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ABSTRACT

Theoretical gravity wave source models have been

developed to explain observed ground pressure fluctuation

measurements associated with overhead jet streams. The first

theory was developed using a multiple-scale analysis for

finite amplitude gravity waves in a sheared flow. This anal-

ysis is equivalent to a nonlinear WKB approximation and cal-

culations show the assumption of spatial smoothness of the

medium will be violated for the low Richardson numbers

associated with jet stream source regions. A quasi-linear

theory was next developed which is not limited in applica-

bility to large Richardson number shears. The quasi-linear

theory allows the essence of the nonlinear wave-wind inter-

action to be explored, yet retains the features of linear

wave propagation away from critical levels. For transient

gravity wave sources in the jet stream, numerical experiments



show two major effects. First, the initial disturbance is

amplified in the source region at the expense of the wind and

gravity waves are radiated from the source region up the jet

and down toward the ground. An observed peak to peak surface

pressure fluctuation of 0.5 millibar would correspond to maxi-

mum peak to peak sources region wave wind velocities of

approximately 6 m/s. The second effect is a transfer of wind

energy from the upper critical level to the lower critical

level. This results from the upper critical level absorbing

negative momentum waves that propagate up from the source

region, while the lower critical absorbs positive momentum

waves that propagate down to and are reflected back from the

ground. The total energy transferred can be considerably

larger than the original disturbance energy when the source

region Richardson number is low.

A possible mechanism for generating the initial dis-

turbances involves the generation of propagating subharmonics

by their nonlinear wave-wave interaction with an unstable

mode associated with shears having Richardson numbers less

than 0.25. This possibility was studied using linear stabil-

ity theory for stratified shear flows and an approximate

theory for nonlinear wave-wave interactions. The time his-

tory predicted for this interaction is compatible with that

of the subharmonic-mean wind interaction previously modeled.

The more complete modeling involving the interactions of the

unstable mode, the subharmonic, and the mean wind remains as

an extension of the current study. The unstable modes have
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periods less than the Brunt period and the periods of their

subharmonics will be from 1.2 to 1.6 Bri*nt periods which

falls within the range of commonly observed jet stream

gravity wave spectra.
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NONLINEAR GRAVITY WAVE-WIND INTERACTIONS AND

JET STREAM GRAVITY WAVE GENERATION

INTRODUCTION

Ground level pressure fluctuation measurements with an

array of micro-barographs have shown that most of the fluctu-

ation energy in the period range of minutes to an hour behave

as propagating atmospheric gravity waves. These waves are

especially strong when a well developed tropospheric jet

stream is located overhead. Linear wave theory is able to

account for many features of these waves. The frequency

spectrum of the waves shows a sharp high frequency cutoff at

the Brunt frequency. This was shown to be due to the evanes-

cent wave behavior for waves with frequencies above the Brint

frequency and which have subsonic horizontal phase velocities.

The phase velocity of the waves can be used to determine the

height of the source region, since one can assume the source

region is convected with the mean wind, and in the troposphere

the wind velocity is usually monotonically increasing with

height. On examining the upper air wind and temperature

records it was found that the source regions represented

those levels of the jet that were least stable as based on

the Richardson number (Claerbout, 1967; Madden and Claerbout,

1968). Linear theory is unable to predict the source charac-

teristics, however, as the theory breaks down in the vicinity
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of the critical level, that level where the wind velocity

equals the wave phase velocity. Linear theory predicts

growing wave amplitudes and decreasing vertical wavenumbers

as one approaches tihe critical level (Booker and Bretherton,

1967; Claerbout, 1967), so that unstable wind shears would

result from the waves themselves. Linear theory also predicts

that the wave is able to interact with the wind at the criti-

cal level (Bretherton, 1968; Garret, 1968; Hazel, 1967), and

this interaction could greatly alter the resulting wave

behavior. Since linear theory cannot predict how the inter-

action proceeds, one must incorporate nonlinear terms in

order to study the real situation existing in the-jet stream

source regions.

A nonlinear investigation of gravity wave behavior

near the source region and the relation to ground pressure

observations and energy transport within the jet stream

seemed a worthy topic of investigation since waves involving

surface pressure variations of only fractions of a millibar

could become important in the jet stream due to the strong

and nonlinear behavior near critical levels. In addition,

the association of the source regions with low Richardson

numbers was an indication that a study of possible gravity

wave source generation by shear flow instability would also

be valuable.

A start on such a nonlinear study of gravity wave-wind

interactions was made by Breeding (1971). In that study the

nonlinear critical level phenomenon was investigated by means



of finite difference equations. The study showed how wave

energy and momentum is taken up by the mean wind and how some

higher harmonic wave generation also results. Unfortunately,

the finite difference calculations require large amounts of

computer time, and without a more analytic basis it is diffi-

cult to generate a complete understanding of the phenomenon.

In addition, there remains the question of source generation

and transient behavior in full jet stream models. Breeding's

calculations did show, however, that with realistic wave

amplitudes, the time scale of the changes in the waves and

the wind could be slow relative to a wave period. This re-

sult could justify certain simplifications in the analysis

and opens up the possibility of using more analytic methods

to efficiently study these interactions.

In Section I a multiple scale analysis is applied to

gravity wave propagation in a sheared flow. This analysis is

based on the concept that while the wave amplitudes are

finite so that second-order products cannot be neglected, the

changes in the system are slow relative to the wave and

spatially smooth compared to the wave phase structure. After

considerable algebraic manipulation one is led to a much

simpler set of equations for the waves and mean flow that is

equivalent to a nonlinear WKB approximation for gravity wave

propagation. Unfortunately, in the jet stream environment

the condition of spatial smoothness is not upheld, and this

analysis gives unrealistic results. The important parameter

to define spatial variations is the wave impedance change



per radian. From linear theory we know that this parameter

is inversely proportional to the square root of the

Richardson number, and is therefore not small in regions of

interest where the waves are generated.

Breeding's analysis also showed that the wave harmonic

generation is much smaller than the mean flow - fundamental

interaction, and thus an expansion in horizontal Fourier com-

ponents is justified. Such an approach is taken up in Section

II. This method also leads to simplified numerical calcula-

tions, but in this case good agreement is obtained with

Breeding's two-dimentional finite difference calculations. A

similar expansion was also developed by Boer (1970).

This quasi-linear analysis can be given a rather

simple interpretation. On the whole the waves behave as in

linear theory, but in a time-varying medium. The spatial

and temporal variations of the medium are straightforwardly

related to nonlinear wave terms. From linear theory we are

aware of the large reflection effects occurring because of

rapid impedance changes with height in regions of low

Richardson number, and it is the presence of these partial

reflections which invalidated the multiple-scale analysis.

These reflections, which are included in the quasi-linear

theory, greatly influence the resulting wave-wind interac-

tions.

In Section III the quasi-linear theory is used in a

numerical study of the behavior of finite amplitude gravity

wave transients in a jet stream model as a function of source
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characteristics and source region Richardson number. Calcu-

lations will show that gravity waves provide a very efficient

coupling between the source region critical level and the

critical level at the top of the jet. The steady state

result is a transfer of wind energy from the topside to the

underside critical level, the amount of energy transport

rapidly increasing for decreasing Richardson number. Calcu-

lations will also show that source region wave-wind veloci-

ties of a 6 m/s can produce the observed pressure fluctuation

amplitudes of 0.5 millibar at the ground.

In the final section we examine the question of

gravity wave source generation itself. From linear stability

theory for stratified shear flows we know that a certain

range of wavenumbers will be unstable and grow at the expense

of the wind if the Richardson number is less than 0.25

(Collyer, 1970; Drazin, 1958; Drazin and Howard, 1966; Hazel,

1972; Howard, 1963; Jones, 1968; Miles, 1961 and 1963;

Richardson, 1920). However, these unstable wave modes have

frequencies above the BrUnt frequency cutoff and are trapped

in the jet stream. Untrapped waves can be generated through

wave-wave interaction among unstable modes. The development

of such waves is studied in Section IV using linear stability

theory and an approximate nonlinear wave-wave interaction

formulation. The analysis shows that such effects are a

possible explanation for the generation of observed gravity

waves.



I. MULTIPLE-SCALE ANALYSIS OF NONLINEAR GRAVITY WAVES IN A

BOUSSINESQ FLUID WITH A SHEARED MEAN FLOW

A. Mathematical Development for Finite Amplitude Waves

We wish to examine in detail one method of approxi-

mation to deal with finite amplitude gravity waves interact-

ing with a sheared mean flow. In an attempt to eliminate

algebraic complexities without altering the basic nature of

the problem, we shall assume the equations of motion are

those describing a Boussinesq fluid. The use of the Bous-

sinesq approximation implies that the speed of sound and

scale height of the mean density are very large compared to

the phase velocities and vertical wavelengths of the fluid

motions (Spiegel and Veronis, 1960). The mean vertical den-

sity structure is then described by the Brunt-Vasailia

frequency QAB, and is otherwise considered a constant.

We then wish to examine the interaction of a train of

internal gravity waves with a mean horizontal flow. The mean

flow is assumed to be sheared and initially independent of

time; however, nonlinear interactions with the wave train

will introduce both time and spatial variations on the initial

structure.

