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ABSTRACT

Although their composition is narrowly defined, basalts are

igneous rocks emplaced on a planet's surface as melts generally
derived through partial melting of the planet's interior. Var-

iations in the age, volume and chemistry of basalts from dif-

ferent provinces provide clues to the composition and structure
of the interior. The types of basalt that can be identified on

the surface of the moon have been studied using spectral ref-

lectance measurements. Reflectance spectra (.3 to 1.1 pm) have

been obtained using earth based telescopes for a wide variety
of lunar mare surfaces and craters and have been classified
according to their spectral features. Geochemical interpreta-
tions are provided from a background of laboratory reflectance

measurements of lunar, terrestrial and meteoritic samples.

Some of the principal results of this study are: a) There

are major (regionally extensive) basaltic units on the moon

not returned by Apollo or Luna missions to date. About 2/3 of

the lunar maria are not represented in the lunar sample col-

lection. b) Particular extensive units unsampled include:

i. medium to high-Ti basalts near Flamsteed in southern Pro-

cellarum and in western Imbrium, ii. medium high-Ti basalts

of Humorum and SE Procellarum and iii. low-Ti basalts of NE

Imbrium and Frigoris. c) The existence of late stage high-

titanium basalts is confirmed although these young basalts are

distinctly different in mafic composition from the early high-
titanium basalts. d) All mare surfaces contain abundant

lateral variations of compositionally heterogeneous basalts.

e) Some maria are vertically inhomogeneous with subsurface

basalts being distinctly different in composition (eg. low-Ti

surface, high-Ti subsurface). f) Some basalt types are spect-

rally gradational suggesting minor variations in geochemistry.

Three regional series can be identified. g) The data suggest

that most (; 80%) of the lunar surface is composed of a finite

number of discrete describable compositional units. h) Min-

eral components of unsampled units can be defined if spectra

are obtained with sufficient spectral coverage (.3 to 2.5 pm)

and spatial resolution (" .5 km).

Thesis Supervisor: Dr. Thomas B. McCord
Title: Associate Professor of Planetary Physics



CHARACTERIZATION AND DISTRIBUTION OF LUNAR MARE BASALT TYPES
USING REMOTE SENSING TECHNIQUES

Carle Pieters Department of Earth and Planetary Sciences
May 1977 Massachusetts Institute of Technology

... ........ ....



MARE BASALT CLASSIFICATION

R49 7 Soil %T

< .98 (<1.5)
.98-1.0 1.5-2
1.0-1025 2 - 3

1.025-1.06 3-5.5

> 1.05 > 5

7- li -

<T ype

2

3
4,4:

SU

Classification of nearside lunar basalt types using telescopic reflectance spectra from .3 to 1.1 Am
of small (5-20 km diameter) mare areas (Pieters and McCord, Vol. 3). The shape of the oversized
symbols indicates a distinction of basalt types based on near-infrared features of the soil spectra. The
color of the symbol indicates the percent TiO2 of surface soil as derives from continuum slope of the
spectrum: R .40/.57 = reflectance at .40 pm relative to a standard area in Mare Serenitatis (MS-2) and
scaled to unity at .57 Am. The data indicate that there exists a variety of basalt types unsampled by the

landing missions.

origiual color froutispiec* *Wpars ia

pyocoodings of the 7th Anaa Sciene onfereS



4

ACKNOWLEDGEMENTS

A PhD thesis represents the formal part of a transi-

tion in a person's life from clever student to professional.

The process that leads to a PhD degree is different for

each student. When I obtained by first undergraduate de-

gree eleven years ago, it never occurred to me that a doc-

tor's degree in science was a realistic goal in my life.

The process that led to this thesis perhaps first started

with a vague dissatisfaction with my previous position

as a high school teacher and a non-directed but avid inter-

est in astronomy and planetary science. During the last

seven and a half years at MIT (three of which were as a

junior staff scientist), the foundation for a strong and

confident scientific career was gradually developed. A

few key people provided the essential personal and academic

support so important in this process. I will always be

deeply and warmly grateful to Drs. Tom McCord, John Adams,

Jim Head, Tom McGetchin, and Roger Burns. Without their

help and encouragement it is unlikely I would ever have

developed scientific enthusiasm nor faith in my own contri-

butions. The continuous manner in which Dr. Tom McCord

was able to integrate the difficult roles of teacher, ad-

visor, friend and colleague is specially appreciated.



5

The roots of the thesis content presented here are

difficult to define and are imbedded in almost all the work

I have been involved with at MIT in association with Tom

McCord and John Adams. However, three people have gener-

ously acted as principal advisors throughout the period

of thesis preparation and contributed significantly to the

content and structure of the project: Drs. Tom McCord,

Jim Hays, and Roger Burns.

Much of the telescopic data used in this thesis was

obtained while I was a guest observer at the following ob-

servatories: (1) Mount Wilson Observatory (24-inch tele-

scope) which is operated by the Department of Geological

Sciences, California Institute of Technology, Pasadena;

(2) Cerro-Tololo Inter-American Observatory, which is op-

erated by the Association of Universities for Research in

Astronomy, Inc., under contract with the National Science

Foundation; and (3) Mauna Kea Observatory, Institute for

Astronomy, University of Hawaii. The research was supported

by NASA grants NSG-7048 and NGL-22-009-790 (Tom McCord,

principal investigator).



6

TABLE OF CONTENTS

Characterization and Distribution of Lunar Mare Basalt Types

Using Remote Sensing Techniques

Abstract 3

Acknowledgements 4

Table of Contents 6

Extended Outline 8

Preface 11

I. Basalt Types: An Overview 13

A. Basalts as a planetary phenomenon 17

1. Brief description of known and 17
implied basalts

2. Limits set by solar system models 25

3. Formation of basaltic liauids-- 30
possible heat sources

4. Formation of basaltic liquids-- 36
partial melting

5. Crystallization of basaltic 46
liquids

6. Surface alteration of basalts 50

B. Terrestrial basalt types 56

1. Geochemical variations 57

2. Basalt types associated with 67
specific environments

3. Terrestrial volcanism in time 111

C. Lunar basalt types 116

1. Major element geochemistry 118

2. Role of basalts in current 133
understanding of the moon

3. Unanswered questions 152

II. Remote Sensing of the Moon 154

A. General: Current techniques 155

B. Outline of previous woud in spectral 159
reflectance



7

C. Principles of spectral reflectance 169

1. Optical properties of minerals 169

2. Reflectance of minerals and rocks 177

D. Spectral reflectance of lunar material 194

1. Soils 194

2. Rocks and craters 222

3. Telescopic spectral measurements 226

III. Lunar Basalt Types I: Soil Spectra (.33- 237
1. hym)

A. Data description 240

B. Classification of reflectance spectra 241

C. Discussion 245

D. Conclusions 250

E. Applications 253

1. Luna 24 253

2. Flamsteed synthesis 261

IV. Lunar Basalt Types II: Spectra of Craters 271

(.33-1.lpm)

A. Observations and data description 276

B. Classification 279

C. Discussion 282

D. Conclusions 286

V. Summary and Synthesis 299

A. Conclusions 302

B. Inferences 307

C. Recommendations 310

References 315

Resume 345

Publication List 347



8

EXTENDED OUTLINE

I. Basalt Types: An Overview
A. Basalts as a planetary phenomenon

1. Brief description of known and implied basalts
a. Earth
b. The Moon
c. Mars
d. Meteorites and asteroids
e. Mercury
f. Venus

2. Limits of planetary chemical composition set by
Solar System models

3. Formation of basaltic liquids--possible heat
sources

a. Accretional energy
b. Radioactive isotopes
c. Solar wind electrical heating
d. Other heat sources

4. Formation of basaltic liquids--partial melting
a. Major elements
b. Minor and trace elements
c. Isotopes

5. Crystallization of basaltic liquids
a. Geochemical. changes

i. Differentiation/crystal fractionation
ii. Assimilation

b. Petrological results of cooling conditions
i. Crystal grain size
ii. Vesicles
iii. Mineralogy

6. Surface alteration of basalts
a. Mechanical alteration
b. Chemical alteration
c. Current surface environment of the terres-

trial planets
B. Terrestrial basalt types

1. Geochemical variations
a. Relation of basalts to other igneous rocks
b. Magma types

2. Basalt types associated with specific environ-
ments
a. Ocean ridge and floor basalts
b. Ocean islands

i. Tholeiite series
ii. Alkali basalt series
iii. Tholeiite--alkali basalt associations

Galapagos
Hawaii
Canary islands

c. Subduction zone



9

d. Continental basalts
i. Tholeiitic flood basalts
ii. Alkali basalt regions (rift zones?)

3. Terrestrial volcanism in time
C. Lunar basalt types

1. Major element geochemistry of lunar mare basalt
types
a. High-Ti
b. Low-Ti
c. Other (feldspathic, VLT, Luna 24) basalts

2. Role of basalts in current understanding of the
moon
a. Comparison with terrestrial basalts
b. Chronology
c. Two stage melting hypothesis
d. Mare basalt source regions

3. Unanswered questions
II. Remote Sensing of the Moon

A. General: Current techniques of remote sensing
B. Outline of previous work in spectral reflectance

1. Laboratory reflectance measurements: General

2. Telescopic reflectance measuremefits: General
3. Telescopic spectral images
4. Laboratory reflectance measurements: Applied
5. Telescopic reflectance measurements: Applied
6. Spectral reflectance: Application with other

forms of remote sensing
C. Principles of spectral reflectance

1. Optical properties of minerals
a. Crystal field transitions of transition

metal ions
b. Charge transfer transitions

2. Reflectance of minerals and rocks
a. Physical components of reflection
b. Mean optical path length (MOPL)

c. Spectral features of minerals
i. Pyroxenes
ii. Olivine
iii. Feldspars
iv. Glass

d. Spectral components of a whole rock spectrum

D. Spectral reflectance of lunar material

1. Soils
a. Agglutinates

i. Fe-si rich glass
ii. Fe
iii. Ilmenite and opaques
iv. Mineral components

b. Soil spectra
i. Strong absorptions
ii. Subtle absorptions



10

2. Rocks and craters
3. Telescopic spectral measurements

a. Relative reflectance spectra
b. Spectral imagery

III. Lunar Basalt Types I: Soil Spectra (.3 to 1.lm)

A. Data description
B. Classification of reflectance spectra

1. TiO2 content
2. Infrared features

C. Discussion
1. Western high-Ti regions
2. Unsampled basalt types
3. Minor components in returned samples

a. Apollo 12
b. Luna 16

D. Conclusions
E. Applications

1. Luna 24
2. Flamsteed synthesis

IV. Lunar Basalt Types II: Spectra of Craters (.3 to 1.li-m)

A. Observations and data description
B. Classification

1. Highland craters
2. Mare craters
3. Other

C. Discussion
D. Conclusions

V. Summary and Synthesis
A. Conclusions
B. Inferences
C. Recommendations



11

PREFACE

The content of this thesis can be considered in three

parts: a background section (I) that discusses what basalts

are and why they are interesting, a section (II) that provides

detailed background of spectral reflectance remote sensing

techniques, and three sections (III, IV, and V) that discuss

the application of spectral reflectance techniques to under-

standing the geochemistry of the lunar maria. The length of

each section is not necessarily proportional to its contribu-

tion to the scientific output of this thesis, but is deter-

mined more by an attempt for completeness.

Section I is a brief description of basalts in the solar

system and could easily be skipped by geochemists and petrolo-

gists familiar with terrestrial and lunar basalts. It is

clear this section is too short for the detailed discussion

that the topic merits. On the other hand, I realize the

length of this background material is perhaps out of propor-

tion with its direct relevance to the content of the thesis.

I hope that sufficient detail has been presented so that rea-

ders unfamiliar with basalts are able to understand what they

are and why they are interesting.

Section II provides detailed information concerning spec-

tral reflectance studies of lunar material. Although much of

this material has appeared in the literature during the last

ten years, some of the basic concepts presented have not been

discussed fully or are currently being prepared for publica-
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tion by the %5 people involved in the field. Emphasis is

placed in this section on establishing a basis for interpre-

tation of remotely-obtained spectral reflectance data.

Sections III, IV, and V contain most of the scientific

contributions of this thesis. This material is largely in the

form of self-contained manuscripts that were prepared as the

thesis progressed. The content concerns the classification of

remotely-obtained lunar reflectance spectra and the applica-

tions of spectral reflectance data to the characterization and

distribution of lunar mare basalt types. The material pre-

sented in Section I and II provides the detailed background on

the nature of basalts and spectral reflectance techniques that

cannot be included in a (page-limited) published manuscript.

The major conclusions that can be drawn from the currently

available spectral reflectance data are summarized in Section

V.
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I. BASALT TYPES: AN OVERVIEW

The formal definition of a basalt concerns its chemistry,

mineralogy, and mode of emplacement. Basaltic composition

is generally 45-52% Si0 2 , MgO + FeO + Fe20 3 > 15%, and CaO/

A1 20 3 > .60. The mineralogy of common basalts is dominated

by calcic plagioclase (An>50 ), augite, Ca-poor pyroxenes,

olivine, and a minor amount of opaques. Basalts are ex-

trusive igneous rocks, i.e., melts which have cooled in

a low pressure environment on the surface.

Basalts are suspected to have erupted on the earth's

surface for at least the last 2.7 billion years. They were

emplaced on the moon's surface between about 3.9 and 3.0

billion years ago (AE) and account for 17% of the moon's

surface area. From photogeologic studies, basalts are ex-

pected to also have occurred in particular regions on Mars

and Mercury. Laboratory studies of basalt samples from

the earth and moon show they have crystallized from a melt

derived from sub-crustal material and as such provide an

opportunity to study the composition of the interior. The

composition and age of basalts put limits on the thermal

evolution of the planet. The basaltic achondrite class

of meteorites fits the above chemical definition, and textur-

ally are often considered igneous. Since there are asteroids



I 15

that have similar geochemical properties, asteroids are

often considered to be the parent bodies for the achondrites.

More loosely, basalts are considered the major igneous

rock types derived more or less directly by partial melt-

ing of a mantle source. As such, basalts provide important

geochemical constraints on mantle composition. (The rela-

tion of basalts to the mantle at times involves a circular

definition.) It is this more general description of ba-

salts that makes them interesting as a planetary phenomenon.

However, since the nature of the mantle, or source region

of 'basalts', is not likely to be the same for all terres-

trial planets, the prevalent igneous rock type derived by

partial melting of the interior may not necessarily be

a basalt. For example, the lunar high-titanium 'basalts'

commonly contain <40% SiO 2, primarily because of their high

TiO 2 content. The likely igneous rock type derived from

the mantle of Mars would be extremely ultramafic (McGetchin

and Smyth, 1977) and well beyond the range of terrestrial1

basalts.

It is tempting to postulate a common period of 'basal-

tic' volcanism for all solid surface planets. Volcanism

1The adjective 'terrestrial' usually means pertaining to
earth. However, in planetary science, it is often used
to describe a whole class of solid surface objects. The
'terrestrial' planets include Mercury, Venus, Earth, Mars,
and often the moon and asteroids.
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is certainly a common occurrence on the terrestrial planets,

but each planet (and the asteroids) has evolved in a unique

manner. It is hoped that a detailed study of the basalts

on each planet will help define some of the general prin-

ciples of planetary evolution.
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I. BASALT TYPES: AN OVERVIEW

A. Basalts as a planetary phenomenon

1. Brief description of known and implied basalts

a. Earth

There are about 800 known active volcanoes on

the surface of the earth today (Verhoogen et al., 1970,

p. 262) and an undetermined number of dormant or extinct

volcanoes. The composition, mineralogy and mode of occur-

rence of material from these sources are a function of the

specific environment and planetary processes associated

with the region (see Section I-B). It is clear that the

earth is a dynamic planet and has been for most likely

all its 4.5 AE history. The current surface of the plan-

et is constantly undergoing severe alteration and rejuve-

nation from both tectonic and meterological processes.

The effects of plate tectonics which dominate the geology

of the earth may be unique in the solar system. Neverthe-

less, there does exist stable regions in the continental

plates that still contain a record of early volcanic rocks

(see Section IB-3), implying that some form of basaltic

volcanism occurred early in the earth's history, perhaps be-

fore 3.0 AE.

Of recent terrestrial basalts, the largest sur-

face area and perhaps the largest volume of basalts occur
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on the ocean floor and are generated by the midocean spread-

ing centers. Additional forms of volcanism occur near the

region of a subduction zone as oceanic and continental lith-

ospheric plates collide: (1) the island arc volcanics

which include a variety of basalts and more silicious ma-

terial, and (2) the continental volcanics which are gener-

ally more silica-rich (e.g., andesite). Major volumes of

basalts can also occur within a lithospheric plate such

as is observed with the Hawaiian series of shield volcanoes

and the extensive continental flood basalts (e.g., Columbia

River, Deccan). Alkali-rich basalts occur both on ocean

islands and also well within a continental plate. Addition-

al continental volcanics associated with rift zones are

often extremely complex and may include such 'exotic' com-

positions as carbonatites as well as more familiar compo-

sitions such as basalt-rhyolite associations. In short,

terrestrial volcanism is not only currently active in a

sometimes perplexing variety of forms, but it also has

a complex history as a planetary phenomenon, much of which

has been erased.

b. The Moon

There are two major geochemical families of

material on the lunar surface: the mare basalts and the

feldspathic highland crust. The composition, mineralogy
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and texture of returned mare rocks are clearly basaltic

(Section I-C). Although a component of highland material

(perhaps 20%, Taylor, 1975, p. 255) can be considered ba-

saltic in composition, many highland rocks with igenous

textures are considered to be the result of impact melts

(Irving, 1975) and the highlands in general are not basaltic.

Mare basalts account for about 17% of the lu-

nar surface area and less than 1% of the total volume for

an estimated 60 km thick lunar crust. [This and much of

the details that follow can be found in a review by Head

(1976)]. Basaltic volcanism occurred on the front side

of the moon filling the lowlands and forming the maria from

about 3.8 to 2.5 AE (estimate). Some form of volcanism

may also have occurred in the highlands prior to the fill-

ing of the lowlands by mare basalts. Lunar mare lavas were

very fluid and voluminous and formed extensive flows. The

lunar crust formed early in the evolution of the planet

(<4.1 AE). The mare basalts were derived from partial melts

of sub-crustal materials and were later emplaced in

the low-lying regions of the fractured surface. The total

volume of basalt is estimated to be about 10 x 106 km
3 .

The process of filling the maria took place over about 1.3

billion years and produced complex deposits of smooth plains.

About 2.5 billion years ago, lunar volcanism ended. The
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evolution of the atmosphereless surface was then essentially

frozen with only meteoroid bombardment to alter its form.

Unlike the earth, the moon provides an opportunity to study

early stages of the evolution of a planet.

c. Mars

The largest known volcano in the solar system

is the Martian Olympus Mons [500 km diameter, 23 km high,

2.12 x 106 km 3 volume (Blasius and Cutts, 1976)]. From,

Mariner imagery many such volcanoes (but smaller) can be

identified (Carr, 1973) with a variety of ages. Although

much of the highly cratered surface of Mars could have

an age comparable to the lunar highland crust, the Thar-

sis volcanoes could be younger than 750 m.y. old (Soderblom

et al., 1974). Some of the volcanic plains (similar to

the lunar maria) could be as old as 2.4 AE. The composi-

tion of Martian soil as determined by the x-ray florescence

experiments of Viking could be consistent with many mineral

assemblages which range from ultramafic igneous rock to

an iron-rich extensively weathered product (Toulmin et al.,

1976; Baird et al., 1976). Earth-based spectral studies

of the Martian dark regions are consistent with oxidized

basalt (Adams and McCord, 1969); laboratory and theoreti-

cal studies show photostimulated oxidation is the likely

chemical alteration process (Huguenin, 1974). Although
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Martian volcanism probably extended over a period longer

than that demonstrated by the moon, Mars is clearly not

as active as the earth today and may even have been dormant

for the last billion years. The martian surface has under-

gone extensive mechanical and chemical weathering causing

some of the record to be blurred.

d. Meteorites and asteroids

Prior to the Apollo missions, the only samples

of extraterrestrial material available were fragments of

unknown origin that fall to earth as meteorites. (See Was-

son, 1974, for a detailed discussion.) Most (>70%) of these

falls are ordinary chondrites, or chondrule-bearing sili-

cate assemblages with textures that indicate they have not

experienced a severe heating process. About 8% of the

meteorite falls are classified as differentiated silicate-

rich achondrites, or mineral assemblages (without chondrules)

that possess mineralogical and textural properties which

imply crystallization from a melt and perhaps fractional

crystallization in a gravity field (Duke and Silver, 1967).

The composition of the achondritic eucrites (monomict pig-

eonite breccias), which constitute <3% of falls, is essen-

tially basaltic. The extrusive origin of some such eucrites

is demonstrated by the existence of vesicles presumably

formed by the expansion of gas evolved from a magma as the
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result of pressure drop during extrusion onto a-parent

body surface.

The return of lunar samples allowed geochemical stu-

dies that effectively eliminated the moon as a possible

source for the meteorites. Comets, belt asteroids (main

body of asteroids in orbit 2.2 - 3.2 AU from the sun), and

the Apollo asteroids (earth-orbit crossing) are the remain-

ing possible meteorite sources. Spectrophotometry of over

100 asteroids (e.g., McCord and Chapman, 1975a, b; Chapman

et al., 1975) and the mineralogical interpretation of the

spectra (McCord and Gaffey, 1974; Gaffey and McCord, 1976)

indicate that most asteroids can be understood in terms

of mineral assembalges common to meteorite samples. The

earth, however, receives a biased distribution of samples.

Basaltic achondrite-like material is extremely uncommon

among the asteroids with the main belt being dominated by

material much like the relatively 'primitive' carbonaceous

chondrites. The asteroid 4 Vesta is the singular example

(McCord et al., 1970) of possible basaltic material; the

spectrum of this asteroid indicates a surface with a pig-

eonite basalt assemblage much like the eucrites. Somehow

it seems a small body with a radius 245-300 km having a

density around 3.0 g cm- 3 (4 Vesta) was able to develop

a basaltic surface, while in the same part of the solar
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system a larger object with a radius 465-590 km having

a density around 2.1 g cm-3 (1 Ceres) remains undifferen-

tiated (Matson et al., 1976).

e. Mercury

Although Mercury was strongly suspected to

have a lunar-like surface, little was known about the plan-

et's surface until the Mariner mission in 1974. Earthbased

spectrophotometric measurements of the whole planet (McCord

and Adams, 1972) indicated that the composition of the sur-

face was comparable to the lunar highlands--being rich in

the dark impact generated silicate glasses. Polarization

measurements indicated that the surface microstructure

was also lunar-like (Dollfus and Auriere, 1974). Meticu-

lous low resolution visual observations implied there were

at least albedo differences across the surface (Dollfus,

1961). There is, however, no direct evidence for basalts

from the astronomical data.

The Mariner images showed the surface morpho-

logy of Mercury to be remarkably similar to the moon (Mur-

ray et al., 1974, 1975). Much of the surface is heavily

cratered but there exist many level and less cratered sur-

faces (plains) including the floors and surrounding terrain

of many craters and basins. The smooth plains are somewhat

darker than the heavily cratered terrain, but the albedo
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contrast is less than that observed for the moon. Although

no direct evidence for volcanism such as cones or domes

is observed, the volume and areal extent of the Mercurian

plains material suggest a volcanic origin. If the lunar

analogy holds for Mercurian early differentiation, the plains

material could be basaltic.

f. Venus

The size and density of the planet Venus is

not much different from that of the earth, but little is

known about the surface of the planet due to the extensive

and opaque atmosphere (%100 bars). Images of the surface

were obtained in 1975 by the Soviet spacecrafts Venera 9

and 10 and described by Florensky et al. (1977). The sur-

face contains both fine material and rocks. Some rocks

are flat and show evidence of layering. One region contains

sharp-edged "slabs" of rock whereas the other region shows

rocks with smooth edges. Earth-based radar measurements

(e.g., Goldstein et al., 1976) reveal major surface features

reminiscent of the large basins on the moon and Mars. There

is currently no evidence for or against the existence of

volcanic material on the surface of Venus.
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2. Limits of planetary chemical composition set by

Solar System models

Since basalts are the products of crystallization

from a magma, they are at least second generation material

and are directly related to the original composition of

the premelt material. Although some basaltic material

has probably passed through more than one sequence of melt-

ing and differentiation, it is worthwhile to consider the

possible initial starting material for the terrestrial planets.

Models of condensation from a primitive solar nebula (PSN)

describe simple condensation sequences that can account

for most of the observed bulk densities of the planets and

can also provide an estimate of their intial bulk chem-

istry (Lewis, 1974a, b; Barshay and Lewis, 1976).

The condensation models assume a PSN composition

(Cameron, 1973) and a reasonable description of the pres-

sure and temperature with radial distance along the PSN

disk. In order to examine the predictive ability of a given

model, the elemental composition of the PSN is assumed uni-

form throughout. This second assumption, although not purely

accurate, is necessary; unconstrained deviations from sim-

plicity can result in an infinite variety of predictions.

The principles of chemical thermodynamics are applied to

the assumed PSN and the primordial composition of material

is predicted in the region where each planet formed. Both
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equilibrium and disequilibrium models have been examined.

The results of such models indicate that, with respect

to major element composition and bulk density of the result-

ing planet, the terrestrial planets and asteroids are likely

to have condensed under equilibrium or near equilibrium

conditions and that the assumptions of the PSN model were

thus not likely to be grossly different from reality.

Compositions of various solar system objects pre-

dicted by the equilibrium condensation model are summarized

in Figure IAl,2 (from Lewis, 1974b). Mercury is predicted

to contain a major amount of refractory metals and minerals

with an iron-nickel alloy core and a limited amount of

MgSiO enstatite. Venus contains the same components

as Mercury but with major amounts of enstatite and perhaps

some alkali aluminosilicates. Venus is expected to have

little if any sulfur or water. The Earth, by this model,

contains a small amount of water and iron occurs as Fe metal,

FeO, and FeS. Mars, on the other hand, contains little

or no unoxidized iron and more water than the earth.

A few serious discrepancies exist, however, between

predictions and observations. For example, the models do

not allow the earth (density = 5.5 g cm- 3) and the moon

(density = 3.3 g cm- 3) to form in the same region of the
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solar system without some secondary processes affecting

the moon. Secondly, the nebular adiabat, along which con-

densation is presumed to have occurred, does not cross

the graphite stability field, but carbonaceous chondrites

(and probably some asteroids) are known to contain signi-

ficant graphite. It is suggested by Barshay and Lewis (1976)

that the carbon found in meteorites may be a remnant of

interstellar dust and is an exception to the equilibrium

condensation models.

Furthermore, there is an indication from the study

of oxygen isotopic composition (e.g., Clayton et al., 1976)

that inhomogeneities existed in the solar nebula prior to

condensation. This evidence indicates that the earth, the

moon, and the parent bodies of differentiated stony and

stony-iron meteorites must have been derived from the same

batch of solar nebular material. Five other groups of solar

system material can be identified on the basis of oxygen

isotopic composition, none of which can be derived from

another by direct chemical fractionation processes. One

of these groups, the ordinary chondrites which constitute

the majority of meteorite falls on earth, cannot have been

derived from the same homogeneous region of the solar nebula

as the earth. The difference may imply that the earth

had a higher mean condensation temperature.
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3. Formation of Basaltic Liquids--Possible Heat Sources

Basaltic rocks by definition are igneous and crys-

tallized from a melt. On the earth, basaltic magmas are

thought to be derived by partial melting of a mafic or

ultramafic mantle (See IB). The lunar mare basalts are

also thought to be derived by partial melting of the inter-

ior (see IC). A number of possible heat sources for pro-

ducing these melts are outlined below. A recent review

of possible terrestrial melting processes is provided by

Yoder, Chapter 4 (1976). The relative importance of each

heat source is perhaps different for each planetary object.

a. Accretional Energy

The earliest history of a solar system has

not been observed astronomically and is, therefore, derived

from a mixture of fact and conjecture. At some time greater

than 4.6 billion years ago (limiting age of meteorites;

Wasson, 1974) solid particles condensed from a cooling solar

nebula. These small grains began to agglomerate into larger

objects. At some point the neo-planet became sufficiently

large to allow gravitational accretion of enough mass to

form a planet. For a given homogeneous mass M with a radius

R, the accretional energy released is:

3E 5
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For a uniform earth, the gravitational energy per unit

mass would be about 4 x 1011 ergs/g--enough to vaporize

the earth twiceover (Verhoogen et al., 1970, p. 600-601).

The key to how much of this accretional energy

affects the original thermal state of the new planet is

the degree to which the heat generated can be radiated

away into space (see Mizutani et al., 1972). The amount

of heat generated per unit time is a function of the rate

of accretion. Accretional energy is expected to play a

significant role in the initial temperature profile for

a planet. Most models for the early history of the moon

(e.g., Wood et al., 1970) require an original magma ocean

hundreds of kilometers deep (see IC2). Accretional energy

is usually cited as the probable heat source (e.g., Hubbard

and Minear, 1975) with accretion time being less than 1000

years.

b. Radioactive Isotopes

Kinetic energy of the a-particles and y radia-

tion emitted from radio nuclides is absorbed by surround-

ing atoms and converted to thermal energy. The heat pro-

ducted during any given period is a function of the type

and amount of radioactive isotopes. Using the estimated

abundances of heat-producing elements on earth, the radio-

genic heat production can be calculated as a function of



IA 32

time as shown in Figure IA3 (from Mason). In the earth,

the melting temperature of iron was reached after about 600

million years at a few hundred kilometers depth. Thermal

evolution models of the moon (e.g., Toks6z and Solomon,

1973), Mars (Johnson et al., 1974), and Mercury (Solomon,

1976) require estimates of these long-lived radio nuclides

(U2 3 8 , U2 3 5 , Th 2 3 2 , and K 4 0). Estimates are derived from

solar abundances information as well as measured amounts

in terrestrial, lunar, and meteoritic samples. The lunar

basalts are generally believed to be results of partial

melting of the interior caused by radiogenic heating about

4.0 to 3.0 AE ago (e.g., Taylor, 1975).

It is unlikely, however, for small planetary

objects such as the asteroids to contain sufficient long-

lived heat producing elements to allow post-accretional

melting. Since the radiometric ages of most achondrites

are close to 4.5 AE, an alternative heat source is required

to account for the early melting of achondrite parent bodies.

Short-lived radio nuclides such as 2 6A1 (T11 2 = .72 x 106 yr.)

have been suggested as a possible short term heat source

in the early solar system (Reeves and Audouze, 1969).

Although at first no evidence of 2 6Al could be established

in meteorites, the recent discovery of a 2 6Mg excess in

an Allende chondrule suggests the early existence of

now extinct 2 6A1 (Lee et al., 1976).
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c. Solar Wind Electrical Heating

Early solar wind heating of small objects

assumes that young solar-type stars rapidly loose mass (~

.1 original mass) and maintain an enhanced magnetic field

(-~10 x present) during a T-Tauri phase of stellar evolution.

As a planetoid moves through this early plasma, conditions

can be favorable (e.g., no atmosphere) to allow an exchange

of charge between the plasma and planet. These electric

currents cause ohmic heating of the interior of the planetoid.

This concept first proposed by Sonnet et al. (1969) has

recently been reevaluated in light of additional informa-

tion about asteroids and meteorites (Briggs, 1976). Briggs

pointed out that the differences in low temperature elec-

trical conductivity of different types of carbonaceous chon-

drites would cause dramatic differences in solar wind heated

asteroids of such material. For objects less than 500 km

in diameter, Cl and C2-type bodies would survive a T-Tauri

phase of the sun intact, whereas the cores of C3 and C4-type

bodies would be either metamorphosed or melted.

d. Other Heat Sources

Core formation. For most of the major terres-

trial planets including the earth, a combination of the

above heat sources caused (early?) extensive fractionation

of the planetary material. The separation of the denser
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material into a core releases additional gravitational energy

(on the earth estimated to be 1038 ergs [Verhoogen et

al., 1970, P. 640]). Core formation is a major event in

the thermal evolution of a planet (a summary for most ter-

restrial planets is given in Soloman and Chaiken, 1976).

Impact melting. After crustal formation (on

the moon at "4.2 AE) the surfaces of planetary objects con-

tinue to be bombarded by various objects. The heat gener-

ated by a high velocity impact onto a surface is generally

sufficient not only to vaporize the projectile, but to

crush and melt the host material to some degree. Glasses

found in the lunar soils and breccias have clearly had such

an origin. No major bodies of impact melt, however, have

been identified although a few of the returned lunar sam-

ples are hypothesized to be crystallized from an im-

pact melt (e.g., Irving, 1975).

Tidal friction. When two bodies interact (with-

out colliding) the gravitational deformation is dissipated

as heat. The regular interactions of the earth and moon

is estimated to account for 10% of the earths' heat flow

(Verhoogen et al., 1970, p. 640). Tidal dissipation in

regions of high density contrast has been proposed as a

possible heat source for some lunar magmas derived along

the margins of basins when the moon was closer to the earth

3.0 AE ago (Wones and Shaw, 1975).
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4. Formation of Basaltic Liquids--Partial Melting

If the other terrestrial planets are like the

earth and moon, then basaltic (or planetary) volcanism,

if it exists, is probably the result of partial melting

of mantle material. Experimental data for terrestrial ma-

terial will be used here to show the type of systematics

that can occur in a crystal-liquid environment. A limited

amount of experimental data also exists for lunar material

and has been reviewed by Kesson and Lindsley (1976) (see

Section IC). The formation of mafic melts from the mantle

of Mars has also been considered (McGetchin and Smyth,

1977).

There is much confusion concerning the terms "prim-

itive, primary and parental" as applied to igneous material

(e.g., see Carmichael et al., 1974, p. 44-46). To avoid

confusion in later sections, these terms will be used

throughout the discussion presented here with the following

meanings. Primitive refers to early solar system material,

generally which has not undergone a thermal reworking.

Presumably carbonaceous chondrites represent primitive ma-

terial; the achondrites are less primitive being perhaps

only one step removed from primitive material. Primary

melts are those that have not been compositionally altered

in any way since their derivation. It may be unlikely that
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an ideal primary liquid ever reaches the surface of a pla-

net. Parental melts may or may not be observed. Parental

magmas are those which have generated an observed material

through some fractionation or assimilation process.

During melting, the composition of a liquid pro-

duced is generally different from the composition of the

remaining minerals. The behavior of major and minor ele-

ments are not the same: the major element composition of

a partial melt is controlled largely by the residual min-

eral assemblages, whereas the trace element abundances

are more sensitive to the degree of melting.

a. Major elements

The earth's upper mantle is often considered

to be composed of some form of peridotite (olivine with

orthopyroxene, clinopyroxene, spinel, garnet). A sim-

plified system containing olivine (Fo), clinopyroxene (Di),

and garnet (Py) at 40 k bars pressure (Figure IA-4) was

discussed by Yoder (1976, chapter 6) to illustrate the prin-

ciples that apply to partial melting. When the temperature

of a mineral assemblage with composition X (60% Fo) reaches

1670*C, melting begins at the eutetic composition E. As

more heat is added to the system, the degree of partial

melting increases but the composition of the melt remains
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at E; the composition of the residual is driven toward R

until the Di component is exhausted. If the melt remains

in contact with the residual as more heat is added, the

melt composition trends toward A and then to X (equilibrium

or "batch" melting). If the melt is removed as it is pro-

duced (fractional melting), no melt will be produced as

the temperature is raised from 1670 to 17701C and a melt

of composition B will occur when 1770*C is reached.

For a given source region, a large amount of

liquid of a single composition can be produced; the major

element composition changes as a function of how and when

the liquid is removed from the residuum. Melting curves

for real systems are perhaps more complicated than that

represented in Figure IA-4, and depend on the starting min-

eral assemblage. Melting curves for two natural peridotites

shown in Figure IA-5 (from Mysen and Halloway, 1977) illus-

trate the same principle, however: liquids of roughly the

same major element composition can be produced from a given

source region with distinct changes of composition as dif-

ferent mineral phases participate in the melting event.

The experimental data (e.g., Yoder and Tilley,

1962; Green, 1971; Mysen and Boettcher, 1975 a,b) show that

the melt composition is also dependent on the temperature,

pressure, fH2 , and H 20 and CO. content of the source region.
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In short, "...it appears that we can produce almost any

liquid composition from andesite to olivine nephelinite

by partial melting of mantle peridotite provided we select

the appropriate starting material composition, temperature,

pressure, fH2' H20, and f C2." (Mysen and Boettcher, 1975b,

p. 588).

b. Minor and trace elements

Only the rare earth elements (REE) and Rb

and Sr concentrations in basaltic liquids will be discussed

here as examples. Gast (1968) pointed out that although

major element composition varies only a few percent for

various basalts, the abundance of trace elements can vary

as much as two orders of magnitudes. His models of REE

partitioning between liquid and solids indicate that REE

chemistry and major element chemistry of liquids produced

by partial melting are in many cases effectively "decoupled".

