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ABSTRACT

An analytical study of baroclinic instability on the sphere is
presented. We study analogues of both Eady's and Charney's
problems on the sphere. Furthermore, we derive analytic solutions
for the problem of a general meridional profile of the basic flow.

The governing equation is the quasigeostrophic potential
vorticity equation on the sphere. We adopt a shortwave
approximation and a two-scale assumption to derive the approximate
solutions for these problems. These solutions contain a second-order
turning point whose location is very important in determining the
properties of the unstable waves. This second-order turning point is
located at the maximum of the meridional temperature gradient and,
because of the variation of the Coriolis parameter, it is always located
on the poleward side of the westerly zonal flow maximum.

Furthermore, the analytic solutions indicate a very close
relation between baroclinic instability on the sphere and that on a
p3-plane. In fact, if 3-plane is located at the latitude of the turning
point, the study of a uniform zonal flow should be able to correctly
derive most of the properties of the baroclinic unstable waves on the
sphere. Nonetheless, the spherical geometry and the meridional
profile of the basic flow have significant effects on the perturbation's
meridional structure and the eddy momentum flux, which can not be
correctly predicted by a P-plane study.



3

Although the analytic solutions have some limitations and are
not valid for long waves, they are still able to capture the essential
features of baroclinic instability on the sphere. Furthermore, these
have implications for parameterizations of the eddy fluxes in climate
modeling and allow one to predict the properties of the unstable
waves for given meridional profiles of the basic flow, which may be
useful for guiding numerical studies.

Thesis Supervisor: Peter H. Stone
Title: Professor of Meteorology



DEDICATION

To

My father and mother



5

ACKNOWLEDGEMENTS

I thank my advisor, Professor Peter Stone, for his insights that

motivated this thesis. I have benefited greatly from his helpful

guidance and suggestions. I also benefited from discussions with

Professors Edward Lorenz, Glenn Flierl and Kerry Emanuel. I want to

thank Jane McNabb in Center headquarters and many people in and

about Cambridge to whom I am eternally grateful for their advice,

support, and friendship during my stay at MIT. As a foreign student,

I am grateful for the opportunity to pursue an advanced degree at

MIT. During these years, I was supported through National

Aeronautics and Space Administration grant NASA/G-g NSG 5113.



TABLE OF CONTENTS

Page

Abstract............. ....................................................................................................... 2

Dedication......................................................................................................................4

Acknowledgements ..................................................................................... ... 5........

Table of Contents........................... ....................................................................... 6

List of Figures..............................................................................................................7

I. Introduction........................... .................................................................. 10

II. The Governing Equation........................................................................ 21

III. An Analogue of Eady's M odel on the Sphere............................... 35

IV. An Analogue of Charney's M odel on the Sphere......................... 50

V. A General Meridional Profile Problem...................................90

VI. Summary and Conclusion........................... ................. 127

References.................................. ..................................................... .................... 131

Biographical Note................................................... .......................................... 134



LIST OF FIGURES

Page

Fig. 1.1. The phase speeds(upper) and growth rates(lower) as functions
of the total wavenumber from the exact results(short dashes) of
Lindzen and Rosenthal(1981) and the shortwave
approximation(solid), taken from Branscome(1983).......................17

Fig. 2.1. The growth rates(a) and phase speeds(b) from Lorenz's
model(solid) and approximated equation(dashes) as function of
zonal wavenumber, taken from fig.1 of Hollingsworth, Simmons
and Hoskins(1976)............................................ .............. ................ 27

Fig. 2.2. The perturbation's phases(a) and amplitudes(b) as functions of
latitude from both Lorenz's model(upper) and approximated
equation(lower), taken from fig. 2 and fig. 3 of Hollingsworth,
Simmons and Hoskins(1976)..........................................28

Fig. 3.1. The meridional structure of the basic flow as a function of
latitude at z=1..................................................... ............ ................ 45

Fig. 3.2. The growth rate as a function of zonal wave number for each
meridional wave number n, n=1,2,3................................... ...... 48

Fig. 3.3. As in fig. 2.2, except for the steering level..................................48

Fig. 3.4. The amplitude and phase of the most unstable wave, k=6 and n=1,
as a function of height....................................................49

Fig. 3.5. The amplitude of the most unstable wave as a function of latitude....49

Fig. 4.1. The perturbation's growth rates for solid body rotation as
functions of the zonal wavenumber k for U0 = 20, 30 and 40 m/sec.