The governing equations and variables are given as

follows:

(1.1) + . H~~)l ~L+? ± 0



+ U

(1. 4)+DI4 0

where

u = Horizontal wave velocity field

U = mean horizontal velocity field

w = vertical wave velocity field

P = (wave pressure field) /p

p = mean density field

$ = wave bouyancy function

~B2 CI

For future reference, it can easily be shown that an

energy conservation equation can be derived from (1.1) - (1.4)

as:

(1. 5) ~..~Fu.RV i~

where E = +(i.+-O + WZ + /IN.

The nonlinear terms in the Reynold's stress in Equa-

tions (1.1) - (1.4) make a general solution to the above sys-

tem virtually impossible, However, under certain approxima-

tions one can look for special solutions which may give

insight into the particular problem. One method available

is that of multiple-scale analysis. This method is essen-

tially a generalized nonlinear WKB approximation for applica-

tion to hyperbolic partial differential equations, and has

been shown (Whitham, 1970) to be equivalent to the



phase-averaged techniques developed by Whitham (1965). The

method of multiple scales has been applied to general non-

linear one-dimensional dispersive wave systems by Nayfeh and

Hassen (1971), and by Grimshaw (1972) to gravity waves in

fluids without sheared mean flows. The following develop-

ment represents a new application of the method to the study

of the propagation finite amplitude internal gravity waves

and their critical level interaction with a sheared mean flow.

The basic assumption of the multiple-scale analysis

is that there exist two space-time regimes, one representing

the rapid phase fluctuations in the wave train, and one

representing variation of such variables as amplitude,

frequency, wavenumber, and properties of the medium. In

order to describe mathematically the multiple-scale procedure,

we introduce a small parameter e << 1, such that

(1.6) X &.y. , T * Ct

where (x,t) refer to the short-term phase behavior of the

wavetrain and (X,T) to the long-term behavior of the wave

amplitude, phase derivatives (frequency and wavenumber) and

medium properties. In linear theory one usually deals with

the derivatives of the phase 6 = wt - k'x.: In the multiple-

scale analysis a parallel development follows as the vari-

ables (x,t) are introduced through a rapidly-varying phase

variable 6. The time and spatial derivatives can then be

written as:



(1.7) a) -O ' + E.

b) =,

c) +
.. as -az

In general, the frequency o and wavenumbers k and k

are also functions of the variables (X, Z, T). Finally, we

introduce an asymptotic series in powers of g. for each

dependent wave variable as functions of (e,X,T). The

specific notation will be as follows:

(1.8) a) , '.(Q, T) + E () --

b) W = w ( 2ST) -t- g, W1 (1  IT) +-

c) I> = PO (9 XT) + .P (&,LT)+

d) A ) .T)+

It should be noted that the wave field variables are

not considered small, that is of O(c), so that quadratic

products of zero order in the governing equations may not be

neglected as is the case in linear theory. Furthermore,

since the wave-train amplitude is not to be considered 0(c)

relative to ambient values, one would also expect wave-wind

and wave-wave interactions to produce changes in the medium

properties. The total field variables will then be written

as:

(1.9) a) 14, t U(Z) + MW(X)T) + \o((,XT) + O(E)

b) W 6 W(K T) +WO(G IT) +0 QCf.)



c) P = AP (.,T) + 1 (el;T) + o

d) 4P = A4 (KbX T) + c10 (&,j&L1-) + 0 oC~

Note that we initially assume only a horizontal

shear U(z) and hydrostatic equilibrium so that P (z) and

T(z) do not appear in the Boussinesq equations (1.1)- (1.4)

and in (1. 9) c, d.

Zero and First Order Equations

Upon substitution of the scaled derivatives and the

asymptotic series for the field variables into the governing

equations, one obtains a sequence of systems of partial

differential equations after ordering by powers of e. Of
immediate interest are the systems of equations corresponding

to 0(co) and 0(W). The Q(e") system contains only deriva-

tives with respect to 6 and gives the phase dependence of the

leading terms of the wave field variables. The O(e)system

is as follows:

(1.10) uo+U+ t.)(w+ Aw)=

(1.11) A '(w () . +1 -A) -. (Vo + AW) --- (Pot +AP)

-R(w+sw + 4>+ s

(1.12) [+
+e [&W'(+ 0 7->)

-Q O+A

In the above equations o,K,2, have been collected



inside the brackets as they are a function only of (X,T) and

not 6. Also, since U, Au, Aw, AP and A$ are not functions of

6, some terms could be deleted but are retained for conveni-

ence in the manipulations that follow.

Equations (1.10) and (1.13) can be integrated with

respect to 6 directly. From (1.13),

(1.14) fir. ((AO U+(A) - .(WO+A)) -

and from (1.10)

(1. 15) (l4 + A( (0-'- ( - o A '- k o(._.T).

Eliminating (Pet ) and (0+&-) in favor of (WD t.AW ) in

(1.11) gives

(1.16) (- (I &A/&+AtA/) + J'+

and finally eliminating (4t &4 ) yields

If we normalize the period of 6 to 2Tr, the solution is

(1.18) A>tW &J = \ T f \ T) e>

which requires from ( 1.17) that

(1.19) tC..QA

The relation (1.19) defines a "local" dispersion relation and

if f0 (X,T) = KU(z), one would have the linear dispersion

relation for internal gravity waves in a Boussinesq fluid

with horizontal shear flow. Since w0 = w (6,X,T) and

Aw = Aw(X,T), we can take Aw = 0 and then



(1. 20) WOG (G)I--X-r~o(~)=.W~ri + WCi T)e
Referring back to Equation (1.14), we can write

(1.21) [XITA +
and since u0 = u0 (O,X,T) this can only hold for all 6,X,T if

(1.22) u (6,X,T) = (We i+ W e )

and

(1.23) f0 (XT) = K(U(z) +Au(X,T)].

We observe then that the "local" dispersion relation

(1.15) is exactly analogous to the dispersion relation of

linear theory wherein the initial mean horizontal flow U(z)

is replaced by the instantaneous mean horizontal flow

U(Z) + Au(X,T).. The mean flow is modified by the term Atk(X,T)

resulting from nonlinear wave-wave interaction, and this will

in turn modify the wave train via wave-wind interaction.

The remaining amplitude relationships can be deter-

mined straight away.

(1. 24) IC PO N +~a-f( e +We

(1.26) -

which in turn allows us to take A$ = 0. The amplitude and

polarization relations are exactly analogous to those for

linear theory in terms of the lowest order wavefield variables.

The effect of the finite amplitude of the wave train is
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observed in the contribution to altering the mean horizontal

flow and mean pressure field, which in turn will modify the

wave train itself. The 0(cS) system has yielded the phase

relationships within the wavetrain and the 0(0') system will

give the dependence of the zero-order solution on (X,T).

The 0(e') system is:

(1.27)

+ ~ ~+ + +Uc +tt L)WAcI

(1. 29) (?-.- --[ +- [c1

A I (CG(G IT)

(1.30 1 l(, m)

We observe that the homogeneous part of the system of

partial differential equations for u1, w1 , Pl and $l is iden-

tical to that of the corresponding 0 (g") variables . In

general then, we can expect terms which are secular (non-

periodic) in 6 to be generated in the inhomogeneous solution

to the system (1.27) - (1.30). To maintain an asymptotic

series which will be uniform in 0, at least to 0(6,1), certain

necessary conditions must exist concerning the inhomogeneous

portion of the 0() equations . The removal of secular terms

at 6(e.) will generate the equations required to describe the



behavior of the 0(eo) variables with respect to (XT).

Since there are four independent equations, in general

we would expect four conditions and this proves to be the

case. Immediately from equations ( 1.27) and (1.30), we see

that removal of secularities requires

(1. 31) =' q 9 T o
0.

and

(1.32) SdG b(Q T) =0O
0

Explicitly this requires

(1.33) +2 [WW +APl + L2 We]*

and

(1.34
X

To find the remaining two secular conditions, we

derive the governing second-order differential equation for

W 1 :

- ~6E A, 1~ Ai

.o E (,.T)

Since + =1from the 0'(e) calculations,

we are reduced to the form:



(1.36) W -E

The two remaining secular conditions follow directly.

Multiplying both sides of W and integrating over e from

0 to 27T gives

and since W9 and - -4 are periodic over 2rr and Wand1

are also required to be periodic over 27r (with secularities

removed) then
21L

(1. 38WeW ,(, LT)=)o

O

3wo awl

In an exactly analogous way, multiplying by - - and

integrating (1.36) over 2w i gives:

(1.39) dG W* E,(G, -) 0.

As a simple example, consider the case where

E1(e,X,T) = a(_X,T)W9 + 6(X,T) ---- . The secular term removed

conditions (1.38) and (1.39) give a = s= 0. The exact

solution to (1.36) using E as above is

s= W (1+S/2) + -l (-aco/2) which clearly will have

secular terms in 0 unless a = = 0 is required.

The derivation of the amplitude equations for the

zero-order field variables based on removal of secular terms

in 0 provides the mathematical foundation for a more intui-

tive approach. Whitham (1965) has shown that if the original



equations can be put into conservation form, the amplitude

equations can be derived by simply phase-averaging. A con-

servation equation will have the form

BM -Fx ZF(1. 4 0) -+ -+... , and for the system (1.1) - (1.4),
a T~ Zx az

there are three conservation forms. The governing amplitude

equations are:

(1.41) -+ ->
3x

-- (< e lA/ 0 (horizontal momentum conserva-

tion)

(1.42) < EQ% + <(oEc7 0 +

+ (± +AU (Eo)e (energy conservation)

+ [W. Ec). + < Po

where E<- (oo 4 (A4 -(.