Some trace elements are strongly concentrated in the first

melt. For example, Rb, and to a lesser extent K, are both

greatly enriched in the liquid for small degrees of partial

melt (Figure IA-6, after Gast, 1968). Actual partition

coefficients for trace elements are difficult to predict;

they are dependent on the minerals present in the source

region, the size and charge of the ion, the degree of par-

tial melting, and to some extent the temperature and pres-
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Fractionation of Rb and K during ideal fractional melting of lhe'Lolite (diopside
10, enstatite 20, olivine 65, spinel 5%). Ratios for 3%.equilibrium partial melting are given by
circled points X (Rb), Y (K). (After Gast, 1968, p. 1073.)
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sure of the melting conditions. Shown in Figure IA-7 (com-

piled by Yoder, 1976) are representative partition coeffi-

cients for the rare earth elements between common crystals

and melt liquid. Olivine in the source region would strong-

ly affect the degree of enrichment of REE in a liquid,

whereas garnet strongly affects the relative REE pattern.

The REE patterns of various partial melts from peridotite

B in Figure IA-5 were examined by Mysen and Halloway (1977)

and are shown in Figure IA-8. The degree of enrichment

and the REE patterns are very dependent on the degree of

partial melting.

C. Isotopes

Although there is no evidence for isotopic

fractionation during partial melting, special mention is

due radiogenic isotope systematics such as Rb-Sr (see Faure

and Powell, 1972). 87 Rb is radioactive with a half life

of about 4.7 x 1010 years and decays to the stable isotope

8 7Sr. During partial melting both Rb and Sr are concentrated

in the liquid (Rb generally more than Sr). During crystal-

lization Rb is incorporated preferentially into K-bearing

minerals and Sr into Ca-bearing minerals. The ratio of

the two stable isotopes of strontium, 8 7Sr/8 6 Sr, regularly

increases in time from some initial value (I) at a rate

determined by the amount of 8 7Rb present. The Rb-Sr iso-

tope systematics can thus be used to date the crystallization
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age for a given melt (Papanastassiou and Wasserburg, 1969).

Furthermore, the initial strontium isotope ratio I describes

the character of the source region at the time of separa-

tion of the melt. One of the most primitive values of I

(.69898) is that measured for the basaltic achondrites (age

I'U 4.5 AE) (Papanastassiou and Wasserburg, 1971). Initial

strontium ratios of basalts are generally compared to this

value when the history of the source region is investiga-

ted.
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5. Crystallization of Basaltic Liauids

If a basaltic liquid is allowed to cool in a closed

system under equilibrium conditions, the crystallization

sequence and resulting mineralogy can be well defined as

a function of chemistry and pressure from observational,

theoretical, and experimental data (e.g., Bowen, 1928; Yoder

and Tilley, 1962; Green and Ringwood, 1967). Such an equi-

librium situation rarely occurs in nature, however, and

most igneous materials undergo some form of geochemical

alteration where either (1) the final bulk chemistry is

not the same as for the original magma and/or (2) the final

mineralogy is different from the predicted for equilibrium

situations.

a. Geochemical Changes

i. DIFFERENTIATION/CRYSTAL FRACTIONATION.

As a basaltic body of magma cools, the first crystals to

form are the high temperature minerals, such as Mg-rich

olivine (fosterite,.Mg2SiO) or calcium-rich plagioclase.

The liquidus minerals are, of course, dependent on the com-

position and pressure of the melt and can be determined

experimentally for a given melt composition. Once crystal-

lization has commenced, the bulk composition of the crystals

is different from the composition of the liquid (except

for unique liquids of eutectic composition). Any process
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that separates the crystals from the melt before the cool-

ing sequence is complete is termed "fractional crystalli-

zation" (e.g., Carmichael et al., 1974, p. 62-65). If

early-formed crystals are more dense than the residual

liquid, gravitational settling will occur, thus effectively

removing these minerals from the melt and changing the bulk

compositon of the system. For basaltic liquids,

the removal of olivine or any other early phase to a cumu-

late layer below is a major process of chemical differentiation.

ii. ASSIMILATION. Either during transit from

the source or while being emplaced, a magma may react with

the surrounding host rock. The process by which components

of the host rock are incorporated into the melt is called

"assimilation" and produces a change in magma composition

difficult to detect and evaluate. Low-temperature minerals

may be melted and become part of the magma, thus altering

the bulk chemistry of the magma. On the other hand, ionic

exchange may occur between crystalline host phases and a

saturated magma and may only affect the trace element con-

centrations.

b. Petrological results of cooling conditions

From the time a magma leaves the source region,

it begins to cool. The texture and to some degree the min-

eralogy of the solidified rock is a function of the cooling
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conditions.

i. CRYSTAL GRAIN SIZE. In general, only a

few crystal nuclei are formed in slowly cooled liquids but

the rate of crystal growth is rapid. This results in rela-

tively few large crystals. For rapidly cooled liquids,

there are many nuclei with slow growth rates resulting in

abundant very small crystals. During the cooling sequence,

conditions are not often constant. For example, slow cool-

ing rates could exist during a long rise to the surface

or while remaining in a magma reservoir allowing some early

crystals to nucleate and grow. When the magma is extruded

onto the surface, however, it is cooled more rapidly and

the resulting texture is "porphyritic" with the large crystals,

or phenocrysts, enclosed by a fine-grained groundmass.

Similar textures can also be produced by entirely differ-

ent conditions. A loss of volatiles, for example, can

have a considerable effect in raising the crystallization

temperatures of silicate phases and may produce a texture

comparable to rapid cooling.

ii. VESICLES. If a magma is generated under

pressure (at depth) and contains H 20, CO2 , or any gas phase,

spherical or tabular cavities are formed as the gas is re-

leased at lower pressure when the magma is extruded onto
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the surface. If cooling is rapid, the gas is trapped dur-

ing solidification of the rock. These frozen cavities

are called vesicles and are characteristic of many volcanic

surfaces.

iii. MINERALOGY. Since cooling rate essen-

tially controls whether or not equilibrium conditions are

maintained, it has a major effect on the resulting miner-

alogy. The extreme example is a quenched liquid that is

primarily glass. Intermediate are the rapidly-cooled ba-

salts that contain substantial glass in the groundmass

along with the fine-grained crystals. Non-equilibrium

cooling is commonly indicated by compositional zoning of

crystals in which the core is a high temperature phase

and the rim is a lower temperature phase (e.g., a decrease

in calcium from core to rim of a plagioclase crystal).

Composition trends on crystal zoning can often be complex

since the composition of the liquid can change locally

in a non-uniform manner as other minerals begin to crystal-

lize (e.g., see Hollister et al., 1971).
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6. Surface alteration of basalts

Few basaltic surfaces are composed of unaltered mater-

ial, a fact which is of interest to geochemists who study

either samples or remote sensing data. As will be discussed

in Sections II through V, the geochemical information that can

be derived using remote sensing techniques is restricted to

planetary surface material. It is thus imperative that the

possible and probable effects of the environment to alter the

surface mineralogy and/or geochemistry be reasonably under-

stood. A clear description of surface alteration effects is

currently perhaps the most difficult step in interpreting re-

motely sensed data. A rather detailed discussion of lunar soil

properties is provided in Section IID. Terrestrial surfaces

are perhaps an order of magnitude more complex than lunar.

(Unfortunately, inadequate attention has been given to the

systematics of surface alteration to be immediately useful in

remote sensing exploration of terrestrial resources.) Outlined

below are some of the types of environmental alteration that

can and do occur on planetary surfaces. The distinction be-

tween mechanical and chemical alteration is for discussion pur-

poses only; in reality, the two are intimately related.

a. Mechanical aleration

A variety of processes break an original solid sur-

face into blocks or finer particles. During the first billion

years of planetary evolution, it is unlikely that any

of the terrestrial objects escaped high velocity impacts

by other (smaller) solid objects. The observable crust
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of the moon, Mercury, Mars, and possibly Venus and the Earth

have been permanently scarred by these early impacts. Crus-

tal material was also somewhat redistributed by these events.

Meteorite bombardment continues to the present day in di-

minishing amounts. For atmosphereless bodies, the surface

has been crushed and broken to some depth which varies ac-

cording to the scale of the definition. For example, the

lunar "mega-regolith" (a result of the last major crustal

impacts about 4 AE) probably extends to a depth of about

25 km. The mare regolith (a result of cumulative random

bombardment since %3.5 AE) is typically %5 m. A mature

lunar soil, on the other hand, has a mean particle size

of about 100Pm and is dominantly the result of cumulative

micrometeoroid bombardment during the last few 100 million

years.

For planets with atmospheres, a variety of

erosional and depositional processes occur depending on

the type of weather inherent on the planet. Conditions

on earth are perhaps the most severe in that water (rain,

oceans, ice) erosion has redistributed material for much

of the planet's history. It is suggested from photogeologic

evidence that episodic fluid erosion has also been signi-

ficant on Mars. Aeolian (wind carried particles) erosion

and deposition are familiar in arid regions on earth and

are perhaps the dominant form of current mechanical surface
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alteration on Mars.

b. Chemical alteration

Some form of geochemical alteration is asso-

ciated with each of the mechanical alteration processes

mentioned above. During an impact event, surface materials

are mixed both vertically and laterally. A portion of the

surface is melted and often mixed with the crushed but

still crystalline host rock. If these impact derived ma-

terials accumulate over long periods of time, the total

mineralogy of the surface can be drastically changed (see

Section IIDl). Contamination of the surface by the impact-

ing object is very small, but often detectable (e.g., Anders

et al., 1973).

Atmosphereless bodies have been exposed to

a history of solar wind particle bombardment. An exten-

sive literature exists concerning solar and galatic parti-

cle composition and track studies for the lunar soils and

the regolith history that can be derived from such studies

(e.g., Price et al., 1975). Although it has not been con-

clusively demonstrated, there is evidence that solar wind

emplanted H and C contribute significantly to the reduction

of iron (to Fe0 ) during melting by micrometeorite impact

of lunar soils (e.g., Housley et al., 1973).

For the earth and Mars, the dominant chemical
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alteration is oxidation of surface material. A number

of oxidation processes are possible but do not provide unique

products; i.e., the same result can be achieved by a var-

iety of means. Hydrothermal alteration of terrestrial ba-

salts can occur prior to or after eruption. Oxidation ef-

fects on Mars, which may mimic terrestrial processes, are

more likely due to a process by which surface material

is stimulated by high energy UV radiation and oxidized by

interaction with atmospheric 02 (e.g., Huguenin, 1973a,

b, 1974). Huguenin (1974) estimated a 30m thick layer of clay

minerals could be developed in 109 years in the Martian

environment. Meteorological and biological oxidation ef-

fects are quickly (within 100 years) noticeable on earth

for fresh volcanic material, except in extreme high or

arid regions.

c. Current surface environment of the terrestrial

planets

i. MERCURY. Atmosphereless. Meteorite bom-

bardment extensive and continuing to present. Development

of regolith and soil likely. Possibly strong interaction

with solar wind although existing magnetic field should

deflect a significant portion of particles. Strong ther-

mal surface environment (-180 to +350*C).
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ii. VENUS. Dense opaque atmosphere (%102

bars). Currently unaffected by small meteorites. Possi-

ble wind erosion. Possible corrosive atmospheric environ-

ment. HOT (480*C).

iii. EARTH. Atmosphere (1 bar) opaque to

UV radiation. Surface unaffected by micrometeorites. Ex-

tensive fluid and wind erosion and deposition. Multitude

of oxidation processes. 3/4 surface covered with fluid

water. Extensive biological environment.

iv. MOON. Atmosphereless. Meteorite bombard-

ment extensive and continuing to present. Well-developed

regolith with accumulation of glass-rich soil. Surface

material often saturated with solar wind particles (H, C,

N).

v. MARS. Thin % transparent atmosphere (1.01

bar). Surface unaffected by micrometeorites. Wind erosion

and deposition significant. (Possible fluid erosion in

past.) Oxidized surface (photostimulated). Developed soil.

vi. ASTEROIDS. Atmosphereless. Periodic

impact events. Accumulation of mature soil improbable due

to weak gravity. Relatively 'fresh' dusty broken surface

probable.
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I. BASALT TYPES: AN OVERVIEW

B. Terrestrial basalt types

There is no universally accepted classification of

terrestrial rock types. One of the problems of classifi-

cation is the fact that there is a gradation from one rock

type into another and boundaries are somewhat indistinct.

For igneous rocks there has developed a nonstructured list

of terms that are widely used to describe the interrelated

mineralogy and chemistry of common rock types (see Carmichael

et al., 1974, Chapter 2).

Basalts are volcanic igneous rocks; they have cooled

in a low pressure environment (on the surface). Their tex-

ture is thus relatively fine grained, generally (l mm.

The mineralogy of basalts is dominated by plagioclase and

pyroxene and usually includes olivine or quartz and a minor

amount of opaques. The plagioclase is calcium rich (An );

there can be one or two types of pyroxene, augite Ca-poor

pyroxene. Phenocrysts of olivine, pyroxene or feldspar

are often present.

The chemistry of basaltic rocks is basic: 45-53% SiO2

Iron and magnesium content is generally high (MgO + FeO

+ Fe20 3 > .15%) . Calcium and aluminum are major elements

with CaO/Al 2 0 3 generally greater than .60. Potassium, so-

dium and titanium are present in various proportions; these
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three elements are often used to distinguish different ba-

salt types.

Because the earth is tectonically active and many (if

not all) of the surface materials are recycled a number

of times, it has been difficult to develop a classification

scheme for igneous rocks that relates directly to their

origin. All igneous rocks are solidified melts that were

derived from some pre-existing material. The chemistry

of basalts suggests they are a class of igneous rocks which

are probably related directly to melts from the earth's

mantle. Although other types of igneous rocks are related

to or associated with basalts, they will only be discussed

briefly where appropriate and not in detail here.

1. Geochemical Variations

There are three chemical and mineralogical descrip-

tions of a rock that represent its geochemistry and allow

basalts to be classified. (1) Bulk chemical analyses are

derived from whole rock analyses and are expressed in weight

percent of the major oxides. All rock geochemistry is

thus expressed in the same units. (2) Modal mineralogical

analyses, on the other hand, is concerned with the mineralogy

of a rock; each mineral is identified petrographically,

counted, and expressed as a statistical percentage. For-

tunately, the number of minerals that comprise the bulk
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of igneous rocks is relatively small. (3) A third repre-

sentation of geochemistry is the normative composition,

a recalculation of bulk chemistry into about 10 "ideal min-

eral" components rather than the chemical oxide analyses.

Since a wide range of mineralogy can result as a magma cools

(see Section A-5) most comparative discussions of basalt

geochemistry are concerned with chemical oxide compositions

or norms (the "mineralogical" equivalent). For ease of

comparison, the chemistry rather than mineralogy of basal-

tic materials will be emphasized in this section. Detailed

petrological studies of the mineralogy are used to under-

stand the history (fractionation, cooling conditions, mode

of emplacement, etc.) of a particular sample.

a. Relation of basalts to other igneous rocks

Chemical analyses and norms for representative

igneous rocks (from Verhoogen et al., 1970) are listed

in Table IBl. Approximate mineralogical compositions for

common igneous rock types is illustrated in Figure IB-1

(from Mason, 1966). Frequency distribution for SiO2 in

cenozoic volcanic rocks compiled by Chayes (1975) is shown

in Figure IB-2. The variation of SiO 2 is clearly not reg-

ular: a maximum occurs near 49% including average basalts

but the distribution is strongly skewed towards higher sil-

ica content. Figure IB-3 is a variation diagram for the
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Chemical analyses and norms of some representative igneous rocks (expressed as weight percentages)
2

48.04
1.83

12.04
2.35
8.80
0.17

14.41
8.76
1.60
0.30
1.63
0.12

3

b0.02
2.23

15.05
3.77
7.37
0.17
7.01

10.17
2.05
0.33
1.65
0.27

100.05 100.09

6.30
1.67 1.67

13.62 17.29
24.74 31.14

14.20
27.47
9.51
3.25
3.50
0.34

98.30

13.84
17.72

5.57
4.26
0.67

4-

60.31
1.02

17.53
3.30
3.85
0.16
2.59
5.97
3.20
1.20
0.90
0.14

100.17

19.50
7.12

27.04
28.72

0.86
9.01

4.78
1.93
0.34

No.:

SiO2
TiO,
A120,
Fe203FeO
MnO
MgO
CaO
Na 20O
K 20
H20
P205
Others

Total

Q
Or
Ab
An
Ne
Di
Hy
01
Mt
If
Ap

Total

5

6b.bY
0.60

15.14
1.15
1.90
0.06
0.56
1.50
4.18
5.02
3.01
0.19

BaO 0.25

100.13

16.9
29.5
35.6

7.0

/2.80
0.46

13.12
1.32
1.62
0.04
0.0
2.20
3.63
3.71
0.24
0.04

BaO 0.06

99.84'

32.34
21.68
30.39
8.62

1.83
3.0 1.79

1.6
1.2
0.3

95.1

1.86
0.91

99.42

Explanation of column headings:
1. Highly undersaturated lava of nephelinite family, Honolulu Series, Oahu, Hawaii (H. Winchell, Geol. Soc. Am. BuPvol. 58, p. 30, no. 13, 1947).

2. Somewhat undersaturated olivine basalt, Haleakala volcano, Maui, Hawaii (G. A. MacDonald and T. Katsura, J. Petrnvol. 5, p. 122, no. C-122, 1964).
3. Oversaturated basalt (tholeiite) Waianae volcano, Oahu, Hawaii (MacDonald and Katsura, ibid., no. C-27, 1964).4. Pyroxene andesite, northeastern Japan (Y. Kawano, K. Yagi, and K. Aoki, Sci. Rept. Tohoku University, ser. 3, vol.no. 1, p. 32, no. 70, 1961).
5. Trachyte, Main Range, Queensland, Australia (N. C. Stevens, Proc. Royal Soc. Queensland, vol. 87, no. 4, p. 46, no.1965).
6. Hornblende-biotite granodiorite (granite) Mt. Hale, Southern California, Batholith (E. S. Larsen, Geol. Soc. Amer. MeI29, p. 91, 1948).

Table IB 1.

1

42.86
2.94

11.46
3.34
9.03
0.13

13.61
11.24
3.02
0.93
0.56
0.52

C02. 0.30

99.94

5.56
5.76

15.29
10.51
29.43

20.79
4.87
5.62
1.34

99.17 98.46 99.30

(CTV)



,At 61

1001

80

60

40

a, a, 0A

aC . N a

20

.j* a ~ a~e

Cc ..

Approximate mineralogical composition of the
igneous rocks (effusive types in brackets).

commoner types of

Figure IB 1.

(Mason, 1966)

900-

800-

700-

600-

500-

400

300

200

100

A

* I

,~J
I I

--- I

C--, -- 9

L~.

~

30 35 40 45 50 55 60
SiO2

65 70 75 80

Distribution of SiO, in 10,870 analyses of Cenozoic volcanic rocks. (A) Solid line,all data; dashed line, 5697 analyses with H20 < 2 and Fe*/Fe'+ < 1.

Figure IB 2.
(Chayes, 1975)

C-

6)

..
6

- Orthoclase

Plagioclase
- Sodic <--Calcic-

Quartz

Pyroxene -
(Clino-) (Ortho-)

Olivine -

Hornblende

0
cn



IB 62

0)
4

dP

.94

.iJ

4J~

En

a)