NO=- 2x10 -4 sec.-2 and other basic state parameters the same as0-

chapter iii........................................................ ............. ................. 77

Fig. 4.2. As in Fig. 4.1, except for the phase speeds...................................77

Fig. 4.3. As in Fig. 4.1, except for the cases of N = 1x10 4 , 2x10 4 ,

3x10-4 sec-2. The value of U0 is taken as U0 = 30 m sec - 1..... . . . . . . . . . . .... 78



Fig. 4.4. As in Fig. 4.3, except for the phase speeds.............................. ..... 78

Fig. 4.5. The location of the perturbation's maximum amplitude as a function
of the zonal wavenumber k for U0=20, 30 and 40 m/sec.. .................. 81

2 -4 -4 -4 -2
Fig. 4.6. As in Fig. 4.5, except for: NO = 1x10 , 2x10 " , 3x10 sec ................. 81

Fig. 4.7. The meridional amplitude functions of k= 8, 16, 24 and n=1
2 -4 2

for U0=30 m/sec. and NO= 2x10 -4 sec. 2 ................................ ..... 82

Fig. 4.8. As in Fig. 4.7, except for the meridional phase variation.................82

Fig. 4.9. As in Fig. 4.7, except for the amplitudes as functions of height at

the turning point, which is located at 450 latitude............................84

Fig. 4.10. As in Fig. 4.7, except for the vertical phase variations............... 84

Fig. 4.11. As in Fig. 4.7, except for the eddy momentum fluxes..........................85

Fig. 4.12. As in Fig. 4.9, except for the eddy heat fluxes at the turning point...85

Fig. 5.1. The meridional cross sections of the basic flows and temperatures for

the 300 jet (a), the 550 jet (b), and for solid body rotation (c), taken
from Simmons and Hoskins(1976).................... .......... 104

Fig. 5.2. The perturbation's growth rates as functions of the zonal
wavenumber for the solid body rotation: the "Short wave" results
were calculated from (5.58), the PE and QG results, -taken from
Simmons and Hoskins(1976), were calculated from the primitive
equations and the quasigeostrophic equations, respectively......... 108

Fig. 5.3. As in fig. 5.2, except for the phase speeds.............................. .... 108

Fig. 5.4. The perturbation's growth rates as functions of the zonal

wavenumber for the 300 jet................................................ 109

Fig. 5.5. As in fig. 5.4, except for the phase speeds.............................. .... 109

Fig. 5.6. The perturbation's growth rates as functions of the zonal

wavenumber for the 550 jet................................................. 110

Fig. 5.7. As in fig. 5.4, except for the phase speeds..................................110



Fig. 5.8. The locations of the perturbation's maximum amplitude as functions
of the zonal wavenumber for the solid body rotation, the 300 jet and
for the 550 jet. The straight lines are the locations of the turning
points for these three profiles.................................. ......... 113

Fig. 5.9. The meridional amplitude and phase of the zonal wavenumber 8
as functions of latitude for the solid body rotation..........................113

Fig. 5.10. As in fig.5.9, except for the 300 jet....................................................... 114

Fig. 5.11. As in fig.5.9, except for the 550 jet.......................................................114

Fig. 5.12. The perturbation's steering levels at the turning point as functions

of the zonal wavenumber for the solid body rotation, the 300 jet and

for the 550 jet............................................................117

Fig. 5.13. The amplitudes of the zonal wavenumber 8 at the turning points

as functions of height for the solid body rotation, the 300 jet and

for the 550 jet.............................................................................................. 17

Fig 5.14. As in fig. 5.13, except for the leading order phase of the
vertical structure................................ 118

Fig. 5.15. As in fig. 5.13, except for the eddy heat fluxes................................ 123

Fig. 5.16. The eddy momentum fluxes of zonal wavenumber 8 as functions of

latitude for the solid body rotation, the 300 jet and for the 550 jet...123

Fig. 5.17. The meridional cross sections of the eddy momentum fluxes at

wavenumber 8 for the 300 jet (a), the 550 jet (b) and for solid body
rotation (c), taken from Simmons and Hoskins(1976) ........................ 124



10

CHAPTER I

INTRODUCTION

Since the pioneering works of Charney(1947) and Eady(1949),

the theoretical study of baroclinic instability has been one of the most

important topics in atmospheric dynamics. In the literature, there are

two different geometrical assumptions in the studies of baroclinic

instability; one is plane geometry and the other is spherical geometry.