(1.43) -- 0 (mass conservation)
'eb x

In addition there are two phase conservation

equations,

(1.44) - -

(1.45) .
3T 2.

and one dispersion relation



(1.46) -. + .=

which complete the system.

A particularly important -case arises when the ampli-

tudes and medium properties are considered only to be func-

tions of (Z,T). The wavetrain will then retain an x-depend-

ence only in the phase through the horizontal wave number K.

The resulting theory corresponds to a time-dependent WKB

approximation for finite amplitude gravity waves.

Even though the x-dependence in the wavetrain ampli-

tudes is ignored, the equations remain nonlinear and

numerical computations are required in even the simplist of

cases. However, the two-dimensional problem has been reduced

to a one-dimensional one resulting in a considerable reduction

in computation effort.

B. Applications of the Method of Characteristics to

Low-Frequency Gravity Waves -'- Some Analytical Results

Let us examine more closely the time-dependent, finite

amplitude WKB approximation for the case of very low fre-

quency gravity waves, that is, when the doppler-shifted

2 2frequency is such that o << 2 For algebraic convenience,

let us introduce a mean wind velocity scale v0 and define the

nondimensional variables:

(1. 47) a) CD' W 13 - +d

v a

b)
V0

C) TS B



The governing equations for the low-frequency case

2 < 1) are:

(1.48) Z1 o (horizontal momentum conservation)

(1.(49).V V # - (energy conservation)

v . 31 ' 0 (phase conservation)

where V 2 In linear wave propagation theory, V

would be the vertical group velocity for wavetrains moving in

the negative z-direction.

The system (1.48) - (1.50) can be put in matrix form,

defining the nondimensional vector

(1. 51) \/ on-w(e ),'

(1.52) _ +W_ =0O

where

(1.53)

v, n .. zv4>) -- Z v6s

V0 O9 O I
0 0 J

Then there will exist a set of three characteristic

curves c , i = 1, 2, 3, defining functions 4i(ZT) = 0, which

are given from the differential equations:

(1. 54) dZ
i14". L

(1.50) a)f

. C



where X are the roots of the deterministic equation:

(1.55) det[&-X>O- . (I = identity matrix)

The eigenvalues, with A given in (1.53) are:

(1.56) a) 0

b) -+ V +2.twI

c) V3 --zv4~f' = V - 21WI

and the corresponding left eigenvectors are:

(1. 57) a) .
b 2v

b) [',24 2

c)

We see that all the eigenvalues are real so the system

is totally hyperbolic in character. The system can then be

put in canonical form such that in each equation all quantities

are differentiated along the same characteristic direction.

z Vo VT ~
(1.59) Z +

+ V.,+ 2V,, zv 0" "']1
YA-i (5-I±zV

(1. 60) -- +-2V ) PZ + ve+
2 V+

(VIj~ 2 4 , -zVF-FV

(1. 58) -- ) g
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The details are still quite complicated at this point;

however, two important observations about the system can be

made.

First, in the small amplitude limit where jwj -+ 0,

the eigenvalues (1.56) coalesce to a single value V , and the

system reduces immediately to the linear theory result

(1.61) - +

This demonstrates that the total wave energy is con-

served as it must be, since there can be no wave-wind energy

exchange without nonlinear interactions.

The second immediate result from the canonical formu-

lation is that there exists one exact integral. Equation

(1.58) can be rewritten as

(1.62)

which can be integrated directly since $, C, and ri are all

known functions of z at T = 0 in an initial value problem.

Making use of this exact integral, the system can be reduced

further to one containing only two dependent variables. The

remaining equations are still highly nonlinear, however, the

use of the multiple scale approximation has resulted in a con-

siderable simplification of the original Boussinesq system

given in (1.1) - (1.4).

C. The Limitations of Multiple-Scale Analysis and the

Question of Partial Reflections

The primary assumption of the multiple-scale analysis

is that there exist at least two time-space scales in the
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problem under examination. In the foregoing analysis, we

have assumed that the phase fluctuations of the wavetrainwere

much more rapid than the corresponding time and space varia-

tions in the wave amplitudes and properties of the medium.

This assumption means that only a minor amount of wave reflec-

tion can take place and thus the wave impedance change per

vertical wavelength mus.t be small. If the reflected waves are

of order e compared to the transmitted wave they will be con-

tained in the amplitude equations resulting from the elimin-

ation of secular terms-of order E 2.

From linear theory we can evaluate the criteria for

strong reflections. If temperature and density variations

are slow only the wind variations modify the wave impedance,

and strong reflections result if the Richardson number is

less than 1. In the nonlinear theory one cannot develop such

an explicit constraint, but it is reasonable to expect diffi-

culties with the multiple scale analysis in regions of strong

wind shears. In Figure 1 we show some results of calcula-

tions using the multiple-scale analysis for a wave-wind inter-

action in a region where the Richardson number is 0.53, and

compare them with Breeding's more exact numerical calcula-

tions. The multiple-scale analysis retains the proper

qualitative features, but the amplitudes are considerably in

error. Breeding's calculations showed that a substantial

reflected wave was present as would be expected with a low

Richardson number, and thus much of the wave energy was turned

back before it interacted with the mean wind. The multiple-
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scale analysis which did not properly account for reflected

waves thus gave too large a mean wind modification, and the

discrepancy would continue to grow with time.

When the Richardson number is large, the conditions

necessary for justifying the multiple-scale analysis will be

upheld and then the methods described above can yield good

approximations with a considerable reduction in computational

effort. Unfortunately, in our jet stream studies, the areas

of greatest interest are those with the lowest Richardson

number, and these analysis methods will fail to give us

adequate representations of the actual behavior of these

regions. Thus, we are led to find a different approach to

these problems, which is taken up in the next section.



II. HORIZONTAL FOURIER EXPANSION ANALYSIS

A. Development of the Governing Equations

In the previous section the multiple-scale approxi-

mation was used to analyze qualitative features of the non-

linear gravity wave - jet stream interaction. While this

method allows certain problems to be attacked by analytical

means the approximation appears inadequate for obtaining

detailed results in several physical situations. In particu-

lar, the important problem of interpretation of gravity wave

pressure fluctuations observed at the ground in terms of

possible jet stream source parameters appears to lie beyond

the scope of the multiple-scale approach.

The key to any attempt at inverting gravity wave

pressure fluctuation measurements involves the development of

an efficient, accurate method of solving the nonlinear

hydrodynamic problem under a wide range of initial conditions.

A direct approach would be to use a full nonlinear numerical

model such as that of R. Breeding. Such a study involves the

use of two-space and one time coordinate finite difference

grid, and while quite general in application, can require a

large computation effort.

An examination of R. Breeding's work indicates that

there is a useful approximation which can be employed to

greatly reduce computation effott while yielding quite satis-

factory results under realistic conditions.

The above numerical integration scheme requires the

application of cyclical horizontal boundary conditions, hence

24



the dependent field variables are required to be periodic over

some distance, L, in the horizontal direction. Therefore, the

velocity, pressure, and density field can be expanded in a

Fourier series in x, where the amplitudes are functions of

(z, t) only:

(2.3)

(2.4)40,Lt

*00 -iky1X *k
(Z t) + A (Fj -- io()e J

net + e0± 3
where K = ._L

Substituting the above expressions for the field vari-

ables in the Boussinesq fluid equations (1.1) - (1.4) and

equating Fourier coefficients we have:

for n = 0, 

(2.5) (tko + (A*tp +( A - O
(iOLQ~1i~=

+ 0 LoIo+ 'Z Z(2.6

(2.7)+ A- 02

(2.8) Z WID a--"one
-0 "a
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(2.16) . 0.

In addition, there are complex conjugate equations for

n > 1. A similar development, including compressibility

effects (other than through the BrUnt period), was used by

Boer (1970) to examine shear flow interaction with a continu-

ous sinusoidal gravity wave source produced by forced motion

on the lower boundary. At this point no approximation has

been made, given that cyclical boundary conditions are

involved. There has also been no savings in computation

effort at this step, for if computations are made using N

coefficients, the method is equivalent to a finite difference

net using 2N horizontal points. However, R. Breeding's calcu-

lations have shown that if the source structure has a dominant

horizontal wavelength X = 2ir/k, then under most conditions

the higher harmonic coefficients corresponding to n = 2, 3,...

etc., will generally have much smaller amplitudes than the

fundamental corresponding to n = 1. For example, Figure 2

shows the production of second harmonics due to nonlinearities

using a source containing only the fundamental as calculated

by R. Breeding (1971). Even for a Richardson number of 0.53,

the second harmonic amplitude seldom reaches 15% of the funda-

mental and the third harmonic will be correspondingly less.

Therefore, a good approximation can be obtained by retaining

on the first few Fourier coefficients with a considerable

reduction in computation effort.

The simplist approximation available is to consider

the interaction between the mean horizontal flow and the first
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harmonic wave field. In this case, the governing equations

become:

(2.17) -I-

(2.41) -(2.1) b IT, + 2Lko L 1 + MOM*

-6 t
(2.20) '6 4

(2.21)+

If u0 is constrained to be independent of time and

equal to the initial mean flow, the basic equations oflinear

gravity wave theory result. Thus the system of equations

(2.17) - (2.21) can be interpreted in a very simple manner.