-I

0

.9-

18

16

~~~-0
0-

12

10-a

8

0
6

4--

13

4
-

3---.

0. - _0

I-
42 44 46 48 50 52 54

% SiO
2

56 58 60 62 64 66

Figure IB-3 Variation diagram for representative igneous rocks

0

A

-I-

_. .0- -



IB 63

rocks of Table IB-1 illustrating the general geochemical

relationship between the different rock types. As silica

increases, iron, magnesium, and calcium decrease. Although

SiO 2 content generally identifies basalts from other igneous

rocks, it is not a parameter that readily distinguishes

among the variety of basalt compositions. (Most terrestrial

basalts, nevertheless, can be grouped into only a few mag-

ma types (see below), although the distinguishing bounda-

ries become very diffuse upon closer inspection.)

The derivation of more silicic igneous rocks

from basaltic magmas through fractional crystallization

(e.g., removal of Mg, Fe-rich olivine, Fe-rich opaques,

or Ca-rich plagioclase) is a fairly well accepted concept,

although perhaps not universally applicable. Such a trend

is generally compatible with the variation diagram of Figure

IB-3. The sequence of mineral-liquid reactions that occur

during crystallization was described by Bowen (1928) and

forms the basis for many suggested series of differentiated

rocks. Such a sequence suggests the relation of basalts

to other more acidic igneous rocks is one of primary to

secondary, or more extensively processed, material.

b. Magma types

In the early part of the century, Bowen (1928)
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recognized and convincingly established the parental role

of basaltic magma. The Scottish island of Mull became a

case area where two main basaltic magma types were recognized.

Kennedy (1933) then described what appeared to be two world-

wide basaltic magma types: (1) olivine-basalt containing

(in addition to plagioclase) olivine, augite and alkali

feldspar, nepheline or zeolites; and (2) tholeiite basalt

containing pigeonite, augite and siliceous material. Oli-

vine basalt would lead to trachytes with differentiation

and tholeiites would lead to rhyolites.

Experimental studies of natural and synthetic

rock systems led Yoder and Tilley (1962) to describe a gen-

eralized simple basalt system that can be expressed in

terms of normative components (Figures IB-4a,b from Yoder

and Tilley). They further defined the chemistry of tholeiites

(normative hypersthene, with modal augite or subcalcic

augite, plagioclase, iron oxides, olivine, quartz)

and alkali basalt (normative nepheline and olivine and modal

high-Ca augite, plagioclase, olivine, and generally Na 2 0

+ K 20 > 3%). An important criterion in their classifica-

tion is the degree of silica saturation, indicated by whether

or not quartz is present in the norms. Widely used termin-

ology for three commonly observed basalt compositions has



IB 65 Di

Plane of
Critical plane silica
of silica saturation

undersoluration

Ne Ob

En

Fo
Schematic representation of the system Di-Fo-Ne-Qz showing the plane of silica satura-tion, Di-En-Ab, and the critical plane of silica undersaturation. Di-Fo-Ab. This iron-free simplebasalt system includes the principal components of the major phases of basalt.

Cpx

0 Tep ite

BASANITE

Ne Metiluje Basalt PNe ------ -~ P

01

Alkali Basalt Group

are
are
An

A

cpX Cpx

PyrIx nite

An

H-g-Al 0314 ALF

*et'do.it Opx

Sato@

Figur
(YodE

Cpx

'I

01
Olivine Tholeiite Group

e IB 4.
r and Tilley

COX 1962)

V THOLEIITE

Or Dolerite

O. ------------------- Oz
e

Opx

Tholeiile Group

Exploded view of generalized simple basalt system illustrated in upper right inset. Entered
names of rocks whose major normative phases are contained in the tetrahedra. Names underlined
within tetrahedra. Names in faces are written parallel to base. Lherzolite is in Ol-Cpx-Opx face.
additional inset, O1-Cpx-An, gives alternative nomenclature when plagioclase is rich in An.

b



IB 66

emerged: (1) tholeiite--oversaturated with normative quartz

and hypersthene; (2) olivine tholeiite--somewhat undersa-

turated, with normative hypersthene and olivine; and (3)

alkali basalt--undersaturated with normative olivine and

nepheline. Yoder and Tilley emphasized that there is a

continuum between all basalt types even though at low pres-

sures there is a thermal divide which roughly corresponds

to the 'critical plane of silica undersaturation' (Fo-Ab-

Di in Figure IB-4b). This equilibrium thermal divide,

however, changes with pressure and the two basalt types

may be related at depths with the alkali basalt type mag-

ma having a deeper source.

As pointed out by Carmichael et al. (1974) such

simplified terminology is a geochemical convenience and

does not necessarily imply the same origin for two rocks

with similar gross chemistry. Not only do some basaltic

materials seem out of place in such a universal classifi-

cation, but the unique distinguishing characteristics of

each basaltic province in reality defines an infinite num-

ber of basalt types.

If and how one variety of basaltic material

is related to another is the subject of many professional

papers, each with a (slightly) different emphasis. Yoder
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(1976) has written a book to expand on the concept of how

common pressure-temperature-dependent phase relations con-

trol the restriction of magma types. MacDonald (1968) sum-

marized a variety of data linking the Hawaiian alkalic rocks

with the main olivine tholeiites and concludes that crystal

fractionation plays the major role. Engel et al. (1965)

come to a similar conclusion. A grand scheme for the deri-

vation of all basalt types was ambitiously described by

Green (1971) involving different degrees of melting at

different depths with and without water and with later

fractionation (Figure lB-5a,b from Green, 1971). Allowing

variations through contamination and hybrid theories (e.g.,

Eichelberger, 1974; Moorbath and Welke, 1968) it is truely

amazing that some real similarity does indeed exist allow-

ing a gross classification of basalt magma types.

2. Basalt Types Associated with Specific Environments

Great volumes of magma are being extruded along

the ocean rift zones as two lithosphere plates are separa-

ting. Such extrusion of volcanic material results from

perhaps the most simple terrestrial plumbing system between

source (presumably the mantle) and vent. The avenues that

all other terrestrial basalt magmas take to reach the sur-

face and the processes that occur along the way are less

clearly understood but are certainly dependent on the geo-



Ifl 68

RESWUAL PHASES

C)

1500 --
+ x

--- Picrite
1400 .- Alkaline

Picrite

s. Olivine-rich
Basanite

PYROLITE
E 'Olivine --.-- ' 0-01% H20

0.05% H20
/ Nephelinite . 0.10% H 20

1200

25 KbOlivine - -
I Melilite

Nephelinite

1100
0 5 10 15 20 25 30 35

% Melting

Partial melting of a"pyrolite" model of the
upper mantle.

1 MELTING
5 10 15 20 25 30 35

Qz. Tholeiite Tholeiite/ Olivine Tholeiite
- - 0-5 S-s 10

High-A12 3 Ie20
OiieThbl Opye 4

Olivine High Al 0 High Al b Olivine 30How Ite-'Alkaline Olivine Olivine Thol iite Tholeiite10 Trachy5basalt 15 -20 Basalt 10- i '5-20 4010 -15 1s5-20
.0 Olivine-rich / 50y s.nite / Alkaline Olivine Basalt Otivyne Olivine Tholeiite E

15-25 20-30 B att 20-25 60
L2 270
_- 20 0 i i ne Olivine-rich / 7

N0 phetinite Basanite ALkdline Picrite Tholeiitic Picrite~i)~ enit Baanie el 30-35 -30 so Wi
20-25 20-30 -

90
S vin Picritic Alkaline Tholeiitic
Meitel Olivine Nephel3i3te Bsanite Picrite Picrite 100

30 Nephetinite * - - 30-35 30-35 -3525-35 110
k0tivine -<5tivine Melitite
&Telititite Nephetinhe 120,~ .35-40' , -35-/.0\

10 4 2 1 0-5 0-3
%H 20 in melt for simple melting of pyrolite containing 01%H20

(from Green, 1971)Figure IB 5.



IB 69

logical setting. The major basalt types and associations

that occur in particular terrestrial environments (summa-

rized in Figure IB-6, from McGetchin, 1975) are discussed

briefly below. Except as otherwise noted, the tables of

chemical composition and regional summaries are from Car-

michael et al. (1974), referred to a CTV.

a. Ocean ridge and floor basalts

Geochemical data accumulating over the last

few decades indicates that the rock type covering most of

the earth's surface (the ocean floor) is a young basalt

of distinctive and roughly universal composition: olivine

tholeiite (Engel et al., 1965; Kay et al., 1970). This

basaltic crust is formed at the spreading centers (ridges).

The geochemistry of representative oceanic

tholeiites is presented in Tables IB-2ab. In general,

these basalts are characterized by normative olivine, low

Fe 2 0 3/FeO, low potassium, high K/Rb (700-1000), and very

low Sr 8 7/Sr8 6 (.7023-.70245, Tatsumoto et al., 1965; Hart,

1971). Oceanic tholeiites show a relative depletion of

large ion lithophile elements. The rare earth element pat-

tern is roughly chondritic but with the light rare earths

depleted--a pattern perhaps unique to the ocean ridge ba-

salts (Figure IB-7, from Gast, 1972). A1 20 3 is variable
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Chemical compositions (oxides, wt %) and CIPW norms of rocks from mid-Atlantic ridge

1 2 3 4 5 6 7 8 9 10

SiO 2  49.20 49.02 49.27 47.94 49.00 47.50 49.70 48.65 43.15 48.56
TiO2  2.03 1.46 1.26 0.75 1.46 1.83 1.49 1.44 2.70 0.24
A1 2 03  16.09 18.04 15.91 17.45 15.50 16.00 14.85 15.99 13.46 18.69
Fe 203  2.72 1.58 2.76 1.21 2.16 2.18 4.52 2.27
FeO 7.77 6.22 7.60 8.47 9.77 12.20 8.27 6.19 8.22 4.30
MnO 0.18 0.13 0.13 0.13 - - 0.18 0.15 0.11 0.11
MgO 6.44 7.85 8.49 10.19 8.00 5.37 8.56 9.66 10.80 9.26
CaO 10.46 11.51 11.26 11.26 10.80 11.40 11.17 11.52 9.80 12.67
Na20 3.01 2.92 2.58 2.37 2.90 2.57 2.69 2.71 3.47 1.88
K

2 0 0.14 0.08 0.19 0.09 0.21 0.49 0.15 0.57 1.63 0.07
P2 0 5  0.23 0.12 0.13 0.08 - - 0.13 0.21 0.75 0.02
H20+ 0.70 0.64 0.35 0.23 0.61 0.75 1.21 1.72
H20- 0.95 0.57 0.51 0.15 1.19 3.28 0.16 0.30 0.15 0.17

Total 99.92 100.14 100.44 100.32 98.83 100.64 100.12 100.32 99.97 99.96

Q 0.3
or 0.8 0.5 1.1 0.6 1.27 2.96 1.11 3.34 9.63 0.56
ab 25.7 24.4 21.8 20.0 25.03 22.25 23.06 23.06 9.67 15.72
an 29.8 36.3 31.2 36.7 29.23 31.38 27.52 29.75 16.34 42.46
ne 10.67
di 17.4 16.6 19.2 15.2 16.19 15.42 21.81 21.10 22.23 15.96
hy 16.2 7.7 13.6 4.5 9.14 6.63 13.19 1.26 14.07
ol 9.0 5.9 19.7 10.08 9.48 6.33 14.45 16.76 4.95
mt 4.0 2.3 4.0 1.8 2.22 2.22 3.25 3.25 6.55 3.25
ii 3.8 2.7 2.4 1.4 2.83 3.56 2.89 2.74 5.13 0.46
ap 0.5 0.3 0.3 0.2 0.33 0.34 0.34 0.48 1.64 0.05

Total 98.5 99.8 99.5 100.1 96.32 94.24 99.50 99.43 98.62 97.48

Explanation of column headings

1
2
3

Oceanic tholefite, depth 2910 m; 20*40'S, 13*16'W (Engel and Engel, 1964a, D2-1)
Oceanic tholefite (diabase), depin 2388 m; 9'39'N, 40'27'W (Engel and Engel, 1964a, D5-5)
Oceanic tholeiite, depth 3566 m, rift floor; 28'53'N, 43'20'W (G. D. Nicholls, 1965, table 1, analysis
1)

4 High-alumina basalt, some locality as 3 (G. D. Nicholls, 1965, table 2, analysis 2)
5 Oceanic tholefite, depth 4200 m, rift floor; 30'08'N, 43'37'W (Kay et al., 1970, analysis AlSO-

21-IC)
6 Basalt, depth 3700 m; 31'49'N, 42*25'W (Kay et al., 1970, analysis GE160)
7 Basalt, depth 3700 m; 31'49'N, 42"25'W (Muir and Tilley, 1966, p. 195, analysis 3)
8 Basalt, depth 3600 m, rift floor; 45'44'N, 27'44'W (Muir and Tilley, 1964b, table 1, analysis 5)
9 Alkali olivine basalt,depth between 2000 and 3000m; a few kilometers northeast of St.Paul's Rocks;

1*1'N, 29'21'W (Melson et al., 1967)
10 Laminated gabbro, depth4000 to 5000 m, Romanche trench; 0*14'N, 17*7'W (Melson and Thompson,

1970)

Table IB 2a. (CTV)
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Chemical compositions (oxides, wt %), CIPW norms,* and atomic abundances and
abundance ratios of trace elements and isotopes of ocean-floor lavas, rises of East Pacific Ocean

1 2 3 4 5 6 la 3a 4a

SiO 2  49.80 49.13 48.30 59.00 49.90 50.10 Ba 25 19.4 54.8
TiO 2  2.02 1.23 2.19 1.75 1.08 2.18 Ce 16.5 75
A1203 14.88 14.97 14.30 12.60 17.30 13.80 Cs 0.074 0.082
Fe2O 3  1.55 3.28 11C70 12.00 7.60 12.30 o 35
FeO 10.24 5.72 1 Cr 160
MnO 0.21 0.16 Ni 58 58 10
MgO 6.74 7.68 6.70 1.70 7.08 6.11 Pb 0.49
CaO 10.72 12.68 10.10 5.60 12.78 10.90 Rb 1.06 5 7.25
Na2O 2.91 2.37 2.75 4.25 2.45 2.83 Sr 110 (86) 107 105
K2 0 0.24 0.16 0.18 0.65 0.18 0.16 Th 0.21
P20 5  0.28 0.15 U 0.09
H2O+ -0.54 1.06 1.29 1.78 0.80 400
H 20- 0.06 1.25 ' ' 0 Zr 150

K/Rb 1890 310 770
Total 100.19 99.84 97.51 99.33 99.17 98.38 Cs/Rb 0.014 0.011

Th/U 2.3

Q 0.79 13.66 0.04 Sr8 7 /Sr 8 6  0.7025
or 1.1 0.89 1.10 3.92 1.08 0.96 Pb2 06/Pb 20 4  18.24
ab 24.6 20.01 24.08 36.70 20.99 24.25 Pb2

1
7/Pb 2 04  15.53

an 26.7 29.75 27.06 13.66 36.12 24.79 Pb2 08/Pb 20 4  38.03
di 22.0 25.73 19.59 11.84 21.90 23.96 U 2 38/Pb 20 4  6.4
hy 13.7 12.79 17.73 14.27 13.16 19.27
o 5.7 3.54 2.12
mI 2.3 4.76 2.25 2.22 2.20 2.20
il 3.7 2.36 4.30 3.39 2.08 4.19
ap 0.6 0.35 0.34 0.33 0.33 0.33

Total 100.4 97.43 99.99 99.99 99.98 99.99

* For analyses 3-6, norms are calculated (Kay et al., 1970) assuming a low state of oxidation of Fe
(Fe 2O 3 = 1.50 percent) and reasonable values of MnO (0.18 percent) and P 20 5 (0.15 percent).

Explanation of column headings

I Glassy basalt, East Pacific rise, depth 2300 m; 12'52'S, 110*57'W (Engel et al., 1965, table 1,
analysis PVD-3)

la Trace-element and isotopic data for analysis 1 (Engel et al., 1965; Tatsumoto et al., 1965;
Tatsumoto, 1966)

2 Basalt, Mohole drill core, depth 3746 m; off Guadalupe Island (East Pacific rise), 28*5WN,
117'30'W (Engel and Engel, 1961, p. 1799, analysis 1)

3, 3a Basalt, East Pacific rise, depth 3120 m; 7'08'N, 103'15'W (Kay et al., 1970, p. 1593, analysis
V2023)

4, 4a "Andesite" glass, East Pacific rise, depth 3182 m; 5*31'S, 106'46'W (Kay et al., 1970, p. 1593,
analysis V2140)

5 Basalt, Gordo rise, depth 2500 m; 41*15'N, 127*28'W (Kay et al., 1970, p. 1592, analysis 13E)
6 Basalt, Juan de Fuca rise, depth 2502 m; 44*36'N, 130*19'W (Kay et al., 1970, p. 1591, analysis 2C)

Figure IB 2b. (CTV)
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and sometimes high.

In spite of their general primary nature, most

dredged basalts nevertheless show small compositional var-

iations that are ascribed to shallow differentiation or

fractionation in the ascending magma (Kay et al., 1970;

Frey et al., 1974; Mazzullo and Bence, 1976). Removal of

plagioclase and olivine at shallow depth from a mantle de-

rived liquid would account for most of the observed major

and minor element trends. For example, TiO 2 is concentrated

in the more fractionated magmas (Figure IB-8, from Mazzullo

and Bence).

Samples obtained from the fracture zones and

aseismic ridges associated with the mid-Atlantic rift val-

ley are more fractionated types of basaltic rocks than those

from the rift itself (Hekinian and Thompson, 1976). The

transform fault rocks are depleted in olivine and have

a higher range of TiO 2 content. Variation diagrams for

basalts from the mid-ocean ridge, fracture zones, and aseis-

mic ridges are shown in Figure IB-9 (from Hekinian and Thomp-

son). Some recovered rocks are gabbroic and may be part

of an instrusive layer (Miyashiro et al., 1970).

The basalt cores obtained from the Atlantic

floor away from the rift axis show no obvious systematic

compositional differences as a function of distance from
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(Gast, 1972) 

Chondrite normalized terrestrial LIL abundance patterns. Data are from Kay (1970), 
Kay et al. (1970), and unpublished data. Uranium data on oceanic basalts 

were furnished by Tatsumoto (personal communication). 
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the ridge (Frey et al., 1974). No oceanic rock has been

recovered older than Triassic and there is no indication

that the source region for North Atlantic ridge basalts

has evolved since the late Mesozoic. Because the Atlantic

Ocean basement appears to be roughly spatially and tempor-

ally homogeneous and composed of large ion lithophile ele-

ment depleted tholeiites, Frey et al. support the sugges-

tion by Kay et al. that the source rock for this material

(the upper mantle) is a (extensive) residue from an earlier

melting event.

Although an increasing number of exceptions

will be found (e.g., Bryan et al., 1976), it is clear from

the data in hand that the major rock type that forms the

oceanic crust is tholeiitic basalt depleted in large ion

lithophile elements. The source of these basalts (the up-

per mantle) and the geological processes of formation, frac-

tionation, and extrusion have produced on a global scale

immense volumes of magma with roughly the same composition.

Our understanding of these young oceanic basalts is closely

associated with plate tectonics. It is unclear, however,

whether any comparable terrestrial basaltic volcanism oc-

curred prior to the breakup of the continents during the

Triassic period.
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b. Ocean Islands

The volcanic islands and seamounts that occur

in the ocean environment show a much more complicated var-

iation of chemistry than the great volumes of ocean floor

basalt. Almost all islands show a variety of igneous rock

types, the sequence of which can generally be interpreted

as differentiation series. Although a few trends are sim-

ilar in widely separated islands, it is clear that there

are significant differences in either the source composi-

tion, the melting conditions, or the sequence of processes

(including fractionation) that occur prior to extrusion.

For the discussion below, the volcanic island provinces

have been grouped according to whether the series of observed

rocks seem to follow a sequence with (i) tholeiite--rhyolite,

(ii) alkali basalt--trachyte--phonolite, or (iii) both.

i. THOLEIITE SERIES. Islands that occur on

or near a current oceanic ridge invariably consist to some

degree of tholeiitic basalt although the chemistry of such

basalts is not identical to the ocean ridge basalts. Po-

tassium is generally slightly higher for non-ridge tholeiites.

The rare earth element patterns of island basalts usually

show no depletion in LIL elements.

Iceland, centered on the Atlantic rift,

consists predominantly of oversaturated (olivine-free)
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tholeiites (Carmichael, 1964). About 10% of the total

accumulation of volcanics is rhyolite and andesite. A low

pressure fractionation scheme is proposed from a parental

olivine tholeiite.

Olivine tholeiites also predominate on

Ascension Island (on the mid-Atlantic ridge) as well as

on a number of Pacific islands such as Guadalupe, Clarion,

and a few of the Samoan islands. Minor amounts of silicic

trachyte and andesite occur as associated volcanics for

these islands.

ii. ALKALI BASALT SERIES. Most of the non-

ridge oceanic islands and seamounts contain basalts enriched

in alkalies and undersaturated in silica. These alkali

basalts show a rare earth pattern regularly enriched in

the light rare earths (Figure IB-7). The associated rocks

(differentiates) are highly alkaline trachytes, phonolites,

or peralkaline rhyolites. A potassium variation diagram

(Figure IB-10 from Engel et al., 1965) shows a fairly sharp

distinction between the chemistry for these oceanic island

basalts and those from the ocean ridges.

Various rock series can be found on a num-

ber of ocean islands with alkali basalt magma generally

the hypothesized parent. One extreme, represented by the

islands of Trinidad and Fernando de Noronha, far off the
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Explanation of column headings

1 Nephelinite (ankaratrite), Trinidade (Almeida, 1961, p. 168, table 19, no. 6)

99.44

I I -- G11' . 1 2 Nephelinite, Trinidade (Almeida, 1961, p. 122, table 9, no. 1; p. 168, table 19, no. 10)

45 46 47 48 49 50 51 52 3 Sanidine nephelinite (grazinite), Trinidade (Almeida, 1961, p. 137, table 13, no. 1; p. 168,

Weight percent SiO 2  
table 19, no. 17)

A plot of K 20-SiO2 for oceanic basalts 4 Phonolite (tinguaite), Trinidade (Almeida, 1961, p. 108, table 6, no. 3; p. 168, table 19,
no. 24)

5 Nephelinite (ankaratrite), Fernando de Noronha (Almeida, 1955, p. 154, no. 30)

igure IB 10. (Engel et al, 1965) 6 Alkali basalt, Fernando de Noronha (Almeida, 1955, p. 150, no. 18)
7 Nepheline basanite, Fernando de Noronha (W. C. Smith and Burri, 1933, p. 430; Almeida,

1955, p. 150, no. 19)
8 Sodalite phonolite, Fernando de Noronha (W. C. Smith and Burri, 1933, p. 412; Almeida,

1955, p. 145, no. 3)
9 Trachyte, Fernando de Noronha (Almeida, 1955, p. 147, no. 10)

Table IB 3. (CTV)

Chemical compositions (oxides, wt %) of volcanic rocks from Trinidade and

Fernando de Noronha

1 2 3 4 5 6 7 8 9

SiO2  39.00 40.08 44.80 51.16 38.42 42.68 44.23 54.82 60.81
TiO 2  3.60 2.30 1.60 0.49 4.01 2.00 4.33 0.50 0.65
A12 0 3  11.86 15.67 17.76 21.53 13.55 16.65 10.12 22.46 18.88

Fe 203  6.20 6.75 5.55 2.64 3.32 5.08 3.50 1.84 2.57
FeO 9.55 5.17 3.81 1.86 9.40 8.11 6.58 0.72 0.00

MnO 0.19 0.15 0.20 0.07 0.21 0.20 0.18 0.12 -
MgO 12.31 4.49 3.47 0.68 12.54 5.57 11.70 0.07 0.61
CaO 10.40 10.60 7.80 1.92 11.75 11.00 11.45 1.42 1.70
Na 20 3.68 6.49 6.87 10.53 3.72 5.04 3.20 10.22 6.20
K 2 0 1.80 1.35 3.87 5.69 0.86 1.69 1.12 5.93 5.80

P2 0 5  0.55 1.40 0.88 0.05 1.01 0.67 0.78 0.12
H 20+ 0.50 3.40 1.10 1.72 1.15 0.52 2.04 0.82
H20- 0.30 2.20 2.30 0.45 n.d. 0.78 0.50 0.02 2.22
Cl 0.34 0.28

S03 1.14 . 0.31* 0.98

0.1

F
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coast of Brazil, is-a nepheline--phonolite series. All

of the rocks are exceptionally high in alkali and low in

silica and contain high normative nepheline (Table IB-3).

Another extreme is represented in the rocks of Tristan de

Cunha (Table IB-4) where alkali basalts exist in only minor

amounts relative to the (differentiated) trachybasalts

and trachytes that are greatly enriched in potassium (and

thus, Rb, Ba, Sr, Th and U).

More typical (?) of the oceanic alkaline

basalt series are-the rocks of St. Helena (Baker, 1969)

an island about 800 km east of the mid-Atlantic ridge.

Alkali basalts make up %70% of exposed rock generally fol-

lowed by mugearites, trachytes, and phonolites (Table IB-5).

Chemical variation diagrams (Figure IB-lla,b,c,) are con-

sistent with a fractional crystallization model (early -+

late: olivine, chrome spinel, pyroxene, plagioclase, al-

kali feldspar) of parental alkali olivine basalt liquid

(or + ab + ne = 35).

iii. THOLEIITE--ALKALI BASALT ASSOCIATIONS.

Although tholeiites and alkali basalts appear to be distinct

and separate parental material in a wide variety of oceanic

environments, there are also significant oceanic provinces

where they are not only both present, but perhaps related.

Galapagos. The currently active Galapagos
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Chemical compositions (oxides, wt %). CIPW norms, and atomic abundances (ppm) of trace elements in volcanic rocks of Tristan
da Cunha (P. E. Baker et al.. 1964) and Gough Island (Le Maitre, 1962. table 10)

1 2 3 4 5 6 7 la 2a 3a 4a 5a 6a 7a

42.43 46.01 54.95 58.0 47.73 48.79 54.41 Ba
4.11 2.19 1.58 1.2 3.30 3.18 1.67 Co

14.15 16.84 19.63 19.5 15.53 17.39 17.37 Cr
5.84 7.61 1.62 1.7 2.02 2.48 4.02 Li
8.48 5.37 3.31 2.2 8.95 7.39 3.29 Ni
0.17 0.18 0.18 0.1 0.14 0.10 0.12 Pb
6.71 4.75 1.42 1.0 8.37 4.00 2.27 Rb

11.91 9.36 5.73 3.3 8.71 8.97 4.36 Sr
2.77 3.74 5.89 6.5 2.89 3.28 4.94 V
2.04 2.72 4.95 5.3 1.70 2.28 4.69 Zr
0.58 1.18 0.43 0.2 0.29 0.26, 0.46
0.34 0.01 0.00 0.2. 0.18 0.98 0.86
0.44 0.08 0.01 0.1 0.06 0.76 1.50

750 950 1200 1000 800 700 1400
40 20 22 100 5
65 18 220 100
4 4 10 15 16 5 7

50 100 30 2
10 18 14 28

110 110 230 350 100 40 100
1000 1100 1300 650 650 1000 850
400 200 95 50 140 250 80
200 300 350 350 125 220 450

Total 99.97 100.04 100.05* 99.3 99.87 99.86 100.09t

or 12.06 16.08 29.27 31.33 10.01 13.34 27.80
ab 6.95 21.63 29.99 40.12 24.10 27.77 39.30
an 20.16 21.13 13.57 8.38 24.46 26.13 11.40
ne 8.93 5.43 9.66 8.06 1.42
di 28.01 13.73 9.60 5.36 13.69 13.57 5.19
hy 0.86
ol 5.48 4.03 0.94 0.55 16.57 6.99 2.40
mt 8.47 11.03 2.34 2.46 3.02 3.71 5.80
ii 7.81 4.16 3.00 2.28 6.23 6.08 3.19
ap 1.37 2.78 1.01 0.47 0.67 0.67 1.34

Total 99.24 100.00 99.38 99.01 99.61 98.26 97.84

* Including Cl = 0.27, F = 0.08.
t Including F = 0.13.

Explanation of column headings

Numbers in parentheses refer to specimen numbers in sources cited.

1, la Alkali basalt (6), Tristdn da Cunha
2, 2a Trachybasalt (369), Tristan da Cunha
3, 3a Trachyandesite (657), Tristan da Cunha
4, 4a Trachyte (560), Tristan da Cunha
5, Sa Olivine basalt (GI11), Gough Island
6, 6a Trachybasalt (G22), Gough Island
7, 7a Trachyandesite (G86), Gough Island

Table IB 4. (CTV)

SiO2
TiO 2
A1203
Fe 203
FeO
MnO
MgO
CaO
Na2Q
K20
P205

H20+
H20-
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Chemical composition (oxides, wt %). CIPW norms, and atomic abundances (ppm) of

trace elements of volcanic rocks of St. Helena (I. Baker, 1969, table 2) and Mauritius (Shand, 1933)

1 2 3 4 5 6 la 2a 3a 4a

SiO 2  45.50 54.88 59.64 59.92 46.90 60.69 Ba 290 790 1100 1100
TiO 2  3.44 1.11 0.42 0.06 3.31 0.15 Cr 36
A12 0 3  15.71 17.41 17.67 19.86 15.05 19.74 Rb 40 50 90 220

Fe2O 3  3.61 2.44 2.59 1.69 1.11 1.92 Sr 510 545 280 85
FeO 8.64 6.79 3.92 1.70 10.46 2.33 Zr 195 490 645 1085
MnO 0.22 0.23 0.22 0.18 0.16 0.17
MgO 5.37 1.88 0.50 0.05 8.41 0.01 Rb/Sr 0.08
CaO 9.43 3.48 2.09 1.07 10.92 1.02 K/Rb 300 400 350 180
Na20 3.47 6.04 7.62 8.94 3.13 7.95
K2 0 1.38 2.89 4.02 4.93 0.27 5.50
P2 0 5  0.29 0.41 0.29 0.17 Tr. Tr.
H2 0+ 0.60 0.77 0.08 0.07 0.27 0.58
H2 0- 2.49 1.53 1.04 1.29 0.23 0.28

Total 100.15 99.86 100.10 99.93 100.22 100.34

or 8.16 17.08 23.76 29.14 1.67 32.80
ab 24.79 51.07 53.68 46.68 23.35 47.16
an 23.22 11.86 2.14 26.13 1.67
ne 2.48 0.02 5.85 15.18 2.27 10.79
ac 0.83
di 15.97 0.32 6.65 4.29 21.84 2.97
ol 9.60 10.15 1.96 0.03 16.74 1.81
mt 5.23 3.54 3.76 2.04 1.62 2.55
il 6.53 2.11 0.80 0.11 6.23 0.30
ap 1.42 1.82 0.19 0.17 - -

Total 97.40 97.97 98.79 98.47 99.85 100.05

Explanation of column headings

1, la Basalt, St. Helena (803)
2, 2a Mugearite (trachyandesite), St. Helena (822)

3, 3a Trachyte, St. Helena (763)
4, 4a Phonolite, St. Helena (11)

5 Olivine basalt, Mauritius (A, p. 5)
6 Phonolitic trachyte, Mauritius (A, p. 8)

Table IB 5. (CTV)
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islands are located on a platform (1.5 km below sea level)

east of the East Pacific Rise. The islands are composed

predominantly of basalts (Table IB-6) that range from slightly

saturated tholeiites to alkali basalts (McBirney and Williams,

1969) but that are spatially separated. Alkali basalts

make up the central and eastern islands whereas tholeiitic

lavas and their derivitive trachytes made up the western

islands.

Hawaii. The Hawaiian Islands are a series

of volcanoes extending into the Emperor Seamounts that

form a line along the central floor of the Pacific plate,

increasing in age towards the west (Figure 1B-12; from

Dalrymple et al., 1973). Due to the great diversity of

rock types found on the islands and the constant level

of recent activity, Hawaii has become a testing ground for

many studies of terrestrial basalts. The age of the ocean

floor in this part of the Pacific is about 100 million years

(Larson and Chase, 1972). Most investigators agree that

the origin of the Hawaiian chain is due to the relative

motion of the Pacific plate and some melting zone within

the mantle, which has been active for at least 50 m.y. (for

a review of proposed hypothesis concerning this melting

zone, see Dalrymple et al., 1973). From estimates of ex-

trusion rates, Mauna Loa could have grown to its present
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Chemical compositions (oxides, wt %), CIPW norms, and atomic abundances
of trace elements; volcanic rocks of western Galhpagos

1 2 3 4 5 2a 4a

SiO 2  47.01 48.45 48.54 55.34 66.87 Ba 76 285
TiO 2  3.20 3.39 4.20 1.93 0.66 (65) (280)
A1 2 0 3  15.57 13.75 14.49 14.02 12.55 Co 55 54
Fe 2O 3  2.32 4.72 4.67 3.31 1.84 Cr 47 17
FeO 11.57 8.60 9.16 8.73 2.53 (142)
MnO 0.20 0.20 0.16 0.17 0.09 Mn 1440 1600
MgO 5.25 6.05 4.58 2.71 0.60 Ni 70 14
CaO 9.77 10.71 8.29 6.54 1.10 Sr 235 250
Na 2O 3.00 2.79 3.58 4.54 5.32 (323) (266)
K2 0 0.31 0.50 0.84 1.33 3.08 V 310 98
P2 0 5  0.32 0.36 0.47 0.65 0.05 Zr (255) (538)
H2O+ 1.40 0.36 0.68 0.64 4.66.
H20- 0.24 0.02 0.16 0.18 0.33

Total 100.16 99.90 99.82 100.09 99.68

Q - 2.21 2.04 5.95 20.82
or 1.83 2.95 4.96 7.86 18.20
ab 25.39 23.61 30.29 38.42 45.02
an 28.10 23.52 20.99 13.95 1.27
di 15.17 22.00 13.86 11.97 3.24
hy 11.92 11.12 11.00 11.16 2.15
ol 5.93 - - - -

mt 3.36 6.84 6.77 4.80 2.67
il 6.08 6.44 7.98 3.67 1.23
ap 0.76 0.75 1.11 1.54 0.12

Total 98.54 99.44 99.00 99.32 94.72

Explanation of column headings

I Basalt, Albemarle Island (McBirney and Williams, 1969, p. 124, table 3, no. 8)

2 Tholeiitic basalt, Albemarle Island (McBirney and Williams, 1969, p. 121, table 2,
no. 63)

3 Ferrobasalt, Jervis Island (McBirney and Williams, 1969, p. 147, table 10, no. 65)
4 Icelandite, Duncan Island (McBirney and Williams, 1969, p. 146, table 10, no. 71).

5 Siliceous trachyte pumice, Alcado volcano, Albemarle Island (McBirney and Williams,

1969, p. 146, table 10, no. 130)

2a, 4a Trace-element abundances, same rocks as analyses 2 and 4. Determinations by

emission spectrography. Values in parentheses determined by neutron activation (Cr)

or x-ray fluorescence (Ba, Sr, Zr).

Table IB 6. (CTV)
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size (about 9 km above the ocean floor) in 1.5 million years

(MacDonald and Abbot, 1970) and the smaller Kilauea could

have required less than .4 my (Swanson, 1972).

The lavas forming the islands

follow a well-defined sequence: the major mass of each

volcano is made up to tholeiites, followed by and interbedded

with small amounts (1l%) of alkalic lavas (Table IB-7 from

MacDonald, 1968). After a period of volcanic quiescence,

nephelinic magmas are erupted. No sharp chemical boundary

exists between these three major rock suites as is demon-

strated by the alkali variation diagram of Figure IB-13

(from MacDonald, 1968) and the potassium variation diagram

in Engel et al. (Figure IB-10). When fewer data were avail-

able, the vague distinction between alkali and tholeiitic

basalts was originally believed to be a sharp chemical

boundary (Tilley, 1950).

Short-term fractionation trends within

a given suite of rocks is rarely disputed for Hawaiian lavas.

Although the dominant material that makes up the volcanoes

is a slightly saturated tholeiite, it is largely agreed (e.g.,

O'Hara, 1965; MacDonald, 1968; Carmichael et al., 1974)

that the primary magma type was olivine tholeiite with much.

of the olivine lost either during the assent from the source

(60km) or during fractionation in a near surface magma
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AVERAuE COMPoSroNs oF HAWAnAN LAvAs

Tholeiitic suite Alkalic suite Nephelinic suite

Type .- 5
Of 2 .4:=$2

rock .2 z )

Numberof 14 200 9 35 6 62 23 5 5 11 11 4 10 1 7analyses

SiO2  46.4 49.4 44.1 45.4 46.6 47.9 51.6 57.1 61.7 44.8 44.1 41.3 39.7 39.4 36.6
A1 203  8.5 13.9 12.1 14.7 16.8 15.9 16.9 17.6 18.0 12.7 12.7 10.4 11.4 10.2 10.8
FeO 2.5 3.0 3.2 4.1 4.5 4.9 4.2 4.8 3.3 3.2 3.6 5.6 5.3 6.5 5.7
FeO 9.8 8.5 9.6 9.2 8.1 7.6 6.1 3.0 1.5 9.4 9.1 8.3 8.2 7.0 8.9
MgO 20.8 8.4 13.0 7.8 5.8 4.8 3.3 1.6 (.4 11.4 11.2 13.8 12.1 14.1 12.6
CaO 7.4 10.3 11.5 10.5 9.3 . 8.0 6.1 3.5 1.2 11.4 10.6 12.1 12.8 12.3 13.6
NaO 1.6 2.2 1.9 3.0 3.2 4.2 5.4 5.9 7.4 2.7 3.6 2.8 3.8 2.7 4.1
kNO 0.3 0.4 0.7 1.0 0.8 1.5 2.1 2.8 4.2 0.9 1.0 0.9 1.2 1.2 1.0
TiO2  2.0 2.5 2.7 3.0 3.3 3.4 2.4 1.2 0.5 2.3 2.6 2.7 2.8 3.3 2.8
P,05  0.2 0.3 0.3 0.4 0.4 0.7 1.1 0.7 0.2 0.5 0.5 0.7 0.9 0.8 1.1
MnO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1
FeO:Fe,03 4.0 2.8 3.0 2.2 1.8 1.6 1.4 0.6 0.4 2.9 2.5 1.5 1.5 1.1 1.6

TABLE 8. (CONTINUED)

NoRMs (CIPW)

Q .... 2.2 .... .... .... .... .... .... .... .... .... .... .... ....

or 1.7 2.2 3.9 6.1 5.0 8.9 12.2 16.7 25.0 5.6 6.1 5.6 ... . ... .

ab 13.1 18.3 11.5 20.4 27.2 35.1 45.6 49.8 62.4 12.1 11.0 2.6 .... .... ....

an 15.6 27.0 22.5 23.6 28.9 20.0 15.8 12.8 3.3 19.7 15.6 13.1 10.6 12.2 8.1

ne .... .... 2.6 2.6 .... 0.3 .... .... .... 6.0 10.5 11.4 17.3 12.2 18.7

Ic .... .... .... .... .... .... .... .... .... .... .... .... 5.7 5.7 4.8

wo 8.5 9.3 13.6 10.8 6.0 6.3 2.9 .... 0.7 13.9 13.9 17.6 17.5 18.1 11.4

di en 6.1 6.0 9.4 6.9 4.0 4.2 2.5 .... 0.6 9.2 9.5 13.4 13.0 15.0 8.3

Is 1.6 2.6 3.0 3.2. 1.6 1.6 .... .... .... 3.7 3.3 2.4 2.8 0.8 2.0

by en 12.7 14.9 .... . .. . 4.4 .... 2.7 4.0 0.4 .... .... .... .... .... ....

fs 3.2 6.6 .... .... 1.8 . .. . . . ... ... . .. ....{ fo 23.2 . ... 16.2 8.8 4.3 5.5 2.1 .... .... 13.5 13.0 14.8 12.0 14.3 16.2

fa 6.3 .... 6.0 4.4 2.1 1.2 .... .... ..... 5.8 4.9 3.2 2.9 1.0 4.0

Cs .... .... .... .... .... .... .... .... .... .... .... .... 1.7 .... 7.6

mt 3.5 4.4 4.6 6.0 6.5 7.2 1.9 7.0 4.2 4.6 5.3 8.1 7.7 9.5 5.5

il 3.8 4.7 5.2 5.8 6.2 6.5 4.6 2.3 0.9 4.4 5.0 5.6 5.3 6.2 5.3

ap 0.3 0.7 0.7 1.0 1.0 1.7 2.7 1.7 0.3 1.3 1.3 1.7 2.0 2.0 2.7

c .... .... .... .... .... .... .... 0.2 .... .... .... .... .... ....

Table IB 7. (Macdonald, 1968)
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Figure IB 13. (Macdonald, 1968)
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chamber. Magma chambers are known to exist for the two

most recently active volcanoes: for Kilauea it is estimated

to be 3-5 km below the current summit, whereas for Mauna

Loa the chamber is deeper--10-15 km (e.g., Wright and Fiske,

1971; Lipman, 1977). There is no obvious link in the plumb-

ing of these two neighboring volcanoes. The chemistry of

a series of summit and flank eruptions for Kilauea was stu-

died by Wright and Fiske (1971) and showed clear olivine

fractionation control which presumably occurred largely

in the magma chamber (Figure IB-14 from Wright and Fiske).

Rift lavas show distinct fractionation from parental summit

material.

There is less agreement as to the relation

between the various rock suites. The regularity of the

tholeiite--alkali basalt--nepheline basalt sequence, the

gradational geochemistry of these basalt types and their

similarity in Sr1 7 /Sr 8 6 (Table IB-8) indicate that they

are related in some way. The processes involved in their

petrogenesis must be repeatable. Green and Ringwood (1967)

and Green (1971) have stressed results from experimental

studies that the composition of a partial melt is greatly

controlled by conditions of pressure, temperature, and water

content in the source region. Their 'pyrolite' models of

the upper mantle (peridotite composition) can produce mag-

mas of tholeiitic or alkaline composition by changing the
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Isotopic compositions of Sr* and Pb in oceanic volcanic series

PROVINCE ROCKS Sr87/Sr 86  Pb 206/ Pb204

R6union Basalts (5) 0.7040-0.7046
(McDougall and Mugearites (3) 0.7042-0.7044
Compston, 1965) Syenite (1) 0.7046

Easter Island Basalts (2) 0.7030, 0.7036 19.280, 19.301
(Hedge and Peterman, 1970; Icelandite (1) 0.7030 19.253
Tatsumoto, 1966a) Rhyolite obsidian (1) 19.308

Hawaiian Islands Kilauea tholeiites (3) 0.7039-0.7041
(Hedge, 1966; Hualalai, alkali basalt 17.92
Tatsumoto, 1966b Hawaii Hualalai, trachyte 0.7035 18.08
Hedge and.Peterman, 1970) Mauna Kea, picrite basalt 0.7034 18.48

Mauna Kea, hawaiite 0.7033 18.47
Koolau basalts 0.7039 18.09

Oahu Waianae basalts 0.7032
Honolulu series

(nephelinites) 0.7031 18.17, 18.24

Iceland Pleistocene-Recent basalts (3) 0.7028-0.7033
(Moorbath and Recent obsidians (1) 0.7017
Walker, 1965) Tertiary basalts (6) 0.7021-0.7032

Tertiary rhyolites (3) 0.7014-0.7015
Late Tertiary granophyres (6) 0.7010-0.7033

Guadalupe Island Alkali basalts (4) 0.7033-0.7036 20.172-20.436
(Tatsumoto, 1966a;
Peterman and Hedge, 1971)

St. Helena Alkali basalts (2) 0.7031, 0.7032
(Hedge, 1966) Phonolites (2) 0.7047, 0.7054

Tutuila, Samoa Basalt 0.7057
(Hedge, 1966) Trachytes (2) - 0.7062, 0.7066

Upolu and Savaii, Samoa Potassic alkali basalts (10) 0.7051-0.7066
(Hedge et al., 1972)

Gough Island Basalt 0.7045 18.36
(Gast et al., 1964) Trachyandesite, trachybasalt 0.7050, 0.7043 18.37, 18.43

Trachytes (2) 0.7094, 0.7050 18.63, 18.73

Ascension Island Basalts (2) 0.7025 18.43, 19.55
(Gast et al., 1964) Trachyandesite 0.7025

Trachytes (2) 0.7045, 0.7073 19.72
Obsidian 19.50

* All values normalized to Sr8 /Sr 8 = 0.1194, Sr' 7/Sr1 6 = 0.7080, for standard E. and A. SrCO 3.

Table IB 8.

iFMF _ ii-_ - __ - - - R

(CTV)
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the degree and/or depth of partial melting (see Figures

IB-5). These systematics, along with Yoder and Tilley's

(1962) low pressure thermal barrier, have led most propo-

nents (e.g., MacDonald, 1968) of primary liquid differen-

tiation producing alkali basalts to hypothesize deep-seated

processes, perhaps involving remelting at depth. Others

(e.g., Verhoogen et al., 1970; Carmichael et al., 1972)

would prefer an independent origin (change of melting pa-

rameters) for each magma type. Currently neither alterna-

tive can be entirely ruled out.

Canary Islands. The seven Canary Islands

lie off the coast of Africa with the eastern two boarder-

ing on the continental coast. The islands are shield vol-

canoes formed largely of alkali olivine basalt (Table IB-9)

with the youngest to the west. The basalts seem to dif-

ferentiate with time towards phonolites by removal of oli-

vine, titanomagnitite, then plagioclase (Ridley, 1970).

The two eastern (older) islands present a more complicated

picture. They not only contain the typical alkali basalt

differentiation sequence, but also an old intrusion of

tholeiitic composition and a historic flow of olivine

tholeiite with normative hypersthene (analysis #6 in Table

IB-9). Not only does the tholeiite on these Canary islands
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Chemical anaiyses (oxides. wt%) and CIPW norms of rocks from the Canary 
Islands 

2 3 4 5 6 7 8 9 

Si02 42.50 43.20 46.10 45.86 47.80 49.30 52.55 59.20 64.20 
Ti02 2.20 3.93 2.38 2.95 2.22 2.06 1.23 0.73 0.35 
A)i03 13.50 16.30 14.24 15.81 13.19 13.43 19.32 20.10 16.29 
Fe203 5.16 8.09 3.95 4.65 2.21 1.02 2.76 1.26 2.77 
FeO 7.14 4.69 7.90 5.24 8.88 9.23 2.33 1.12 0.62 
MnO 0.17 0.16 0.15 0.18 0.14 0.15 0.18 0.15 0.05 
MgO 10.44 5.16 9.25 6.31 10.50 11 .39 1.74 0.91 1.05 
Cao 10.99 10.74 10.45 9.77 9.90 9.39 4.97 2.40 2.36 
Na20 3.28 3.12 3.10 5.04 3.19 2.48 8.12 7.32 7.00 
K20 1.20 1.64 0.63 3.11 0.93 0.74 4.88 5.00 4.40 
P20s 1.0.4 0.88 0.53 0.70 0.58 0.36 0.34 0.16 0.05 
H20+ 2.67 2.03 1.12 0.24 0.17 
H20- }0.40 1.36 0.66 
Rest 0.10* 0.37 1.18t 0.20* 

Total 100.29 99.94 99.90 99.99 99.78 99.72 100.00 99.91 99.80 

* C02 t Cl = 0.24; S03 = 0.94. 

Explanation of column headings 

Analyses 1-6 are cited from Ibarrola (1969), analysis 7 from Hernandez-Pacheco (1969), and 
analyses 8 and 9 from Munoz (1969a). Tables and numbers given in parentheses refer to these 
works. 

1 Olivine basall (first episode), Lanzarote (table 1, no. 7) 
2 Olivine basalt (first episode), Gomera (table 4, no. 8) 
3 Olivine basalt (first episode), Fuertcventura (table 2, no. 12) 
4 Average Quaternary basalt (tephritc), Gran Canaria (table M4, no. 2) 
5 Olivine basalt, last Quaternary episode, Lanzarote (table 5, no. 27) 
6 Olivine basalt, historic flow of 1730-1736 eruptions, Lanzarote (table 5, no. 30) 
7 Tahitite, Gran Canaria {table I, no. 4) 
8 Nephcline sycnite; central stock, Pajara, Fucrtevcntura (table 1, no. 3) 
9 Syenite, La Penitas ring dike, P~\jara, Fuerteventura (table 1, no. 16) 

Table IB 9. (CTV) 
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not conform to the compositional trend of the majority

of neighboring islands, but the relation of tholeiite to

alkali basalt is sequentially opposite that observed in

the well-documented Hawaiian sequence.

In summary, for the ocean environment, basalts

and their derivatives are young (s 200 my) and uncontami-

nated by continental material. A variety of basalt compo-

sitions can be observed, perhaps the most primary occurring

at the spreading ocean ridges. All are presumed to be

derived from the upper mantle by one or more sequences of

partial melting. The oceanic upper mantle itself is roughly

homogeneous in major element geochemistry, but may be heter-

ogeneous either vertically or laterally in incompatible

elements.

c. Subduction Zone

Most recent, active volcanoes are located

along margins of lithospheric plates which are in motion

relative to each other a few centimeters a year. Three

quarters of the world's active surface volcanoes occur

along the pacific margin (CTV, p.528). The ocean floor

basalts are formed as two oceanic plates separate. When

two plates collide, one is generally forced to descend in-

to the mantle creating a subduction zone of intense earth-
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quake activity (Figure IB-15 from Toksoz, 1972) and initi-

ating a variety of volcanic materials. The rock type gen-

erally associated with subduction zone volcanics is ande-

site (the rock name being derived from the Andes of South

America). Since it is the nature of this tectonic setting

that the subducted (oceanic) plate encounters changing tem-

peratures and pressure (and perhaps H 0 content) as it
2

descends, the chemistry of igneous melts associated with

this environment would be expected to be different from

those associated with simple partial melting of the upper

mantle that occurs in the ocean environment.

Although the subduction zone continental igneous

rocks are predominantly andesite and related differentiates,

basalts are also abundant in the island arc environment,

especially in younger arcs (Baker, 1968). Again there is

no uniform sequence for all environments but a few patterns

can be recognized:

(1) Chemically, the circumoceanic basalts are differ-

ent from ocean floor or ocean island basalts. No material

associated with island arcs or continental margins contains

the very low strontium ratio (<.703) of abyssal basalts

(Table IB-10). For some provinces, the initial strontium

isotopic ratios for a range of rock types are essentially

uniform implying a genetic relationship. The moderately
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BASALTIC
BASALT ANDESITE ANDESITE DACITE RHYOLITE

(< 52% Si02 ) (52-55% Si0 2) (55-63% Si0 2 ) (63-68% SiO 2 ) (> 68% Si0 2 )
New Britain 0.7035 0.7036 0.7036 0.7036 0.7035