The difference in geometry has led to somewhat different approaches

to studying the problem. Both analytic and numerical analyses have

been adopted to investigate the baroclinic instability problem in plane

geometry, but only numerical analyses have been used to study this

problem on the sphere. Furthermore, although many aspects of

baroclinic instability are similar in both geometries, there are some

aspects that remain to be understood.

The purposes of this study are: (1). to find an analytic solution

for the baroclinic instability problem on the sphere; (2). to learn how

the properties of the baroclinic unstable waves on the sphere are

determined; (3). to find out the effects of the spherical geometry and

the meridional profile of the basic flow on the behavior of these

unstable waves.

In the following, we shall discuss the effects of these two

geometrical assumptions on the methods applied to study the



baroclinic instability problem. Also, we shall discuss the similarities

and differences between the results with these different geometries.

(a). the plane geometry

Since the work of Charney(1947), the plane geometry

assumption has been adopted in most of the theoretical studies of

baroclinic instability. This assumption neglects the curvature effect

of the earth and the meridional variation of the Coriolis parameter,

except that a P-plane is used where the gradient of the Coriolis

parameter is retained. With the quasigeostrophic approximation, the

governing equations of the large scale atmospheric motions can be

reduced to a single equation, which is the n-plane quasigeostrophic

potential vorticity equation. This single governing equation not only

simplifies the baroclinic instability problem in plane geometry, but

also provides information about the necessary condition for

instability(Charney and Stern, 1962; Pedlosky, 1964a) and bounds on

the phase speed and growth rate of the perturbations. Although the

plane geometry assumption is unrealistic for the earth's atmosphere,

since the baroclinic instability process is mainly a midlatitude

phenomenon, it can still be justified.

For a uniform zonal mean flow, the governing equation of the

baroclinic instability problem is a trivial two-dimensional differential

equation, which can be easily reduced to an ordinary differential

equation for the perturbation's vertical structure. It is easy to solve

either analytically or numerically. There are two different models
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that were adopted by most of the theoretical studies in plane

geometry; one is Eady's model on a f-plane and the other is Charney's

model on a P-plane.

(i). Eady's Model

Eady(1949) introduced the simplest model on a f-plane, where

the 1-effect is neglected, that displays the baroclinic instability

process. The basic state of this model has constant density and static

stability. The mean flow is a linear function of height without

meridional variation. Since there is no basic state potential vorticity

gradient in the governing equation, the necessary condition of

instability can be satisfied if both upper and lower boundaries be

horizontal rigid planes. Since the basic state potential vorticity

gradient is zero, the equation and the boundary conditions are very

simple. Therefore this instability problem can be solved analytically

without any difficulty.

The results of this problem show that the instability only

occurs at low zonal wavenumbers. Since, as the wave becomes

shorter, the perturbation will be trapped near one of the boundaries,

the necessary condition for instability can no longer be satisfied.

Therefore, there is a shortwave cutoff for instability. The lowest

meridional wavenumber has the largest growth rate. The most

unstable wave has a zonal scale similar to the synoptic scale eddies

of the atmosphere. The phase speeds are the same for all unstable

waves. The unstable waves have the same vertical scale as that of



the mean flow. The amplitudes of the unstable waves have a

minimum near mid-level and increase toward both boundaries. The

phase of these unstable waves tilts westward and upward, which is

the same condition for the baroclinic conversion of energy from the

mean field to the perturbation. Furthermore the eddy heat flux is

poleward everywhere. Since the basic flow has no meridional

variation, there is no eddy momentum flux in this model.

(ii). Charney's Model

Charney(1947) studied a more realistic model that retains both

the f3 term and the vertical variation of the basic state density, which

is an exponentially decreasing function of height. The basic state

potential vorticity gradient is no longer zero in this model.