The gravity waves follow the linear theory for an atmosphere

which is slowly varying in time. The atmospheric variations

in time result from one nonlinear equation (2.17). The time

variations of the mean wind have the effect of preventing the

catastrophic build-up of the wave amplitude near the critical

level that linear theory predicts if the atmosphere is consid-

ered time invariant. This result was also seen in the

multiple-scale analysis. In this present analysis, however,

we clearly see the failing of the multiple-scale approximation.
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The vertical variations of the mean wind can alter the linear

wave impedance, and thus reflected waves can be set up, and

these are not included in the multiple-scale approach which

is a WKB type of analysis. For linear waves in a constant

mean wind shear, the relative change of wave impedance per

radian of vertical wavenumber if 1/R.12 and is independent of

actual wavelength. Thus the shortening of the vertical wave-

length as one approaches the critical level does not help

justify a WKB~ approximation, and for Richardson numbers

close to or less than 1, large errors result if the reflected

wave energy is ignored.

Again referring to Figure 1, we show comparisons of

the results of various computational methods on predicting

the mean wind variations caused by wave-wind interaction near

the critical level. Solutions to equations (2.17) - (2.21)

give excellent agreement with the finite difference solution

of the full nonlinear equations. Again we note that the multi-

ple scale analysis has overestimated the effect, since the

wave reduction due to partial reflections was not taken into

account.

B. Stream Function - Vorticity Formulation

The numerical integration of the fluid equations for

incompressible Boussinesq fluids requires the reformulation

of the problem in terms of a scalar stream function $, and a

vector vorticity X, rather than the standard Eulerian vel-

ocity and pressure fields. Since the velocity field in an

incompressible or Boussinesq fluid is divergence-free, one



introduces 9 and X in terms of the horizontal fluid velocity

u and vertical fluid velocity w as:

(2.22) . - - W

and

(2.23)

In the case of only two velocity components, X has

only one component and the resulting stream function/vortic-

ity equation is scalar:

(2.24) --- t + -- = -

where X = YA.

Finally, the equation of vorticity transport is devel-

oped by taking the curl of the momentum transport equation.

This operation eliminates the pressure explicitly from the

governing equations. This is beneficial for numerical exam-

ination of divergence - free flows, where the time derivative

of the pressure is not readily available.

Employing a first harmonic vorticity X and stream

function $ 1 , the basic system truncated at the first harmonic

becomes:

(2.25)

(2.26)

(2.27) - - -+0

(2.28) Ao - = \* K UO) 4



(2.29)

where =-

The specification of the boundary condition at the

ground, z = 0, is straightforward since $l must be a constant

on a rigid surface. Further, since $l is directly propor-

tional to the vertical velocity w1 because of the Fourier

expansion in x, then $1 = 0 on z - 0. The condition at the

upper boundary z = H, requires more care. Ideally, an out-

ward radiation condition would be imposed; however, the use

of a steady-state radiation condition will cause errors in a

transient calculation; and the addition of a viscous region

as considered by Yanowitch (1967) and Houghten and Jones

(1968), will be computationally inefficient since an addi-

tional grid region several wavelengths in dimension must be

included. Fortunately, the existence of large Richardson num-

ber shears in the upper jet stream structure resolves these

upper boundary condition difficulties. Numerical results have

confirmed the calculations of J. Booker and F. Bretherton (1967)

that for large Richardson number shears, internal gravit waves

are attenuated by approximately a factor exp [-21(R- as

they pass through a critical level. For the case of R = 4.8,

as per Figure 3, up-going gravity wave amplitudes would be

attenuated by a factor of about 10-2. Since very little wave

energy will penetrate the upper shear, the impqsition of a rigid

boundary condition above the upper shear will not give rise to

spurious reflections. Subsequent numerical results have sub-

stantiated this assumption. At the upper boundary the appropri-

ate boundary value of the wave stream function is $l -0 at z - H.



III. NUMERICAL EXPERIMENTS: WAVE-WIND INTERACTIONS FOR

TRANSIENT GRAVITY WAVE SOURCES

A. Computational Procedure

In this section we wish to examine through a series

of numerical experiments the nonlinear interaction of a

single harmonic transient gravity wave source with simple

models of the jet stream. The purpose is not to formally

invert the observed ground pressure fluctuation measurements,

but to examine the qualitative features of the interaction in

terms of the vertical distribution and strength of the source

and initial Richardson number in the source region. Of

particular interest is the wave-wind interaction in the pres-

ence of strong shear (Ri<0.5), since observed gravity waves

often appear to originate from regions of low Richardson

number.

1. The Finite Difference Equations

The equations describing the wave-wind interaction

(2.25) - (2.29) contain nonlinear coupling terms so that a

numerical approach is dictated. The finite difference approx-

imation employed here is the so-called "leap-frog" method,

which is an explicit scheme using spatial and temporal

centered differencing. Let the time spacing be 6t and the

vertical spacing be 6z. Then for notation purposes, define

(3.1)V
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LX o

{44
The governing finite difference Iapproximations to

equations (2.17) through (2.21) are:

(3.2) % ~~o~~~ [p ~VX~

(~3. 3) .. L[

ik Ti VO t 01y. V%* V
L1 r .. a- +

~~ P~[Lcj4e %m1

~n4I

The last equation is solved at the end of each

iteration as a boundary value problem with =. 0 -

where j = 1 and j = J MAX are the end points of the finite

difference grid. Two other approaches to solving the stream

function-vorticity equation involve an integral method using

Green's functions and a transform method using Fast Fourier

Transform (FFT) techniques. Solution of the tridiagonal

system (3.6) and the FFT method are about equal in computing

time, whereas the Green's function method is much slower. The



FFT method is, in principle, more accurate than the second-

order difference approach given in equation (3.6). However,

a fourth-order differencing scheme,

(3.7)

+1- 12

gives much better accuracy with only a slight increase in

computing cost over the use of the FFT. All three methods

were tested in practice and gave quite similar results. In

the case of very low Richardson number shears, the fourth-

order scheme was used because of the short wavelengths

involved.

2. Convergence, Stability and Grid Dispersion

Of fundamental importance in applying finite differ-

ence approximations to the solution of partial differential

equations are the questions of convergence, numerical stabil-

ity and accuracy. When dealing with wave propagation phenom-

ena, lack of accuracy of the solution usually manifests

itself as grid dispersion. Unfortunately, analysis of these

effects is limited to a linear, point-wise approach. The

global analysis of a given finite difference scheme is fully

as difficult as solving the originally partial differential

equation.

To examine the point-wise characteristics of the

difference equations it is useful to derive the governing

finite difference dispersion relation. Since this is a local

analysis, let ; constant and ' constant.



This is not a limitation in terms of the derived stability

criteria, but greatly simplifies the algebra.

wave solutions for the field variables as:

Consider plane

-\

(3.8)

-%~=cte.

A'

where = (wstW t + is the phase, and

(LoS-) and (.q[e) are the normalized frequency and vertical

wave-numbers respectively. Substituting into equations (3.4),

(3.5) and (3.6) and defining,

(3.9) 47= 2EZ 1

gives, in matrix form

(3.10) O0

St

A -t c>ng <1
o (et -- coS t) tOl

Setting the determinant in (3.10) to zero yields the dispersion

relation,

(3.11) Sirn (00$t) = K(Q L:.
4 -(-Cos )

In the limit that 9't, 9' -% 0

(3.12)

(3.11) becomes

LOk WA KL

which is exactly the dispersion relation for the continuum
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equations. Convergence is therefore established, at least on

a point-wise basis.

The wave solutions described by the finite difference

dispersion relation will, in general, differ from those of the

continuum case. In certain instances, completely extraneous

wave modes arise which correspond to complex frequencies.

Since these modes will occur as complex conjugate pairs, the

exponentially growing mode leads to numerical instability.

From equation (3.11), unconditional stability requires that

Sivi(tot) I for all wavenumbers a. The maximum value of

SiV1(jst) will occur at cos a = 1 for the plus root:

(3. 13) Mo.A.-[S iki (LOS+3=t-)('v41

The requirement on the time step 6t for unconditional local

stability is then

(3.14) St : KZ +S2g)

Grid dispersion in a finite difference scheme arises

because the stable modes of (3.11) corresponding to a wave-

number-frequency pair are not equal to the same wavenumber-

frequency pair in (3.12) for finite 6t, 6z. Subsequently,

the phase velocity of a given mode will also differ from that

of the continuum, and in general this correspondence will

vary as a function of wavenumber and propagation angle.

Therefore, superimposed on the wave dispersion of the con-

tinuum system will be a propagation-angle dependent numerical

or grid dispersion. The loss of accuracy resulting from grid

dispersion is inherent in all finite difference approximations
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and can only be minimized, with the lower bound on grid

spacing usually determined by computation cost. All numeri-

cal computations were done with a step size of 6z = 25m in

regions where short wavelengths are expected, such as near

critical levels and source regions. Reasonable accuracy is

then expected for wavelengths greater than about 100m. with

only moderate to poor resolution for shorter wavelengths.

B. Basic Jet Stream and Gravity Wave Source Models

For use in the numerical experiments a basic jet

stream mean flow model was employed. The initial jet stream

velocity profile was assumed to be uniform in the horizontal

plane with a vertical wind profile. The direction of the

mean wind was chosen to coincide with the x-axis. The general

model is shown in Figure 3, which is divided into three

regions. Region II is taken to be 2.0 km wide centered about

the source. The source subregion itself will range in width

from about 125 m to 550 m. Region I extends from the ground

to a height of 4.0 km. The remainder of the jet and compu-

tational grid is contained in Region III with an initial jet

core speed of 50 m/s. Except for the source subregion, the

Richardson number in the lower and upper shears is fixed for

all models at R. = 0.925 and R. = 4.80 respectively.
II IIII

The source subregion is centered at 5.0 km and the width and

initial Richardson number are specified for each model. All

shears are initially taken to be linear.