Tonga - 0.7037 0.7042 0.7043
Marianas 0.7042 - 0.7042 0.7038 -
Izu Islands 0.7036 - 0.7040 - 0.7034
Caribbean

St. Kitts 0.7036 0.7040 0.7038 -
St. Vincent 0.7042 0.7040 0.7039 -
Carriacou 0.7052 - 0.7054 -

North Japan 0.7043 - 0.7041 - -
California

Mt. Shasta - 0.7039 0.7030 0.7032
Mt. Lassen 0.7039 0.7032 0.7040 - -
Medicine Lake 0.7034 0.7037 - - 0.7040

Central America 0.7035 0.7042 0.7036 0.7036 0.7042
New Zealand

Taupo 0.7042 - 0.7055 0.7051 0.7053
Averaget 0.7040 0.7038 0.7040 0.7037 0.7038

* Data takcn from Pushkar (1968), Peterman et al. (1970a, 1970b), Hedge (1966), Hedge and Knight
(1969), Hedge and Lewis (1971), Ewart and Stipp (1968), Oversby and Ewart (1972), Ewart et al. (1973).
t Excludes New Zealand average andesite, dacite, and rhyolite.

Table IB 10. (CTV)

Cross-section of calculated stress model
(upper) and the distribution of earth-
quakes (lower) in descending lithosphere
under Japan. The units of stress are
"bars" (very closely, atmospheric pres-
sures). Inset diagram indicates the
Young's modulus variation inside the
slab due to temperature effects. Arrows
point the direction of maximum principal
stress. In the lower diagram earthquake

foci are indicated by black dots. The
shallow quakes are located along the
boundary between the descending litho-
sphere and the stable lithosphere. Deep
quakes are located along the interior of
the slab where the slab is coolest and
where calculated stresses are maximum.
Low Q (high attenuation of seismic
waves) and Low V (low velocity) indicate
the asthenosphere.

Figure IB 15. (Toksoz, 1972)
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low ratios for the entire series of rock types imply minor,

if any, crustal contamination.

(2) Kuno (1967) noted that volcanoes extruding tholeiitic

basalts occurred closest to oceanic trenches (start of

the subduction zone) and that volcanoes with high-aluminum

basalts and alkali-olivine basalts occurred respectively

further inland (Figure IB-16 from Kuno, 1967). The corre-

lation of this pattern with deep foci earthquakes suggested

the generation of different basalts at successively greater

depths.

(3) The association of magma generation with descending

lithospheric plates is further strengthened by the tendency

of K20 content of lavas (andesite) to be correlated with

depth of the subduction zone as inferred from earthquake

foci (Figure IB17 from CTV, p. 562).

d. Continental basalts

A thorough discussion of continental volcanics

must include extreme compositions (e.g., carbonatites) and

modes of emplacement (e.g., kimberlites) and is well beyond

the scope of this summary. Two common types of continental

basaltic provinces will be mentioned here: the voluminous

tholeiitic flood basalts and the complex alkali basalt re-

gions. In both cases, plate tectonics have been implicated

in the ultimate origin of the basalts. However, only in
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the case of alkali basalt association with continental

rift zones has it been substantiated. An example of each

province will be discussed.

i. THOLEIITIC FLOOD BASALTS. Although gran-

itic rocks are the dominant continental plutonic rock type,

the most voluminous continental lavas are basalts (CTV,

p. 427). Immense outpouring over short time periods of

essentially tholeiitic lava has occurred within the last

150 m.y. on a number of continental regions. These occur

as a series of relatively thin flows that cover an area

up to 106 km 2 . The total volume of such regions of flood

basalt can approach 106 km3, many times the volume of basalts

that built the shield volcano Mauna Loa (see Table IIB-ll,

compiled from CTV, and Head,1975). These tholeiitic lavas

are generally similar to the oceanic tholeiites but are

more potassium-rich and show enrichment of light rare earth

elements.

A substantial amount of geochemical data

has become available for the Columbia River basalt group

(Figure IIB-18, from Verhoogen et al., 1970, p. 299). The

geology and geochemistry of this area was extensively des-

cribed by Waters (1961) and further major and minor element

abundances were measured by McDougall (1976). The Colum-

bia River basalts are oversaturated tholeiites; the independent
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Table IB2-11 Estimated volume of tholeiitic flood basalts.

Location

Decca, India

Columbia and Snake River

,Siberia

Parana, Brazil

(Mauna Loa

Bushveld (plutonic complex)

Estimated volume (x 10 6 km3 )

.7

.3

.25

.20

.05)

.10
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Oregon plateau basalts to the south are much higher in

Al 20 3 content. Four distinct basalt sequences of the Colum-

bia River group were described from these studies, all

tholeiites: Picture Gorge basalts and Lower, Middle, and

Upper Yakima basalts. The Lower and Middle Yakima basalts

can be easily distinguished by TiO 2 content (Siems et al.,

1974). Variation diagrams for major element chemistry for

these sequences are shown in Figure IB-19 (from McDougall,

1976). Waters showed that these basalts were erupted from

fissure systems into a broad basin.

The Sr isotopic studies of McDougall (Figure

IV-20) distinguished the Picture Gorge basalts from the

Yakima and indicated they were likely to have been derived

from upper mantle sources with little modification. The

Yakima basalts with higher initial Sr show a correlation

of increasing 8 7Sr/ 86 Sr with decreasing age. This pattern

could either be the result of progressive crustal contam-

ination or derivation from inhomogeneous upper mantle source

materials. McDougall suggests the ultimate source of the

Yakima lavas was the upper mantle with partial melting caused

by tectonic events related to plate motions in the Pacific

NW during that time.

ii. ALKALI BASALT REGIONS (RIFT ZONES?).

Alkali basalts frequently dominate a small continental prov-

ince, but almost always with a very complex association
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of other magma types. The range of rock types associated

with continental alkali basalts is much greater than those

associated with oceanic alkali basalts (CTV, p. 505-506).

From high pressure experiments, alkali basalts are assumed

to have a deep source (between 40-100 km) which is consis-

tent with derivation from continental sub-crustal material.

(Only rarely are tholeiitic basalts associated with conti-

nental alkali basalts and the question of fractionation

relationships between the two basalt types, as is often

suggested for oceanic basalts, does not generally occur.)

The tectonic setting for continental al-

kali basalts is perhaps simply a zone of crustal weakness.

The classic example, in complexity, occurs in the East Af-

rican rift zones. In this region (e.g., CTV, Chapter 10)

are found alkali olivine-trachyte-phonolite series,

nephelinites, and carbonatites in somewhat random temporal

and spatial realtionship.

Another continental alkali basalt region,

the northern and eastern San Francisco volcanic field in

Arizona (Moore et al., 1976), consists of flows of predomi-

nantly alkali-olivine basalt, most of which occurred during

the last 3 m.y. Associated with these basalts are high

alumina basalt, basaltic andesite, andesite, dacite,

rhyodacite, and rhyolite. Chemical variation diagrams
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(Figure IB-21) from Moore et al.) suggest these basalts

are consanguineous although no simple evolution pattern

is recognized. Strontium isotope values are low for all

members of this series (.7026 - .7050) implying derivation

from the mantle with little contamination of crustal mater-

ial. (It is perhaps noteworthy that contemporaneous with

some of the San Francisco volcanics 3 m.y. ago were the

basalts of the Taos plateau a few hundred kilometers to

the east. The Taos basalts are predominantly olivine

tholeiites with less extensive alkali basalts and associ-

ated rock types [Lipman, 1977].)

In summary, a variety of basalt types exist

on the current surface of the earth, most of which are ul-

timately related to mantle sources. Although chemical frac-

tionation processes and host material contamination often

clearly affect compositional trends, it also seems apparent

that the general geophysical environment (plate tectonics,

type and thickness of crustal material) plays a major role

in determining the basalt types erupted on the surface.

The source region of basalts for each of the provinces dis-

cussed above differ in probable temperature and pressure

(depth) environment.
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A variety of questions, often with no obvious

answers, exist for oceanic basalts as well as those found

well within a thick continental plate. Are the volcanics

derived from partial melting of crustal or mantle material?

What degree of melting is involved? If the magma originated

in the mantle, to what degree has it been contaminated by

crustal material? How does the sub-continental mantle com-

pare with the oceanic mantle? To what degree is it heter-

ogeneous vertically or laterally? These question are dif-

ficult to answer not only because of the likely complexity

of each volcanic event, but also because often not all

the relevant information is available (e.g., major element

chemistry, minor element chemistry, REE, absolute age, iso-

topic chemistry, areal and volume estimates, etc.).

Increasingly sophisticated thermal models, ex-

perimental petrology results, and isotopic analyses are

becoming available and may eventually lead to answers for

the above questions. For example, a recent discussion of

Nd and Sr isotopic abundances for continental and oceanic

rocks (DePaolo and Wasserberg, 1976) provided evidence to

indicate that all types of continental igneous rocks (flood

basalts to carbonatites) are derived from a mantle reservoir

with chondritic REE patterns. Mid-ocean ridge basalts,

on the other hand, are derived from a different (shallower?)
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ancient reservoir and the source area for ocean island basalts

is intermediate between the two.

Probing the lateral and vertical compositional

variations of the earth's mantle seems within reach of plan-

etary scientists using a synthesis of current geophysics

(thermal models, plate tectonics, seismic internal struc-

ture patterns), experimental petrology (melting conditions

as a function of P, T, and composition), and basalt geochem-

istry (major and minor elements, and isotopic abundances).

Currently, the terrestrial data are incomplete and scattered

in a variety of forms. Such a synthesis is equally appli-

cable for probing the compositional structure of each of

the other terrestrial planets, but fewer of the variables

are defined.

3. Terrestrial Volcanism in Time

A characteristic feature of terrestrial basalts

in the preceding discussion is their youth; most basaltic

material that has been seriously studied is less than 200

million years old, or very recent in terms of geologic time.

Basaltic materials from other solar system objects are

much older: the basaltic achondrites are generally much

older than n3000 m.y.; the lunar basalts are between %3000

and 3900 m.y. old; and the surface age of the largest vol-

cano on Mars is estimated to be at least 1000 m.y. (Soderbloom,
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1974). What, then, can be said about the early history

of terrestrial volcanism?

Only recently has data become available concerning

ancient terrestrial material. A variety of models concern-

ing the early history of the earth have been proposed, many

of which have been included in a recent anthology of papers

edited by B.F. Windley (1976a). The earth appears to be

tectonically unique in the solar system and has recycled

much of its surface material perhaps more than once. It

has not been defined to what extent the current patterns

of terrestrial volcanism, which are closely linked to plate

tectonics, were also active in earlier periods of earth

history. The Archean rock associations and geochemistry,

for example, seem to be similar to modern continental mar-

gins and island arcs (Windley, 1976b) implying possibly

similar tectonic processes. Burke et al. (1976) describe

the early Archean deformation of greenstone terrains as

"permobile" deformation, or without rigid behavior during

collision. The model preferred by Green (1975) to describe

the character of Archean greenstone belts includes a steeper

Archean geotherm, a thin lithosphere, and an athenosphere

with about 5% melting. His model does not allow subduction

of basaltic oceanic crust, but instead postulates such a

crust is "scraped off" as the lithosphere is subducted and,
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eventually, forms the greenstone belts. A thin Archean

lithosphere was also proposed previously by Hart et al.

(1970) on the basis of trace element abundances of Archean

greenstones. These trace element studies indicated that

the Archean upper mantle was not depleted in K, Rb, Cs,

Sr, and Ba, unlike the present upper mantle (source region

for ocean floor basalts). Glikson (1976), on the other

hand, points out that the coherent pattern in the orienta-

tion of Archean greenstone belts in Gondwanaland argues

against large scale plate dispersions prior to the breakup

of Gondwanaland 300 million years ago. He suggests some

of the earliest earth volcanics (up to 2.6 AE) may have

been "relic terrestrial maria" similar to those common to

the moon. An earlier model by Green (1972) suggested a

similar link between the Archean greenstone belts and lunar

maria.

Although data concerning the terrestrial Archean

rocks are incomplete and there seems to be no general con-

sensus on how to interpret these data, they do provide

a few extremely significant facts and implications:

(a) Ancient crustal material does exist on earth.

Table IIB-12 (from Jahn and Nyquist, 1976) summarizes the

Rb-Sr isochron ages for a variety of Archean rocks. Granitic

as well as mafic surface material was formed during the
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Age and initial Sr"8 /Sr 6 data for terrestrial Archean rocks

t = age in b.y. I = (Sr 
8

/Sr"),

Rock unit 2 2 References Comments

Minnesota, US.A.
Ely Greenstone
Newton Lake Fm
Vermilion Granite

Northern Light
Gneiss

Saganaga Tonalite
Icarus Pluton
Giants Range Granite
Morton-Montevideo

Gneisses

Canada
Pyroxenes,

Superior Prov.

Keewatin +
Coutchiching

Chibougamau
Greenstone belt:
Dore Lake Complex

Anorthosite-1

Anorthosite-2

Chibougamau Pluton
Meta-meladiorite

Yellowknife:
SE Granodiorite

Metavolcanics
South Africa
Onverwacht:
Komati

Anarthositic norite

Anorthosites and
komatiites

Middle Marker
Horizon

Rhodesia:
Bulawayan

Bulawayan
limestones

Great Dyke
West Greenland:
Amitsoq Gneisses:
Narssaq Area

Qilangarssuit
Praestefjord
Isua Area

2-69 0-08 0-70056 26 Jahn and Murthy (1975)
2-65 011 0-70086 24 Jahn and Murthy (1975)
2-70 0-05 0-70041 29 Jahn and Murthy (1975)

2-68 0-10 0.7006* 12 Peterman et al. (1972)

2-74 010
2-71 0-56
2-69* 0-48
2-67 007

3-80

2-70

0-7007 4
0-7010 6
0-7100 14
0-7003 19

0-700

0-7010 to
0-7014

Hanson et al. (1971)
Hanson et al. (1971)
Hanson et al. (1971)
Prince and Hanson (1972)

Goldich and Hedge
(1974)

Hart and Brooks (1974)

2-69 0-08 0-7003 13 Hart and Davis (1969)

2-72 0-50 0-7011 10 Jones et al. (1974)
0-70068 6 Jahn (unpublished)

0-70150 7 Jahn (unpublished)

2-56*0-16 0-7007*4
0-70133 6

Jones et al. (1974)
Jahn (unpublished)

2-64 0-08 0-7011 E 16 Green and Baadsgaard
(1971)

2-63 0-16 0-7022 23 Green et al. (1968)

3-50 0-20 0-70048 5 Jahn and Shih (1974)

0-70061 6 Jahn and Shih (1974)

0-7000 to
0-7006

Allsopp et al. (1973)

3-36 0-07 0-7015 18 Hurley et al. (1972)

3-0-3-1 0-70110 5 Jahn (unpublished)

0-7014 to Bell and Blenkinsop
0-7019 (1974)

2-53 i0-09 0-7024 8 Davies et al. (1970)

3-75 0-09 0-7015 8 Moorbath et al. (1972)

3-74 0-10
3-69 0-23
3-70 0-14

0-7009 11
0-7001 17
0-7011 20

Moorbath et al. (1972)
Moorbath et al. (1972)
Moorbath et al. (1972)

I obtained from WR isochron
I obtained from WR isochron
I obtained from WR isochron
Basic data from Peterman et al.

(1972) and Jahn and Murthy
(1975)

I obtained from WR isochron

I obtained from WR isochron
I obtained from WR isochron
I obtained from WR isochron
I obtained from WR isochron

Both t and I are best values
from an eye-ball fit through
six data points

Seven age-corrected I values
for primary pyroxenes from
two extrusive and three
intrusive mafic units

I obtained from WR isochron

I obtained from WR isochron
Age-corrected I value; Sr

composition measured at JSC;
t = 270 b.y.

Age-corrected I value; Sr
composition measured at JSC;
t = 2-70 b.y.

I obtained from WR isochron
Age-corrected I value; Sr

composition measured at JSC;
t:- 2-6 b.y.

I obtained from WR isochron
I obtained from WR isochron

I obtained from mineral
isochron

Age-corrected I value
(t = 3-5 b.y.)

Age-corrected I values
assuming t = 3-2 b.y.

I obtained from WR isochron

Age-corrected I value
assuming t = 3-0 b.y.
Measured =0-70122

Measured values; uncorrected
I obtained from WR isochron

All I's obtained from
WR isochrons;

Best age = 3-70 -3-75 b.y.
Best I=0-7010 --0-7015

(Jahn and Nyquist, 1976)

Note: All I values have been adjusted based on NBS-SRM987 Sr Standard = 0-71025 or E & A Sr Standard =0-7081.

Table IB 12.
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first billion years of earth history and still constitutes

a minor part of the earth's crust. Although the earth

is a dynamically active planet, it has failed to destroy

a few pieces of its earlier history--it only deformed them

badly.

(b) The moon, with its ancient surface, and perhaps

also Mars and Mercury, provide excellent laboratories for

examining the early history of the solar system. All the

terrestrial planets may very well have been affected by

the same processes in their early history. Further examin-

ation of the Moon, Mars, and Mercury in conjunction with

investigations concerning the terrestrial Archean environ-

ment should eventually allow a unified theory of early plan-

etary evolution to be developed.
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I. BASALT TYPES: AN OVERVIEW

C. Lunar Basalt Types

Lunar samples have been returned from nine areas on

the front side of the moon by the Apollo and Luna landing

missions. The locations of these areas are shown in Figure

IC-1 and the coordinates are given in Table 1C-1 (updated

from Taylor, 1975). Six of these landing areas were in

mare regions.

Although it has only been eight years since the first

samples were returned, it is easy to forget some of the

major facts the samples provided immediately. Lunar rocks

have their own distinct character--different from terres-

trial samples and different from meteorites. The lunar

samples contain essentially no water (and no organic mat-

ter). The lunar surface is differentiated. The lunar mar-

ia are basaltic in composition and igneous in origin. The

lunar rocks are old (13.0 AE).

The returned lunar samples fall into two distinct fam-

ilies: the highland feldspathic rocks and the mare basalts.

The light-colored highland rocks comprise over 80% of the

lunar surface and have been intensely brecciated by repeated

impacts. The highlands are the oldest lunar surface and

consist of a variety of recognizable, although often mixed,

rock types (summarized by Taylor, 1975, Chap. 5). The high-
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The Apollo Lunar Landings.

R

)D

EVA Traverse
duration distance

Mission Landing site Latitude Longitude (hours) (km) Date

II Mare Tranquillitatis 0067'N 23 049'E 2.24 - July 20. 1969
12 Oceanus Procellarum 3*12'S 23023'W 7.59 1.35 Nov. 19, 1969
14 Fra Mauro 3*40'S 17028'E 9.23 3.45 Jan. 31, 1971
15 Hadley-Apennines 26006'N 3039'E 18.33 27.9 July 30, 1971
16 Descartes 8*60'S 15 031'E 20.12 27 April 21, 1972
17 Taurus-Littrow 20*10'N 30046'E 22 30 Dec. 11, 1972

Mission Landing site Latitude Longitude Date

Luna 16 Mare Fecunditatis 0041'S 560 18'E Sept., 1970
una 20 Apollonius highlands 3032'N 56033'E Feb., 1972una 24 Mare Crisium 12045'N 62012'E Aug. 1976

(B) Russian Lunar Traverse Vehicles.

Traverse
Vehicle Landing site Date length

Lunokhod I Western Mare Imbrium Nov., 1970 20 km
Lunokhod 2 Le Monnier Crater, Eastern Mare Jan., 1973 30 km

Serenitatis, 180 km north of
Apollo 17 site

(Taylor 1975)Table IC 1.
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land crust contains abundant feldspar. Although some of

the highland rock types have basaltic compositions (e.g.,

Fra Mauro basalts), the average composition of the highlands

is too low in mafic elements (MgO + FeO < 16%) and too

high in Al 20 3 (>20%) to be considered basaltic. The Fra

Mauro basalts, which may have been the products of early

near surface partial melting (e.g., Walker et al., 1973),

may make up 20% of the crust (Taylor, 1975, p. 252). The

impact history of the lunar highland crust, however, has

obscured any early magmatic history and the possibility

of lunar highland basalts will not be discussed here.

The dark mare basalts are perhaps less complicated.

They are igneous rocks that fill the crustal lowlands, but

are themselves old by terrestrial standards (3.8 - 3.0

AE). The lunar mare basalt types identified in the returned

samples are discussed in the following sections along with

the implications these basalts have for lunar evolution.

Remote sensing techniques (Sections II-V) are then used

to extend this information to unsampled areas in the attempt

to understand the global surface geochemistry of the moon.

1. Major Element Geochemistry of Lunar Mare Basalt

Types

An immense literature on lunar samples studies exists,

largely in the 7 x 3 Proceedings Volumes, and cannot be



IC 119

reviewed here in detail. Much of the discussion of lunar

basalt.types that follows is derived from two excellent

recent reviews which include extensive references. Taylor

(1975) has summarized and synthesized in a readable book

much of the geological, geochemical and geophysical data

for the moon that has resulted from the Apollo missions.

The chemistry, mineralogy and petrology of lunar mare ba-

salts is extensively reviewe4 by Papike et al. (1976).

A variety of lunar basalt type classifications exist in

the literature. The classification by Papike et al., which

incorporates many of these previous classifications, is

based primarily on major element chemistry and is used

as the basis for the discussion presented here. A recent

pamphlet by McGee et al. (1977) provides a useful introduc-

tion to the petrology and geochemistry of representative

lunar igenous rocks.

One of the most useful chemical factors that distinguishes

various mare basalt types is TiO 2 content. Most of the

sampled lunar mare basalts can be placed into one of two

distinct chemical groups, high- and low-titanium basalts,

as shown in the variation diagram of Figure IC-2 (from Papike

et al., 1976; updated). To date no samples have been ob-

tained for intermediate titanium basalts. There is also

an apparent correlation between measured crystallization
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ages and TiO2 content--the high-Ti basalts (Apollo 11, 17)

are older than the low-Ti basalts (Apollo 12, 15, Luna 16).

The bulk chemistry of these two major groups does not allow

a petrogenetic relation through fractional crystallization,

a distinction confirmed by melting experiments (Kesson,

1975; Walker et al., 1975).

The mare basalt samples can be further subdivided

into 10 distinct groups within which the major element

variations have likely been caused by near surface fraction-

ation. Major element chemistry for these basalt groups

are provided in Table IC-2 (from Papike et al., 1976).

The average modal mineralogy for nine of these groups is

presented in Table IC-3 and summarized in Figure IC-3 (from

Papike et al., 1976).

a. High-Ti

The high titanium basalts of Apollo 11 fall

into two groups which can be distinguished largely by K 2 0

content. The low-K basalts (K20 nu .06-.09%) are somewhat

older than the high-K (K2 0 % .30%). The petrological var-

iations observed in a variety of Apollo 11 low-K basalts

are consistent with these basalts representing the upper

portion of a single cooling unit. Initial 8 7Sr/ 8 6sr data

for these two high-Ti groups indicate they cannot be derived

from the same source region (Papanastassiou and Wasserberg,

1971).
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Apollo I I

Lo%% K High K Apollo 17

10003 10050 A vg (8) 10017 10057 Avg (6) 75055 70215 71055 74275 A vg (30)

SiO, 39.76 40.62 40.67 40.64 39.79 40.37 41.27 37.79 38.14 38.43 38.84
TiO2  10.50 9.61 10.18 11.78 11.44 11.77 10.17 12.97 13.41 12.66 12.35
.\IO 10.43 10.87 10.40 7.98 10.84 8.84 9.75 8.85 8.62 8.51 8.84
FeO 19.80 16.51 18.68 19.65 19.35 19.28 18.24 19.66 19.20 18.25 18.94
%1nO 0.30 0.26 0.27 0.24 0.20 0.24 0.29 0.27 0.26 0.25 0.27
MgO 6.69 7.82 6.92 7.68 7.65 7.56 6.84 8.44 9.04 10.26 8.52
CaO 11.13 12.65 11.70 10.65 10.08 10.59 12.30 10.74 10.77 10.38 10.80
Na 2O 0.40 0.35 0.41 0.51 0.54 0.52 0.44 0.36 0.31 0.37 0.32
K 2 0 0.06 0.06 0.07 0.29 0.32 0.31 0.0) 0.05 0.06 0.07 0.05
P2 O, 0.12 0.07 0.09 0.16 0.17 0.17 0.07 0.09 0.08 0.07 0.06
S 0.18 0.11 0.16 0.22 0.22 0.22 0.19 0.18 0.17 0.14 0.17
Cr2O, 0.26 0.35 0.29 0.36 0.36 * 0.36 0.27 0.41 0.41 0.64 0.49
Mg. 0.48 0.48 0.41 0.41 0.40 0.43 0.46 0.50
(Mg + Fe)

Avg (8) indicates an average of eight samples. References and analyses used for averages are aailable on rcqulc%.

Apollo 12

Olivine Pigeonite Ilmenite Alum inous Basalts

12009 12040 Avg (9) 12021 Avg (4) 12022 12064 Avg (4) 12038 14053 Luna 16

45.03 43.88 44.32 46.68 46.46 42.77 46.30 44.47 46.83 46.22 43.80

2.90 2.45 2.65 3.53 3.35 4.85 3.99 4.63 3.24 2.93 4.90

8.59 7.27 8.03 10.78 10.38 9.08 10.73 9.76 12.48 12.99 13.65

21.03 21.09 21.11 19.31 19.72 21.75 19.89 20.78 17.76 16.95 19.35

0.28 0.27 0.28 0.26 0.27 0.25 0.27 0.27 0.25 0.26 0.20

11.55 16.45 14.07 7.39 7.94 11.01 6.49 8.52 6.86 8.68 7.05

9.42 8.01 8.61 11.38 11.03 9.47 11.78 10.78 11.49 11.15 10.40

0.23 0.17 0.22 0.31 0.28 0.38 0.29 0.32 0.65 0.44 0.33

0.06 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.10 0.15

0.07 0.06 0.08 0.09 0.11 0.13 0.04 0.10 0.14 0.11 0.12

0.06 0.04 0.06 0.07 0.07 0.08 .0.07 0.08 0.07 0.13 0.17

0.55 0.63 0.63 0.40 0.47 0.56 0.37 0.42 0.31 0.40 0.28

0.49 0.58 0.41 0.47 0.38 0.41 0.48 0.39

Apollo 15

Olivine Pigeonite

15119 15555 15659 Avg(19) 15499 15076 Avg(13)

45.23 44.57
2.64 2.10
9.24 8.69

22.25 22.53
0.31 0.29
8.93 11.36

10.55 9.40
0.30 0.27
0.05 0.04
0.09 0.06
0.05 0.06
0.47 0.61
0.42 0.47

45.33 44.98 47.75 48.44 47.98
2.25 2.41 1.81 1.92 1.82
8.1I7 8.80 9.23 8.97 9.46

22.17 22.37 20.37 20.33 20.13
0.26 0.30 0.29 0.29 0.28

12.27 10.42 9.03 8.61 8.74
8.98 9.79 10.40 10.52 10.54
0.27 0.28 0.34 0.34 0.31
0.06 0.05 0.06 0.07 0.06
0.12 0.08 0.08 0.07 0.07
0.07 0.07 0.07 0.08 0.06
0.50 0.57 0.52 0.31 0.47
0.50 0.44 0.43

Table IC 2. Major element chemistry of lunar basalt
types. (Papike et al., 1976)
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Lunar basalt tyrk Textural Sequences

Modal Mineralogy*
________________- No.

Group cpx ol plag opaq Averaged Textural Sequencet

Apollo I I low K 44-55 0-7 24-38 10-18 14. 10020, 10045, 10062, 10003, 10050, (10044, 10058, 10047)
(49) (2.2) (31) (14)

Apollo 17 low K 44-52 29-33 13-15 2 (75035, 75055)
(48) (31) (14)

Apollo 11 high K 47-59 0-1 15-27 15-26 9 10049, 10022, 10057, 10017, 10024, 10072
(53) (0.1) (20) (19)

Apollo 17 very 42-51 1-10 14-29 18-30 5$ 74235,70215,74275,71055,75075,70017,70035
high Ti (47) (4.5) (23) (24)

Apollo 12 ilmenite 55-61 0-20 12-33 7-11 6 12022, 12063, 12051, 12064
(59) (3.5) (25) (9)

Apollo I2olivine 32-64 36-1l 5-27 3-14 14$ 12009, 12004, 12002, 12075, 12018, 12020, 12040, 12035-
(53) (20) (19) (7)

Apollo 12 pigeonite 62-71 0-4 17-31 5-12 7 12052, 12053, 12065, 12021
(68) (1.4) (21) (9)

Apollo 15 olivine 61-64 5-9 22-27 4-6 3 15545, 15556, 15016, 15555
(63) (7) (24) (5.5)

Apollo 15 pigeonite 46-70 24-48 3-4 3$ 15597, 15595, 15499, 15476, 15495, 15475, 15076, 15085, 15058, 15065
(61) (33) (3.6)

Values in parentheses are averages.
*Clinopyroxene is abbreviated cpx; olivine, ol; plagioclase,
tFrom fine at left to coarse at right.
$Does not include vitrophyres.

MODAL MINERALOGY AND BULK COMPOSITION

plag; and opaques, opaq.

Table IC 3. (Papike et al.,
1976)
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There are also two major basalt types at Apollo

17. The minority low-K basalt samples are very similar

in composition and in age to the Apollo 11 low-K basalts.

The Apollo 17 very high-Ti samples are distinguished from

other high titanium basalts by their higher TiO2 , FeO,

and MgO content. The major element variations within the

very high-Ti suite of rocks can be interpreted in terms

of multiple crystal fractionation. Both Apollo 11 and

17 low-K basalt compositions could possibly have been pro-

duced by near surface fractionation from a magna similar

to that which formed the very high-Ti basalts.

b. Low-Ti

Three major groups of low titanium basalts

can be distinguished at the Apollo 12 site: olivine basalts,

pigeonite basalts, and ilmenite basalts. A few samples

of feldspathic basalts are also found. These three basalt

types can be distinguished in the chemical variation dia-

grams of Figure IC-4 (from Papike et al., 1976; Rhodes

et al., 1977). The major element variations for the Apollo

12 olivine basalts fall along olivine control lines indi-

cating the variations are due largely to the loss or gain

of olivine. The coarser-grained samples are interpreted

as olivine cumulates. The Apollo 12 pigeonite basalts con-

tain large zoned phenocrysts or pyroxene. They show lit-
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tle evidence of near surface fractionation although the

relation of their major element chemistry to that of the

olivine basalts (Figure IC-4) indicates they both could

have been derived from similar parental magma. The Apollo

12 ilmenite basalts have recently been extensively studied

(Rhodes et al., 1977, Nyquist et al., 1977). These results

indicate that the major element compositional variations

within the ilmenite basalt group can be attributable to

near surface fractionation involving olivine + ilmenite

(Figure IC-4e). The rare earth and isotopic data indicate

the ilmenite basalt parental magma is probably derived from

a distinctly different source region than that for the olivine-

pigeonite basalts. Remote sensing data (see Section III)

show two surface units in the Apollo 12 region with the

landing site being within a few kilometers of a unit of

slightly higher TiO2 content.

The mare basalts of Apollo 15 include two ba-

salt types similar to those at Apollo 12 but lower in TiO 2:

olivine basalts and pigeonite basalts. The Apollo 15 oli-

vine basalts are high in FeO (Figure 4a). The major ele-

ment variations are consistent with a limited amount of

olivine fractionation, and, together with textural evidence,

indicate the samples are not olivine cumulates but are pro-

bably samples from the upper portion of cooling units.
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The composition of the Apollo 15 pigeonite basalts do not

fall on the same olivine control lines as the olivine ba-

salts, although the two basalt types could be products

of fractionation of a single primary magma not sampled.

The major element variations of the pigeonite basalts are

consistent with a limited amount of pigeonite (and possi-

bly olivine and chrome spinel) fractionation.

c. Other (Feldspathic, VLT, Luna 24) basalts

It is possible, if not probable, that some of

the minor rock types found in the lunar samples are, in

fact, regionally important. Three general groups in par-

ticular may be significant: feldspathic basalts, very low

titanium (VLT) basalts, and the recently returned Luna 24

basalts.

The feldspathic basalts (high aluminum) are

exemplified by a heterogeneous and perhaps unrelated num-

ber of samples found as minor components at several land-

ing sites (Hubbard et al., 1973; Ridley, 1975, Irving, 1975).

Their major element chemistry (Table IC-4, from Ridley,

1975) and petrographic relationships indicate they are in-

deed basaltic. Their high MgO + FeO content (Figure IC-5,

from Hubbard et al., 1973) and medium TiO2 (Table IC-4)

distinguishes them from possible highland melt rocks. They

are distinguished from most other mare basalts by their
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Major-element chemistry of aluminous mare basalts.

1 2 3 4 5 6 7 8

SiO 2  45.9 45.2 46.3 46.82 45.50 43.80 40.2 43.7
TiO2  7.3 2.57 2.79 2.33 4.04 4.90 7.2 3.3
Cr2O, 0.2 0.51 0.37 0.32 0.28
Al 20 3  14.4 11.1 13.7 13.81 13.95 13.65 13.2 13.2
MnO 0.26 0.26 0.20
FeO 10.7 17.8 17.0 15.92 17.77 19.35 16.5 16.5
MgO 6.7 12.2 8.54 6.30 5.95 7.05 8.5 9.9
CaO 11.3 9.84 11.2 11.57 11.96 10.40 12.0 11.1
Na20 1.0 0.32 0.44 0.80 0.63 0.38 0.3 0.2
K2 0 0.1 0.08 0.11 0.25 0.21 0.15 0.10 0.16

(1) Average composition of basaltic clasts in 14063, broad beam analysis.
(2) XRF analysis of 14072, Hubbard et al. (1972).
(3) XRF analysis of 14053, Hubbard et al. (1972).
(4) Average 7 vitrophyric and variolitic clasts, 14321, Grieve et al. (1975).
(5) Basalt fragment in Luna 16 soil. Albee et al. (1972).
(6) Luna 16 basalt, Vinogradov et al. (1971).
(7),(8). Preferred glass compositions in Apollo 11, and 12 soils, respec-

tively, Reid et al. (1972). Table IC 4. (Ridley, 1975)
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Apollo12 and AILO3 contents of

22 polio 11. 12 01lvine-enriched different lunar rock
- aoned mae taesnds types: +, rocks with

mare basalts more than 25 percent
s- a.s ALO; 0, rocks with 2020 L1

o.L6 Intermediate to 25 percent AlO; y,Fe-rich
is - 407 basalts Apollo 15 KREEP ba-

-0 salts; -0-, Apollo 16
KREEP basalts; AV,
mean KREEP composi-
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KREEP microprobe analyses of
basalts individual fragmenis: 11B,

/(-15 to 20% A120) "highland basalt"
S12 f -,

FI, mean composition
S---~ oof Fra Mauro basalt
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Figure IC 5. (Hubbard et al., 1973)
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higher Al 2 0 3 content, although they are frequently simply

grouped with the low-Ti basalts. The few that have been

dated demonstrate the heterogeniety of this 'group': 14053

is about 3.95 AE (Papanastassiou and Wasserberg, 1971; Turner

et al., 1973) and predates most mare basalts, whereas a

sample from Luna 16 (B-1) is about 3.45 AE (Papanastassiou

and Wasserberg, 1972; Huenke et al., 1972).

Recently a comprehensive study of the miner-

alogy and petrology of 58 lithic fragments from the Luna

16 core has been made (Kurat et al., 1976). Three sepa-

rate basalt types were identified in the samples. Fragments

of the main type of Lunar 16 basalt show compositional var-

iations (Figure IC-6, from Kurat et al.) indicative of

near surface fractionation involving plagioclase, olivine,

and ilmenite. These Luna 16 basalts are distinct among

the returned samples and seem to form a class by themselves

with low FeO and MgO, and high Al 20 3 , FeO/MgO, CaO and al-

kali content. Remote sensing data (Pieters and McCord,

1975) suggest the Luna 16 basalts are part of a family of

basalts in the eastern maria.

A few fragments of a very low titanium basalt

have been recently discovered in the Apollo 17 drill core

(Vaniman and Papike, 1977). Preliminary major element

chemistry of this basalt shown in Table IC-5 (Papike, per-
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March 12, 1977
PRELIMINARY Data on the

composition of Very Low Titanium

Mare Basalt (Apollo 17)

phaneritic fragment
1 

phaneritic fragment
1 

vitrophyre
2

PTS 70008370 PTS 70008356 PTS 70007328
(1.75 mm fragment) (2.2 mm fragment)

SiO
Als
Ti32
Fe3
X- 0
Mga
CaO

Na
2 0

K2 0
Cr203

48.74
11.40
0.50
18.98
0.26
9.45

10.15
0.15
0.04
0.60

s:: 100.27

Fe/
(Fe+Mg) - .53

CaO/A1
2 03 -89

48.08
11.25
0.36

18.23
0.26

11.00
10.16

0.15
0.01
0.60

100.10

.48

.90

48.75
10.04

0.69
17.94
0.30

11.79
9.35
0.06
0. C2
0.69

99.63

.46

.93

1
recombination of microprobe mineral data using modal analyses obtained by counting
1000 points in each fragment. Averages of many prohe analyses (e.g., 200 pyroxene spots
in the fragment from PTS 70008356) were used to account for mineral zonation.2
recombination of microprobe mineral and glass analyses using modal data obtained
by counting 1000 points in the vitrophyre.

3
average of eight overlapping 50 micron spots within a single vitrophyre (about 85%
glass, 15% small crystals up to 10 microns in diameter)

Table IC 5. (Papike, 1977, preliminary
communication)
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sonal communication) indicates they clearly are mare basalts

and not highland melt rocks. Their very low TiO 2 content

(which is comparable to the Apollo 15 green glass) distin-

guishes them from other mare basalts. The regional source

area of these basalts has not yet been identified.

On August 28, 1976, the Soviet Luna 24 automa-

tic probe obtained a core sample from SE Mare Crisium and

returned it to earth. Preliminary analyses of some of the

basalt fragments indicate a low titanium basalt (%l% TiO 2 )

with high aluminum content and low KREEP (Barsukov et al.,

1977). Although it is still uncertain which unit in Mare

Crisium was sampled (see Section IIIE-1), this low-Ti, high-

Al basalt may be unique among the samples.

2. Role of Basalts in Current Understanding of the

Moon

a. Comparison with terrestrial basalts

About 17% of the lunar surface is covered with

mare basalts (Head, 1975, 1976) compared to perhaps >75%

for the present terrestrial (e.g., oceanic) surface. The

distribution of mare basalts is shown in Figure IC-7 (from

Head, 1976). The style of volcanic eruption is dramatically

different for the two planets. Most of terrestrial volcanic

deposits are associated with recent plate tectonics, whereas

the moon has maintained a rigid lithosphere for at least
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3.5 AE. The closest recent terrestrial analogue to lunar

volcanic deposits are the flood basalts and Hawaiian lavas

although the origin of even these terrestrial basalts is

likely to be tied to terrestrial tectonics. A summary of

estimated volumes for lunar, terrestrial and Martian vol-

canics is provided in Table IC-6 (compiled from Head, 1975;

CTV).

In major element chemistry lunar basalts are strongly

enriched in FeO and in some cases TiO 2 and depleted in

A1 2 0 3 with respect to most terrestrial basalts (Figure 8,

from Gast, 1972). SiO 2 content for lunar basalts is low

with respect to terrestrial values (Table IC-2). The Hi-

Ti basalts are not strictly basalts unless their SiO2 con-

tent is recalculated for a bulk chemistry with lower

amounts of TiO2. The ranges of CaO and MgO content are

roughly comparable for lunar and terrestrial basalts. Both

lunar basalts and basaltic achondrites are depleted in K2 0

and Na2 0 with respect to terrestrial basalts (Figure IC-9,

from Gast). The composition of lunar feldspars reflect

this low K and Na content (Figure IC-10, from Papike et

al., 1976).

The lunar basalts are in extremely reduced state and

contain no water of lunar origin. Almost all iron occurs

as Fe2+ with up to a few tenths of a percent being reduced
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Table IC-6 Estimated volumes of basalt.
(Head, 1975, CTV)

Location

Earth: Decca, India

Columbia and Snake
River

Siberia

Parana, Brazil

(Mauna Loa

Bushveld (plutonic
complex)

Mars: Olympus Mons

Moon: Tranquillitatis

Fecunditatis

Nectaris

H 2, h 2 Imbrium

Circular maria

Whole moon basalts

Estimated volume (x10 6km3 )

.7

.3

.25

.20

.05)

.10

2.6

.26

.13

.08

.04

5.2

10.



137
22

21

20

6r
I

19

18

17

16

15

14

13

12

11

10

9

8

7

6

-.

4
-Ar

7 8 9 10 11 12 13 14 15 16 17 18

%CaO

CaO and AlsO contents of lunar basalts, basaltic achondrites, and terrestrial basalts.
Symbols are as follows: 0 Apollo II basalts, A Apollo 12 basalts, A KREEP, 0 Apollo 14
samples, <_ Apollo 15 basalts, 0 basaltic achondrites, -oceanic ridge basalts, t Icelandic basalts,
and x post-erosional Hawaiian basalts. The solid line shows the locus of chondrites and basaltic
achondrites. Both terrestrial and lunar basalts appear to divide into groups that fall on either side of
this line; i.e. the Al-rich (ORB on Earth and non-mare basalt on the Moon) group with an Al/Ca
ratio greater than the meteorite ratio and the Al-poor rocks with low Al/Ca ratios (nepheline norma-
tive basalts on Earth and mare basalts on the Moon) lower than the meteorite ratio. Given the very
plausible assumption that the Al/Ca ratio of both planets is meteoritic, this observation suggests that

two distinct petrogenetic fractionation trends are involved
in producing liquids with these compositions.

24

22

22-

21,

20

Is17

0 16
ia

0 0

0" .- _.

' % - 0
.'

Ai AC
At

kA

a- 6-'

kLy~, *,

Figure IC

24

21

20

19

18

16

0
0

8. (Gast, 1972)

A-

0- 0 &
0-

'4
14

13

12

11

10

ev

7-

0 1I2I31

% VO,
Total Fe (as FeO) and TiOs contents of lunar basalts, basaltic achondrites, and terrestrialbasalts. Symbols same as Figure 4The extreme TiOs contents of Apollo II basalts are clearly shown

here. However, other mare basalts (Luna 16) also tend to have relatively high TiOs contents relative
to terrestrial basalts.

b
0 2345 a 7 9 lO i 12 13 1415 16 17 19 19 20

% M90

FeO and MgO contents of lunar basalts, basaltic achondrites, and terrestrial basalts. Symbols
same as Figure @.The three groups of terrestrial basalts shown here were chosen to illustrate the
extremes in total Fe (as FeO), FeO, AlsO, and TiOs contents found in terrestrial basalts. A much
more extensive compilation - e.g. Manson (1967) - of terrestrial basalts would still show a very
marked gap between the total Fe content of lunar and terrestrial basalts. The high MgO Apollo 12

basalts are probably the result of olivine (Fa 68-72) accumulation.

4 5



IC 138

1S

CP- 0
.A A v 1+e

C4 + +

aA 

oGAO

o A A 

0 .0A

C4

A,

8 ~ ~ . 0 L 
A ")e N PtEU 12013 lY

M CMONDRITES

.01 . A 1vi 1 0

% K20