Therefore, from the necessary condition for instability, the upper

rigid boundary condition can be relaxed and replaced by the

radiation condition at infinity.

From the discussion of Held(1978), Branscome(1983) and

Pedlosky(1987), the existence of a nonzero basic state potential

vorticity gradient has two significant effects on this baroclinic

instability problem. One is that there is a singularity in the

governing equation and the other is that there are important changes

in the vertical and horizontal scales of the unstable disturbances.

Due to the presence of a singularity in the governing equation,

it is more difficult to find an analytic solution for this baroclinic



instability problem. Though analytic solutions did not exist in the

original work of Charney, they were derived in later studies(Kuo,

1952, 1973; Lindzen and Rosenthal, 1981 and etc.). Nonetheless,

these solutions were very complex. It required numerical

calculations to determine the perturbation's growth rate, phase speed

and other properties.

Branscome(1983) introduced a shortwave approximation to

simplify this baroclinic instability problem. The shortwave

approximation assumes that the perturbation's total wavenumber is

larger than other terms in the governing equation. Therefore, after

rescaling, the basic state potential vorticity gradient is an order

smaller than other terms in the resulting equation. Then he applied

a perturbation method to solve the equation. Since the basic state

potential vorticity gradient is not present in the leading order

equation, the perturbation solutions are much easier to find.

Moreover these perturbation solutions are much simpler than the

exact solutions. Therefore the properties of the unstable baroclinic

waves are more explicit and can be determined without complicated

numerical calculations.

Fig. 1.1, taken from Branscome(1983), shows the phase speeds

and growth rates as functions of the total wavenumber, which is

scaled by the radius of deformation, from the results of both Lindzen

and Rosenthal(1981) and this shortwave approximation. We note

that, although these perturbation solutions from the shortwave



approximation are not valid for the whole wave spectrum, they do

give reasonable results even at synoptic scale wavenumbers.

Furthermore, we see that only certain neutral points exist in

the solutions. There is no shortwave cutoff for instability. This is

due to the existence of a nonzero basic state potential vorticity

gradient, i.e., as the wave becomes shorter, the vertical scale also

shrinks proportionally so that the instability can still occur.

Therefore, in contrast with Eady's model, the presence of the basic

state potential vorticity gradient allows the unstable perturbations in

Charney's model to select their own vertical scale.

The phase speeds of the unstable waves are near the minimum

speed of the basic flow rather than the mean speed as in Eady's

model. The maximum amplitude of the most unstable wave is at the

ground. The perturbation's phase variation with height is confined

near the surface, so the eddy heat flux is also confined in this region.

Since there is no meridional variation in the basic flow, there is no

eddy momentum flux.

For a nonuniform zonal flow, the baroclinic instability problem

on a plane geometry becomes even more difficult to deal with. Since

the basic flow is a function of both vertical and meridional variables,

the separation of variables can not be directly applied to the

governing equation. To simplify the problem, a two-scale formalism

can be applied to the meridional variable to quasi-separate the

equation into a vertical structure equation and a fast variation
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meridional equation(Stone, 1969; Gent, 1974; Killworth, 1980;

Ioannou and Lindzen, 1986). The perturbation's vertical structure

equation is similar to that in the uniform zonal flow problem. The

fast variation meridional structure equation is approximated by a

WKB equation. Depending on the meridional domain, this equation is

either a simple WKB problem(finite domain) or a two-turning-point

problem(infinite domain). Then these two equations can be solved

separately to determine the properties of the unstable waves.

The results from these studies showed that, in the presence of

horizontal shear in the basic flow, the unstable perturbations would

select their own meridional scales. Moreover, there is an eddy

momentum flux associated with the unstable baroclinic waves.

Pedlosky(1964b) and Stone(1969) found that this momentum flux is

always against the meridional gradient of the basic flow and changes

sign at the jet center.
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Fig. 1.1. The phase speeds (upper) and growth rates (lower) as
functions of the total wavenumber from the exact
results (short dashes) of Lindzen and Rosenthal(1981)
and the shortwave approximation (solid), taken from
Branscome(1983).
Branscome( 1983).