The basic structure of the jet stream model was

developed from examination of typical Weather Bureau balloon
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measurements over Nantucket Island. In general, the balloon

measurements indicate the jet stream velocity profile to be

quite symmetrical; however, because of the change in the

temperature lapse rate above the jet core, a higher Richardson

number results in the upper sheared region. Therefore, in

order to use a constant Brunt frequency model in the calcula-

tions, the shear in the upper region has been decreased so as

to yield an appropriate value for the Richardson number.

The simplest source models which will retain the

essentials of the nonlinear interaction between finite ampli-

tude gravity waves and the mean jet stream flow are those

containing only the first harmonic component of the general

horizontal Fourier expansion described in Section II. The

general form of the numerical experiments is to specify a

gravity wave source structure implanted in the model jet

stream flow as an initial condition. The behavior of the

model is then governed by the finite difference equations

(3.2) - (3.6), which describe the interaction of the zeroth

and first harmonic terms.

The development of theoretical atmospheric gravity

wave source models represents a very difficult problem in its

own right. A recently developed approach to gravity wave

source generation by wave-wave interaction will be discussed

in Section IV. However, at this point a more heuristic

approach will be taken. Although the specific choice of a

model is admittedly arbitrary, there are constraints on

physical grounds and in terms of linear theory behavior.
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Gravity wave-wind interactions essentially only exist around

a narrow region about the critical level. Therefore it is

reasonable to locate the source at a critical level and

require it to rapidly decay away with distance. Linear

theory shows that the horizontal wave-wind velocity has

opposite signs on different of the critical level. Further,

the vertical wave-wind velocity must go to zero at the crit-

ical level while the horizontal wave-wind velocity becomes

discontinuous with infinite amplitude. Any source model

should approach these limits as the amplitude of vertical

velocity and the source width go to zero for a source of

fixed total energy.

Under these constraints, a simple source model is

chosen with a Gaussian distributed stream function:

(3.15) -t=o) = 2A e, Cos ( ,

The associated velocity field is:

(3.16) WtxA2,t=O)-z ce Sin kX
Z -L

(3.17) ') q X),t=0)Z C =or k-

If we consider the limit as A+O and a->oo, the con-

straint of constant total source energy requires A 2a = con-

straint, then w a- and uca (z-z ), so that linear

theory behavior at the critical level is obtained.

Wave and Wind Energy Calculations
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In a Boussinesq fluid, the conservation of energy is

given as

(3.18) tE + ?2 LE + (.

where u and w are the total horizontal and vertical veloci-

ties, and E is the total energy density. Expressing E in

terms of the field variables, u, w, and P, we have:

(3.19) E =5 + + /2 1-4
(recalling that P = pressure/mean density).

If we consider the total Eulerian field to be com-

posed of a mean flow and finite amplitude single harmonic

wave, the total energy density averaged over a horizontal

wavelength is

(3. 20) < 1E (o?'t) + Lk'Lk +V I VNJ + C 4

The equation of energy conservation for this system is obtained

from averaging (3.18):

(3.21) ,.....ow

or equivalently,

(3. 22) (E> +r > Lkuu +f,' + W+P W)=

One can easily demonstrate that the energy conservation

form developed directly from the zero and first harmonic

expansion equations yield an identical result. Integrating
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(3.21) over z from 0 to H gives

(3. 23) d E- <E% < WE).
01

If we assume rigid surfaces to exist at z = 0 and z - H, then

the vertical velocity must vanish there. Therefore,
14

(3.24) d E
0

and the total integrated energy per wavelength must be a

constant over time in such a closed system. The behavior of

the computed total system energy as a function of time pro-

vides one of the constraints on the global behavior of the

finite difference scheme.

It will be useful in the analysis of the numerical

experiments to examine the behavior of wave and wind compon-

ents of the total energy as a function of time in each of the

three regions of the model.

Since the total kinetic energy of the mean wind is

very large with respect to the other components of the total

energy, it is useful to redefine the total system energy

excluding the total wind kinetic energy at t = 0. Changes in

the wind energy will then be reflected by alterations in the

mean flow caused by wave-wind interactions. Under this defin-

ition, the total energy of the system will be equal to the

total source energy at t = 0. Using this definition, the

wave and wind energy densities are from (3.20).

(3.25) OE c AAit 4 z(L(,V
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(3.26) <E> I * , 4- / +2

where ) Z , and L(AZ-ft) is the time-

varying change in the mean wind.

To determine the total energy input to each model we

need the total source energy. Since the energy decays away

from the critical level as 6 and the source width

is at most a few hundred meters, the integration interval

0 to H = 20 km can be extremely well approximated by (

In this case the source energy at t = 0 is

(3.27) E, <Egr~Po J'(crtz

The total system energy and the source width parameter a can

be used as input parameters to completely describe the source

model.

C. Transient Behavior of Finite Amplitude Gravity

Wave Sources in Low Richardson Number Shears

The gravity wave source and jet stream models to be

examined numerically will have the following fixed and vari-

able parameters.

Fixed parameters for all models:

(1) Jet stream mean flow structure excepting the

source subregion:

(a) upper shear R = 4.800

(b) lower shear R. 0.925
3.

(c) jet core speed 50 m/s

(2) Source centered at 5.0 km.
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(3) Wind speed at source initially 25 m/s.

(4) BrUnt period 300 s.

(5) Horizontal wavelength 10 km.

Variable parameters:

(1) Total source energy E at t = 0.

(2) Source width at t = 0.

(3) Richardson number of source subregion at t = 0.

Specific models given in figures:

MODEL A at t = 0

R. = 0.200

width = 318 m

peak wave velocities

horizontal = 0.085 m/s

vertical = 0.010 m/s

MODEL B at t = 0

R.= 0.250

width = 318 m

peak wave velocities

horizontal = 0.85 m/s

vertical = 0.10 m/s

MODEL C at t = 0

R. = 0.500

width = 318 m

peak wave velocities

horizontal = 0.85 m/s

vertical = 0.10 m/s
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MODEL D at t = 0

R. = 0.500

width = 136.5 m

peak wave velocities

horizontal = 1.30 m/s

vertical = .066 m/s

MODEL E at t = 0

R. = 0.500

width = 273 m

peak wave velocities

horizontal = 0.92 m/s

vertical = 0.092 m/s

MODEL F at t = 0

R. = 0.500

width = 546 m

peak wave velocities

horizontal = 0.64 m/s

vertical = 0.13 m/s

The phenomena observed during the wave-jet interaction

will be discussed in terms of the time-energy curves given in

Figures 4 through 7. The detailed vertical distribution of

wave and wind velocities in regions I and II for Model A are

given as a function of time in Appendix C. The energies shown

refer to the integrated energy densities within each of the

three regions shown in Figure 3. The time-energy curves give

spatially integrated values for both the wave motion and changes

in the mean wind structure, whereas the time-net energy curves

refer to the total system energy integrated over each region.
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All energies shown are normalized to the total integrated

input source energy, E , at t = 0.Wind energies then refer to

changes from the mean flow state at t = 0. The boundary

conditions of the jet model require that the total system

energy integrated over the entire model remain constant and

provides an estimate of cumulative truncation effects of the

finite difference solution. A maximum deviation of eight per-

cent from the condition of constant total system energy was

observed after 400 time steps for the case of R. = .200. The

total system energy typically oscillated about a slowly

decreasing mean value. The period of the oscillations was

about 100 time steps with an amplitude of less than 0.01E .
The mean value decreased as a function of the number of time

steps as very short wavelength disturbances are dissipated

by the finite difference scheme. The total system energy

after 200 time steps (= 2000 s in model time) ranged from

E = .995E for R. = 0.925 to E = .97E for R. = 0.200.

Results:

The initial interaction in the source region extracts

considerable wave energy at the expense of the wind. The

amount of wave amplification increases dramatically with

decreasing Richardson number as seen in the time-energy

curves, but is observed in all cases even when the Richardson

number was greater than 0.25. As the wave energy in the

source region nears a maximum, substantial gravity wave

energy is being radiated away from the region as observed

from the increase in wave energy in region I. Approximately



equal amounts are radiated up the jet and toward the surface.

Waves traveling up the jet transport negative momentum and

will decrease the wind in the region about the topside criti-

cal level. Waves traveling*: toward the surface are carrying

positive momentum.

Until the return to the source region of ground

reflected wave energy, the net energy in the source region

declined slightly but remains near its initial value of E/E

- 1.0. The two-way travel time from the source critical level

for the surface reflection can be shown to be approximately

700 s on the basis of linear calculations, and at about this

time the net energy in the source region is rising rapidly.

Since the ground reflected waves are moving faster than the

wind as they approach the critical level, they are carrying

positive momentum and will increase the mean wind and net

energy in the source region on being absorbed.