K 20 and Na20 content of terrestrial and lunar basalts.

Figure IC 9. (Gast, 1972)

K AlSils
Or

FELDSPAR

TERNARY

ANORTHOCLASE

ALBITE OLIGOCLASE ANDESINE LABRADORITE YTOWNITE NORTHITE)

Ab - An
No Al Si3 o 

CoAlaz1 2 s0

Feldspar ternary plot showing limited compositional range
of feldspars in mare basalts.

Figure IC 10. (Papike et al., 1976)



IC 139

to metalic iron. Unlike terrestrial basalts, no detectible

Fe 3+ is found in lunar basalts. The reduced state of ti-

tanium and chromium (Ti3+, Cr 2+) are rare in terrestrial

basalts but occur in significant amounts in lunar basalts

(Burns et al., 1973). The oxygen fugacity value of lunar

samples for a given temperature is several orders of mag-

nitude below those for terrestrial basaltic lavas (Sato

et al., 1973).

The rare earth element patterns for most ter-

restrial basalts are strongly enriched for the light rare

earths (Figure IC-ll, from Jahn and Nyquist, 1976). This

pattern is found in none of the lunar basalts although the

high titanium basalt REE pattern is somewhat similar to

that for terrestrial oceanic tholeiites. A notable distinc-

tion of lunar mare basalts is the "europium anomaly" exhi-

bited in their REE pattern. This relative depletion of

Eu is linked to the lunar reducing conditions which allow

EU2+ to be stable. The geochemical behavior of Eu2+ is

distinct from Eu3+; Eu2+ can readily enter the Ca site

in feldspar lattices. The europiun anomaly is generally

interpreted as indicating the removal of feldspar from

the source region of mare basalts prior to their generation

(see summary in Taylor, 1975, p. 154-159).
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(Jahn and Nyquist, 1976)Figure IC 11.
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Comparisons of element abundances between Apollo

12 basalt 12009 (a possible primary partial melt from the

interior) and type 1 carbonaceous chondrites (primitive

solar system material) is shown in Figure IC-12, from Taylor,

1975. Taylor (1975) suggests three and perhaps four stages

of fractionation for lunar material to account for these

differences: (1) pre-accretional fractionation (loss of

volatiles and probably also siderophiles), (2) post-accretional

wide-spread early melting (see below) with fractionation

creating a zoned lunar mantle, (3) later partial melting

of this mantle leading to further element fractionation,

and (4) possible fractionation of this melt en route to the

surface and/or during surface crystallization.

Similar elemental comparisons can be made be-

tween terrestrial mantle derived basalts (e.g., oceanic

tholeiites) and Apollo 15 olivine basalt 15555. Figure IC-13

(from Taylor, 1975) illustrates the general depletion of

K and Na in lunar basalts and the enrichment of Fe and Cr.

b. Chronology

One of the most notable characteristics of lu-

nar rocks is their age. Lunar mare basalts crystallization

ages range from about 3.2 to 3.85 AE. A summary of many

of the isotopic age dating results and appropriate refer-

ences is provided by Taylor (1975) and shown in Table IC-7.
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Ages of Maria Basalts.

T BABI
Age Rock (p. 65)

(aeons) type Sample no. Method Reference (aeons)

3.96 Al-basalt 14053 Rb-Sr 101 4.60
Apollo 14 3.95 Al-basalt 14053 'Ar-"Ar 102 -

13.95 Al-basalt 14321 Rb-Sr 101 4.24
3.83 High Ti 75055 Rb-Sr 103 -

J3.82 High Ti 70035 Rb-Sr 104 -
Apollo 17 3.76 High Ti 75055 4Ar-

39Ar 102 -
3.74 High Ti 75083 4Ar

39Ar 105 -
3.82 Low K 10062 'Ar- 3 Ar 106 -

Apollo I1 3.71 Low K 10044 Rb-Sr 107 4.52
3.63 Low K 10058 Rb-Sr 107 -

[3.68 High K 10071 Rb-Sr 107 3.86
3.63 High K 10057 Rb-Sr 107 3.90

Apollo 11 j3.61 High K 10024 Rb-Sr 107 3.84
3.59 High K 10017 Rb-Sr 107 3.80
3.56 High K 10022 4Ar-

39Ar 108 -

Luna 16 3.45 Al-basalt B-I "Ar-MA 109 -
t3.42 Al-basalt B-I Rb-Sr 110 -

3.44 Quartz basalt 15682 Rb-Sr 111 4.06
3.40 Quartz basalt 15085 Rb-Sr 111 -
3.35 Quartz basalt 15117 Rb-Sr 111 -

Apollo 15 3.33 Quartz basalt 15076 Rb-Sr 111 -
3.32 Olivine basalt 15555 Rb-Sr 111 -
3.31 Olivine basalt 15555 'Ar-"'Ar 112 -
3.26 Quartz basalt 15065 Rb-Sr 111 -
3.36 Olivine basalt 12002 Rb-Sr 107 4.56
3.30 Olivine basalt 12063 Rb-Sr 107 4.33
3.30 Olivine basalt 12040 Rb-Sr 107 4.64
3.27 Quartz basalt 12051 4Ar-

3 9Ar 108 -
Apollo 12 3.26 Quartz basalt 12051 Rb-Sr 107 4.48

3.24 Olivine basalt 12002 'Ar-"Ar 108 -
3.24 Quartz basalt 12065 4Ar-

39 Ar 108 -
3.18 Quartz basalt 12064 Rb-Sr 107 4.98
3.16 Quartz basalt 12065 Rb-Sr 107 4.38

(Taylor, 1975)Table IC 7.
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The oldest major group is the high-titanium basalts althougn

some of the Apollo 14 feldspathic basaltic clasts are older.

Figure IC-14 (from Papike et al., 1976) illustrates the

bi-modal distribution of the basalt ages of returned sam-

ples into old high-Ti and 'young' low-Ti groups although

there is also a hint of an old low-Ti group.

Internal mineral Rb-Sr isochrons used for ob-

taining many of the above crystallization ages (e.g., Figure

IC-15, from Papanastassiou and Wasserberg, 1971) also pro-

vide an initial 8 7Sr/ 8 6 Sr (I) value. Measured values for

initial 8 7Sr/ 8 6Sr for lunar samples are shown in Figure

IC-16 (from Jahn and Nyquist, 1976). The range of these

I values indicate that the source regions of the mare ba-

salts were heterogeneous at the time of partial melting.

The lunar mantle must have developed a heterogeneous nature

prior to %4.0 AE.

c. Two stage melting hypothesis

An increasing amount of data indicates the outer

100-500 km of the moon was partially or totally molten very

shortly after accretion of the planet. Most theories of

mare basalt petrogenesis call for a later partial remelt-

ing of various portions of the solidified magma ocean.

A few of the most compelling arguments for this popular

hypothesis of early lunar evolution are outlined below.
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The composition of the lunar crust was first

inferred from anorthosite fragments found in Apollo 11 soil

(Wood et al., 1970). If the major element composition of

lunar material was roughly chondritic, the original surface

would have to be melted to about 200 km depth to account

for the presence of such an observed anorthositic crust

(a floating cumulate formed by crystal fractionation).

The europium anomality observed in all lunar basalts (Figure

IC-11) further suggests the prior removal of large amounts

of plagioclase from the source region of mare basalts (e.g.,

Philpotts and Schnetzler, 1970; Taylor and Jakes, 1974).

Rb-Sr isotopic data provide further evidence

that Rb last separated from Sr in a global fractionation

event around 4.4 - 4.5 AE (Papanastassiou and Wasserburg,

1971). A model age (T BABI) of when Rb and Sr were last

fractionated can be estimated from whole rock data assum-

ing an initial 8 7Sr/ 8 6Sr value equal to that found in ba-

saltic achondrites (Figure IC-15). Most TBABI ages clus-

ter around 4.5 AE (see Table IC-7) indicating the moon,

or specifically the source regions of most basalts, behaved

approximately as a closed system with no major later frac-

tionation in Rb/Sr. The discovery of a dunite differentiate

with a crystallization age of 4.55 AE (Papanastassiou and

Wasserburg, 1975) tightens the Rb-Sr case for early lunar
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differentiation.

Sm-Nd isotopic systematics for an Apollo 17

basalt (Lugmair et al., 1975) indicate a fractionation event

of the parent material at 4.35 AE. Independent U-Pb chron-

ologies for Apollo 17 basalts (Tera and Wasserburg (1974)

also indicate similar ages (4.43 AE) for an early lunar

differentiation, with later derivation of the basalts from

a closed U/Pb system.

Solomon and Chaiken (1976) recently examined

a variety of plausible thermal evolution models to account

for the age of observable structural features (or lack

of) on the lunar surface. There are no features indicative

of large compressional or tensional stresses since the for-

mation of the major basins and emplacement of the lunar

maria. The only thermal models that can account for this

lack of whole planet volume change through 4 AE requires

an initial hot surface and cold interior. They argue the

original "magma ocean" could not have been deeper than 300

km nor shallower than 100 km.

d. Mare basalt source regions

The mare basalt magmas are believed to have

been derived as partial melts generally from the lunar man-

tle which, from the previous discussion, include a 100-300

km deep fractionated zone originating from an early magma
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ocean. The details of the geochemical structure of the

mantle are not entirely agreed upon although common features

include basal zones of olivine and pyroxene cumulates, crus-

tal plagioclase (late floating cumulate) and some sub-crustal

residual material that is generally enriched in incompati-

ble elements (Taylor and Jakes, 1974; Hollister, 1975; Hub-

bard and Minear, 1975; Wood, 1975; Walker et al., 1975;

Taylor, 1975; Longhi, 1977; Soloman and Longhi, 1977).

Two such models of the lunar mantle composition are shown

in Figure IC-17 (from Taylor, 1975) and Figure IC-18 (from

Hollister, 1975).

Hypotheses for the genesis of mare basalts are

circularly dependent on models of the lunar interior. Most

current models involve simple remelting of various cumulate

layers with or without assimilation of other heterogeneous

pockets or more primitive (deeper, unfractionated) material.

An unbiased critical review of competing models of mare

basalt petrogenesis has not been presented and is beyond

the scope of this description. Discussion of a variety

of these models include Walker et al. (1975), Ringwood and

Green (1975), Hubbard and Minear (1975), Drake and Consol-

magno (1976), O'Hara et al. (1975), Kesson and Ringwood

(1976), Ma et al. (1976), Ringwood and Kesson (1976), Shih

and Schonfeld (1976), and Taylor and Jakes (1974, 1977).
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High pressure equilibrium experiments on lunar

basalts (e.g., Hays and Walker, 1974) can be used to esti-

mate depth of partial melting and the mineralogy of the

residuum (e.g., Ringwood and Essne, 1970) assuming the

sample represents the equivalent of a primary (unfractionated)

liquid. There is still much discussion concerning the

degree to which particular samples can be considered quenched

primary melts or the products of significant fractioniza-

tion prior to extrusion (O'Hara et al., 1975). The exten-

sive literature concerning experimental studies has been

recently evaluated and reviewed (Kesson and Lindsley, 1976).

There is a widespread opinion that the low-Ti parental

magma formed by partial melting of an olivine-pyroxene

mantle at depths of 200-500 km. There is less agreement

concerning the high-Ti basalts with the two prevalent views

being (a) partial melting of an olivine-pyroxene-ilmenite

source at %120 km, or (b) partial melting at or below 240

km of an olivine-pyroxene source that is either intrinsi-

cally enriched in Ti or contaminated by Ti enriched phases

formed at different depths. Both the orange and green glass

present anomalities and may represent partial melts of an

olivine-pyroxene source at depths of 400 km or more. (Al-

ternatively, these unusual glasses may be products of large

degrees of partial melt.)
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Although no experimental data exist for the

Luna 16 high alumina basalts, their bulk chemistry suggests

they could be derived by partial melts of the lower crust

or upper mantle (%40-100 km)(Kurat et al., 1976). The low

initial strontium ratio for Luna 16 basalts (see Figure

IC-16) suggests a distinct source region comparable in Rb/

Sr to that for the low-K high-Ti basalts.

3. Unanswered Questions

Further detailed and extensive study of existing

lunar samples will certainly clarify some of the models

for mare basalt petrogenesis and lunar evolution in gen-

eral. Before any of these models can be generally accepted,

the following questions must be answered concerning the

relation of the lunar samples to the whole moon:

(a) How representative are the samples of the major

geochemical units on the moon? What is the relative glo-

bal proportions of rock types identified in the samples?

What is the geochemistry of unsampled regions?

(b) What is the temporal sequence of mare basalt types?

Are the current patterns seen in the lunar samples repre-

sentative?

Answers to these questions are essential in deter-

mining the composition and degree of heterogeniety (verti-

cal and lateral) of the lunar mantle. The temporal and
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volumetric relations between global basalt types put con-

straints on thermal models related to basalt petrogenesis.

Until further samples are obtained, remote sensing techniques

are the only means by which to derive answers to the above

questions. Information concerning regional and global geo-

chemistry that can be derived from spectral reflectance

measurements is discussed in the remaining sections.
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II. REMOTE SENSING OF THE MOON

A. General: Current Techniques of Remote Sensing

Definition and characterization of planetary surface

units provide the basic framework for understanding the

planet as it currently exists as well as the placing con-

straints on its past history. A variety of techniques cur-

rently exist which provide information about a surface

from remote observations (Figure IIA-1 and Table IIA-1,

from Head et al., 1976). All but one of these remote sens-

ing techniques involve the detection of electromagnetic

radiation; only segments of the electromagnetic spectrum,

however, have been utilized in remote observations (see

Figure IIA-1). Many observations can only be made from

orbit due to the absorption characterisitics of the earth's

atmosphere.

Existing remote sensing techniques were examined in

detail by Head et al. (1976, 1977) and subdivided into three

types according to how the information they provide is used

for mapping the geology and geochemistry of unvisited plan-

etary surfaces: (1) Characterizing (C in Table IIA-l)

techniques allow the classification and characterization

of chemical composition, lithology, or physical features.

(2) Defining techniques (D) help to define the boundaries

and extent of units. (3) Supporting techniques (S) pro-
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Technique

y-ray spectroscopy

X-ray spectroscopy

UV spectroscopy

Spectral Reflectance

Spectral Imagery

Albedo

Polarimetry

Visual Observations,
Photography

Infrared Radiometry

Spectral Emittance

Radar (Backscatter
and Imagery)

a-particle

Type

C
Use or potential use in mare areas

Provides regional variations in Th, K, Ti, Fe, Mg, concentration;
low spatial resolution but general.correlation with mapped units.

C Provides regional variations in Al/Si ratios. Regional varia-
tions seen between and within maria.

S Potential suppoirting technique.

C Provides quantified information on composition, mineralogy, and
soil maturity; e. g., T102 content of mature mare soil, major
mafic mineral content and composition.

D Reveals boundaries of units characterized by specific spectral
reflectance properties. When images are quantitative, some char-
acterizing properties can be mapped if the correct spectral bands
are used. a

D, C Used qualitatively in basic distinction of mare units from high-
lands. Quantitative albedo measurements are used to subdivide
mare units. Within an area of similar maturity, can be used as
an indication of compositional variation.

S Provides information on the surface regolith (as a combined
function of complex refractive index and particle size).

D, C Used in basic definition of unit- boundaries and extent (regional
topography, and local topography such as flow fronts). Other
observations such as surface texture and qualitative estimates
of crater density are useful in unit characterization.

S Measures thermal inertiaK-C; Surface density (blockiness) major
influence but other parameters may have an effect.

C(?) May provide information on Si/O ratio and also mineralogy, if
soil particle size is large. Little data available.

D,C,S Radar imagery helps define extent of some units. Backscatter may
also be helpful as a characterizing and supporting technique by
providing information on crater density, block distributions,
regolith thickness, and composition.

S Provides regional variations in 2 2 2Ra and 2 10 po.

Table IIA 1. uses of remote sensing tec fnl(iues.
(Head et al., 1976, 1977)

H

H
U,
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vide additional useful information but are not necessarily

fundamental to the unit characterization or definition.

The remote sensing techniques that will be discussed

in detail in the following sections and used for geochem-

ical exploration are spectral reflectance and multi-spectral

imaging. Both techniques utilize the spectral character

of reflected solar radiation in the visible and near infra-

red spectral region. The basic principles of the techniques

(described in Section IIC and IID) rely on well-defined

absorption characteristics of transition metal ions (Fe,

Ti, Cr, etc.) in minerals. Spectral reflectance measure-

ments refer to continuous spectra, generally measured for
0

a single small area with 50-300A resolution through the

spectral range of .3 to 2.5pm. Spectral reflectance mea-

surements provide information about the mineralogy of the

surface material and are thus a characterizing technique.

Multi-spectral imaging is used to map a particular spectral

parameter (intensity ratio) in two dimensions. If the

spectral characteristics of a unit can be uniquely defined

with a few parameters, multi-spectral imagery obtained

at the characteristic wavelengths is used to map the regional

extent of the unit. Multi-spectral imagery is thus a de-

fining technique and is currently used through the spectral

range .35 to l.Opm (being limited by the sensitivities of

two-dimensional detectors available).
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II. REMOTE SENSING OF THE MOON

B. Outline of Previous Work in Spectral Reflectance

Prior to the late 1960's, most of the astronomical ob-

servations concerning the color of the moon was either

photographic imagery or broad band photometry. The photo-

metry was obtained primarily with the classical astronomical

filters: U (.35pm), B (.45pm), V (.55pm). This early work

showed that small color differences exist from place to

place on the moon, but no geological or geochemical signi-

ficance was discerned or attempted. A thorough summary of

this data can be found in McCord (1968a).

In the late 1960's, two types of research were begun

whichhave since both merged and expanded into the general

field of spectral reflectance of the lunar surface. In 1968

high precision photoelectric measurements were obtained of

the reflectance from .40 to .80pm of many (83) small lunar

areas relative to a standard lunar area (McCord,1969a).

Such measurements were later expanded to include the spec-

tral range from .40 to 1.10pm for about 20 areas (McCord

and Johnson, 1969). Concurrently, spectral reflectance

measurements in the visible and near infrared were being

made in the laboratory forsamples of powdered rocks

and minerals (White and Keester, 1966; Adams and Filice,

1967). It was recognized that the spectral differences

observed remotely using a telescope were intimately related
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to and dependent on the geochemistry of the material ob-

served (Adams, 1968; Adams and McCord, 1970). Strong sup-

porting independent evidence for this hypothesis was provided

by the interpretation of transmission spectra of oriented

crystals using crystal field theory (e.g., Burns and Fyfe,1967

Burns,1970a). The interpretations of transmission spectra

of minerals provided sound theoretical basis for linking

the spectral characteristics of rocks and minerals to their

geochemistry (see Section II-C-1).

An abundant amount of research concerning spectral re-

flectance ensued, largely as an outcome of this intial pio-

neering work by McCord and Adams. For this review, the

relatively recent telescopic and laboratory research results

reported in the scientific literature have been divided for

convenience into six catagories and are outlined below.

Some papers have signficant amounts of material that fall

into more than one category. Not included are a scattering

of additional broad-band lunar photometry that either con-

firm earlier work or are not relevant to a discussion of

spectral features of lunar material.

1. Laboratory Reflectance Measurements: General

During the last decade, a large number of reflectance

spectra have been obtained in the laboratory for powdered

samples of rocks, minerals, and soils. The spectral region

of interest here is from .30 to 2.5Pm. The laboratory
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measurements have been obtained generally with a high

resolution (50A) spectrometer that measures the diffuse

reflectance of a sample relative to that of a "white"

standard such as smoked MgO.

About ten years of research on the spectral reflectance

of lunar, meteoritic, and terrestrial samples is presented

by Adams (1974, 1975). The direct relationship between

laboratory reflectance measurements of returned lunar

soil and telescopic measurements of the surface at the

landing area was described by Adams and McCord (1970).

A sequence of research reports followed as more lunar

samples became available (Adams and McCord, 1971a, b, 1972,

1973). The problems of how the optical properties of

lunar soils are related to those of the parent -rock was

discussed by Adams and McCord (1971a) and Nash and Conel

(1973). A review of the spectral reflectance properties

of lunar soil is in preparation (Adams and Charette, 1977).

An extensive catalogue of spectral reflectance curves

for a variety of terrestrial rocks and minerals with roughly-

defined geochemistry is provided by Hunt and Salisbury

(1970, 1971, 1976a, b), Hunt et al., (1971a, b, 1972,

1973a, b, c, 1974), and Salisbury et al. (1975). Reflec-

tance spectra of carefully chosen meteoritic samples have

been extensively analyzed and catalogued by Gaffey (1973,

1976). The problems of deconvolving a rock spectrum to
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obtain information about the mineral components is discussed

by Adams (1976) and in more detail by Gaffey (1977). Var-

iations in the spectral properties of minerals in a prepared

mixture is presented by Pieters (1972, 1974) and Nash and

Conel (1974).

2. Telescopic Reflectance Measurements: General

Most of the telescopic spectral reflectance measurements

have been made with some form of a photoelectric filter

photometer. The wavelength range and resolution has varied,

but to date most measurements have been limited in the near-

infrared to the spectral sensitivity of an S-l photomultiplier

detector (X<l.lym) (e.g., see McCord et al., 1972a), although

a few low resolution lunar spectra have been obtained to

2.5pm (McCord and Johnson, 1970).

A variety of reports have been presented containing

a large number of telescopic lunar reflectance spectra

(McCord et al., 1972a, b; Pieters and McCord, 1976; Pieters,

1977). The time variation of relative lunar color was

examined by McCord (1969b) and found to be small with no

evidence for significant luminescence (McCord, 1967). The

general phase function of the moon was described by Hapke

(1971) and was measured by Lane and Irving (1973). The

wavelength dependence of the phase coefficient was measured

also by Lane and Irving for nine filters from .35 to l.0pm
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and later by Nygard (1975) with 25 filters from .3 to 1.lpm.

The spectral types evident in spectra of about 200 small

(10 to 20 km diameter) lunar areaswere presented by McCord

et al. (1972a). An analysis of the relationship between the

spectra of these areas and the geologic units defined by the

USGS mapping program was summarized by Charette et al. (1974).

Spectral data for the then current and proposed Apollo landing

sites were presented by McCord et al. (1972b).

3. Telescopic Spectral Images

Three distinctly different techniques have been used to

obtain spectral images of the moon: (1) photography, (2) line

scan, and (3) vidicon imagery. A thorough review and discus-

sion of multispectral mapping is given by McCord (1976).

The most widely used photographic color-difference images

were published by Whitaker in 1972. Higher quality pictures

have since been produced, but are unpublished (Whitaker, per-

sonal communication). Barbarshov (1973) used the same photo-

graphic technique to produce a color difference image of the

full moon. He calibrated and digitized the image and published

a low spatial resolution map (in color) of the color difference

data.

A low spatial resolution spectral map of Mare Serenitatis

and Mare Tranquillitatis was produced by Soderblom (1970) from

photoelectric line scans with high photoelectric precision
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using three visible filters. Later a similar high-precision

low-resolution spectral map of the full moon was produced (Soder-

blom et al., 1976).

Digital vidicon spectral images have been obtained by

two independent groups, one at MIT and the other at JPL. The

latter has concentrated on intensive study of specific regions

(e.g., Johnson et al., 1975b), and have often integrated other

forms of remote sensing with the spectral data (see Section

6 below). The MIT group (McCord et al., 1976, 1977) has under-

taken a program to map the entire lunar frontside at high spatial

resolution (%2 km) with three carefully chosen spectral band-

passes. A number of spectral images from this larger program

have also been used in specific studies of lunar geology (see

Section 6 below).

4. Laboratory Reflectance Measurements: Applied

As the number of available laboratory lunar spectra in-

creased, the information that could be derived from spectral

reflectance data of the moon became increasingly more defined.

With the return of the first samples (Adams and Jones, 1970;

Adams and McCord, 1970; Conel and Nash, 1970), the direct

link between laboratory and telescopic measurements was made.

The darkening of lunar soil with surface age was first discussed

by Adams and McCord in 1971b. Effects of dark basalt glasses

(artificial) in lunar soils was further discussed by Adams
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and McCord (1971a) and by Nash and Conel (1973). The spectral

dominance of pyroxenes in reflectance spectra of lunar rocks

was described by Adams and McCord (1971a, 1972) along with

a discussion of the geochemical interpretations that can be

derived from the energy of characteristic absorption bands.

Diffuse reflectance measurements of pyroxenes were interpreted

in more detail by Adams (1974).

Using reflectance spectra of magnetic separates for num-

erous Apollo 16 soils, Adams and McCord (1973) linked the spectral

maturation of lunar soils with the accumulation of the dark

glass-rich agglutinates. The effects of maturation on a re-

flectance spectrum of lunar soil was further characterized

by Adams and Charette (1975). The related geochemical processes

involved with agglutinate formation were discussed by Charette

and Adams (1975a)and Rhodes et al. (1975).

Laboratory reflectance measurements of mature mare soil

samples were used to define the relationship between TiO 2 con-

tent and continuum slope in the blue and ultraviolet (Charette

et al., 1974). An understanding of this relationship led to

the prediction of high-titanium material in the Apollo 17

region (Pieters et al., 1973). A clarification of this tech-

nique for determining TiO2 content from remote observations

is presented by Adams (1977). The identification of-the dark

mantling material at Apollo 17 resulted from laboratory spec-

tra of the orange and black glasses obtained at Shorty crater
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(Pieters et al., 1974; Adams et al., 1975). A method for

determining the FeO content for lunar soils from reflectance

measurements i-s being examined by Charette and Adams (1977).

5. Telescopic Reflectance Measurements: Applied

After the general spectral types of lunar maria and high-

land regions had been defined (McCord et al., 1972a), it be-

came possible to use telescopic spectral reflectance measure-

ments to solve specific problems of geology and geochemistry.

Many regions of dark mantling material were shown to have

unique spectral characteristics (Pieters et al., 1973) that

were later linked to the orange and black glass beads of

Apollo 17 (Pieters et al., 1974; Adams et al., 1975). From

spectra for over 30 areas in Mare Humorum (Johnson et al.,

1973) it was determined that two basaltic units filled the

central basin, one a medium-high titanium basalt, the other

a low titanium basalt. The geochemical units of this region

were later more explicitly defined using more remote sens-

ing information (see Section 6 below). The sampled and un-

sampled mare basalt types were defined and partially char-

acterized from spectra of over 120 mature mare regions (Sec-

tion III;Pieters and McCord, 1976). This characterization

of basalt types allowed a regional description of the basalt

types at the recent Luna 24 landing site in Mare Crisium
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using vidicon spectral imagery (Pieters et al., 1976).

A characterization of the spectral types for spectra of high-

land and mare craters was presented by Pieters (1977).

6. Spectral Reflectance: Application with other

forms of remote sensing

A current trend of applied research is to integrate

data from numerous remote sensing sources for one specific

region or problem. It is recognized that the whole is of-

ten greater than the sum of its parts. Spectral reflectance

lends itself particularly well to synthesis studies that

aim at in-depth description of regional geology or geochem-

istry. In some cases, however, the results of synthesis

studies have not been significantly useful. The approach

of the synthesis team as well as the inherent value of the

data are not uniform for all studies reported. An evalu-

ation of the various remote sensing techniques currently

in use can be found in Head et al. (1976a, b) as they apply

to unit definition and characterization.

Most remote sensing synthesis studies have been con-

cerned with particular regions. These include Mare Imbrium

(Schaber et al., 1975), Mare Serenitatis (Thompson et al.,

1974), Mare Humorum (Pieters et al., 1975), Lamont (John-

son et al., 1975a), Aristarchus (Zisk et al., 1976), and
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Flamsteed (Pieters et al., 1977). Saunders et al., (1977)

have converted a variety of remote sensing data to a

database that can be conveniently manipulated using com-

puter processing techniques. A few studies have been di-

rected towards understanding more completely "special"

types of lunar areas such as areas of dark mantling mater-

ial (Pieters et al., 1973; Adams et al., 1975) or areas

of suspected highland volcanism or sources of KREEP

material (Malin, 1973; Head and McCord, 1977).
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II. REMOTE SENSING OF THE MOON

C. Principles of Spectral Reflectance

1. Optical Properties of Minerals

In order for reflection spectroscopy to be accepted

and used as a technique for remotely determining surface

mineralogy, the principles of physics and chemistry that

govern optical absorption in minerals must be sufficiently

understood. Absorption (transmission) spectra have been

obtained for a variety of terrestrial, meteoritic, and lunar

rocks and minerals generally through the spectral range from

0.30 to 2.50pm (e.g., Burns et al., 1975, Bell et al., 1975).

Over this spectral range there are primarily three general

types of absorption features observed: (a) bands due to

crystal field electronic transitions within a transition

metal ion, (b) bands due to intervalence charge transfer

transitions between two neighboring ions, and (c) molecular

vibrational bands. Since the few vibrational bands (attri-

butable to OH-, CO ~ ligands as well as H 2 0 and CO 2 mole-

cules) are not observed in lunar material, only the elec-

tronic absorptions will be discussed here. The strength

and sharpness of absorption features in a spectrum varies

somewhat as a function of temperature (Sung et al., 1977)

and pressure (Mao and Bell, 1972).
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a. Crystal Field Transitions of Transition Metal

Ions

The first series transition metals (Table TIIC-1;

from Burns, 1970a) constitute about 40% of the earth

(primarily iron) and play at least a comparable role

in extraterrestrial material (Mason, 1966). In rock

forming minerals, ions of these elements are char-

acterized by incompletely filled inner 3d atomic or-

bitals (see Table 1). In an isolated environment,

the five d orbitals of transition metal ions are de-

generate although the spatial distribution of elec-

tron density in each orbital is distinct (Figure

II-C-la from Burns, 1970a). When a transition me-

tal ion is incorporated into a crystal structure or

is surrounded by negatively charged ligands, the en-

ergy level of the d orbitals loose their degeneracy.

Electrons in the orbitals are repelled by the surround-

ing ligands with the resulting energy level of each

orbital being dependent on the orientation of the

electron orbital with respect to the ligands. In

crystal field theory, the anions are considered as

point charges and any covalent interaction between

anion and cation is ignored. For an ion in a regu-

lar octahedral crystal field (six-fold coordination)

the dz2 and dx2_y 2 orbitals, which are oriented along



Electronic configurations and crystal field stabilization energies of transition metal ions

in octahedral co-ordination

High-spin state Low-spin state

Number of Electronic configuration Unpaired Electronic configuration Unpaired

3d electrons Ion te, e, electrons CFSE t2, e, electrons CFSE

o Ca2+, ScS+, Ti4 + o o o o
I Tie+ R IAO 1 AA
2 Ti2+, V3+ t f 2 IAA t t 2 IAO
3 V 2+,Cr, Mn' t t 3 IAO t t t 3 IAO
4 Cr2+, Mn+ t t 4 AIA 4 t 2 IAO
5 Mn2+, Fes+ tf 5 0 Ui U4 I a
6 Fe 2

+, Co+,Ni'+ 1 t t f t 4 SAO 14f414 0
7 Co2+, Nis+ U 4U t 1 3 IAO 14 144 t IAO
8 Ni2+ 141414 A t 2 IA0  14144 f 1 2 IA0
9 Cu+ 14 14 4 1411 AO 14 4 4 t SAO

10 Zn +, Ga3+, Ge'+ U 1414 0 0 141414 141 0 0

(Burns, 1970a)

H-
H
(T2

Table IIC 1.
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the axes of the octahedron, are of higher energy than

the d y , d z' and dxz (Figure II-C 1c). Distortions

of the octahedral site will cause further splitting

of the d orbital energy levels. This energy separ-

ation of the d orbitals is largely dependent. on the

type and valence of transition metal ion as well as

the crystal field environment it is subjected to

(Burns and Fyfe, 1967).

Absorptions occur in the spectra of minerals

containing transition metal ions as ad orbital elec-

tron is excited to a higher energy state by an incom-

ing photon. The energy of the absorption is equiva-

lent to the difference in energy between the ground

state and excited state of the ion. Absorption fea-

tures characteristic of particular ions,in particular

crystal structures,can be interpreted and predicted

by the application of crystal field theory to describe

the relative energies of the d orbitals (Burns, 1970a).

Absorption characteristics of a material are thus

directly linked to its mineralogy.

Two types of crystal field d orbital transitions

can be considered: (1) spin allowed and (2) spin

forbidden, with the latter being about two orders

of magnitude less intense than the former. Both
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types occur in the transmission spectrum of an ortho-

pyroxene shown in Figure IIC -2 (from Burns 1970a).

The two broad absorptions centered near 1 and 2 mi-

crometers are due primarily to Fe2+ (with six d or-

bital electrons) in the distorted M2 octahedral site

of the pyroxene. These absorptions for which both

the ground state and the excited state have the same

number of unpaired electrons are spin allowed. The

sharp weak absorptions that occur at higher energies

here are attributable to spin forbidden transitions

of Fe2+ (Burns and Vaughan, 1975) for which the ex-

cited state has a spin multiplicity different from

the ground state.

b. Charge Transfer Transitions

Many of the intense mineral absorptions that

occur in the visible and ultraviolet arise from elec-

tronic transitions between neighboring ions. Since

there is possible overlap between electron orbitals

of neighboring ions, the anions should not be treated

as point charges in this interaction and crystal

field theory is inappropriate to interpret the anion--

cation and cation-cation charge transfer transitions.

Recently, molecular orbital theory, which provides

a more complete description of the electric structure
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Figure IIC 2. (Burns, 1970a)
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of a compound, has been used successfully for the

calculations of the energy of many such transitions

(Tossel et al., 1974; Loeffler et al., 1974, 1975)

and has achieved good agreement with experimental

values for band centers (Burns et al., 1976).

Oxygen-to-metal charge transfers bands generally

occur well into the ultraviolet and are thousands

of times more intense than the crystal field bands

discussed above (Bell et al., 1975). The side wings

of these bands extend into the visible and often into

the near infrared causing the continuum of most sil-

icates to be curved with increasing absorption towards

the ultraviolet.

Cation-cation intervalence charge transfer ab-

sorptions occur between metal ions in adjacent coor-

dination sites sharing a common edge or face and are

directional or strongly polarization dependent. Since

both the concentration of metal ions and the degree

of orbital overlap affect the intervalence charge

transfer, such absorptions are observed with a wide

range of intensities (Burns and Vaughan, 1975). Some

of the most common homonuclear intervalence transfer

transitions are Fe 2+-+Fe3+ and Ti+-Ti4 . A variety

of heteronuclear charge transfer processes can also



IIC 177

occur between the different oxidation states of iron

and titanium, the most common of which is Fe 2+ Ti4

(Burns and Vaughan, 1975).

Since a variety of charge transfer and crystal

field absorptions overlap in the visible and ultra-

violet, it has been difficult to empirically inter-

pret absorption features in this part of the spectrum.

Bell et al. (1975) and Huguenin (1975) have made con-

siderable progress in band assignment for 02-+Fe3

in ferric oxides. Burns et al. (1976) have sorted

out a number of the numerous transitions involving

titanium and iron in terrestrial and lunar materials.

2. Reflectance of Minerals and Rocks

a. Physical components of reflection.

The optical properties of minerals discussed

above have been examined primarily using transmission

spectroscopy of oriented individual grains where the

percent transmission or absorbance is measured through

the material as a function of wavelength. Reflection

spectroscopy, on the other hand, is defined as the

wavelength dependence of the ratio of the light re-

flected from a surface to that incident upon it.

Most natural surfaces are rough or particulate and

the reflected radiation contains both (1) a specular
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and (2) a diffuse component (Figure IIC -3). The

strength of each component in natural reflection is

directional, i.e., dependent on the geometry of illu-

mination and observation.

The specular component of directional reflectance

from a silicate powder or soil is a first surface

reflection and is described by Fresnell's equations

for reflection from a dielectric. Figure IIC -4 shows

the percent reflectance for a single surface reflec-

tion as a function of phase angle for a silicate with

a real refraction index of 1.5. The phase angle is

the angle between the source-object-detector, or the

sum of the angle of incidence and the angle of

reflection. The Brewster angle for such a material

is near 57 degrees and the total reflected radiation

is therefore 100% polarized at a phase angle of about

114 degrees. This specular component of reflection

contains no measurable spectral information in the

spectral range between .3 and 2.5pm. The variations

of the absorption coefficient in the visible and

near infrared are too small to significantly effect

the refractive index.

The diffuse component of surface reflection con-

tains radiation that has been transmitted through
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one or more grains and scattered randomly back into

space. This body component contains all the spectral

information of transmitted light; it is the sum of

transmission through randomly oriented crystals.

This random orientation of surface crystals, however,

causes any phase or polarization information from

birefringent materials to be scrambled and lost.

Nearly "pure" diffuse reflectance can be measured

in the laboratory by placing the sample in a white

diffusing sphere. Such an arrangment either (1)

causes diffuse light to be incident upon the sample,

or (2) allows the detector to view only the integrated

reflected radiation Most of the

specular component of reflection is thus eliminated.

b. Mean optical path length (MOPL)

For any given material the strength of absorption

features in a reflectance spectrum varies according

to both the absorption coefficient and the average

distance light is transmitted through the particles,

or the mean optical path length (MOPL). For a mix-

ture of materials, this MOPL is a complicated func-

tion of both the particle size and the general opa-

city of the components. Figure IIC -5 illustrates

the effects of particle size on the strength of an