(b). the spherical geometry

On the sphere, both the earth's curvature and the full

meridional variation of the Coriolis parameter are retained. The

governing equations of the large scale atmospheric motions can not

be easily reduced to a single equation. Although Hollingsworth,

Simmons and Hoskins(1976) did introduce a quasigeostrophic

potential vorticity equation on the sphere, since its coefficients

depend on both meridional and vertical variables, it is more difficult

to solve analytically than that in the plane geometry. Therefore, as

yet, there is no analytic study of the baroclinic instability problem on

the sphere.

The numerical studies(Hollingsworth, 1975; Moura and Stone,

1976; Simmons and Hoskins, 1976) showed that the eddy momentum

flux is an essential feature of baroclinic instability on the sphere.

They found that the stability properties and the structure of the

most unstable waves are qualitatively similar to those on a f-plane,

but that the spherical geometry has significant effects on the location

of the disturbances and on the eddy momentum fluxes, which vary

greatly from profile to profile of the basic flow.

Even though the quasigeostrophic approximation formally

breaks down near equator, the quasigeostrophic equations have been

used in the numerical studies of baroclinic instability on the sphere.

Moura and Stone(1976) found that, since the amplitudes of unstable

waves are small near the equator, the unstable solutions of the



quasigeostrophic model do not differ much from those of the balance

equations. Moreover, Simmons and Hoskins(1976) showed that the

results from the quasigeostrophic equations are generally similar to

those of the primitive equations. Therefore, the quasigeostrophic

approximation does not appear to affect the properties of baroclinic

instability on the sphere.

Although a numerical analysis can investigate more realistic

atmospheric flows and provide more accurate results for the

baroclinic instability problem on the sphere, the determination of

cause and effect relationships may be difficult. The existence of the

quasigeostrophic potential vorticity equation on the sphere and the

introduction of the shortwave approximation by Branscome(1983)

gives us an opportunity to analytically study the baroclinic

instability problem on the sphere. With this study we hope to be

able to provide a link between the f3-plane analytic analyses and the

numerical analyses on the sphere. Also, the analytic solutions may

be able to provide us information about how the perturbation's

growth rate, phase speed, vertical structure, meridional structure,

heat and momentum fluxes are determined. These results may be

useful in improving parameterizations of the eddy fluxes in climate

modeling. Moreover, we may be able to predict the structure of the

perturbations for a given meridional profile of the basic flow from

these analytic expressions.

In chapter ii, we present the derivation of the quasigeostrophic

potential vorticity equation on the sphere and discuss the properties
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of this equation. In chapter iii, we investigate an analogue of Eady's

problem. In chapter iv, we study an analogue of Charney's problem

and determine a proper procedure to solve the baroclinic instability

problem on the sphere. In chapter v, we study the instability problem

for a general meridional profile of the basic flow. In chapter vi, we

summarize and conclude our study.



CHAPTER II

THE GOVERNING EQUATION

The governing equation in this study is the quasigeostrophic

potential vorticity equation on the sphere, which was introduced by

Hollingsworth, Simmons and Hoskins(1976). This equation, except

for having coefficients which are explicit functions of latitude, is very

similar to the quasigeostrophic potential vorticity equation on a

P-plane. As mentioned in chapter i, the quasigeostrophic

approximation did not have significant effects on the baroclinic

instability problem on the sphere, so we adopt this equation as the

governing equation in this study. Since there are many analytic

studies(Eady, 1949; Kuo, 1952, 1973; Branscome,1983 and etc.) on a

P-plane or f-plane, this similarity between the equation on the

sphere and that on a P-plane may give us an important clue on how

to find an analytical solution on the sphere. In this chapter, we

follow the work of Hollingsworth, Simmons and Hoskins(1976) to

derive the governing equation and discuss some of its properties.