Waves traveling up the jet are moving slower than

the wind as they approach the topside critical level so

aE/Dt < 0 in this region. If no secondary sources are gener-

ated and no additional gravity waves are emitted from the

source region, the.net energy in Region III will approach a

negative constant as wave motions are converted to mean flow

deformations. For R. > .25 this was the observed process,
3.

however at lower Richardson numbers secondary sources do

result with subsequent gravity wave radiation into Regions I

and 1II. For Model A this process is observed in Figure 5

with slight increases in Region I and corresponding decreases

in Region III being seen at t - 1400 a. Additional secondary
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radiation occurs at t = 2100 and t = 3400, although the system

remains stable with each subsequent radiation process being

less energetic than its predecessor. The radiation, reflec-

tion and reabsorption processes will continue until virtually

all wave motion has been converted to mean flow deformations

through the efficient gravity wave - mean flow coupling mech-

anism at the source and topside critical levels.

Of particular interest is the amount of energy trans-

port provided by the gravity wave coupling of the topside

and source region critical levels. The amount of net energy

transport from the critical level at the top of the jet to

the source region critical level is shown in Figure 9 and is

a strong function of the initial source subregion Richardson

number. For the case of R = 0.200, 16 energy units per unit

of input have been transported from the top of the jet to the

source region. Even for a Richardson number of 0.500, the

energy transport is three times that of the source input.

For a fixed initial total source energy, the effect of

decreasing the width is to increase the efficiency of the

energy transport process and lengthen the time scale of the

interaction. The time scale of the interaction can be seen

from Figure 6 to be directly proportional to 1/width. For

instance, the wave energy maximum in the source region occurs

at 900, 450 and 225 s for corresponding widths of 136.5,

273.0 and 546.1 m.

The effect of absolute wave amplitudes on the system

behavior is approximately linear. Shown in Figure 8 is the

source region wave amplification as a function of initial



source input energy for a fixed width of 318 m.. The net

energy transport also shows a slight, but definite increase

with increasing source energy input. However, the ampli-

tude behavior is essentially linear over decade variations in

input energy. For very large source wave amplitudes (greater

than 10 m/s), rapid and large variations in the mean wind

can occur with subsequent Richardson number reduction to

below 0.10 and generation of short vertical wavelength dis-

turbances. Neither of these effects can be dealt with accu-

rately by the current numerical procedure and probably

invalidate the initial assumption of a single component - mean

flow interaction model. The maximum wave amplitudes success-

fully modelled were observed to be less than 8 m/s in the

source region.

Of fundamental importance is the magnitude of wave

velocities in the source region necessary to produce the peak

to peak pressure fluctuations observed at the ground. Typi-

cal measurements of jet stream associated gravity waves in

eastern Massachusetts show peak to peak pressure amplitude

variations of 0.1 to 0.5 millibars, although disturbances

occasionally 1.0 mb or greater in amplitude are observed.

Shown in Figure 10 are the calculated peak to peak ground

pressure amplitudes as a function of the maximum rms wave

velocity in the source region for models with varying initial

source subregion Richardson numbers. The observed 0.2-0.5 mb

pressure amplitudes are being produced by source region wave

velocities of 1-2 m/s which are well within the limitations
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of the model. The increase in transmission efficiency for

higher Richardson number is due to the relative decrease in

the partial reflections in the source region resulting from

reduced impedance change per wavelength.



IV. THE DEVELOPMENT OF JET STREAM GRAVITY WAVE SOURCES BY

WAVE-WAVE INTERACTIONS

A. Introductory Remarks

The results developed thus far describe the propaga-

tion effects and energy transport in the jet stream due to

single harmonic finite amplitude gravity wave sources. The

question of the origin of natural jet stream sources has been

left unanswered. In this section we will discuss a possible

mechanism for the generation of such gravity wave sources.

Observational information shows a strong correlation

between horizontal phase velocities of gravity wave pressure

fluctuations at the ground and jet stream velocities in

regions of low Richardson number (Claerbout, 1967). A natural

mechanism would seem to be the amplification of small dis-

turbances due to dynamic instability in regions of the jet

stream where the Richardson number falls below 0.25. A large

body of literature exists on the instability of shear flows to

small perturbations within the appropriate range of horizontal

wavenumbers and Richardson numbers (see References). However,

the wavenumber dependence of instability is such that expon-

entially growing waves in the jet stream source regions will

have periods less than the BrUnt period and are essentially

trapped within the jet stream. Typical power spectra of

ground pressure fluctuations show a sharp cutoff for periods

less than the Brunt period (Fig.ll). The dominant observed

periods correspond to waves which are predicted by linear

59
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stability theory to be stable in source regions even if the

Richardson number is less than 0.25. These observational

difficulties can be resolved through a wave-wave interaction

mechanism.

B, ' Brief Review of Linear Stability Theory

The infinitesimal stability of inviscid, parallel,

stratified shear flows is an area of extensive study in fluid

mechanics and applied mathematics. Using a single Fourier

component of the vertical perturbation velocity w(z), with

horizontal wavenumber k, the linear stability of the flow is

governed by the Taylor-Goldstein equation in the Boussinesq

approximation,

(4, ) ....- + [f--- --

where v(z) is the mean flow and C the horizontal phase speed.

Together with appropriate boundary conditions, it defines an

eigenvalue problem for C given K, or vice-versa, for a speci-

fied mean flow v(z) and BrUnt frequency 0 B'

Often of particular importance is the calculation of

"neutral curves," which for a given value of Re (C) divide the

Im(C)-Richardson number plane into regions of stability (Im(C)

> 0, say) and instability (Im(C) < 0, say). There are mathe-

matical subtleties. However, for asymmetric flows, it can

be shown that the neutral curves separate simply-connected

regions (Miles, 1961, 1963). Separate flows have been

examined in the literature (Collyer (1970), Drazin and Howard

(1966), Hazel (1972), Maslowe and Kelly (1971); however, for
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the sake of explicitness the remainder of the chapter will

concentrate on the hyperbolic tangent mean velocity profie.

Stability of the Hyperbolic Tangent Mean Wind Profile

with Constant Brunt Frequency

Let the mean wind v(z) be written in scaled terms as

(4.2) v(z) = vof7 + tanh(z/d)]

where d is a vertical scale length. We can then introduce

further scaling,

(4.3) E-,; a E Kd
0

and the Richardson number dependence upon z is

(4.4) R.(z) = J cosh 4 (z/d),
1 o

~2
where Jo 0 2 is the minimum value of R1(z) occurring at

ve

z = 0. The appropriate boundary conditions are w(z) -+ 0 as

IzJ + I. All eigenvalues have the same real part, R (C) = 1,

and the neutral curve [Im(C) = 0], was first obtained by

Drazin (1958) and is given analytically as

(4.5) J o a (1- a)

The eigenvalues, except on the neutral curve where

C = 1, are not available analytically and must be computed

numerically (see Appendix A). The stability diagram for this

flow is given in Figure 12, showing the neutral curve, inter-

mediate eigenvalues at J0 = .15 and .20, all with the curve
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J = . The latter represents a condition of BrUnt

frequency reflection somewhere in the shear for wave with

phase velocities of C = 1 (see Appendix B). Of course, if

Im(C) # 0, there will not be total reflection; however, the
2attenuation lengths for J0 > a are much greater than for

j < a2. if C i 1, the attenuation lengths are given

approximately by

jo>o(: .0_ d __

(4.6)

Since C2 << 1 we observe that unstable waves are

effectively trapped in the source region, which strongly supports

the observational evidence. Furthermore, frequently observed

ground pressure fluctuations must represent waves which are

theoretically stable in the source region.

C. Source Generation by Subharmonic Wave-Wave Interaction

One possible mechanism for generating observed waves

is through a wave-wave interaction involving an unstable mode

of horizontal wavenumber 2K and a stable (observable) wave-

number K. Laboratory experiments by Browland (1965), Miksad

(1970) and Scotti and Corcos (1972) on free shear layers

indicate that a growing fundamental mode interacting with the

background noise could generate substantial energy at the

subharmonic frequency. An examination of the stability
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diagram (Figure 12) indicates that the subharmonics corres-

ponding to the unstable modes would have periods of about

1.2 to 1.6 times the Brunt period, which fall in the range

of substantial observable gravity wave energy.

To examine the plausability of the subharmonic gener-

ation mechanism one could employ the zeroth, first and second

harmonic equations developed in Chapter II using very samll

initial values for the primary and subharmonic waves. The

unstable mode would first be expected to grow exponentially

at a rate determined from linear theory. The growth of the

subharmonic is proportional to the amplitude of the primary

so eventually its growth will be very large, thereby alter-

ing significantly the primary wave growth, perhaps even

stopping it altogether. Unfortunately, the finite differ-

ence solution will be very costly because of the small time

steps required to accurately follow the large expected growth

rates, This problem is indigenous to finite difference simu-

lations of physically unstable systems. However, an approxi-

mate approach can be taken to qualitatively examine this

generation mechanism.

Let us assume that each wave behaves as it would in

linear theory, excepting that the nonlinear wave-wave inter-

action terms will produce a time variation in the amplitude.