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absorption band centered at .91pm in the spectrum

of an orthopyroxene, En89 . A measure of the band

depth is listed in Table TIIC.- 2 . As the particle

size decreases, the sample becomes brighter and the

band depth decreases due to a reduction of the MOPL

with increased scattering at particle interfaces.

For a near transparent substance, such as SiO 2 glass,

the MOPL was estimated to be between 2-4mm for par-

ticles between 500-250im in diameter, <2mm for par-

ticles between 250-125pm, and only hundreds of micro-

meters for particles <l25pm (Pieters, 1972, Appendix

A). These estimates of MOPL are upper limits; the

MOPL for semitransparent materials would be smaller.

The general opacity of a material strongly ef-

fects the MOPL of reflected radiation. Figure IIC -6

contains spectra for mineral mixtures with particle

size held constant. These mixtures contain various

amounts of (1) a material with a well-defined absorp-

tion band (the orthopyroxene of Figure TIC -5), (2)

a very absorbing but featureless material (magnetite),

and (3) a featureless transparent material (iron-free

plagioclase). The addition of transparent material

brightens the mixture and the addition of absorbing

material darkens the mixture, but in a nonlinear manner.
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Table iic 2. Band depth of sa7,nles measured

1 2 3
RT(.91)/Rn(.73)

SA MPLE

E 250,125]
E j125, 6

E<125

E<63

Evf

P100

P90

P50
PlO

E100

M10

M50
M 90

M100

PARTTICLE SLZ (microns)

250 > ns> 125
125 > -os 63

less than 125

less than 63

very fine

less than 125

less than 125

less than 125

less than 125

less than 125

less than 125

less than 125

less than 125

less than 125

DIFFUSE

.291

.29

.37

.4*

.622

1001

.74

.50

.37
.37
.49

.74
.87
.87

90' iTh.se

.25

.31

.38

.44
.56

1.04

.77

.53

.40

.38

.52
.75
.91

.92

1 saturated band

.2 partially oacked

4
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The reduction of band depth (Table IIC -2), by an

addition of 10% magnetite, is equal to the reduction

effects of a 50% addition of plagioclase. The absorb-

ing material severely reduces the MOPL whereas the

transparent material simply dilutes the spectral

features.

c. Spectral features of minerals

The absorption features in reflectance spectra

for a variety of mineral powders have been measured

in the laboratory (see Section IIB for a review).

Most of these features can be well understood from

crystal field theory if the geochemistry of the ma-

terial is sufficiently well defined. The uniqueness

of absorption features in well characterized minerals

has been examined by Adams (1975) and is best summa-

rized in the "A-A" figure of IIC - 7 (from Adams,

1975). To form this omni-mineral figure, the energy

of each absorption in a reflectance spectrum was dis-

cerned, and the short wavelength (high energy) band

position was plotted against the long wavelength (low

energy) band position. Those minerals that have more

than two absorption features occur on the plot more

than once; those minerals that have a single absorp-

tion band are plotted separately. Many of the sub-
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tleties of a reflection spectrum are lost in such

a figure, but it illustrates the fact that most min-

erals can be characterized by their absorption fea-

tures. The major non-opaque constituents of lunar

basalts (pyroxene, olivine, plagioclase, and glass)

are discussed below.

i. PYROXENES. Two major spin-allowed Fe2+ ab-

sorption bands occur in the diffuse reflectance spec-

trum of pyroxene (Figure IIC -8). These bands cen-

tered near lhm and 2pm define a pyroxene trend in

Figure IIC2-5; they vary as a function of pyroxene

composition in a well-ordered manner. Figure IIC -9

is a similar A-A plot with only pyroxenes included.

The distinction between orthopyroxenes and clino-

pyroxenes is clear in this figure. The trend of band

centers proceeds to the right with increasing Fe and

Ca content of the pyroxenes. The quantification of

this compositional trend is shown in Figure IIC 10

(from Adams, 1975). Several pyroxenes (e.g., clino-

pyroxenes with Cr 3+ or Fe3+) have a more complicated

spectrum with more than two bands present. These

pyroxenes define different but distinct regions

in Figure IIC - 7.

ii. OLIVINE. Several transitions occur for Fe2+
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in the centrosymmetric Mi and the non-centrosymmetric M 2 sites

of olivines (Burns, 1970b). In a diffuse reflectance spec-

trum, the combination of these transitions is a broad non-

symmetric band with a minimum between 1.0 and 1 .lym (Figure

IC-11). The depth of this composite band increases with

increasing iron and the center shifts to longer wavelengths.

The overall extinction coefficient for olivine is much

less than that for pyroxenes; pure olivine (%Fo)so is rela-

tively bright.

iii. FELDSPARS. Pure plagioclase has a feature-

less spectrum (see Figure IIC-6). However, when even small

amounts of Fe2+ and Fe3+ are accommodated in the Ca or Al

sites, distinct absorption features are discernable. When

only Fe2+ is present (as in the lunar case), the plagioclase

feldspars show a broad crystal field absorption band with

a minimum between 1.1 and 1.3pm as seen in Figure IIC.-12

(from Adams and McCord, 1971a). It appears that the po-

sition of this band is controlled by the % anorthite (Adams,

1975).

iv. GLASS. Two broad absorptions generally occur

near 1 and 2pm if Fe2+ is present in a pure (not devitri-

fied) glass. These two bands are not only much broader

than those that occur in pyroxenes, but they are also closer

together (Figure IIC-13). The lym band is due to Fe2+
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in octahedral sites whereas the 2pm band, when present,

is possibly due to Fe2+ in a tetrahedral site (Boon and

Fyfe, 1972). Transmission spectra of synthetic glass in-

dicate that the strength of the lym band is directly related

to the iron concentration in the glass (Bell et al., 1976).

For lunar materials, the term "glass" has often been used

to refer to the dark glass-welded aggregates abundant in

soils. These agglutinates are an inhomogeneous mess of

glass, mineral fragments, submicroscopic particles and

sometimes native iron. A broad weak band exists near lym

in agglutinate spectra (Adams and Charette, 1977). The

strength of this band appears to be related to FeO content

of the soil but in a complicated manner dependent on the

other ill-defined components of the agglutinates (see Sec-

tion IIC-la).

d. Spectral components of a whole rock spectrum

A rock is usually composed of a mixture of min-

erals and the strength of an absorption band is a function

of the composition of the absorbing mineral, the average

particle size, and also the opacity of the other components,

with the latter often being a dominant effect. The spec-

tral component from each constituent mineral of lunar rock

12063 can be seen in Figure IIC-12 (from Adams and McCord,

1971a). The whole rock spectrum is clearly dominated by
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the pyroxene component (51% modal abundance). The promi-

nent 1.25pm Fe2+ band of the plagioclase (27%) is seen as

a subtle but distinct inflection in the whole rock spectrum.

Ilmenite darkens the spectrum.

Subtle features can nevertheless often be deconvolved

from a spectrum using computer processing techniques (Gaf-

fey, 1975). There are two basic difficulties which must

be overcome in order for a rock or soil spectrum to be

deconvolved into the spectral components for each mineral

present. First, the general slope of the continuum must

be removed. (This means the wings of poorly-defined high

energy (UV) absorptions that always effect the slope of

the visible and near infrared spectrum must be eliminated.)

Secondly, the stronger absorption bands need to be suffi-

ciently well defined and removed so that remnant weaker

bands can be examined. Figure IIC-14 illustrates such

a deconvolution of the spectrum for the Haraiya meteorite

(from Gaffey, 1975). As described in the previous section,

the wavelength and symmetry of each absorption band is di-

rectly a function of the mineralogy of the sample; the rela-

tive strength of bands from different minerals in a whole

rock spectrum can be used to estimate the relative modal

abundances of constituent minerals (Gaffey, 1975).
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II. REMOTE SENSING OF THE MOON

D. Spectral Reflectance of Lunar Material

The application of spectral reflectance measurements

to understanding the lunar surface incorporates both the

laboratory measurements of returned lunar samples and the

telescopic measurements of small lunar regions (10 to 20

km in diameter). An additional source of spectral infor-

mation comes from multi-spectral imagery which allows gen-

eral spectral differences to be mapped in two dimensions.

(Most of the spectral data relevant to the following dis-

cussion is derived from coordinated research of two groups--

one organized by McCord at MIT/Hawaii and the other by

Adams at University of Washington, Seattle.)

1. Soils

As mentioned in the review of Section IIB, the

laboratory measurement of a representative soil sample from

Apollo 11 was in close agreement with the telescopic measure-

ment (.3 to 1.lpm) of the landing site (Adams and McCord,

1970). Figure IID-1 (from McCord and Adams, 1973) illus-

trates the agreement between the telescopic spectra and

the laboratory spectra of soils returned from subsequent

missions. The early studies by Adams and McCord demonstrated

(1) that the telescopic spectra of small regions were com-
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parable to spectra of soils, rather than rock fragments

or chips, and (2) that well-chosen soils can be considered

representative of the surrounding 10 - 20 km regions measured

telescopically.

When compared to other solar system objects and

terrestrial samples, mature lunar soil has a distinct spec-

trum: a steeply sloped red continuum with a very weak ab-

sorption bgnd near lym and sometimes also 2pm (Figure IID-2).

Mercury is the only object with a comparable red spectrum,

but without distinct absorption bands (McCord and Adams,

1972; Vilas and McCord, 1976; McCord and Adams, 1976; Adams

and McCord, 1977). Only through extensive study of the

lunar samples has the significance of this peculiar char-

acter of lunar soil spectra been illuminated.

Lunar soils are largely derived from the prevalent

rock type of the region (with a small amount of contamina-

tion due to lateral transport of impact material). The

main weathering mechanism is largely micrometeoroid bombard-

ment, although the processes involved in soil development

are not all defined. As the soil matures, particles are

finely crushed and broken and also welded together by im-

pact generated melts into friable aggregates called agglu-

tinates (e.g., McKay et al., 1974). The subsequent accum-

ulation of these dark agglutinitic particles dramatically
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changes the mineralogy of the soils from that of the parent

rocks, although the bulk composition only undergoes a minor

(contamination) alteration. As a soil matures, the spec-

tral changes that occur are mostly due to the replacement

of mineral fragments with the absorbing glass-welded agglu-

tinates (Adams and McCord, 1973). The spectrum of a mature

soil is almost wholely dominated by the spectral character-

istics of the multi-component agglutinates. A discussion

of the special character of agglutinates is thus presented

here before a general discussion of soil spectra.

a. Agglutinates

Adams has used a magnetic separation technique

to separate the agglutinitic and non-agglutinitic components

of a soil (Adams and McCord, 1973). Shown in Figure IID-3

(from Adams and McCord, 1973) are spectra for bulk soil

(B) samples 67461 and 68841, the agglutinitic (magnetic--

M) separate, and the non-agglutinitic (non-magnetic--N)

component. The albedo of the bulk soil is intermediate

between that of the agglutinitic and non-agglutinitic con-

centrates. Mature soils contain %60% agglutinates as meas-

ured by the magnetic separation technique. The chemistry

of lunar soil may be somewhat partitioned between aggluti-

nitic and non-agglutinitic components with the ferromagnesian

elements concentrated in the agglutinates (Rhodes et al.,
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1975). Since it is these agglutinates that dominate the

spectrum of such soils, it is useful to understand the spec-

tral nature of a number of key components that have a special

character in lunar agglutinates: Fe-Ti bearing glasses,

FeO (microscopic), and ilmenite and other opaque phases.

The spectral character of the mineral fragments, which

are significant components in agglutinates, but often with

subtle spectral effects, were discussed in greater detail

in Section IIC-2c.

i. Fe-Ti RICH GLASS. A relatively pure Fe-

Ti rich glass sample was separated from soil sample 10084.

The spectral reflectance properties of this glass are shown

in Figure IID-4. The color of lunar glasses is caused pri-

marily by various electronic transitions between and within

Fe2+, Ti3+ and Ti+ ions. Using transmission spectroscopy

and controlled experimental techniques, Bell et al. (1976)

have carefully documented the spectral effects of iron

and titanium concentrations in synthetic glasses as a func-

tion of oxygen fugacity. These concentration systematics

were shown to be equally valid for reflectance spectra of

glasses (Wells and Hapke, 1977). Figures IID-5a,b (from

Bell et al., 1976) illustrate the following spectral char-

acteristics for glasses produced at oxygen fugacities com-

parable to the lunar condition: (1) An iron-rich, titanium
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free glass is weakly absorbing throughout the visible region

(minimum absorption between .5 and .6pm; i.e., green glass)

and contains a well-defined Fe2+ broad absorption band (crys-

tal field) centered around 1.01pm. (2) If titanium is in-

cluded in an iron-rich glass, a strong absorption occurs

toward the blue and ultraviolet (i.e., red glass), the strength

of which is related to the amount of titanium. The strength

of this absorption is also very sensitive to the effective

oxygen fugacity. The Fe2+ 1.0pm feature is only slightly

affected by the addition of titanium. (3) Only the concen-

tration of iron affects the strength of the broad 1.0pm

feature. (4) The concentration of both iron and titanium

affect the strength of the UV absorption (with titanium

perhaps playing a stronger role.) (5) In a Ti-rich glass

without iron, a relatively weak absorption is detected near

.5pm due primarily to Ti3+ (crystal field absorption) al-

though Ti3+ -+Tj4+ may also occur (charge transfer absorption).

This feature is associated with a purple color of such glasses

and increases in strength with lower oxygen fugacity. These

transitions were identified by Burns et al. (1976).

Due to the strong absorption towards the

ultraviolet, iron- and titanium-bearing glasses are certain

to have a significant effect on the continuum slope of re-

flectance spectra for mature lunar soils. The very broad
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lym feature common to reflectance spectra of all mature

lunar soils is typically a result of FeO in the agglutini-

tic glass (Charette and Adams, 1977b).

ii. Fe0 . Small particles of iron metal were

observed in the first returned lunar soils (Agrell, 1970).

From magnetic and Mossbauer techniques, it was further

shown (e.g., Housley et al., 1973) that submicroscopic metal

grains are enriched in mature soils. Evidence has been

accumulating that these fine metal grains have a signifi-

cant effect on the spectrum of a lunar soil even though

they account for <1% of the bulk composition. Hapke et

al. (1975) propose that the principle darkening effect

for lunar soils is submicroscopic Fe0 formed in impact events

and solar wind sputtering. Gaffey (1976) showed that al-

though metal iron is opaque to visible and near infrared

radiation, its spectral character in reflected radiation

is a distinctive smooth but red continuum. For meteorite

specimens, a red continuum is clearly associated with Fe0

content in a mineral mixture. This is an observed and

well-documented effect (Gaffey, 1974, 1976) although theo-

retical descriptions of how iron particles interact with

light in a mineral mixture are complicated by the fact

that iron is a conducting material rather than a semi-transparent

dielectric. A key difference between lunar agglutinitic
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metal and that found in meteorites is particle size--the

lunar particles in agglutinates are submicroscopic (%200A)

whereas the meteoritic iron is easily identified with nor-

mal petrographic techniques. Mie theory calculations by

Conel (1970) show that the extinction due to scattering

and absorption of radiation by submicroscopic particles

of iron or ilmenite is much stronger in the blue and ultra-

violet than in the near infrared. The overall spectral

effects of submicroscopic metal iron inclusions, therefore,

is to preferentially absorb blue and ultraviolet radiation

(whatever the cause). With further theoretical and labor-

atory analyses, a distinction between scattering and reflec-

tion effects should be possible.

Recently Bell and Mao (1977) have been

able to obtain a transmission spectrum for a portion of

a lunar agglutinate that is rich in submicroscopic FeO par-

ticles. For comparison they produced thin (10 - 100R) coat-

ings of Fe on transparent powders (silica glass). The re-

sults are shown in Figure IID-6. Their data show an increased

absorption towards the ultraviolet associated with the

metal iron. Although they could not guarantee that no ox-

idation had occurred during the laboratory analysis for

both the lunar sample and the coated grains, the similar-

ity between the two iron-bearing spectra is striking.
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A purely empirical piece of evidence for

the effects of Fe0 on mature soil spectra results from attempts

to characterize the lunar continuum sufficiently well to

examine superimposed absorption characteristics. It was

found that a fit of Gaffey's (1977) iron metal continuum

to a lunar soil spectrum accounted remarkably well for the

red slope in the near infrared. Such a continuum was re-

moved from the spectra in Figure IID-9-16 to examine the

lym feature in better detail. For very dark soil, it ap-

pears the continuum approximation of Fe0 is not as good

as for bright soil.

Although the effects of submicroscopic

iron particles on a reflectance spectrum of lunar soils

are currently poorly understood, it is likely that they

are significant. Small amounts of metallic iron probably

contribute to the darkening of the soil and help account

for the distinctive red continuum of lunar soils.

iii. ILMENITE AND OPAQUES. Ilmenite is the

most abundant opaque mineral in lunar samples and accounts

for up to 25% of modal abundances for the igneous basalts.

Ilmenite is present in lunar agglutinates as remnant min-

eral fragments, some of which are very finely dispersed

throughout the glassy matrix. Although the dominant effect

of opaque ilmenite particles in a soil is to darken the
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soil and lower the spectral contrast of other mineral fea-

tures (see Section IIC-2d), ilmenite is not without its

own spectral character. Two prominent absorption features

near .65 and 1.25pm were observed for the unique thin il-

menite plates in the glassy spheres of 74001 (Figure IID-l-7,

from Adams et al., 1975). The finest grain size in basal-

tic rocks do not generally allow the spectral character

of ilmenite to contribute to a rock spectrum. However,

if the particles are sufficiently small, they could inter-

act significantly with the reflected radiation. Small il-

menite particles primarily contribute to the darkness of

the agglutinitic material but for some samples may also

allow the 1.25pm ilmenite band to slightly affect the sym-

metry of the lym absorption in a soil spectrum.

iv. MINERAL COMPONENTS. The spectral char-

acteristics of the other major mineral components in lunar

basalts, and hence in soil agglutinates, was discussed

in Section IIC. Briefly, these include: two strong, sym-

metric absorption bands near 1 and 2plm from pyroxenes;

a broad, nonsymmetric absorption band near lpm from olivine;

and a weak band near 1.3ym from iron-bearing plagioclase.

Mineral spectral features are strongest in immature soils

and barely discernable (if at all) in mature soils.
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b. Soil spectra

The mineralogy of mature lunar soils is large-

ly a combination of remnant mineral and lithic fragments

and complex, multi-component agglutinates. Table IID-l

lists various soil components, their spectral absorptions

and the approximate magnitude of effect from these absorp-

tions on a soil spectrum. In order to derive useful com-

positional information from a bulk soil spectrum, it is

necessary to isolate and identify each particular absorption.

i. STRONG ABSORPTIONS. Although albedo dif-

ferences are close to a factor of two between maria and

highland mature regions, it is remarkable that the spectral

differences between such regions (.3 - 1.lym) are generally

less than %10% (McCord et al., 1972). There are at least

three competing strong absorptions that dominate the gen-

eral structure of a mature (agglutinate-rich) mare soil

spectrum throughout the visible and near infrared spectral

region: the Fe-Ti bearing glass, the finely dispersed

iron, and opaques (primarily ilmenite). All of these ab-

sorptions darken the soil, perferentially through the vis-

ible toward the ultraviolet. All three of these components

exist in mare soils and are thus expected to contribute

spectrally to some degree. Which (if any) plays the pri-

mary role in all lunar soil spectra is the subject of much
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TABLE IID-l Effect of various absorption features on soil
or rock spectra.

Soil or Rock
Component

Pyroxene

Plagioclase

Olivine

Ilmenite

Glass
(Fe-Ti bearing)

Glass
(Fe-rich)

Absorptions

.90-l.Opm

1.8-2.3pm

1.3pm

l.Opm

UV-IR

.6, 1.2pm

UV-IR

1. 011m

Effects
Mature Soil

subtle

subtle

trace?

strong

trace?

strong

subtle

UV-IR strong?

on Spectra of:

Immature Soil Rocks

strong

strong

subtle

subtle

subtle

dominant

dominant

strong

strong

subtle

subtle

subtle

subtleFeO
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discussion and will not be resolved here. A few observa-

tions and conclusions, however, can be made independent

of this controversy.

All the strong darkening effects depend

on Fe or Fe + Ti. Thus, for soils of equal maturity (same

accumulation of agglutinates) the more Fe- and Ti-rich soils

are darker. This point is obvious in the gross distinction

between highland and maria and also seems to hold for Apollo

14 soils relative to Apollo 16. For mare soils, however,

other factors are also present.

For mare soils, the strong absorption in

the blue and ultraviolet approaches saturation. For exam-

ple, as the iron and titanium content increase, soils do

not get redder as they would if Fe-Ti spectral absorption

were the only effect (Bell et al., 1976); instead they get

bluer (Charette et al., 1974). This can be understood

by referring to the simple diagram in Figure IID-8. Shown

are three hypothetical spectra with stronger absorption

in the blue (B) relative to the red (R). Whatever is re-

sponsible for the B/R color, spectrum II is affected by

twice as much absorbing material as I, and spectrum III

by twice as much as II. In transmitted light, the absorp-

tion strengths would follow the ratio 1:2:4. If the increased
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absorption was the only factor that influenced the reflec-

tance, the color ratio B/R should be .5, .25 and .125 for

spectra I, II, and III respectively. However, even totally

opaque particles scatter a significant amount of radiation

from specular reflection without imparting any spectral

information. This specular scattered component is estimated

to be 5% here. (A lower bound of 3-1/2% can be inferred

from the far UV albedo measurements of the moon (Luke et

al., 1973) since all surface material is effectively opaque

at those wavelengths.) When the scattered component is in-

cluded in reflected radiation, the actual color ratios meas-

ured (see Figure IID-8) would show spectrum II to indeed

be redder than I (although not as much as it should be).

The dark spectrum III, however, would actually be bluer

than spectrum II. Thus, increasing a (red) absorption strong-

ly darkens the soil so much that spectral contrast is gra-

dually lost and the spectrum becomes flatter, or relatively

bluer. Highland soils may be bright enough to discern real

absorption differences (e.g., becoming redder with increas-

ing iron in Fe-Ti-bearing glasses). Mare soils are nearly

saturated in the blue and ultraviolet and become bluer with

increasing Ti-content, presumably because of Fe-Ti glass

absorption. The concept of spectral contrast for mare soils

has recently been reexamined by Adams (1977).
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Thus, two general spectral parameters for

mature soils that can be interpreted compositionally are

albedo and continuum slope. Note that the interpretation

of measured continuum slope is dependent on the overall

brightness of the surface.

ii. SUBTLE ABSORPTIONS. There are a number

of small subtle features superimposed on the general red

continuum of lunar soils, the most prominent of which is

a small absorption near lym in the spectra of Figure IID-l

and 2. In order to examine these in greater detail, the

red continuum must be estimated and removed. A number of

techniques for determining this continuum have been tried.

If this step is not performed correctly, then measured band

centers can be offset

from actual centers and erroneous compositional interpre-

tations can result.

One of the most promising estimates for

the lunar continuum is the iron metal continuum used by

Gaffey (1977). Such a continuum has been used for a var-

iety of lunar soil samples shown in Figures IID -9-16

(plotted as a function of energy). In these figures a metal

continuum has been fitted through the laboratory sample

spectra at .73 and 1.5pm. The spectra have been scaled

to unity at 1.0pm. The fit seems to be a reasonably good



N

M _

B

IEF U .00) - 0.30'4

WAVELENGTH (MICRONS)
0.4 u.5 1.0 2.0

3.0 2.5 2 E E 1.5 1, 0 o.5

7 /7 /7 11 63321.16
CcNTUUU TlL IC 1HO - MOO 2

0.Li
WAVELENGTH (MICFiONS)

0.5 1

3.0 2.5 2.0 1.5 1.0
WAVENUMBER (X 10.000)

3 /29/73 r16 62231.1 EXP SCRLE
CCNTINUUM - METALLIC ISI3N - MOO 2

REF (Q.00' = 0.262

.0 2.0

0.5

Figure IID 9. Spectral reflectance
for lunar soil 63321. An iron continuum
has been fit to the spectrum. Shown
above the spectrum are residual absorptii
after the removal of the continuum for t]
bulk soil (B), magnetic separate (M), an
nonmagnetic separate (N).

Figure IID 10. Similiar to Figure IID 9,
for lunar soil 62231.

N... ....

M

H-
H-
t:



8 

[ 

AEF tl. OOl " O. 522 
W~VELENGTH lMICRON3l 

0 . Ll U.5 1.0 2.0 

3.0 2.S 2.0 1.5 1.0 
WRVENUM BE H IX 10,000J 

7 11 1n1~ uS 10UB4. 03G !EXP SCALE) 
r:r,r:1jr. ,-.. : · fl!""f f-H I Jf; Jnr'l! l - l',r';[J?. 

Figure IID 11. 
Similiar to Figure IID 9, 
for lunar soil 10084. 

0.5 

N 

I 
--i 

I 
I 

-i 
I 

---.! 
l 

_J 
I 
I 

_J 

Aff Cl. OOJ = O. 171 
WAVELENGTH lMICR ONSJ -i 

0.4 0. 5 1.0 2.0 

3.0 2.5 2 .0 1.5 1.0 
WRVF!JUMBER IX 10 , OOOJ 

4 /2 /73 l13 75080. 5 EXP SCf1LE 
C:C'llHINUUM " HFlnl LJC lflON - HOO 2 

Figure IID 12. 
Similiar to Figure IID 9, 
for lunar soil 75080. 

o.s 

I 

H 
H 
t:J 



N

fEF(1.00) =0.627
- WIVELENGTH11 (MICBONS)

0.4 0.5 1.0 2.0

3.0 2.5 2.0 1.5 1.0
WAVEHUM3ER (X 10,000)

7 /23/71 #7 12070.111 EXP SCL
CC', INUJM = METALLIC IRM - MOO 2

Figure IID 13.
Similiar to Figure IID 9,
for lunar soil 12070.

0.5

REF L1.CC] = .1C6

WRVELENGTH (MICNONS)
0.4 0.5 1.0 2.0

3.0 2.5 2.0 1.5 1.0 C
WIRVENIUER (X 10, 000)

12/31/71 s19 12 ', .411 SOIL. SURARFE
CO11 INUUM = MEL IkEl C IiN - MOO 2

Figure IID 14.

Similiar to Figure IID 9,
for lunar soil 12042.

H
H

['.3
H
U,

-j

-i

0.5



N I~ 

0 

REF 11. om = o. 129 
WAVELENGTH !MICA~NSI 

0.4 0.5 1.0 2.0 
L-.~~-'-~~-l~~_J~~--1-~~-'-~~----

3. 0 2.S 2. 0 1.5 1.0 0.5 
~!RVE I JLJMBER (X 10, OOOJ 

12/27171 i:2.1 15021. 114 
C'~r n Jt:IJ!Jl1 = MU F!l_L_ I c JRCi~ - 1~00 2 

Figure IID 15. 
Similiar to figure IID 9, 
for lunar soil 15021. 

N 

WRV ELENGTH lM I CA C-:6"1 

l 
J 

I 

~ 
I 

I 

I _ _J 

I. 

0.4 0.5 i. O 21. 0 
L_ _ _ _.L ___ ~----;-''-;::---;--~--- ·--

2. 0 1.5 l. O 0 . 5 3.0 2.5 
WR VENLJMgER !X 10 , 000J 

1 / S 172 u9 15Ll71 . Tl 
cmqrnuuM ~· Mf:l f1LLIC moN - !'.OD 2 

Figure IID 16. 
Similiar to Figure IID 9, 
for lunar soil 15471. 

H 
H 
0 



IID 217

0

approximation above 5000A. A ratio has been formed between

the continuum and bulk soil spectrum (B) and is displayed

in the figures above the spectrum. Similar ratio spectra

were formed for the magnetic (M) and nonmagnetic (N) soil

separates and are displayed above the bulk soil spectra.

Most of the remnant mineral fragments are concentrated in

the nonmagnetic fractions (Adams and McCord, 1973).

In most of the spectra presented in Figures

IID9-16, the following subtle features can be noted: (1)

There is a broad composite feature near lpm with the peak

off-center to shorter wavelengths and a distinct shoulder

towards longer wavelengths. (2) There is often a second

less intense feature near 2pm, the intensity of which var-

ies greatly. It is unclear whether the variations short-

wards of .7pm are real or simply an effect of the contin-

uum removal procedure. For the reasons outlined below the

lym soil feature is interpreted as a composite pyroxene

and glass band and the 2pm feature is primarily the 2nd

pyroxene band (Adams and Charette, 1977).

Sample 63321 (Figure IID-9) is an immature

soil (magnetic component or agglutinate content %32%) and

the non-magnetic fraction (N) is dominated by mineral frag-

ments. The pair of absorptions at %.91 and 1.9Pm can be

clearly interpreted as orthopyroxene (Adams, 1974). A
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second band, almost resolvable at %1.25pm, is likely to

be due to feldspar. This interpretation is in good agree-

ment with the mineralogy of the sample and the Apollo 16

site in general. The spectral features of these two min-

erals are severely degraded in the bulk soil spectrum (B)

by a broad deep feature near lym most noticeable in the

magnetic separate (M).

This broad 1ym feature is tentatively

identified as the Fe2+ 1pim glass band. Examine the spec-

trum for mature soil 62231 (Figure IID-10) which has a

bulk composition similar to 63321 (FeO "U 4%, TiO 2 % .35%)

but with agglutinates dominating the soil mineralogy. The

bulk sample and non-magnetic separate spectra only contain

a trace of the orthopyroxene features. The magnetic sepa-

rate spectrum is dominated by the broad lm feature. Since

very few mineral fragments remain in this agglutinate sam-

ple, the lpm feature is likely due to the Fe 2+ glass band

described in Section IIDla. (The band observed here may

be slightly offset to shorter wavelengths by a hint of rem-

nant orthopyroxene.) Even though it is

weak in this sample, the broad symmetric band at 1.OPm

contains the same spectral properties as those identified

in glass separates (Figure IID-4) and with transmission

spectroscopy of glass (Figure IID-5).
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Turning to the more mafic mare soils (Fig-

ures IIDl-ll-16), all spectra appear to contain a combin-

ation of various proportions of pyroxene and glass features.

The non-magnetic fraction of the least mature soil shown

here (75081, agglutinates %30%) shows a spectrum dominated

by clinopyroxene with characteristic bands near .95 and

2.lpm (Adams, 1974). There is little evidence for any con-

tribution of the glass band. In the magnetic separate spec-

trum, the .95pm band is degraded and the 2.lym band almost

eliminated as the broad glass band begins to appear.

All the other mare soils show a composite

clinopyroxene and glass band at lpm. The glass band is

the strongest in the magnetic agglutinate fractions and

weakest in the non-magnetic fractions. The .95 - l.0pm

clinopyroxene band seen in the non-magnetic separates shifts

to slightly longer wavelengths as it is diluted by the 1Im

glass band.

Note that for glass-rich mare soils of

approximately equal FeO content, the depth of the lPm band

is less strong for the dark soils (Apollo 11) than for

lighter soils (Apollo 12 and 15). This lower spectral con-

trast of the lpm band is probably due to an effect similar

to that illustrated in Figure IID-8: if significant absorp-

tion has already occurred throughout the spectrum (dark
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soil), the effects of a second absorption (the glass band)

are not as strong as they would be for brighter soils.

On the other hand, since highland mature soils are gener-

ally bright, an increase in the FeO content is expected

to increase the lym band depth (Charette and Adams, 1977a).

In summary, subtle spectral features can

be identified in spectra of mature lunar soils: a substan-

tial iron glass band and also weaker pyroxene bands (Adams

and Charette, 1977). It is unclear whether small components

of plagioclase and ilmenite in mare soils can contribute

a detectable feature near 1.3pm. For less mature soils,

the pyroxene bands are stronger and a plagioclase band may

be identified. If these weak bands can be accurately re-

solved, the composition of the pyroxene and (perhaps) plagio-

clase can be identified. As mentioned previously, correct

identification is in part dependent on how accurately the

effects of the red continuum have been removed. Since the

strength of the lhm glass band has been shown to vary as

a function of FeO content (Bell et al., 1976), it should

be possible to estimate the FeO content of a mature soil

from the depth of the band (Charette and Adams, 1977b).

In order to accomplish this, the lhm pyroxene band must

also be removed from the composite lhm band, and the lower
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spectral contrast effects of dark soils would have to be

calibrated to lighter soils. Even without spectral contrast

calibration, differences in the depth of the lpm feature

can nevertheless be interpreted in terms of relative FeO

content if one compares mature soils of similar albedo and

assumes that the minor pyroxene content is similar and

that the soil development processes have homogenized all

soils to the same degree.
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2. Rocks and Craters

Since most of the lunar surface is covered with

a mature soil, the emphasis of many detailed spectral re-

flectance studies of lunar material has been directed towards

understanding the properties of these soils. It is recog-

nized that the mineralogy of lunar rocks, on the other hand,

is used by petrologists to identify the major lunar basalt

types. Currently, there is a lot of activity (Adams and

associates) to obtain spectra for a sufficient number of

lunar rock powders and chips in order to identify spectral

characteristics of the various distinct rock types identi-

fied by the petrologists. Although a number of preliminary

reports have become available (e.g., Charette and Adams,

1975, 1977a) this work is still in progress. Thus, this

section will only briefly discuss some of the current lab-

oratory reflectance results, the likely output, and the

difficulties inherent in the undertaking. Telescopic spec-

tra of craters (the closest lunar surface analogue to rock

samples) are discussed in Section IV.

Shown in Figure IID-17 are reflectance spectra

(unscaled) of a variety of lunar mare rock powders and

chips. The spectra have been grouped by Adams and Charette
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according to rock types identified by Warner (1971), James

and Wright (1972), Rhodes and Hubbard (1973), and Papike

et al. (1974). The albedo for each spectrum is marked for

one wavelength. Some of the principle conclusions by Charette

and Adams include: (1) Differences in basalt types can

be recognized in reflectance spectra as the presence or

absence of olivine bands, pyroxene bands at different wave-

lengths, plagioclase bands, and ilmenite bands. (2) Intra-

site differences are often more easy to distinguish than

inter-site differences since some basalt types having dif-

ferent origins may nevertheless have similar spectra (mineraology).

The spectral contrast of the spectra in Figure

IID-17 is dependent on the effective grain size--which is

smaller for powders than for chips. The grain size of the

rock and its degree of brecciation also effect this spec-

tral contrast. Fortunately, computer processing techniques

can be used to enhance the details of a spectrum. Compare

the spectra of 10003 in Figure IID-18 with the top spec-

trum in Figure IID-17a. As discussed in Section IIC2,

one should be able to deconvolve such spectra into features

due to specific mineral components such as pyroxene, plagio-

clase, olivine, ilmenite and glass. If a spectra deconvo-

lution is successful the composition of minerals such as

pyroxene can be identified. To some extent, the relative
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proportions of mineral phases can also be described from

the relative strength of mineral absorption bands.

Thus, the first step in laboratory spectral reflec-

tance studies of lunar rocks and powders by Adams and as-

sociates is to identify the specific mineral spectral fea-

tures that can be associated with the major lunar rock types.

This project necessarily draws on an extensive background

of reflectance studies of minerals and rocks. A number

of related programs will likely ensue in order to have a

solid background for interpreting remotely obtained spec-

tra for fresh lunar surfaces:

(a) The individual spectral features for minerals

in mixture of minerals are quantatively identified using

computer processing techniques. This would eventually al-

low the inverse process--the creation of likely spectra

for possible mineral mixtures. This step is essential if

quantative identification of the mineralogy of unknown

assemblages is desired.

(b) It is unlikely that most lunar craters have

excavated a single rock type. It is thus necessary to deal

with the complicated spectral character of known and pos-

sible mixtures of unrelated rock types. For example, vary-

ing the proportions in a mixture of pigeonite, clinopyroxene,

olivine, and plagioclase should have small, but definable,



IID 226

effects on a rock spectrum. Since the variations will be

subtle as the proportion of minerals change, computer process-

ing techniques will be required for detection and quanti-

fication of the spectral changes.

(c) The mineralogy that can be determined from

reflectance spectra must be translated into terms that are

meaningful to other geochemists studying lunar samples.

Currently, for example, the pyroxenes in lunar mare rock

types are distinguished by the compositional trends during

crystallization. Spectral reflectance techniques, on the

other hand, will be able to identify the composition (Ca,

Fe, Mg) of the average pyroxene or perhaps the relative

proportions of different pyroxenes (pigeonite, sub-calcic

augite, etc.). The average pyroxene composition of a re-

gional basalt type will be a major parameter for distinguish-

ing mare basalt types using remote sensing techniques.

The concept of "average pyroxene composition" needs to be

considered as a possible meaningful geochemical parameter

by lunar geochemists who are concerned with lunar basalt

types on the smaller scale of the lunar samples.

3. Telescopic Spectral Measurements

Although the general lunar spectrum is distinct

from spectra of all other solar system objects (except Mer-
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cury) the spectral variations from place to place on the

moon are small (<10%). Much of the effort concerning tele-

scopic lunar spectral reflectance measurements has been

to identify such spectral differences and to derive inter-

pretations from the parallel lunar sample studies for ob-

served spectral characterisitics. Quantitative analysis

requires precision better than 1% which, for telescopic

observations, has only been available for about 10 years

(McCord, 1968a). Current telescopic data available with

adequate precision include spectra (.3 to 1.lym) obtained

for small lunar areas (10-20 km diameter) with a filter

photometer (McCord, 1968a) and two-dimensional spectral

images at wavelengths between .4 and 1.Qpm obtained with

a vidicon digital imaging system (McCord et al., 1975, 1976b).

It is anticipated that near-infrared spectra (.65 -

2.5pm) will soon be available for selected lunar regions

using recently developed telescopic instrumentation (McCord,

1977). Continuous infrared spectra are exceptionally dif-

ficult to obtain due to atmospheric absorptions. Prelim-

inary results (McCord, 1977) show that thermal emission

begins to become detectable beyond 2.lym under full moon

viewing conditions. Theoretical calculations, (R. Clark,

in preparation) indicate, however, that this minor compo-

nent of lunar radiation between 2 - 2.5pm can be defined
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sufficiently to be removed.

a. Relative Reflectance Spectra

Spectra for a variety of lunar regions were

shown in Figures IID-1 and 2. Both the strong and subtle

absorptions that affect the lunar spectrum were discussed

in the previous sections. To distinguish the small dif-