This governing equation is derived from Lorenz's Model(1960),

which conserves the sum of kinetic energy and available potential

energy but does not allow the variation of static stability. Since the

equations of Lorenz's model are in vector invariant form, they can be

presented in spherical coordinates. We introduce 'P as the

streamfunction, X the velocity potential, 0 the geopotential and p the

pressure. Then the equations of Lorenz's model can be written as
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-- V2T =-J ( ,V2 + f)- V. f VX
at (2.1)

DT -J (P, T)+ o(
t( 2.2)

V2 - V. f VP
(2.3 )

DD RT

ap P (2.4)

V2X = _
( 2.5 )

where

aT RT
S=Y- ( P S) and f = 22g.

ap cp

Here Ts is the horizontal averaged temperature, t=sin(latitude), R the

gas constant, Cp the specific heat at constant pressure, Q the angular

velocity of the sphere and o=dp/dt, the vertical velocity in pressure

coordinates. As noted by Hollingsworth et al., this model is

essentially an energetically consistent extension to the sphere of the

usual j-plane quasigeostrophic model. On the sphere,

1 aA aB A aBJ(A,B)= ( aA B aA B
a (2.6)

VA = A.L (1_2)1/2 (
a ( - 2 )1/2 ak a a3t ( 2.7 )
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V2A= 1 1 a2A  a a A

M2 1 -g2 a2 agL ag
(2.8 )

where a is the radius of the sphere, X the longitude, bold face

characters, i and j, the unit vectors in longitudinal and latitudinal

directions. By definition, the nondivergent part of wind is a function

of the streamfunction; therefore the zonal and meridional parts of it

can be written as

U = - ( 1- L )12 2 DY

a ags
(2.9 )

a (1- 2)1

( 2.10 )

We linearize the equations by assuming that the

streamfunction and temperature can be separated into -a basic state

plus a small perturbation,

( 2.11)

T =T (j[, p ) +T'
( 2.12 )

From (2.3), (2.4) and (2.9), we can derive the thermal wind relation,

.T fa . au
ag (1-1g2 )1/2 R ap ( 2.13 )



After neglecting nonlinear terms and dropping the primes, equations

(2.1) to (2.5) give,

+ ) V2 = 1 = { 2Q - [ u1 ]
at a(l1- 2 ) 1/2 3% a2 ak D2 a

+ f co - 2 1- 2

ap a2 ag

V2D = V.f V

( 2.14 )

( 2.15 )

(2.16 )

(2.17 )
aO RT

ap P

To derive a single equation that is analogous to the 3-plane

quasigeostrophic potential vorticity equation, two approximations

have to be adopted,

( 1 ) neglect 2 1- 2 X in ( 2.14)2 t
Sa l

(2) replace (2.16) by Q=fY

These approximations were introduced by Dickinson(1968) for the

case of vertically propagating planetary waves. As pointed out by

(.+ u )T=- - _au + oco
at a(1- 12) 1/2 a% a(l-p2)1/2 ak R ap



Hollingsworth et al., the first one implies that the divergent part of

the meridional wind is small in comparison with the geostrophic

meridional wind, which is consistent with traditional

quasigeostrophic scaling. With regard to the second one,

Hollingsworth et al. show that errors introduced by this

approximation are consistent with the usual quasigeostrophic

approximation.

From approximation (2) and equation (2.17), we have

T=_ fp-
R ap ( 2.18 )

In terms of F, (2.15) yields

+ u a ) a_.(fp a ) + 1 aT a (fp au
ap a t a(1-g 2)1/2 a ap Ro ap a(1-g 2)1/2  , ap Ro ap

( 2.19 )

Substituting (2.19) into (2.14) with approximation (1), then we have

the single governing equation on the sphere,

+ ,-] a )(V2Y +a fP a__
at a(1-g 2)1/2 a% ap Ro ap

+ { 22 - [ ] - _1 -( - )} = 0
a2  ag2  a (1- 2 )1/2 ap Ro ap

( 2.20 )

25
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To check if this approximated equation would yield results in

good agreement with those of Lorenz's model, Hollingsworth et al.

applied both in a two-layer system to study the same baroclinic

instability problem. The static stability is taken as a constant. The

basic flow is a solid body rotation in the upper layer and a rest state

in the lower layer.

Fig. 2.1, taken from Hollingsworth et al.(1976) fig. 1, shows the

growth rates and phase speeds from both models as a function of the

perturbation zonal wavenumber. We can see that, in general, the

solutions of this approximated equation underestimate the growth

rate and overestimate the phase speed. Nonetheless they are in very

good agreement even at low wavenumbers where approximation (2)

would give a larger error.

