) is zero for

all t > 0, NTotal . Nof//N - Nref = 0. Consequently afHt/Opc = Ot/laqc = 0 for

all t > 0, by extension, it is zero for every term in the series defining Jtlr/pc and

aJt/Oqc. This concludes the proof.
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Contour Plot of J, Nr 200, N=500

0.42 "

0.41

× 0.4

0.39

0.38

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure B-1: The contour lines of the cost function for N = 500, Nref = 200

Figure B-1 shows an example contour of the cost function J(xo,(O) = 0) for

Nref/NTota = 0.4. Parameters XsS = Pc/(Pc + qc) and A2 = 1 -P - q are used, which

have one-to-one correspondence with parameters Pc and qc. It should be noted that

the cost increases sharply as x,, deviates from the target distribution N;ref/NTotal

Along the axis of convergence rate A2, on the other hand, J(0) varies gently and is

therefore unclear where it takes its minimum. The following Proposition proves that

the proposed policy is at an extremum that is minimized with respect to A2 at that

point, though this proof does not rule out other extrema resulting from variations in

both s,, and A2 .

Proposition 2 Suppose that an ensemble of NTotal independent agents are con-

trolled with state transition probabilities p(t) = Pc and q(t) = qc and the Boolean

feedback signal y(t), commanding all transitions to cease when y(t) is true. Among

the control policies having the steady-state probability distribution set to the desired

value,

-x = PC N (B.21)Xss -Pc + q NTotal

the optimal policy that minimizes the cost function J(x,,on(O)) for an arbitrary initial

probability distribution on,(0) is given by the convergence rate of A2 = 1-p -q, = 0.

Proof The class of control policies under consideration can be described as Pc =

ON e f /NTotal and q = (1 - N; ef/NTotal) with 3 = 1 - A2 . These policies are on the
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line of xsS = NTota in the (xs,, A2) plane. The Proposition is proved if the gradient

of J with respect to A2 is always pointing away from the optimal point candidate

A2 = 0. This can be shown by calculating the product Z between the gradient at an
Nref

arbitrary point along the line of = Nt and the distance of that point from the

optimal point, AA2, and showing that Z is positive for all A2  0:

8J
Z = AA2 > 0 (B.22)

9A2

As before a recursive formula can be used for the evaluation of the partial series

starting at time t, Zt. For an arbitrary t,

Zt = H1 + i+,] Gt + HftZt+l (B.23)

where the sub-expression Gt determines the sign of each term in the series,

Gt = (NTotalXon(t)- Nr f ) on(t) AA (B.24)

As above, the only terms in the series defining the product Z that can be negative are

within Gt. Gt can be evaluated for Pc = ONOf / N Total and qc = p(1 - N;f /NTotal),

to obtain the expression:

Gt = tNTtal Xon(O) - (1 - r)2t > 0 (B.25)

ref

If the initial probability distribution coincides with the desired one, Xn(0) = - ,i l

then the rate at which zXo(t) approaches s,, does not impact the expected convergence

time. For all other values of on (0), the above expression Gt is positive for all 0 - 1,

that is, all A2 f 0, so the cost function is increasing at any point other than the

optimal point. This concludes the proof.
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B.3 Proof of Cost Function Boundedness

First we can show that Ht in (B.10) is uniformly lower-bounded.

i). When Nref = 0, Pc = 0 and x,, = 0, and Ht reduces to

Ht = (1 - Xon(t))NTotal (B.26)

From (B.5),

Xon(t) = Xo,(O)At < At < (1 - e)t < 1 - E for t > 1 (B.27)

Using this in (B.26) yields

Ht > (1 - (1 - e))NTotal = eNTotal > 0 (B.28)

ii). Similarly, when Nref = NTotal, then qc = 0 and x,, = 1, and

xon(t) = 1 + (Xon(0)- 1)A > 1 - A > 1 - (1 - )t 1 - (1 -)

(B.29)

Therefore,

Ht = Xon(t)NTotal > NTotal > o (B.30)

iii). When 1 < Noef < NTotal - 1,

(B.31)6 s = Pc < 1-6
Pc + qc

The transient term in (B.5) is bounded by

I(xon(O) - xss)A I Il = (1 - E) (B.32)
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From these two it follows that xo(t) is upper and lower bounded as

6- (1-E)t x on ,, ( t )  -6+(1 )t

Let t* be the smallest integer satisfying

0 < -< - (1- )t*

2

Solving the above for t*,
log

t = log(I- c) > 0

where [z] means the smallest integer that is larger or equal to z. Note that 0 <

6/2 < 1 and 0 < 1 - e < 1 assure the existence of t*. From (B.33) and (B.34),

6 6
0 < - < zon(t) < 1 - < , Vt > t* (B.36)

2Substituting 2this into (B.0) yields

Substituting this into (B.10) yields

Nref N-Nref

2( (B.37)

for all t > ti*.Let Hmin = min (CNTotal, (6 / 2 )NTotal) > 0. From (B.28),(B.30), and

(B.37) it follows that Ht is uniformly lower-bounded for all t > t*:

Ht _ Hmin > 0

or Ht < Hmax - 1- Hmin < 1. From (B.12)

J,* = H + HH,+1 + HtH,+1H,+ 2 + ...

Hm H2 H 3  Hmax1 - Hmax
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(B.38)

(B.39)

(B.40)

Ht _ xtre 2 -( 2
-- N
=- > 0
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Now that Jt is finite, we find from (B.8) and (B.12),

J(xon(O)) = Ho0 + H011 + HHo HHi + ... + Ho...-t,*-1Jt*

< 00

since 0 < Ht 1 for all t. Therefore, J(xon(O)) is finite for arbitrary Xon(0). This

concludes the proof.
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