ferences between spectra, a technique is used by which each

spectrum is divided by the spectrum of a standard area with

the resulting spectrum being a relative reflectance spec-

trum. The standard area commonly used is MS-2 in central

Mare Serenitatis (180 40' N, 210 21' E). The spectrum for

MS-2 is second from the bottom in Figure IID-2. Note that

this spectrum is not perfectly smooth and contains an easily

identifiable lm feature. Thus, although all systematic

spectral differences observed in relative reflectance spec-

tra are significant, the position and symmetry of absorp-

tion features are not absolutely accurate but rather are

relative to the features observed for MS-2. Relative re-

flectance spectra can be obtained from telescopic observa-

tions with minimal processing since both the atmospheric

and instrumental effects usually cancel in the ratio.

When relative reflectance spectra were obtained

for over 150 regions, a classification was made according

to the general morphology of the region: mare, upland,

mare crater, and upland crater. The spectral types evident
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in spectra for these groups were discussed by McCord et

al. (1972a) and by Charette et al. (1974). A fifth group

of regions (dark mantled areas) formed an additional dis-

tinct spectral type and was discussed by Pieters et al.

(1973). Examples of relative reflectance spectra for the

four major spectral types are shown in Figure IID-19.

Spectra for the maria show a wide range of continuum slope

in the blue and ultraviolet that was correlated with TiO
2'

content (see Section IIDl). Mare crater spectra show a

strong absorption feature near lym characteristic of pyroxenes

(see Section IV). Most highland regions appear spectrally

similar (although work in progress indicates there are

a variety of subtle distinctions between highland surface

units). Highland craters can be easily distinguished from

mare craters. See Section IIB for a review of some of the

applications of these lunar spectral types.

An important aspect of this classification

for telescopic data was that similar spectral types could

be seen in laboratory data (Adams and McCord, 1972). Re-

call that relative reflectance spectra show the very small

and subtle spectral differences between two surfaces. The

fact that the same systematic small features also appear

in laboratory measurements of soils shows fairly conclusively

that the laboratory measurements are indeed comparable to
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to the telescopic measurements even though they differ by

'06 in area of surface measured. Shown in Figure IID-20

are reflectance spectra for representative laboratory soils

relative to MS-2 (from Adams et al., 1977). In order to

form these spectral ratios, the laboratory spectra were

transformed to the same spectral bandpasses as used for

the telescopic observations. It is clear that the labor-

atory spectra for soils contain the same subtle features

observed in the purely telescopic data of Figure IID-19.

Currently spectra for close to 400 lunar areas

exist. Relative reflectance spectra for many of these

areas have been used extensively in the analysis and appli-

cations described in Sections III and IV.

b. Spectral Imagery

The early relative reflectance studies also

indicated there were certain regions of the spectrum that

were critical in characterizing various surface units.

The wavelengths .38, .40, .57, .77, .95 and 1.06pm were

chosen for two-dimensional spectral mapping (e.g., McCord

et al., 1976). Three particuarly useful wavelengths are

.40, .57, and .95pm (Charette et al., 1974).

If an image is obtained at .40pm for a given

lunar region and a similar image at .57ym, the two images

can be processed and digitally divided using computer pro-

cessing techniques. The resulting .40/.57ym ratio image
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contains quantified spatial information on continuum slope

variations and can be used to "map TiO 2 content" for mare

surface (Charette et al., 1974; McCord et al., 1976; Pie-

ters and McCord, 1976). Since the spectral variations are

nevertheless very small, the ratio images must be -computer

enhanced to display the data. Shown in Figure IID-21 are

mosaics of vidicon data for the Flamsteed area of the moon

(McCord et al., 1976b). Figure IID-21a is a slightly en-

hanced .57pm image and is comparable to a normal albedo

image. Figures IID21-b and c are both .40/.571im ratio images,

each enhanced to bring out different details in the maria.

Note the distinct nature of the 'bluest' flow is only evi-

dent in the strongly processed image of Figure IID-21c.

This Flamsteed region is discussed in further detail in

Section IIIE2.

The ratio .95/.57pm ratio image is particularly

useful for identifying and examining the areal extent of

immature surfaces. This spectral parameter is mentioned

in greater detail in Section IV.
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Figure IID 21a. Vidicon image mosaic (A = .57pm) of the Flam-
steed region of Oceanus Procelliarum slightly contrast en-
hanced to bring out details in the mare.
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Figure IID 21b. Vidicon spectral ratio image mosaic (.40/.57
pm) of the same region shown in Figure IID-21a. The
images have been contrast enchanced dark to light to show
a 12% color difference. Bright indicates relatively bluer
(higher TiO2 content).
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Figure IID 21c. Same vidicon ratio image mosaic as Figure

II 21b contrast enhanced further to show the bluest unit

(indicated by arrow). This is likely to be the last

basalt flow of the region and contains the highest con-

tent of TiO2



III. LUNAR BASALT TYPES I: SOIL SPECTRA (.3 to 1.lpm)
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The material presented in Sections III and IV consti-

tute much of the scientific output of this thesis. These

sections are largely in the form of manuscripts that were

prepared as the thesis progressed. The content concerns

the classification of remotely-obtained lunar reflectance

spectra and the applications of spectral reflectance data

to the characterization and distribution of lunar mare

basalt types. The material presented in the two previous

sections provides the detailed background on the nature

of basalts and spectral reflectance techniques that cannot

be included in a (page-limited) published manuscript.

Section III includes discussion of lunar mare soil

spectra presented in three parts. The spectral character-

ization of lunar mare basalt types is presented first fol-

lowed by two applications of the spectral information:

a discussion of the Luna 24 landing area and a preliminary

report concerning a major unsampled basalt type in the

western maria.

Section IV includes a discussion of lunar crater spec-

tra for both mare and highland regions.

The major conclusions that can be drawn from the cur-

rently available spectral reflectance data a.re summarized

in Section V.
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Characterization of lunar mare basalt types:
I. A remote sensing study using reflection spectroscopy

of surface soils

CARLE PIETERS*t and THOMAS B. MCCORD*t

Remote Sensing Laboratory, Department of Earth and Planetary Sciences, M.I.T.
Cambridge, Massachusetts 02139

Abstract-Telescopic reflection spectra of mature mare surfaces are used to identify and characterize
major basalt types on the frontside of the moon. The spectra are classified according to (1) continuum
slope and (2) near-infrared features. This study indicates that there are major lunar basalt types that
are unlikely to have been sampled during the landing missions. Regions of basalt exist in the western
maria with a TiO 2 content comparable to that of Apollo 11 but with infrared characteristics that
indicate a distinctly different composition. Samples from two landing sites, Apollo 12 and Luna 16,
may contain fragments of a nearby basalt unit compositionally different from the dominant basalt type
of the landing area.

INTRODUCTION

LUNAR MARE BASALTS play an important role in understanding the evolution of
the crust and mantle, although they account for less than 1% of a 60 km thick lunar
crust (Head, 1975). The creation of models of lunar basalt petrogenesis (e.g.,
Green et al., 1975; Hubbard and Minear, 1975; O'Hara et al., 1975; Walker et al.,
1975; Kesson, 1975) requires a detailed characterization of the geochemistry of
the basalts as well as a description of the sequence and location of emplacement.
Mare basalt samples returned from five different areas have been studied in detail
and several general basalt classifications have been proposed (e.g., Taylor, 1975;
Rhodes et al., 1975). Remote sensing techniques can then be used to characterize
unexplored lunar areas which, of course, is most of the lunar surface. In this paper
we present a classification of lunar mare basalt types derived through the analysis
of telescopic reflectance spectra of mature mare surface areas.

With the exception of fresh craters and areas of high relief, it is the glassy
agglutinate-rich mature soils that are observed by all geochemical remote sensing
techniques. Mature mare surfaces contain in excess of 70% agglutinates (e.g.,
Charette and Adams, 1975). A valid classification of lunar basalt types neverthe-
less can be derived from reflectance spectra of mature surfaces if the following
assumptions are accepted: (1) soils are derived largely from the local dominant
surface basalt type, (2) the processes and effects of soil maturation are the same
on all maria, and (3) during the 2.5 to 4 b.y. since emplacement, all mare surfaces

*Visiting Astronomers at the Cerro-Tololo Inter-American Observatory, which is operated by the
Association of Universities for Research in Astronomy, Inc., under contract with the National Science
Foundation.

tGuest Observers, Mauna Kea Observatory, Institute for Astronomy, University of Hawaii.

2677



240
2678 C. PIETERS and T. B. McCORD

studied (uppermost 1 cm) have reached an equivalent maturity.
Given the above assumptions and knowing the sensitivity of spectral reflec-

tance to geochemistry (e.g., Adams 1974, 1975; McCord and Adams, 1973), it is
likely that differences in spectral reflectance observed remotely between mare
areas are due to differences in geochemistry of the dominant surface basalt type
of the region. The lunar basalt types discussed in the following sections are
derived from spectra of mature areas: no craters or highland regions are included
in this study. The classification is based on two sets of parameters. The first
concerns the slope of the reflectance spectrum in the blue and ultraviolet which is
directly related to the percent TiO 2 in the surface soil (Charette et al., 1974). The
second set of parameters concerns the near-infrared portion of the spectrum
which is strongly affected by electronic absorptions in mafic minerals and glass.

DATA DESCRIPTION

Telescopic spectra of about 400 small (5-20 km diameter) lunar areas have
been obtained using a filter photometer covering a spectral range of .3 to 1.06 pim.
A description of the equipment and observing techniques is given in McCord et al.
1972. Over 100 of these areas are in mature mare regions and are included in the
study presented here. A few spectra obtained prior to 1970 over a comparable
spectral range were also included in this study (McCord and Johnson, 1969;
Johnson and Soderblom, 1969; McCord et al., 1969). Many of these mare areas
were chosen in order to characterize units evident in multi-spectral maps. The
location of these mare areas are indicated by over-sized symbols in the frontis-
piece map. More precise coordinates of these small areas can be obtained from
the authors on request. Not shown on the map are the more than 30 areas in Mare
Humorum discussed previously by Pieters et al. (1975).

Since the spectral reflectance differences between mature soils are small, we
have analyzed the telescopic data in the form of relative reflectance spectra. To
form a relative reflectance spectrum, Rk(A), the spectrum of an area is divided by
the spectrum of a standard mare area, MS-2 (18.7'N, 21.5*E). The result is scaled
to unity at 0.57 sm to eliminate the effects of albedo differences. This procedure
removes most of a steeply sloped continuum (increasing reflectance towards
longer wavelengths) and allows the subtle spectral differences to be analyzed in
detail. Relative reflectance spectra are shown in Fig. 1 for many of the areas
included in this study.

Many mare areas were observed during more than one night as a check for
consistency of the measurements. Two mare areas, one in the east and one in the
west of the lunar frontside, were observed more than 20 times through four
lunations to determine if the phase of the moon during an observation affected the
relative reflectance spectrum sufficiently to cause a misclassification. The results
of these multiple observations indicated that although small phase effects on
differential color do occur (see McCord, 1969), they are fairly well defined and do
not change the general spectral character of a relative reflectance spectrum.
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CLASSIFICATION OF REFLECTANCE SPECTRA

The major spectral types evident in most lunar reflectance spectra have been
described by McCord et al. (1972). It was noted that in mare spectra the
continuum slope in the blue below .57 sm varied considerably ( 8-10%). In the
near-infrared beyond .8 sm small variations were noted but no apparent pattern
was evident. Much progress has been made during the last few years in
understanding the reasons for these spectral differences and the accumulation of
new telescopic spectra has allowed more refined classification of the spectra.

A. TiO2 content

The variations in the ultraviolet of continuum slope for mare regions were
suspected of being caused at least partly by charge transfer absorptions involving
titanium (e.g., Fe" -* Ti", Ti" -- Ti"). The assignment of these bands is being
derived using transmission spectra, crystal field theory, and molecular orbital
theory (e.g., Loeffler et al., 1975; Burns et al., 1976). The systematics of the
absorptions in glasses have been studied as a function of titanium and iron content
and oxygen fugacity (Mao and Bell, 1973; Bell and Mao, 1976). Due to the intense
nature of these absorptions their effect on diffuse reflectance measurements are
only partially understood. The accumulation of dark iron and titanium-rich glassy
agglutinates in mature mare soils not only darkens the soils (Adams and McCord,
1973), but also severely lowers the spectral contrast observed (Adams and
McCord, 1971). The latter effect causes a steeply sloped lunar reflectance
spectrum to flatten (or appear "bluer").

In the laboratory, the continuum slope of returned soil spectra was studied
systematically and the relation between TiO2 content and continuum slope was
empirically defined (Charette et al., 1974). The critical dependence of this
relationship on maturity was also defined in the laboratory. We have converted
this TiO 2 -continuum slope relationship to allow the percent TiO2 of a soil to be
determined from the slope of a telescopic relative reflectance spectrum for a
mature mare area (Fig. 2). The function plotted in Fig. 2 is: %TiO 2 = ae'h, where
a = 8.12 x 10' and b = 14.88. The range of continuum slope values for a given
landing site arises from observational error. These include not only measurement
errors but also the small systematic variations in spectral contrast due to
differences in phase angle. The range of TiO 2 content for a given landing site
material is the range of measured values for returned soils that are approximately
representative of the region (Heiken, 1974; Vinogradov, 1971). The most likely
value estimated for each parameter is shown by a solid line in Fig. 2. The accuracy
of the TiO 2 relationship to continuum slope is about 1% in TiO 2 content and is
primarily a function of the accuracy of the telescopic data. The accuracy
associated with distinguishing the TiO 2 content of one area relative to another is
closer to 2%.

The reflectance spectrum continuum slope relative to MS-2 was determined
for all mare regions observed telescopically and the soil TiO 2 content estimated
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Fig. 1. Relative reflectance spectra of mature mare regions. All spectra are relative to
MS-2. The spectra have been characterized and grouped according to the parameters

listed in Table 1.
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Fig. 2. Relationship between the wt.% TiO 2 in lunar soil and slope of the reflectance
spectrum (after Charette et al., 1974). The data for percent TiO 2 are measured values for
returned soils (Heiken, 1974; Vinogradov, 1971). The data for reflectance spectrum slope
between .40 and .57 m are the values derived from telescopic spectra of the landing sites.

from the relationship shown in Fig. 2. The relationship between TiO 2 content and
curve slope is less precise for low-Ti soils partly because of the nature of the
function in Fig. 2 and partly because other spectral effects currently under study gr
may be important for redder soils. The areas were divided into five groups ab
according to increasing TiO 2 content using the spectral parameters listed in Table
la. Examples of relative reflectance spectra for many areas in each group are in]
shown in Fig. 1. The symbols on the frontispiece map marking the areas studied an
are color coded according to TiO 2 content. There seems to be a continuous range
of TiO 2 content for the areas observed. This is contrary to that measured for the ha
returned samples which show a gap between high- and low-Ti basalts. This ha
difference is probably due to limited sampling. qu

sp
B. Infrared features r e

Well-defined absorption bands occur in near infrared spectra of rocks and oc
minerals and are diagnostic of the type of mafic minerals present. These oc
absorptions arise from d -orbital electronic transitions in transition metal ions (Fe, W
Ti, Cr, etc.) in a crystal environment (e.g., Burns, 1970). Iron-rich glasses also of
have diagnostic infrared absorption bands (Mao and Bell, 1973; Bell and Mao, di
1976). Reflection spectra of lunar rocks contain characteristic near-infrared
absorptions due to the various types of pyroxene and olivine present (e.g., Adams
1974, 1975).

The lunar soils, however, are a combination of mineral fragments, glass, and
agglutinates. A mature soil contains in excess of 70% agglutinates, the mineralogy
of which is poorly known. The agglutinates can be described as glass-welded

sp
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Table 1. Spectral parameters used for distinguishing mare basalt types.

2683

Map
la k415 % TiO2 (soil) Class color

<.98 (< 1.5) L-low Red
.98-1.00 1.5-2.0 I-med. low Orange

1.00-1.025 2-3 m-medium Yellow
1.025-1.06 3-5.5 h-med. high Green

> 1.05 > 5 H-high Blue

Map
lb Type symbol Description of relative reflectance infrared feature

1 E Bump concave downward (symmetric around .95 sm)
1' Same as I plus a slope change at .35-.40 sm
2 A Linear decrease in reflectance beyond .90 im
3 0 Small bump near .90 sm with a constant or increased

reflectance beyond 1.0 szm

4 0 Featureless (same as MS-2)
4' K Small to large dip concave upward
U Unclassified or unclear

aggregates of mineral fragments and devitrified soil material. Finely dispersed
grains of Fe' are also found in agglutinates (e.g., Agrell et al., 1970). The strong
absorption bands evident in spectra of fresh basalt are no longer present in the
spectrum of mature soils. The weak features observed in soil spectra in the near
infrared are a subdued combination of a dominant glass band (Fe 2 ) and bands
arising from the few remaining pyroxene and olivine mineral fragments (Charette
and Adams, 1976; Charette et al., 1976). Although differences which are known to
have geochemical significance occur in the infrared spectra of mare surfaces,
quantitative interpretations of these variations are difficult without further
investigations. An important step toward such a refined interpretation of soil
spectra is the recognition of infrared spectral features that are associated with
regional basalts.

A sufficient number of mare spectra exist now to identify systematics that
occur in the near-infrared spectra for many areas. A classification scheme for
mare spectra was derived using the infrared spectral parameters listed in Table 1b.
With additional data this classification probably could be subdivided. The location
of these areas is indicated on the frontispiece map; each type is indicated with a
different shape of symbol. Examples of the relative reflectance for many areas in
each type is shown in Fig. 1.

DISCUSSION

This first characterization of global mare basalt surfaces according to their
spectral features reveals some otherwise unobtainable geochemical information
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for areas beyond the landing sites. Some interesting results immediately evident
are discussed below.

A. Western high-Ti regions

Regions of basalt with a TiO 2 content comparable to that at Apollo 11 and 17
occur in the western portion of the moon. However, the infrared classification of
the spectra indicates that the western high-Ti basalts (H2) are compositionally
distinct from those in the east (H1 ): the 1 sm (Fe. 2) absorption is stronger for the
western basalts (Fig. 3). A quantitative interpretation of this distinction is being
derived through laboratory studies on lunar soils (Charette and Adams, 1976).
Furthermore, the areal extent of the younger (Boyce, 1975) western high-Ti
basalts seems to be much less than that of the eastern basalts. The Flamsteed
Region is the type-area for these distinct western high-Ti basalts. A few of the
Imbrium basalts may have the same high-TiO 2 content, but the vast majority of
extensive Imbrium and Procellarum "blue" basalts related to those at Flamsteed
are apparently only medium high in titanium content. Global spectral imagery,
such as the frontispiece by Soderblom and Boyce (1976), graphically displays this
small areal extent of the high-Ti (as opposed to moderately high-Ti) western
basalts.

B. Unsampled basalt types

The spectra of all mare landing sites are classified as type 1 (see Fig. 1 and
frontispiece map). It is thus unlikely that any significant amount of samples has
been returned from basalt types 2, 3, and 4. Of these unsampled basalts, there are
at least three specific types that cover a large lunar surface area and occur in
several locations: (1) the Flamsteed/Imbrium high- to medium-high Ti basalts (H2 ,
h 2 , M 2); (2) the Humorum/S. Procellarum medium-high Ti basalts (h3) (Pieters et
al., 1975); and (3) the low-Ti basalts (very red) of Frigoris and Imbrium (L4).

C. Minor components in returned samples

Since impact processes cause a redistribution of surface material, it may be
possible that some of the minor components of returned samples are from
unsampled regions. The major "contaminant" at Apollo 15 and 17 is the material
from the surrounding highland. The Apollo 11 site is also slightly contaminated by
highland material, but spectral images (e.g., Soderblom, 1970; Johnson et al., 1975)
indicate that within a radius of 100 km there are no other major mare units.
However, there are distinctly different basaltic units within 100 km of the Apollo
12 and Luna 16 landing sites.

For the Apollo 12 landing area it was shown using crater degradation studies
(Soderblom and Lebofsky, 1972) that there exist two neighboring units of
differing age; the landing site is located in the older unit. Spectral data support this
distinction and characterize the younger unit (a few kilometers from the landing
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Fig. 3. Reflectance spectra of type H, basalts relative to Apollo I1I (H,). Since the slope
of the continuum is approximately the same for spectra of these two basalt types, their
relative reflectance spectra are featureless below about .7 ym. The difference in the 1 sm
absorption feature between spectra of H2 and H, basalt types is clearly evident in these

relative reflectance spectra.
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N

Fig. 4. Vidicon spectral images of the Apollo 12 landing area. The landing site is
indicated with a short arrow. Area S III B is indicated with a long arrow. Field of view is
about 150 km. Images were obtained digitally for the same area through a sequence of
filters with a silicon vidicon detector and processed using standard image processing
techniques (McCord et al., 1976). (a) Image taken through a .57 gm filter. (b) Ratio image:

.40/.57 pim contrast enhanced. (c) Ratio image: .97/.57 sm contrast enhanced.
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Fig. 5. Reflectance spectra relative to MS-2 for mare areas in the Apollo 12 region
(Apollo 12 and S III B), in Mare Humorum (MHO), and in southern Procellarum (AP 4).

site) as a basalt with a slightly higher TiO2 content. Figure 4 contains high

resolution spectral vidicon images (McCord et al., 1976) of the Apollo 12 region;

the field of view is about 150 km. The .40/.57 grm ratio image allows the mare soil

TiO 2 content to be mapped. Note the small tongue of higher titanium material

(brighter) a few kilometers to the east of the landing site. This corresponds closely

to the unit independently mapped by Soderblom and Lebofsky (1972). Although

no spectra exist for this small unit, a spectrum exists for the area marked S III B

(Johnson and Soderblom, 1969) which seems to be an extension of the material
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Adams J. B.
near Apollo 12. The relative reflectance spectrum for area S III B is shown in Fig. fragments

5 along with spectra of the Apollo 12 landing site and two examples of basalt type Adams J. B.

h3. We have tentatively assigned the area S III B to the basalt type h. If future of Descar

spectra confirm this classification, then some of the Apollo 12 ilmenite basalts Agrelr Sati

(e.g., Rhodes et al., 1975) may be derived from this nearby unit and thus may well Apollo 11

be samples of a major "unsampled" basaltic unit. Barbarshov

Spectral images of Mare Fecunditatis indicate that the Luna 16 landing site is Ukrainian

in a rather small unit (approximately 150 km in diameter) surrounded by basalts Bell P. M.

with a lower TiO 2 content. The Luna 16 unit can be seen as a bluish area on the atationsh

frontispiece spectral map by Soderblom and Boyce (1976) and as a distinct area on BoyceJ. M.

the color difference map by Barbarshov (1973). Unpublished higher spatial to the Co,

resolution spectral images of the region by McCord and by Whitaker further The Lun,

substantiate the distinction between two basalt types in close proximity in the Boyce J. M.

Luna 16 region. Although there is a difference in TiO 2 content between these two VII p. 85

units, the spectra are both classified as type 1 (Fig. 1, Frontispiece map). The Cambrids

boundaries seen in the multispectral images match closely those seen in the Burns R. G.
independently derived age unit maps of Boyce (1976); Luna 16 is located in the of the m<

older of the two units. Lunar S<
Charette M

evidence
CONCLUSION Charette M

. spectral I
For the near future remote sensing techniques are the only means to determine Charette M

the geochemistry of unsampled lunar regions. The data presented here have been relations]
used to show that a variety of basalt types exist on the frontside of the moon. Institute,
Many basalt types covering a major portion of the maria have not been sampled. Charette M

The spectral reflectance measurements of surface soil presented here have reflectan

allowed the % TiO 2 to be discerned for the major basalt types. It may also soon be Green D. i
possible to estimate the FeO content from such soil spectra (Charette and Adams, Apollo 1'
1976). Spectra of fresh mare craters will further define the geochemistry of the Head J. W,

unsampled basalts by allowing components of the mineralogy to be identified (e.g., source ar

composition of pyroxene and olivine). It is, however, not until data from orbital for Luna

geochemical experiments are available that remote sensing techniques will be Hubbard N(

fully utilized in lunar exploration. Lunar S
Johnson T.
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Abstract. The Soviet spacecraft Luna
24 landed in Mare Crisium and returned
samples that are expected to be much like
the low titanium basalts from Luna 16 and
Apollo 12. This conclusion is based on
earth-based spectral reflectance measure-
ments and multispectral imagery of the
Mare Crisium region and uses a background
of laboratory measurements of the spectral
properties of Lunar soils. These data are
used to describe the regional context and
composition of the Crisium basaltic units.
The returned sample may also contain minor
components of a high-titanium basalt and
a very low titanium basalt as well as
highland material.

A classification and characterization
of surface mare basalt types has been de-
rived from the remote observations of the
spectral reflectance of mature mare soils
(Pieters and McCord, 1976; Adams and Pie-
ters, 1976). Multispectral ratio images
allow the areal distribution of mare units
to then be mapped (McCord et. al., 1976a).
Using our experience with the spectral
properties of lunar soils derived in the
laboratory, we have examined both kinds
of remotely obtained spectral information
for the region containing the Luna 24
landing site. We describe here the basalt
types most likely to have been sampled
and place the samples in a regional con-
text.

The Soviet Luna 24 spacecraft landed
in Mare Crisium (12* 45' N, 62* 12' E)
and returned a 2m core sample to earth
(Aviation Week, Aug. 18, 1976, p. 18).

Figure 1 is a sketch map of the region
showing the location of the landing site.
The geology of the region has been des-
cribed by Olson and Wilhelms (1974) as
extensive dark plains material (basaltic).
About 10 km from the landing site is a
small region mapped by Olson and Wilhelms
as dark mantling material primarily on
the basis of its lower albedo. The land-

Copyright 1976 by the American Geophysical Union.

ing site is indicated in the vidicon image
mosaics (McCord et. al., 1976b) of Figure
2 by a small arrow. A relative reflec-
tance spectrum (.3 to 1.lm) for the re-
gion M Cr-2, indicated with a large arrow,
was included in the mare basalt classifi-
cation scheme and is shown in Figure 3
(from Pieters and McCord, 1976). Useful
spectra for three additional areas in Mare
Crisium were obtained previously (McCord,
1968) over a more limited spectral range
(.4 to .81im).

The .40/.56pm spectral reflectance
ratio has been shown to be sensitive to
the TiO 2 content of mature mare soils and
an estimation of the TiO 2 content for the
region M Cr-2 was made (Charette et. al.,
1974). This relationship between .40/
.56pm reflectance ratio and soil TiO 2 con-

4T
NORTH

60*
300

- M 200
', oM RE

Q CRI IUM EAST
0

U 24
10*

LUNA 16

Figure 1. Sketch map of the eastern limb
of the moon showing the location of the
Soviet Luna 24 landing site.
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km 
I I I t 

Figure 2. Vidicon image mosaics of southern Mare Crisiu~. TOP: .56µm 
image slightly contrast enhanced to bring out features in the mare. 
The Luna 24 landing site is indicated by a small arrow. The large 
arrow indicates the region for which a spectrum was obtained (M Cr-2) . 
BOTTOM: .40/.56µm ratio image contrast enhanced with the grey tone 
variation dark to light indicating a 12% difference in the .40/.56µm 
ratio. 

tent is shown in Figure 4 for mature mare 
soils. Figure 2-bottom is a contrast en
hanced .40/.56µm ratio image mosaic of 

difference in the .40/.56µm ratio. 
From these data the following conclu

sions can be drawn: 
the landing site region with the grey tone 
variation dark to bright spanning a 12% 

1) A major unit filling central Mare 
Crisium i s composed of low-titanium ba-



IIIE 255
Pieters et al.: Regional Basalt Types

.2 - 5 t2111 1

ac 1.00'~ I.
H ]c

.................................

ao . .. . .. . .. .

1**-1

..........................

...... .... ... me s- SIII'.u
.... ... ... ... ..... ..... 0.3 1

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _LK. 3 Reatv relcacIpcrao.auer rgos l pc

tra are reltiv to the stnadae S2 hsesetaaecmoe
of~~~~~~~~~~~~~~~~D relcac aisfr2Aitrsbten.3adllmscedo

unity at 56~~~~~i The i~~nrvasmre ln h etclai r 0
inrflcace rai. Tehrznal itrasae50A(r.[i)

The pecta hve ben carateried ad goupe accrdig toTiO2 con
tent and the n~~~~~~~aeonrrdspcrlfaue. h pcr ni

cate the Mare Crisium low~~-EWttnu- aati opaal ota tLn
1s an to a lesser exettLht tAol 2

salts much like those found by Luna 16

and to a lesser extent by Apollo 12. This

conclusion is made from noting the shape
of the spectrum for M Cr-2 (Figure 3) and

comparing it to spectra of other basalt

types observed. The vidicon ratio image

mosaic (Figure 2) indicates regional con-

tinuity between the telescopic site M Cr-2

and the Luna 24 landing site.
2) The Luna 24 landing site itself

is in a inhomogeneous area. The returned

core could have sampled either or both

of two low titanium basalt units which

differ in (soil) TiO 2 content by about
2%. From the vidicon spectral ratio data

of Figure 2-bottom and the TiO 2 relation-
ship of Figure 4, the weight % TiO2 ex-
pected for these Mare Crisium soils is
2-4%.

3) The Eratosthenian crater Picard,

200 km to the west of the Luna 24 site,
has apparently excavated higher titanium
material (Figure 2), assuming the ejecta
soil surrounding the crater has matured
to the same extent as the background mare.
If the stratigraphy evident at Picard ex-
tends to the Luna 24 region, it is likely
that the low-titanium surface basalt at
Luna 24 is underlain by high titanium
material.

4) 100 km to the north of the landing
site there exists a low titanium (<1.5%)
basalt unit that is distinct from that
at the Luna 24 landing site. The spectral
boundaries for this unit (upper left in
Figure 2-bottom) do not correspond to al-
bedo variations (Figure 2-top). From the
vidicon spectral ratio data of Figure 2
and the TiO 2 relationship of Figure 4,
this low-titanium basalt is shown to be
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0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10
0.40/O.56pm SLOPE (RELATIVE TO MS-2)

Figure 4. Relationship between the wt%
TiO 2 in the lunar mare soil and the
slope of the reflectance spectrum
(.40/.56pm ratio) relative to the
slope of the spectrum for the stan-
dard area MS-2 (after Charette et.
al., 1974). This relationship for
telescopic data was first substanti-
ated through laboratory reflectance
measurements of lunar samples. The
data for percent TiO 2 are measured
values for returned soils. The data
for reflectance spectrum slope are
the values derived from telescopic
spectra of the landing sites (from
Pieters and McCord, 1976). Reflec-
tance values for soils from
the major low-titanium basalts in
Mare Crisium near Luna 24 are de-
rived from the vidicon spectral
ratio data calibrated with the

spectrum for M Cr-2.

comparable to those at Apollo 15 in TiO.
content. Since no spectra exist for this
unit, however, further geochemical dis-
tinction cannot be made.

Tihus, the basalt types returned by Luna
24 are likely to be the familiar low-
titanium basalts of Luna 16 and Apollo
12. The returned sample may also include
some components of a high titanium basalt,
a very low titanium basalt, and highland
material. Although the spectral data pre-
sented here cannot confirm the existence
of mantling material in the region, such
material would be expected to be evidenced
by a component of glass droplets (Heiken
et. al., 1974; Adams et. al., 1974). The
degree to which these additional compo-
nents are included in the core is depen-
dent on the local cratering history and
the continuity of underlying stratigraphy.

S I I ' | ' | ' | |'i 
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APOLLO 17

LUNA 24

LUNA 16
APOLLO 15 APOLLO 12
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(in press).

(Received September 22, 1976;
accepted October 12, 1976.)

The return of Luna 24 will certainly in-
crease our knowledge of the known lunar
basalt types, but there still remain majo
and extensive unsampled mare units.
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UPDATE: Luna 24 informa!:ion

During the 8th Lunar Science Conference, the fol-

lowing information concerning Luna 24 was presented:

(1) Crater degradation age determinations by J.

Boyce (UsGS, Flagstaff) indicated two major age units in

the Mare Crisium area. The surface basalt in the region

of the Luna 24 landing site is estimated to be of an age

comparable to Apollo 15 basalts. Older basalts are exposed

in an ill-defined region to the west of the landing site

and also in an area to the northeast. These older basalts

are expected to be slightly younger than Apollo 11 basalts.

A small northeast section of Mare Crisium (far from the

landing site) appears to be the youngest unit.

(2) Butler et al. (JSC) described the geological

setting of the Luna 24 region as derived from orbital photo-

graphs. Of particular interest is the 6.5 km crater

Farenheit (16 km from the landing site). This crater

penetrates to 1200m with 5 diffuse bands being identified

in the crater wall. The Luna 24 region also contains

abundant secondary craters associated with a ray pattern

of the distant (1200 km away) crater Giordano Bruno.

(3) Preliminary descriptions of the returned core

sample made by Barsukov et al. (USSR) as best interpreted

include:
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a. The core drilled to a nominal depth of 225

cm. However, the upper %60 cm were not recovered in the

returned sample.

b. Most of the sample consists of various layers

of immature regolith with a high content of coarse grained

rock fragments.

c. Chemical analysis of some of the fragments

classified them as very low titanium (%l%) mare basalts.

Their aluminum content is high and KREEP component low.

These new data allow the following possible inter-

pretations of the Luna 24 spectral information (Pieters

et al., 1976):

I. The Luna 24 core sampled only the surface unit

seen by remote sensing techniques. If the very low tita-

nium basalts are representative of this surface unit, then

the calibration of % TiO 2 as derived from continuum slope

is inaccurate for very low titanium basalts. Due to the

nature of the calibration curve, such an inaccuracy would

not be greatly surprising for unsampled low Ti basalts.

(This has been pointed out in all papers discussing the

nature of this calibration.)

II. The Luna 24 core is composed largely of a

(subsurface) unit distinct from the general surface unit

in southeast Mare Crisium. Supporting this interpretation
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is the relationship between the age units of Boyce and

the spectral units of Pieters et al. and the fact that

the core seems to be largely a sample of relatively fresh

ejecta. The Boyce 'old' age unit is roughly spatially

comparable to the very low titanium basalt to the north-

east defined by the spectral images. Furthermore, the

spectrally mottled region extending to the west of the

landing site is again comparable to the 'old' unit defined

in that area. These combined data indicate the sequence

of mare fill for Mare Crisium may have been: (a) early

high-Ti basalt (excavated by Picard) followed by or con-

temporaneous with (b) a very low titanium basalt (Boyce's

'old' unit; spectrally red) and a later (c) medium low-

Ti basalt (2-4% TiO 2) emplaced about 3.3 b.y. ago. This

medium low-Ti surface unit is perhaps thin especially to

the west of the landing site. The freshness of the sam-

pled material indicates it could easily be largely ejecta

excavated (by Farenheit?) from a proposed very low-Ti sub-

surface unit (b).

The basic problem in understanding the spectral

information is determining what the Luna 24 core actually

sampled. Analysis of the core material itself should dis-

tinguish which of the above possibilities are more likely

correct:
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If the dominant basalt type throughout the core

is the very low-Ti basalt and it is found to be compar-

able in age to Apollo 15 basalts ('%3.3 b.y.), then one

would conclude this very low-Ti basalt is likely to be

the surface unit and interpretation I is probable. The

spectral calibration of low-Ti basalts would have to be

reevaluated. A significant component, however, of unre-

lated basalt types of higher TiO 2 in the core would weaken

this interpretation.

On the other hand, if the very low-Ti basalts

are found to be relatively old, interpretation II would

be more probable; the sample would be interpreted largely

as ejecta from a subsurface unit. Some component of younger

medium low-Ti material would be expected somewhere in the

core.

Potentially, the Luna 24 core could contain one

of the richest assortments of mare basalt types returned

to date.
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2. Synthesis study of the Flamsteed region of Oceanum

Procellarum

Full moon spectral imagery (e.g., Barbarshov, 1973)

indicates that only a small portion of the western 'blue'

basalts are comparable in continuum slope to those of the

east (e.g., Apollo 11). This is confirmed by the filter

photometry measurements (Pieters and McCord, 1976) that

further show the western high-Ti basalts to be distinct

and compositionally different from those sampled at Apollo

11 and Apollo 17. A synthesis study was undertaken to

better understand the regional geology and define the geo-

chemistry for a case area of western high-Ti basalts--the

Flamsteed area of Oceanus Procellarum. Representative

spectra for this region were included in the previous basalt

classification study (H2 , h 2 , h3 ). Vidicon spectral images

(shown in Figure IID-21) were used to map the extent of

these units. The preliminary results from this study were

presented at the 8th Lunar Science Conference. New data

are presented here to update the following published ab-

stract. A more extensive discussion of the Flamsteed re-

gion will be prepared for publication during summer, 1977.