Fig. 2.2, taken from their fig. 2 and fig. 3, show the amplitude

and phase of the fastest growing mode as a function of latitude for

both models. We note that the amplitudes show little difference

between these two models. As for phase, there are some differences

near the equator. Since the amplitude is very small near the

equator, these differences are not important.

These results indicate that those approximations that were

introduced during the derivation of (2.20) do not have any

significant effect on the nature of baroclinic instability on the sphere.
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Fig. 2.1 The growth rates (a) and phase speeds (b) from Lorenz's
model(solid) and approximated equation(dashes) as a
function of zonal wavenumber, taken from fig.1 of
Hollingsworth, Simmons and Hoskins(1976).
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(a) (b)

(a) (b)

Fig. 2.2 The perturbation's phases (a) and amplitudes (b) as a
function of latitude from both Lorenz's model(upper) and
approximated equation(lower), taken from fig. 2 and
fig. 3 of Hollingsworth, Simmons and Hoskins(1976).
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To compare with P-plane analyses, we shall change (2.20) from

pressure coordinates to height-coordinates and nondimensionalize

the equation.

a
t=a

U
0

u=Ut
0

We introduce

z=Hz

N2 - L s N2 N2*
0 az o

S

V2 = 1 V2*
2

a

where ( )* is a nondimensional quantity, H the scale height, Uo the

characteristic wind velocity, N 2 the Brunt-Vaisala frequency, No the

characteristic value of N, g the gravity, and 0 s the horizontal

averaged potential temperature. With the aid of the hydrostatic

equation, after dropping the stars, the resultant nondimensional

equation is

( + U ){ A ( )+ [ t+ - (1-g 2 )St ( 1 -. 2) 1/2 a P az N2 Z " 2 1-. a2  ag ag

+ { . _ [(1-g2)1/2 ( -- ) } = 0
ax 9i2 g 2 a 2  p(1-g 2 ) 1/ 2 aZ N2 Z

( 2.21 )

The definitions of e and Ps are
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NH
0

2n a
and

N2H 2

s 2QaU
0 ( 2.22 )

It is easy to see that e is proportional to the ratio between the radius

of deformation and the radius of the sphere, while Ps is analogous to

the P parameter on a P3-plane. For the earth's atmosphere,

2 -2
a- 6400 km, N 2 x 10- 4 sec ,

0

H - 8 km,

Q= 7.29 x 10- 5 sec 1

U - 30 m sec
0

thus, E=0.1212 and Ps=0.457. We can see that, in general, e is a small

quantity and Ps is approximately an order one quantity. If g is

replaced by go, then

a 1 a I 1 
ax (1- 2 ) 112  , ay (1-2)" 1/2 g

and we note that the resulting equation is exactly the same as the

nondimensional quasigeostrophic potential vorticity equation on a

P-plane(from Pedlosky,1987), that is
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-+u- A ){ (Na2 Y )+S2( + )}+ {3 2a2u
at ax p az N 2 D ax ax ay2

p z2 a z

p az N2 Na

( 2.23 )

where

ND
S= o0

o IL,

, and
(1-g0)1/2 2D2

o= o
g2 29iaUgo 0

( 2.24 )

L and D are the perturbation's characteristic horizontal and vertical

scales, and go the value of g at 450. Usually both S and P are order

one quantities for synoptic scale disturbances. Therefore the main

difference between these two equations is that the coefficients in

(2.21) vary with latitude while those in (2.23) are constants.

Since (2.21) is analogous to (2.23), we can apply some results

from f-plane theory to the sphere. One of them is the necessary

condition for instability(Charney and Stern,1962; Pedlosky, 1964a).