The horizontal (complex) wave velocities are given then as:

u = Ae )
(4.7)
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where a = Im(w) for unstable mode, computed for a hyperbolic

tangent shear model with constant Bru*nt frequency. The non-

linear terms in the horizontal equations of motion are:

-- o + '* 1 * , +L-UNtt -21tKttl (A + k
(4.8)

Then if we multiply each equation by f and f2 respectively

and average over the region (R,-R) corresponding to the Brunt

reflection of the unstable mode, we have:

(4.9) _- C, A e

(4.10) Z - 2 A2
dat

where

-R

R
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The formulation given in equations (4.9) and (4.10)

are analogous to those used by Thorpe (1966) and Garret (1968)

in discussing resonant interactions in stratified media. For

the case of homogeneous media, the vertical distribution

functions are simple plane wave solutions and the interaction

integrals can be evaluated by inspection. A full discussion

of resonant wave-wave interaction for gravity waves in homo-

geneous media is given by Phillips (1968), with further

developments by Craik (1968), Simmons (1969) and Martin, etal

(1972). Due to the very restricted phase structure, resonant

gravity wave interactions in homogeneous media require a

triad resonance such that

(4.11) . -

and

(4.12) W., Z. W3 =(D.

In stratified shear flow this is not the case, how-

ever, due to the possible extensive phase overlap between the

unstable mode and its subharmonic.

In order to estimate the integrals, let us assume

that the significant contributions to the interaction will

occur very near the critical level (which is the same for both

modes). The solution of ( 4.1) for the normalized vertical

velocity structure for z/d << 1 can then be approximated

for z positive as:

(4.13)(c WccZ

____P/i V 0 VO



The corresponding forms f and f2

L--Wcome 8 1

V. (I Afz

Using the fact that near -n

(4.16) -+ Vf 2
and

CL

.L
---

-U

C>

y T

we have, defining h(j)

(4.18) 48 A

(4.19)
dit

ci

-Q~

* ,V

'1

+

V%1 L~~4
(1+

4#)
:~~,M)

Since the solutions to (4.16) and (4.17) apply only

near the critical level, the upper limit r is difficult

establish. The criterion for use of ( 4.16) and (4.17) is

that

(4,20)

are:

(4.14)

(4.15)

(4.17)

C-

for the functions

C.

--w -L
n- b4% -A) L1 8



and since 2.

The integrals cannot be done exactly; however, retain-

ing only the dominant terms (r<< 1) gives

(4.21) = .q

(4.22) - = Toc e

where C -- A
E = 4z-' (w/)

If we further scale the time as

(4.23) -r = .53 t

then (4.21) and (4.22) become

a j(AlVo) *(Y/s(Bl)1
(4.24) Lr.A/C._

dc

(4.25) AC0/vO) s4(AV2YJ C

There remains the choice for the upper integration

limit r. A reasonable choice would be to take z correspond-

ing to r to be one-half of the widths used in the subharmonic

transient calculations. If W is the width, then r is given

directly as

(4.26) v - 30 s., 0

For values of T B= 300 s., W = 150Omand V0 =25 m/s;

r = .06/JOP so that r2 << o/2 as required in the approxi-

mation. Given an unstable mode corresponding to a (a, Im(c))



71

pair for a specified Richardson number at z = 0 (J ), we can

compute the coupling coefficient C0. With the initial values

of A and B specified, A(t) and B(t) can be found by direct

numerical integration of (4.24) and (4.25).

Shown in Figure 14 is the time behavior of the ener-

gies for the least stable mode with R.(z = 0) = J = 0.200.

The eigenvalues of this mode are a = 0.65, Im(C) = 0.044 and

the initial amplitudes were: JA01 = |B| = .004U0 (corres-

ponding to peak horizontal wave velocities of 0.1 m/s for

U0 = 25 m/s). Also shown is the total energy extracted from

the wind to drive the process. In this simple model there is

no limit to the energy that can be extracted by the unstable

mode. Clearly there will be a point where the energy extracted

will have substantially altered the wind, and therefore the

interaction. The cutoff line shown in the figure corresponds

to an average reduction in the wind of 16%.

The peak amplitude of the subharmonic corresponds to

a velocity of about 5 m/s in the source region. Using the

parameterized relationship between peak source wave velocity,

Richardson number and ground pressure fluctuations, we would

expect a peak to peak ground pressure of 0.5 mb, which

corresponds very well with observations. In Figure 11 the

expected peak to peak ground pressure fluctuations are shown

as a function of period as calculated from the peak horizon-

tal subharmonic velocities generated in the simple model

considered. Overplotted are the averaged observed values.

The simplicity of the model certainly precludes any statement
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of the decisiveness of the theory, however, the close similar-

ity of the spectral shape and amplitude do indicate the

plausability of the subharmonic generation mechanism. Figure

14 shows that the subharmonic waves will be present in the

source region with sufficient amplitudes for interaction with

the wind for about two Brunt periods. This is the same time

scale observed for the subharmonic-mean wind interaction

studied in Section III. Additionally, the growth of the

unstable mode is slow relative to the Brunt period and its

amplitude is small enough so that little modification of the

mean wind will occur until substantial subharmonic amplitudes

are reached. The time scales of the subharmonic-unstable mode

interaction are therefore compatible with those of the sub-

harmonic-mean wind interaction found in the transient gravity

wave source calculations.

As a note of numerical interest, accuracy of the

integrations of (4.24) and (4.25) required a time step 6t such

that 6t < .002T For a system including the zeroth, first,

and second harmonic, the total computation time would be at

least 20 times as great as that for the zeroth-first harmonic

system for the same vertical grid spacing.

As a final point, although the lowest Richardson

number we have observed on Weather Bureau balloon measurements

is 0.25, the existence of regions for stability with R. < 0.25

seems likely. The absence of observations of Richardson

numbers as low as 0.20 can be explained on the basis of the

vertical sampling of the mean velocity. If the entire lower

jet were modeled by a hyperbolic tangent profile with a source
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velocity Us, Brunt period TB, and a vertical sampling distance

Az, then the lowest observed Richardson number would be

with the sampling parameter Ao given as

2Az

Using the balloon measurements for typical values of Us, B'

and for minimum Richardson number points and a true value of

0.200, the estimated Richardson number would be 0.243 if the

critical level were exactly between the sample points and no

noise was present in the observations. An error of half a

sample point would give a value of 0.260 for the minimum

Richardson number.



V. SUMMARY

The first approach developed to study finite amplitude

gravity wave-wind interaction was based on a multiple scale

analysis technique. The assumptions are that there exist two

time and space scales governing the dynamics of the waves and

wind: (1) a "fast" scale corresponding to the relatively

rapid temporal-spatial variations of the wave phase, and (2)

a "slow" scale corresponding to the variations in wave ampli-

tude and mean flow. The analysis is nonlinear in that wave

amplitudes are not considered infinitesimal. The resulting

theory is equivalent to a finite amplitude WKB approximation.

The limitations of applicability are much like that of linear

WKB theory. That is, partial reflections are considered to

be second-order effects so that appropriate use of the theory

implies that the change in impedance per vertical wavelength

be small. For the gravity wave - sheared flow interaction,

the change in impedance per wavelength is proportional to

1/R5, so the theory is asymptotically correct as R. and

will give good results only for R. > 1. If the theory is

applied to lower Richardson numbers, the change in the mean

wind is overestimated since partial reflections are neglected

to first order.

Since observed gravity waves appear to originate

from the least stable portions of the jet stream where R. < 1,
.

a theory incorporating partial reflections as well as finite

amplitude effects was required. A quasi-linear theory was



developed in section II which made no restrictions on the

phase and amplitude structure of the waves and was well suited

to transient source calculations. The equations of motion are

those of linear theory except that time changes in the mean

flow due to wave-wind interaction are incorporated through a

momentum transport equation for the mean flow. The waves then

propagate through a time-varying medium whose time variations

are produced by gradients of the wave Reynold's stress. The

theory has certain appealing features. The nonlinear inter-

action takes place in a small region about the critical level

and these changes are directly incorporated. The induced time

changes in the mean flow near the critical level are included

in equations of motion for the waves, thereby eliminating the

singular nature of the linear theory. Away from critical

levels, linear theory describes the propagation of gravity

waves quite well and the quasi-linear theory becomes essenti-

ally linear there since there is virtually no wave-wind

interaction. The intuitive aspects of linear theory can

therefore be applied except near critical levels. From a

computational point of view, the quasi-linear theory is much

more efficient than a full nonlinear calculation as only one

space and time variable are required since one can consider

waves to be harmonically varying in the direction of the mean

flow. Quite general one-dimensional source and jet models

can be modelled for transient calculations.

Using the quasi-linear theory several numerical

experiments were made using a model jet to examine the trans-

ient behavior of finite amplitude gravity wave sources. The



calculations of the effects of finite sources show that

considerable energy is withdrawn from the wind in the source

region and put into wave energy. The gravity waves very effi-

ciently couple the critical level at the top of the jet with

the critical level at the source region. The steady-state

of all models resulted in a net decrease in the wind energy

at the topside of the jet and a net increase in wind energy

in the source region. The ultimate energy source is then

seen to be this upper critical level. The magnitude of the

gravity waves produced and therefore the amount of wind energy

transported depends strongly on Richardson number, the lower

the Richardson number, the greater the wave amplification

and energy transport. However, the system remains stable

for small sources even at Richardson numbers as low as 0.200.

This would appear to be in keeping with the linear stability

calculations for shears with a ground reflector (Jones, 1968)

which state that for R. >.15 the unstable waves cannot have

frequencies less than the BrUnt frequency. The amount of

energy transport by transient gravity wave sources can be an

order of magnitude greater than that of the input source for

R. < 0.25.

Calculations of the ground pressure fluctuations due

to these sources show that observed peak to peak surface

values of from 0.1 to 0.5 millibars can be generated by source

region rms velocities of only 0.5 to 2.0 m/s, which are well

within the limitations of the quasi-linear theory.