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GEOLOGY AND GEOCHEMISTRY OF THE FLA14STEED REGION OF OCEANUS PROCEL-
LARUM: A PRELIMINARY REPORT BA$ED ON REMOTE SENSING AND LUNAR SAMPLE INFORMA-
TION. C. Pieters , J. B. Adams', R. Bryan 3 , J. W. Head 3 , T. B. McCord19 4

S. Zisk5 . 'Dept. of Earth and Planetary Sci.; M.I.T., Camb., Ma. 02139; Dept
Geol. S i., Univ. Wash., Seattle; -Dept. Geol. Sci., Brown Univ., Prov., R.I.
02912; Univ. Hawaii at Manoa, Honolulu, 96821; 5 NEROC Haystack Observ., West-
ford, Ma. 01886.

The Flamsteed region of Oceanus Procellarum displays a number of mare and
highland geologic units which are important in the geologic framework and vol-
canic history of the western maria. Fig. 1 shows the distribution of major
units in the Flamsteed region and was derived using remote sensing techniques
and lunar sample information. The principal techniques (1) used in defining
unit boundaries included a) vidicon spectral ratio images, b) earth-based
photographs (albedo), c) orbital photography. Other techniques essential for
unit characterization and interpretation include a) reflectance spectra (0.3-
1.1 pm), b) radar backscatter maps, c) radar topography, d) spectra and compo-
sitional analysis of returned samples from the Apollo sites. Relative ages
were obtained by superposition relationships and crater degradation techniques
(2).

On the basis of unit characteristics, distribution, and superposition re-
lationships, the following history is outlined: A cratered uplands existed in
the region prior to mare emplacement and consisted of normal feldspathic high-
land crust (U) and local development of a spectrally red unit similar to other
"red spots" (U ) (3,4,5). Earliest exposed mare material is a series of low-
Ti basalts (L,l,m) which flooded the upland topography. Mare ridges developed
on these units and the crater Flamsteed formed prior to the emplacement of
later basalts. The last major phase of volcanism was characterized by moder-
ately high-Ti basalts (H 2 , h2, h 3 ) spreading as relatively thin flows over
preexisting maria. Flow emplacement is generally controlled by preexisting
local and regional topography including mare ridges developed on earlier maria.

The geochemical characterization of these units is based primarily on
spectral reflectance measurements (.33-1.06 um) of small (~10 km) regions
within the units and similar laboratory reflectance measurements (.35-2.5 pm)
of returned lunar soil samples. The spectrally defined basaltic units are
characterized with respect to other basalt types for the frontside of the
moon (6). Although a number of units can be distinguished from each other
with this data, characterization of the miner4logy is incomplete until spectra
to 2.5 pm can be obtained for fresh craters within each unit.

References (1) Head, J.W. et al. (1976) Lunar Science VII, p. 357.
(2) Boyce, J. (1976) Proc. Lunar Sci. Conf.VII,p. 2719-2728. (3) Malin, M.
(1974) Earth, Planet. Sci. Lett. 21, p. 331-341. (4) Pieters, C. et al.
(1975) Proc. Lunar Sci. Conf.VI, p. 2689-2710. (5) Wood, C.A. and J.W. Head
(1975) Origins of Mare Basalts, LSI, p. 189. (6) Pieters, C. and T.B. McCord
(1976) Proc. Lunar Sci. Conf. VII, p. 2677-2690
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MBOL DESCRIPTION
High albedo; hTgFrequency of rays and

C satellitic craters surrounding Kepler.

re Low albedo; type area NE interior of

Flamsteed P indicated with dashed cir-
cle; continuum slope (.40/.56 pm) re-

H lati ely blue; 1 pm absorption 
feature

2 (Fe+ ) stronger and broader than Tran-

quillity soils. Several associated

sinuous rilles.

h Spectrally much like H but with con-
2 tinuum slope slightly 4l-2%) less blue.

Continuum slope equally blue as h2 but

distinct from 112 and h2 in infrared +2

3 spectral character; 1 pm feature (Fe )
strong but less broad.

Continuum slope comparable to Apollo 12;

m most extensive unit of the region (no

spectra exist to allow further investi-

gation).

Continuum slope slightly red (comparable

1 to Apollo 15 landing site); not an exten-

sive surface unit in this region.

High albedo; Relatively red continuum

L slope; 1 pin feature stronger than for
4  other low-Ti units of the region. Exten-

sive development of mare ridges.

pland Moderately high albedo; continuum slope

U relatively red. Topographically higher
than mare.

Moderately high albedo; upland plains and

U crater remnants; strong UV absorption cau-
X sing very red continuum slope; regionally

high.

INTERPRETATION
Kepler ejecta; underlying material signifi-

cantly affected by cratering event.

Titaniferous basalt. A young basalt with a

soil composition that ranges from 5-8.5%
T10 2 ; probably different from older eastern

high-Ti basalts in mineralogy; more glass-

rich than basalts of Mare Humorum (h 3 ); re-

lated to Imbrium high-Ti basalts. Unsampled.

Titaniferous basalt. A young medium-high-Ti

basalt with soil TiO2 3-5%; related to H2 in

minerology. Unsampled.

Titaniferous basalt. A young medium-high Ti

basalt with soil T102 3-5%; related to

medium-high-Ti basalts of NE Mare Humorum

(4). Unsampled.

Low-Ti basalt. Soil composition 2-3% TiO2;
older than H 2 , h 2 , and h 3 basalts.

Unclassified.

Low-Ti basalt. Soil composition 1.5-2% TiO 2.
Unclassified.

Low-Ti basalts. Soil composition possibly

less than 1.5% Ti0 2. Unsampled.

Crater remnants and associated uplands..
Mostly feldspathic islands surrounded by mare

material.

Undesignated highlands. Suspected of being

related to other uniquely red highland re-
gions, some of which may be of volcanic
.origin.
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UPDATE: Characterization of the lym spectral dif-

ferences between the eastern and western

high-Ti basalts

Good quality infrared spectra (.65 to 2.15pm) were

obtained by McCord (1977) for representative lunar regions.

Shown in Figure IIIE-1 (McCord, unpublished) are spectra

for mature soil regions: Apollo 11 (H1 basalt), Flamsteed

(the case area for H2 basalts), OP-4 (h3 basalt to the

east of Flamsteed), MH-O (case area for h 3 basalt in Mare

Humorum), and the standard MS-2 (m basalt) in Mare Sereni-

tatis. These spectra have been further processed in order

to examine the nature of the lym absorption. An iron con-

tinuum was fitted to the data (Figure IIIE-2) and removed

using the techniques of Gaffey (1977) described in Section

IID-lb for laboratory samples. The residual absorption

features for the five regions are shown in Figure IIIE-3.

The background discussion of Section IID-i can be used

to describe the observed spectral features. The follow-

ing spectral characteristics should be noted: (1) the

lack of a second pyroxene feature at 2pm for Apollo 11

and Flamsteed, (2) the relative strength of the lym fea-

ture for Flamsteed relative to Apollo 11, and (3) the longer

wavelength position of the lym minimum for Apollo 11 and

Flamsteed with respect to MH-O and MS-2. The relative
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strength of the glass and pyroxene bands derived from these

spectra for the various basalt types are summarized in

Table TIIIE-l. The strength of the continuum absorption

in this table is derived from the visible spectra.

The spectral distinction between Apollo 11 (H1 )

basalts and Flamsteed (H2 ) basalts concerns the strength

of the glass (Fe2+) band; Flamsteed spectrum has a stronger

band than Apollo 11. The spectral distinction between

the two western high-Ti basalts, represented by Flamsteed

(H2 ) and MH-O (h 3), is a stronger pyroxene feature in the

spectrum for h3 basalts than for H2 basalts.
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Table TIIIE-l.

Absorption Strengths in basalt type spectra

soil
H2 (Flamsteed) h 3(Humorum) H 1 (Apollo 11) M4 (MS-2) Absorption

Strong

Strong

Strong

Weak

Weak

Strong

Strong Glass Band

Strong Pyroxene Band

Weak Continuum Ab-
sorption

Strong

Weak

Strong



IV. LUNAR BASALT TYPES II: SPECTRA OF CRATERS

(.3 to 1.lpm)
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CHARACTERIZATION OF LUNAR MARE BASALT TYPES-II:

SPECTRAL CLASSIFICATION OF FRESH MARE CRATERS

Carle Pieters

Remote Sensing Laboratory
Dept. of Earth and Planetary Sciences

MIT 37-487
Cambridge, Mass. 02139

April 14, 1977
Submitted to: The Proceedings of the 8th Lunar

Science Conference
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2

Abstract

Telescopic reflectance spectra (.3 - 1.lxm) of fresh

craters are presented and classified according to the spectral

features observed. These spectra are the closest lunar sur-

face analogue to laboratory spectra obtained for lunar rock

powders. Mineral absorption features can be identified in

these crater spectra and interpreted using returned lunar

samples. Classification of lunar telescopic spectra indicates

that most (>80%) of the lunar surface is composed of a finite

number of discrete and describable geochemical units. Spec-

tra of craters to 2.5vm are required for specific mineralog-

ical determinations from remote observation.
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3

In a previous paper, telescopic spectra of mature

agglutinate-rich mare surfaces were used to develop a clas-

sification of mare basalt types (Pieters and McCord, 1976).

It was assumed that as regional basalt surfaces weathered

to soil they maintained geochemical identity, although most

original mineralogical character was lost. Lunar mare re-

gions were characterized in the previous study by soil TiO 2

content as derived from continuum slope and by near-infrared

spectral features. The data indicate that a variety of

specific basalt types exists on the frontside of the moon,

the majority of which have not been sampled in any of the

Apollo or Luna landing mssions.

Spectra of rock powders contain diagnostic absorption

features that can be used to define the mineral constituents

present (Adams, 1974, 1975; McCord et al., 1976a). Due to

the special character of agglutinate-dominated lunar soils,

however, it has been difficult to identify the mineralogy

of the original basalts using spectral reflectance techniques.

The spectral properties of lunar soils are now better under-

stood and changes in optical properties that occur during

soil maturation have been described (Adams and McCord, 1973;

Adams and Charette, 1975). The objective of the current

spectral reflectance study is to further define and char-

acterize the optical properties of fresh, relatively crys-

talline lunar surfaces. It is apparent that the best



IV 275

regional analogue on the lunar surface to crystalline rock

powders studied in the laboratory are fresh craters (Adams

and McCord, 1972). Additional telescopic spectra of fresh

craters have been obtained from .3 to 1.lyim. It is anti-

cipated that spectra to 2.5pm for a few craters will be

available in the near future (McCord, 1977). Lunar sample

studies are being undertaken in parallel with telescopic

observations to define the characterisitic spectral features

of petrographically defined rock types (Charette and Adams,

1975, 1977). The ultimate objective of such a combined

program is to identify from absorption features the major

mineral phases (e.g., pyroxene, olivine, plagioclase, il-

menite), their composition when possible, and their rela-

tive proportions for a variety of regional basalt types

previously described (Pieters and McCord, 1976).

Presented here is the first step of the observational

program: a classification and analysis of the currently

available spectra (.3 to 1.lym) for fresh lunar craters.

The data are used to further confirm that the majority of

the lunar surface is made up of a finite number of rock

types; some are distinct while others may be gradational.

Although higher spatial resolution and greater spectral

coverage are required to identify specific mineralogies,

these data show that mineral absorption features do exist
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in fresh crater spectra with systematic variations that

can be directly interpreted in terms of mineral composition.

A. Observations and Data Description

Telescopic spectra of about 400 small (5-25 km diameter)

lunar areas have been obtained using a filter photometer

covering the spectral range from .3 to 1.lpm. Based on

their location and general morphology, most regions can

be easily classified as mare, upland, mare crater or upland

crater. The general spectral types of such a classifica-

tion was discussed by McCord et al. (1972) and Charette

et al. (1974). Over 60 fresh crater regions have now been

observed telescopically during one or more lunations. Due

to observational difficulties (see below), data for l0

regions were unacceptable and not included in this analy-

sis. A minor amount of useful data was obtained with a

vidicon spectrometer/polarimeter (.6 - 1.0pm). The loca-

tion of the craters used in this study are indicated by

oversized symbols in Figure 1.

There are a variety of observational limitations that

make reliable spectra of fresh craters difficult to obtain.

Most spectrometers measure radiation sequentially as a

function of wavelength. The photometer used to obtain the

data discussed here requires 2 minutes to cycle through

25 filters. During this time, two unavoidable situations
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allow the object to 'wobble' in the optical path up to about

2 second of arc (about 4 km on the lunar surface): nor-

mal atmospheric turbulance and imperfect lunar tracking

of the telescope. This spatial uncertainty during two min-

utes generally does not affect data for mature soil regions

since the albedo of the region is homogeneous on a scale

larger than the observed area. For fresh bright craters,

however, the albedo variations are large over small areas

and the integrated radiation measured by the spectrometer

can vary significantly during the total measurement of the

spectrum. These observational difficulties are enhanced

for small (,8 km) fresh craters. Analysis of spectra for

small craters is further burdened by the problem of opti-

cal mixing that occurs with low (10 km) spatial resolution--

part of the radiation detected is from the crater and part

is from the surrounding (darker) material. For the data

presented here, observations have generally been repeated

3-5 times. A precision better than 1% is generally required

for classification.

Two additional factors influence the interpretation

of crater spectra. Craters excavate material that may

not be homogeneous with depth. Thin surface units may be

vertically mixed by the cratering event. Also, the spec-

tral characteristics of fresh material are known to degrade
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rapidly with the development of agglutinate-rich soil

(Adams and McCord, 1973). Precisely what the time scale

is for such weathering effects to be significant is unknown,

but expected to be on the order of a few hundred million

years. For large craters with sufficiently steep walls,

a mature soil is not allowed to accumulate and a spectrum

of relatively fresh material can be obtained on the rim,

even though the ejecta itself may have reached equilibrium

maturity. Most fresh crater spectra presented here seem

to have features of comparable magnitude implying matur-

ation differences are minimal.

Telescopic spectra for a variety of soils and craters

are presented in Figure 2. Note the prominent absorption

near lym; for soils this feature is largely due to Fe24 in

agglutinitic glasses (Charette and Adams, 1977), whereas

for craters this feature is due to Fe2+ in mineral fragments

(e.g., see Adams, 1975). The wavelength of the

absorption in crystalline lunar material is determined by

the average pyroxene composition (Adams, 1974). The sym-

metry of the lunar absorption is dependent on absorptions

due to other mineral components such as olivine and plagio-

clase. Weaker absorption features can often be discerned

in laboratory spectra in this spectral range (e.g., continuum

inflections in the blue and broad absorptions at .4 - .6

in Ti-rich pyroxenes and ilmenite). In Figure 2, the
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details of the specific mineral absorption features contri-

bute small but extremely signficant variations to a general

red lunar spectrum.

B. Classification

In order to distinguish the small variations in absorp-

tion features and develop a classification of possible rock

types, the spectra for lunar craters have been divided by

the spectrum of a standard area in Mare Serenitatis (MS2:

18 0 40'N, 210 25'E). This procedure does not preserve the

absolute wavelength position of absorption features but

it does allow small spectral variations to be detected and

classified. The relative positions of features between

areas is maintained.

The craters included in this study were first generally

classified as mare or upland craters according to the type

of terrain in which they occur. A few exceptions were

made to this original grouping and will be discussed along

with the more detailed classification of crater spectral

types. Since it is possible that mare craters may have

penetrated into crustal material, a classification of the

spectra for highland craters needs to be made before mare

crater spectra can be distinguished.

Relative reflectance spectra for highland crater spec-

tral types are included in Figure 3. From the available
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data, three general spectral types were distinguished ac-

cording to the following characteristics: UI) The contin-

uum is relatively blue between .5 - .7pm with an inflection

towards the ultraviolet that occurs between .4 and .5pm;

the .9Pm absorption feature varies in strength and perhaps

wavelength position resulting in a inflection between .7

and .95pm. This group was further subdivided (UIa--UIe)

according to the sharpness and wavelength position of the

ultraviolet inflection and according to the infrared char-

acteristics. UII) There exists a very prominent and strong

absorption band at .9Pm with strong relative absorption

towards the ultraviolet. UIII) The .91m feature is weak

to non-existent although there is strong relative absorption

shortwards of .45pm.

Relative reflectance spectra for two major mare crater

spectral types are shown in Figure 4. These two spectral

types of mare craters are distinguished by: MI) The exis-

tence of two absorption bands, a strong one centered near

lym and a weaker one near .5pm; MII) The existence of one

strong band near lym. Each of these two types of mare cra-

ters can be further subdivided according to the wavelength

position of the lym feature and possibly the strength of

ultraviolet absorption. A third group (MIII) of mare cra-
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ters have identical spectral characteristics as those iden-

tified as highland crater type UIII. These MIII spectra

are shown in the lower right of Figure 3.

A few crater spectra do not fit easily into these mare

and highland groups:

(a) The center and rim of Kepler has been observed

frequently (Figure 5A). The first whole crater spec-

trum (1-09-71), although noisy, seemed comparable to

most mare craters and Kepler was originally classified

as a mare crater (McCord et al., 1972). Since then,

additional spectra of varying quality have been obtained

which together indicate that Kepler is a fairly unique

spectral type. There exists a relative minimum in the

spectrum near .9pm and a plateau between 1.0 and 1.lym.

A region within the ejecta from Kepler, however, con-

tained the same spectral character is group UId and

was thus classified as highland material.

(b) Three regions (Lalande, Reiner y, and Dawes rim)

may be mixtures of a variety of mare and highland ma-

terial. Their spectra (Figure 5b) are more similar

to each other than to other craters, however, implying

perhaps related mineralogy.

(c) Hesodius B (and perhaps Dawes ejecta) is an old
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crater (Eratosthenian) in a blue (high-Ti) mare. Its

spectral characteristics (Figure 5c) are consistent

with the interpretation that the surface is an inter-

mediate stage during degradiation of high-Ti basalt

to soil with maturity.

C. Discussion

Relative reflectance spectra are especially useful

for understanding spectral differences seen in two-dimen-

tional imagery. With the exception of MIII and UIII cra-

ters, the pyroxene band near .95pim is stronger in crater

spectra than in mature soils. A .95/.57pm ratio image (cf.,

McCord et al., 1976b) is thus frequently used as a data

source to easily identify immature regions and to estimate

their areal extent. Spectral ratio images at other wave-

lengths, however, do not provide sufficient information

for classification of craters. As can be seen in Figures

3-5, there is great variety in the strength of spectral

features and the wavelength of spectral inflections.

No simple combination of spectral ratio images can distin-

guish the spectral types discerned in the crater spectra

presented here.

It has been shown previously that the general spectral

characteristics of fresh craters are essentially the same

11
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as those for rock powders measured in the laboratory (Adams

and McCord, 1972). The strength of the features in labor-

atory measurements, however, are about 4 times as strong

as those observed telescopically. The data presented here,

together with a recently compiled atlas of similar labor-

atory data (Adams et al., 1977), reestablishes this link

between rock powders and fresh craters and will be discussed

in further detail in later publications. The laboratory

samples with spectral characteristics that are most compar-

able to those for fresh craters, both in nature and in

strength, are the non-agglutinate separates from immature

soils. Either the surface material at all craters observed

in this study has matured to some degree, causing the min-

eral spectral features to become somewhat degraded, or the

cratering event itself has created a surface material that

is not purely crystalline.

Some spectral characteristics that distinguish the sub-

groups of craters presented here appear to be gradiational

in nature. Spectral types may be related to each other

as a function of the maturity of the surface as suggested

by McCord et al. (1972) and Adams and McCord (1973). Al-

ternatively, the gradiations could be due to a mixing of

different rock types. The data presented in Figures 3-5

12



IV 284

indicate that distinct rock types do exist and suggest

that many of the spectral variations are not simple a

matter of surface maturity.

A few cases where spectral evidence indicates a large

mare crater has excavated crustal material have already

been documented (McCord et al., 1972): Aristarchus and

Copernicus. (The soil of Copernicus ejecta, however, has

already developed to a fairly mature agglutinate-rich state.)

Additionally, from the data presented here, one group of

smaller mare craters (MIII) have apparently excavated high-

land material of the same type as that found in UIII cra-

ters. MIII craters occur near the edge of the mare on

what appears to be thinly flooded basin shelves in Mare

Humorum and Serenitatis.

A few spatial systematics can be tentatively identi-

fied in these data. All of the regions in highland group UId

and III are on basin rims. The Apollo 16 region (Descartes)

contains all of the craters identified as group UIe and

a few from UIc. Spectra of very immature lunar soils from

Luna 20 and Apollo 16 contain these same spectral charac-

teristics (Adams et al., 1977). From the data available,
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the craters Aristarchus (UIa) and Mosting A (UII) are sin-

gularities in the remote observations although almost iden-

tical spectral characteristics can be identified in a few

lunar highland samples (Adams and McCord, 1972, Adams et

al., 1977). Identification of lunar samples with spectral

characteristics comparable to the craters in group UIb

and III has not been made.

The two primary absorption features observed in mare

craters have clear compositional implications. The strong

absorption features at lpm is primarily due to clinopyroxenes

in the surface material (Adams and McCord, 1972). The

wavelength position of this band is a function of the Fe

and Ca content of the average pyroxene (Adams, 1974). If

the wavelength position of both this band and the accom-

panying one near 2ipm can be measured, then the pryoxenes

composition can be determined. The feature in mare crater

MI spectra near .5pm is commonly observed in titanium-rich

rocks and is due to either titanium-rich pyroxenes or il-

menite.

The occurrence of type MI and MII craters is generally

associated with the TiO 2 content of the surface unit (as

derived from soil spectra): type MI craters occur in re-

gions that are titanium rich and type MII occur in regions

14



IV 286 15

that are low titanium. Halo crater (MIb) occurs in the

Copernicus ejecta blanket and is likely to have excavated

high titanium basalt.

It is unfortunate that no spectra for craters within

the major unsampled basalt types of the western moon (Pie-

ters and McCord, 1976) were available for this study.

A primary reason for this lack of data is the difficulty

of locating a crater within the current telescopic resolu-

tion (%l0 km) that is likely to have excavated only the

most recent surface unit. For example, the western high-

Ti flows near Flamsteed are thin and many craters seem to

have excavated an earlier low-Ti unit (Pieters et al.,

1977, in preparation).

D. Conclusions.

(1) These additional data strengthen and expand the

conclusion of Adams and McCord (1973) that the spectral

features evident in spectra of fresh crater are stronger

than those for mature soils (Figure 2) and are due to the

more crystalline nature of the surface material.

(2) The systematic variations observed in the spectral

features of these fresh craters are directly associated

with variations in the mineralogy of the surface material

and can be understood largely in terms of returned lunar

samples. To utilize this information in a quantitative
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manner, spectra to 2.5Pm are required in order to examine

the details of mineral absorption features.

(3) This spectral classification of fresh craters

together with the previous classification of mature mare

surfaces, an unfinished classification of highland surfaces,

and the orbital geochemistry data indicate that most (>80%)

of the lunar surface is composed of a finite number of dis-

crete and describable gepchemical units. Even though 1/2

to 2/3 of these units are unsampled, there is some hope

of understanding their general mineralogy and geochemistry

in the future using remote sensing techniques.
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Figure Captions

1. Classification of lunar bright craters based on spec-

tral reflectance measurements. The shape of the over-

sized symbols indicates the spectral groups discussed

in the text. The number associated with each symbol

is for identification of the spectra in Figure 2-5.

2. Telescopic reflectance spectra for representative lunar

soils and craters.

3. Reflectance spectra relative to MS-2 for highland cra-

ter material. Three major groups are distinguished.

Group I can be further subdivided (a-e) according to

the wavelength position of distinct spectral inflections.

Groups UIII and MIII are spectrally equivalent although

craters of the former are in the highlands and of

the latter are on the edge of a mare.

4. Reflectance spectra relative to MS-2 for mare craters.

Group I has two absorption features, one near .5pm

and one near l.Opm. Group II only has one major fea-

ture near l.Opm. Each group can be further subdivided

according to the wavelength position of the l.Opm feature.

5. Reflectance spectra relative to MS-2 for special crater

groups. Kepler center and rim appear to have unique

spectral characteristics. LaLande, Reiner Gamma, and
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Dawes are likely to be mixtures of material although

they have roughly similar spectra. Spectra for Dawes

ejecta and Hesiodus B appear to show significant ma-

turation effects.
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V. SUMMARY AND SYNTHESIS

Samples of basalts from two planets, the earth and

the moon, have been studied in detail by petrologists

and geochemists in order to understand the geochemistry

of the interiors as well as the processes that have been

part of planetary evolution. Basalts from these two plan-

ets are similar in the general sense that they have crys-

taliized from mafic igneous melts derived by partial melt-

ing of the planet's interior. However, it is also appa-

rent there are some fundamental differences in chemistry,

age, mode of emplacement, tectonic.environment, and by

implication, character of the mantles. The Apollo program

opened a new era of exploration; the return of the lunar

samples allowed the first direct comparison of the earth

with another known solar system object and deepened the

understanding of our own planetary environment.

The basic nature of the samples from the moon will

continue to be studied in terrestrial laboratories to

further understand the evolution of the planet. However,

until more comprehensive samples are obtained of yet un-

sampled units, it will be the role of remote sensing spec-

ialists to place limits on what can be extrapolated glo-

bally from the selective samples in hand returned by Apollo

and Luna missions. Near future exploration of the lunar
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surface will have to be performed using remote sensing

techniques. Spectral reflectance measurements in par-

ticular have been used to derive information of surface

mineralogy and geochemistry.
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V. SUMMARY AND SYNTHESIS

A. Conclusions

Spectral reflectance data (spectra and imagery) dis-

cussed in the preceding sections allow the following gen-

eral conclusions to be made concerning mare basalt types

on the frontside of the moon.

1. Regional basalt types exist. There are regions

up to hundreds or perhaps thousands of square kilometers

in extent of essentially uniform surface composition.

There are also groups of smaller flows that are widely

separated but nevertheless apparently identical in character.

The homogeneity of some surface units is evident in var-

ious spectral ratio images for extensive regions. The

spectral character of a few of these units have been studied

in detail,providing information to allow their regional

extent to be mapped (e.g., Mare Tranquillitatis, Central

Serenitatis, NE Humorum, West Imbrium; see Section

IIB). One implication of the observed regional homogeneity

is that if surface fractionation processes act to signi-

ficantly change the surface composition (or spectral char-

acter of a unit) then such processes must do so uniformly

over extensive areas.

2. Basalt types have been characterized (from soil

spectra) in terms of certain useful geochemical character-

istics (e.g., TiO 2 content) and mineralogical features
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(glass and pyroxene components).

3. About 15 spectrally distinct surface units can

be identified for mare soils. These represent at least

6 fundamental (extensive) basalt types or related series.

(a) Apollo 12, 15 (mi, 11) low titanium basalts

found in most nearside regions. SAMPLED.

(b) Apollo 17, 11, Luna 16 (H 1 , h ) high to medium

high titanium basalts found on the eastern moon. Weak

pyroxene band, weak glass (Fe2+) band. SAMPLED.

(c) Flamsteed, Imbrium (H2, h 2, M 2 ) high to medium

titanium basalts found only on the western moon. Weak

pyroxene band, strong glass (Fe2+) band. UNSAMPLED. These

basalts include the western "blue" basalts with TiO con-
2

tent likely to be distinctly high, comparable to that at

Apollo 11, but with different mafic mineralogy or compo-

sition.

(d) Mare Humorum (h3 ) medium high titanium basalts

found only in the western maria. Strong pyroxene band,

strong glass (Fe2+) band. UNSAMPLED.

(e) Serenitatis (m 4 ) low titanium basalts. Strong

pyroxene band, strong glass (Fe2+) band. UNSAMPLED.

(f) East Imbrium, Frigoris (L2, L ) (very) low

titanium basalts. UNSAMPLED.
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4. Although not all regions have been spectrally ana-

lyzed, it is clear that the lunar samples represent only

a few of the major basalt types on the lunar surface.

It appears that about 2/3 of the lunar maria are not repre-

sented in the lunar sample collection returned by U.S.

Apollo and Soviet Luna missions.

5. All mare surfaces contain lateral variations of

compositionally heterogeneous basalts. Although a few

regions contain vast areas of apparently homogeneous ba-

salt (conclusion 1) many mare regions are heterogeneous

on the lateral scale of 2-50 kilometers. This heterogeneity

is apparent in any detailed study of high resolution spec-

tral images. An example of this lateral heterogenity oc-

curs at the Apollo 12 landing area. Remote sensing stu-

dies show two compositionally distinct units within

a few kilometers. Recent examination of the Apollo 12

ilmenite basalts indicates they are unrelated to the rest

of the Apollo 12 low-Ti basalts and may indeed represent

this second unit. These two basalt types were roughly

contemporaneous.

6. Mare fill (even in the mascon basins) may also

be stratigraphically heterogeneous. The only spectrally

documented case is Mare Crisium for which the likely se-

quence of mare fill, oldest to youngest, was: a high-Ti
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basalt, a (very) low-Ti basalt, and a (medium) low-Ti ba-

salt. Photogeologic evidence and multispectral imagery

strongly suggests Mare Serenitatis may have had a somewhat

similar sequence of fill (high-Ti followed by low-Ti).

The western maria seem to be far more complex.

7. Some basalt types are spectrally gradational sug-

gesting minor variation in geochemistry; three regional

series can be identified. Two clear series are evident

in the western maria: (a) Flamsteed-Imbrium high to medium

high-Ti basalts (H2, h 2, M 2 ), and (b) Mare Humorum medium

high-Ti basalts (h3 varying in TiO 2 by about 3%). It is

suggested that the basalts for each series are derived

from the same source region with minor variation in P,

T, chemistry or degree of partial melting. The observed

variations could also be due to near surface fractionation.

The Flamsteed flows (see Figure IID-21) appear to be in-

dividually homogeneous and distinct, whereas the variations

in the Humorum basalts are regionally diffuse. Spectral

data also indicates there may exist a sequence of basalt

types in the eastern maria that range in composition from

Apollo 11 (H1 ) to Luna 16 (hj).

8. Although most mare surfaces are now composed of

mature soil, more crystalline material is excavated by

fresh craters. Spectra of fresh craters are comparable
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to those obtained for laboratory samples of very immature

soils and allow the mineralogy of an ejecta unit to be

examined. The variations in spectral features for fresh

craters are known to be directly related to specific min-

eral absorption features of minerals. Thus, if spectra

to 2.5pm are obtained for fresh craters, components of

the mineralogy of the excavated unit can be discerned.
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V. SUMMARY AND SYNTHESIS

B. Inferences

The spectral information (both spectra and imagery)

integrated with other global data (e.g., Ap 15, 16 orbi-

tal geochemistry, relative age units derived from crater

degradation studies, thermal and geochemical models of

the moon, etc.) support the following inferences.

1. The bi-modal relationship observed in both age

and TiO2 content of mare basalt samples is likely to be

simply a matter of limited sampling. The spectral data

suggest a continuum of TiO 2 content for mare basalts.

When spectral data for TiO 2 are combined with crater degra-

dation age units of Boyce (1976), a more complicated re-

lationship emerges (e.g., Soderbloom and Boyce, 1976).

From the data currently available, an update of the TiO 2

and age relationship of Papike et al. (1976) is estimated

and is shown in Figure V-l.

2. It is unlikely that the lunar mantle is zoned in

any simple global sense and that the sequence of observed

basalts is simply the result of partial melting of progres-

sively deeper regions. Thermal models show that the upper

limit of a zone of partial melt in the lunar mantle becomes

deeper with time. Any thermal and geochemical model for

the source region of mare basalts must also account for
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the frequently observed heterogeneity of nearly contempor-

aneous basaltic units both locally and globally. For ex-

ample, if the same source region depth was tapped for the

two Apollo 12 types of basalt, then the lunar mantle must

contain significant lateral heterogeneities. An alterna-

tive model is that different depths are tapped within

the zone of partial melting during any particular lunar

era.

3. The lunar nearside maria can be roughly divided

into two and perhaps three regions which seem to have evolved

independently in terms of both time and geochemistry:

activity in the eastern maria apparently ended first; in

the western maria last; and in the southwestern maria (Hu-

morum, Nubiun) perhaps sometime between the two. Orbital

geochemistry indicates a concentration of heat producing

elements in the surface rocks of the western regions, per-

haps implying a more vigorous radioactive heat source

at depth.
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V. SUMMARY AND SYNTHESIS

C. Recommendations

A few specific and general recommendations for the

lunar science community (and NASA) are perhaps justified

from these results and inferences.

1. Since many major lunar basalt units have not been

sampled directly, the continued search for other distinct

basalt types as minor fragmental components of the returned

samples could significantly increase the information from the

samples. The recent discovery of VLT basalts in the Apollo

17 core shows that this is a fruitful endeavor. It is

likely that correlated studies between sample and remote

sensing geochemists can identify the type area of such

minor components.

2. Caution should be exercised in extrapolating lunar

sample information to global geochemistry. The sequence

of mare basalt extrusion is locally and globally geochem-

ically variable and complex. This is not to say regional

patterns cannot be identified and characterized, but it

is important to recognize that only a limited amount of

geochemical information is available in the samples.

3. Integrated studies between lunar sample geochemists

and remote sensing specialists should be encouraged. Two

specific topics need to be addressed:
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(a) "Ground Truth" must be rigorously defined. The

largest scale observable in the laboratory is measured

in centimeters. The smallest scale currently observable

with remote sensing techniques is measured in kilometers.

The rock types identified in the samples need to be related

to regional units observed remotely. Furthermore, the

two types of data need to be expressed in the same terms.

For example, spectroscopic techniques can determine the

average pyroxene composition for a regional rock type (which

varies from one rock type to another). "Average pyroxene

composition", however, is somewhat a foreign concept to

petrographers.

(b) An accurate model of soil genesis needs to be

developed that quantitatively links the mineralogy and

geochemistry of the regional rock type (s) to that for

a mature soil. Most of the lunar surface has developed

a regolith and mature soil,and it is such a soil that is

observed using remote sensing techniques. On the other

hand, most useful laboratory geochemistry is based on crys-

talline or rock samples.

4. An effective program of lunar surface exploration

can and should be undertaken to map the global geochemistry

of the moon. The rational for such a program is twofold:
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(a) The scientific understanding of the moon that

resulted from the Apollo program has matured to the extent

that global data will permit a maximum scientific yield

from the huge investment in Apollo. The U.S. scientific

expertise that has enthusiastically carried this explor-

ation program will be dispersed if lunar exploration is

terminated half-way through the sequence.

(b) If the moon is to be utilized in the future

as a scientific and economic resource, the global chemis-

try must first be mapped and explored. With present tech-

nology, such an assessment of lunar materials and resources

is relatively easy and can be done at low cost.

A limited amount of further geochemical information

can and should be obtained using earth-based telescopes

and recently developed spectroscopic instruments. The

obvious and perhaps ultimate application of spectral re-

flectance techniques for remotely determining lunar geo-

chemistry would be done from lunar orbit: continuous

high resolution (1/2 km) spectroscopy (.3 - 2.5pm) of sur-

faces and craters with detailed two-dimensional spectral

mapping at selected useful wavelengths.

The spectral reflectance study of lunar basalts pre-

sented here has shown that there are significant numbers

of unexplored regions and unsolved problems that cannot
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be understood simply by a more extensive study of the lunar

samples. A rigorous program of lunar exploration is cer-

tain to uncover many unexpected and extremely useful facts

about the moon. If the moon is to be utilized as a long-

range asset, rather than simply an object of interesting

beauty, detailed exploration and mapping is an essential

endeavor.
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