The quasi-linear theory has provided a framework for

studying the propagation and energy transport properties of



79

finite amplitude gravity wave transients, however, the ques-

tion of spontaneous source generation remains. In section IV

a theory of subharmonic wave-wave interaction was discussed.

A natural mechanism for spontaneous source generation would

seem to be the dynamic instability of highly sheared flows to

small perturbations. A considerable volume of literature

exists on the determination of unstable regimes in terms of

Richardson number and horizontal wavenumber. Since observed

gravity waves seemed to originate in localized regions in the

jet a small, high shear linear segment or hyperbolic tan-

gent profile is an appropriate model for the wind near a

source. Neutral curves, separating stable and unstable

regimes, have been found analytically for the hyperbolic tan-

gent shear (Drazin, 1958), and numerically for the linear

shear (Jones, 1968). A striking feature of both these curves,

however, is that all unstable modes require periods less than

a Brint period and therefore would be severely attenuated

before reaching the ground. Observations of surface pressure

power spectra confirm this result, showing a sharp cutoff for

periods less than the BrUnt period. Conversely, the propagat-

ing gravity waves observed would be stable in the region of

maximum shear for all Richardson numbers greater than zero.

Therefore, the source regions responsible for the observed

gravity waves do not arise spontaneously as an instability

of such waves.

Observed gravity waves with periods greater than the

Brunt period can arise from a wave-wave interaction with an
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unstable mode through the mechanism of subharmonic genera-

tion. For two waves having the same source region critical

level, a growing disturbance can amplify a wave with twice

its period. The growth rate of the subharmonic is proportion-

al to the amplitude of the unstable mode which is initially

growing exponentially in accordance with linear theory.

Growth of the subharmonic extracts energy directly from the

unstable mode and will eventually stabilize it when both

waves reach approximately the same amplitude. The calculated

growth rate of the subharmonic is shown to be very rapid com-

pared to a wave period and appears to be almost spontaneously

generated, and since it is a propagating mode it will event-

ually be observed at the ground. Calculations have also shown

that through this mechanism a background velocity noise of

1.0 cm/sec can generate surface pressure fluctuations of

approximately 1 millibar.

Lower frequency observed waves could also be generated

through wave-wave interaction as difference waves of two

unstable modes. Although a plausible mechanism, calculations

on the three wave interaction mechanism remain an area for

further work.

A natural extension of the work presented here would

be to include the wave-wave source generation directly into

the quasi-linear theory including unstable modes and wave-wind

interaction. One would also like to use a very realistic wind

and temperature profile and attempt direct comparison with

observed gravity waves. Such a development would require a
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far more sophisticated numerical simulator and large amounts

of machine time owing to the very short wavelengths and

extreme growth rates to be encountered.



APPENDIX A

NUMERICAL DETERMINATION OF THE EIGENVALUES

AND EIGENFUNCTIONS FOR STRATIFIED SHEAR FLOWS.

The linear stability for plane, stratified shear

flow is governed by the Taylor-Goldstein equation in the

Boussinesq approximation.

For vertical velocity disturbances of the form

w(x, z, t) --Q(z)ei(wt-kx) in a medium with Brunt frequency

fB and mean flow structure U(z), the governing equation is

jR A 

1z

+w ___
w

Introducing a vertical length scale d and mean

velocity scale U then define the nondimensional parameters:

06 U

C .... ......
U 0

and scale the flow as U(z) - U f(z/d) and introduce a new

independent variable =z/d.

Letting primes denote differentiation with respect to

(, the nondimensional form of the stability equation is:

+Wr
- C. ~C
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The stability problem is formulated for the complex

eigenvalues c, given a, J0 and the flow structure f(z/d),

along with the boundary conditions

where (Za' Zb) are the boundary points of the system and can

be infinite.

The Hyperbolic Tangent Flow with Constant Brunt Period.

The functional form of the flow is given as

( + 0 14h(2/).

Drazin (1958) showed that all the eigenvalues will

have the same real part, that is Re(c) = 1, and that the

neutral curve for which Im(c) = o is given by

To specify the boundary value problem we then require:

a) 1IWI () lm ( -
R-:10 oO 00

The stability problem is then to determine Im(c) given J and

a. The eigenvalues must be determined numerically away from

the neutral curve, but the existence of this curve means the

region to be examined is J' ( c2 (1-2).
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Transformation to Riccati Form for Eigenvalue Determination.

For numerical integration it is useful to map the

infinite domain (o, -o) into the finite domain (1, -1).

Clearly, the transformation to use is

%J +&VI(/d
which is monotonic and reduces f(z/d)-c to y-ilm(c). Then

introduce the transformation

w( - [ 1-%12,
and the stability equation is reduced to a first-order

Riccoti equation,

where c Im~c)

where c. = Im(c).3.

The initial values for $ at Y = + 1, can be determined

by requiring d$/dy to be finite there. Then

a) % GM

b) b.-N

The starting values for d4/dy can be obtained from L'Hopital's

rule:

a) = I

do -NM-W- TOb) = - -- -

For a given (a, J ) pair, the solutions for $ will

only match at y=0 if C is an eigenvalue. Define

zP

+ -T-"A
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Now, since W(zld) + 0 as z + a, then we require that the

initial condition branches at y = + 1 be chosen such that

Re (e(t) 4 0 and Re. ( (-o))>O.

One can then straight forwardly integrate in from

+ 1 and find the zeros of -- C(o as a function of

c. for given a(a, Jo) pair. Much work can be saved, however,

with some additional analysis. The governing equation is

again,

and at y = +1; cp(+tC = .: _-- (i..._c

with Re (4<:4+)) 4. 0 required. Now let - with

y = -y. Then we have

with

E() - 0<_______

and Re (B (+1)) < 0. Therefore, since the differential

equations and initial values are identical,

( Nw - by uniqueness.

Therefore,

For an eigensolution, 4+ --( = , hence

Re (0co)) = 0 is required.
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Further, for an eigensolution, we see that

*~k [k fjRe [(k-4)] (&cU)

Therefore, a much easier method for finding C. is
3.

available since

Re. j(==0) =-O

so.that only one integration from either y = + 1 to

y = o is required. Initial values of C. are then iterated

until a .zero is found in the real part of 4(y=0) which

gives the eigenvalue C. for a given (Jo, a) pair.

In principle, the nonlinear eigenuvalve problem is

now straight forward, however, if care is not taken with the

integration technique, substantial errors in the estimate of

C. can result due to the nearly singular term - -

Since typically C2 <<(, then

and any attempt at direct integration of the equation without

regularizing the solution is subject to significant errors in

the estimate of Ci.

Regularization of the Solution for Accurate Numerical

Integration of the Riccati form.

Let us examine the solution as 4i k(:E/d\O. Let

W/ > / as - and define a corresponding Riccati

variable -(4) as
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-rpr j

where \A)W

d +

and

CL )

and satisfy

)-i 0

Gi **t-

exactly. There is an analytic solution for 9

; the exact solution for is

A- +J J+

where g_%f/4-iO (for unstable flows '.J- 1 ) -

Now, since the previous formulation involved 4( , define

so <>)- $G)as - O

so will be much reduced from near y =0o

affording much more accurate estimations of C .

There remains to fix the constants a, b for &. Since

Re 0=0 at y = 0, choose RP (9) = at y = o and = 9

at y = + 1. The eigenvalue problem is then reformulated as:

with initial conditions at y = +1:

h = 0

To 1 Tctk= Ir __ ~__

since

d4
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with ( : :: ___...-_.. cg

such that Re ($ (+1) ) <0.

The eigenvalues

at y = 0,

are then found such that Re(h)

given values for a and J0 .

Eigenfunction Calculations

. Once an accurate determination of C for a given

(J a) pair has been made, direct calculation of W(y)

can be made by writing

which is governed by

P

+ 2 V

23(0-4f)

with the initial conditions

FCq=o) ==owd (J c

= 0

and

-a d9F



APPENDIX B

BRUNT PERIOD REFLECTION CONDITIONS FOR

UNSTABLE HYPERBOLIC TANGENT FLOWS

Consider the mean flow velocity given as

then the Richardson number is

=i CM3 C 0S&(('/d).

The condition for waves capable of propagating to

infinity is

,IQ 7- gfor all z

where 52.= -C00) is the doppler-shifted frequency. For

the choice of profiles, the source level is z - o, so w o.

Therefore the propagation condition is

S2 > c Uc +xVY12 'j) .
The minimum Richardson number is

Therefore the propagation condition is

To, '> kzc -al O/4)

and since tanh 2(z/d) < 1, then the condition is

Further, since a necessary (but not sufficient)condi-

tion for unstable modes is

89
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all unstable modes are Brunt reflected for some finite value

of z and therefore trapped within the flow.



APPENDIX C

DISTRIBUTION OF VELOCITIES AND ENERGY DENSITIES

IN REGIONS I AND III FOR MODEL A AS A FUNCTION OF

-TIME. CALCULATED GROUND PRESSURE FLUCTUATIONS.

The intermediate computer output for Model A is shown

in the following figures at times corresponding to t = o,

200, 400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600 and

4000 sec. The symbol map is

* = 100.I D =-100. c -0)

1 = O-. L/ (
2 = 10. W, (x=0)

3 = . W/ (X=o) .

The final figure shows the calculated ground pressure

fluctuations as a function of time for the model.
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