We assume that the perturbation streamfunction has a normal mode

solution,

'T = (g,z) ei(kX - ct)

where c is the phase speed and may be complex, and k is the

planetary zonal wavenumber, k=1,2,3,..., integer. Then we multiply
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the equation resulting from (2.21) by pi*, where y* is a complex

conjugate of V, and integrate over a meridional cross section. After

integration by parts, we have

1 zt
2k2  + 2( -2) } I1 Z a]

00 N2  Z 1- 2  l

1 zt

=_ JJ ~ --E2 F.2.[(lt2)lu_ 2 .( U) } D )zagl

0 0 - c2 p(s1-2 2 ) 1/2 Z N2 Z

(1-12)
1/2

1

pU2 lwL2 DU z t

o N2(1_2)1/2 U -_ Z 0

(1-2)1/2 ( 2.25 )

The following boundary conditions have been applied to derive

(2.25),

Y = 0 at g=0O, 1
( 2.26 )

and

a (1 a aY 1 aY au
+ U a 0

at (1- 2)1/2 aX aZ (1- t2)1/2 aX aZ
at z= 0, z

( 2.27 )

If z- oo, the upper boundary condition is taken as Y=0 , then there is

no contribution from the integrated term at zt . Since the left hand

side of (2.25) is real, the imaginary part of the right hand side must
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be zero. Therefore if there is instability, which means that c i is

positive, then we must require that

1 zt

P { - 2  1_ =2)1/2U ( ) } aza
f f u a-2 (1-12)1/2p a 2 Z

(1-42) 1/2

2 2

+ QU au. Z agy =0
o N2( _2)1/2 U 2 Z 0

(1-. 2 )1/2  
( 2.28 )

This is the necessary condition for instability on the sphere, which

requires that one of the following conditions be met:

(1). the basic state potential vorticity gradient changes sign

within the domain;

(2). the basic state potential vorticity gradient term is

balanced by the boundary terms at z=0 and z=zt;

(3). the basic state potential vorticity gradient is zero and the

boundary terms have opposite signs.

It is easy to see that these conditions are the same as those on a

P-plane. We note that baroclinic instability of Charney's and Eady's

Models require that either condition (2) or (3) be met. Since the

form and properties of (2.21) and (2.23) closely resemble to each

other, we can construct spherical models that are analogous to these

two. Therefore we may be able to apply some of the methods from
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those analytical studies of these two models to solve (2.21)

analytically for certain kinds of basic flows. Moreover we can

compare them with results from those studies to determine the

effect of spherical geometry on baroclinic instability.
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CHAPTER III

AN ANALOGUE OF EADY'S MODEL ON THE SPHERE

The simplest model that displays the baroclinic instability

process was introduced by Eady(1949). The most significant feature

in Eady's model is that there is no basic state potential vorticity

gradient in the governing equation. As noted in the previous

chapter, this feature requires that both upper and lower boundary

terms be of opposite sign for instability to occur. Although the

absence of the basic state potential vorticity gradient is unrealistic

for application to the atmosphere, this model demonstrates the

essential character of baroclinic instability. Therefore, in our analytic

study of baroclinic instability on the sphere, we shall begin by

investigating an analogue of the Eady problem.

To derive the analogue of Eady's model on the sphere, we shall

assume that Ps is small. Furthermore, p and N 2 are taken as

constants. The basic flow has constant vertical shear and has a solid

body rotation for the meridional structure, i.e.,

S= ( 1-2)1/2 Z (3.1)

We note that, in (2.21), the important basic flow terms are divided

by (1-p 2) 1/ 2, therefore this flow can be seen as equivalent to

meridionally uniform zonal flow on a P-plane or f-plane. Then we
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look for the perturbation streamfunction that has a normal mode

solution,

' =Re{ e(,z) eik(}-ct)}
(1- 1g2)1/2

(where k=1,2,3,..., is the zonal wavenumb3.2Since e is small for the)

where k=1,2,3,..., is the zonal wavenumber. ' Since e is small for the

earth's atmosphere, it can be used as a perturbation parameter.

rescale k and p s as

k = e-1 k
-o

and P S= E2 
0S 0

We

( 3.3 )

where ko and 30 are taken as order one quantities. From (2.21), the

resulting equation for V is

__ L _ _S 0 D2-2  W2 " o+2z)=O
IZ 2 i2(1 - 2 )  ,2 ta2 i2 Z-C (3.4)

It is noted that the basic state potential vorticity gradient is O(E2),

except near the equator where g approaches zero. Therefore, in

general, it is very small in comparison with other terms in (3.4) and

will not enter the leading order governing equation. The vertical

boundary conditions are

( z-c )- = 0
a z

at z =0, 1
( 3.5 )
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These rigid boundaries are required for instability to occur at leading

order. For the meridional boundary conditions, we just require that

the streamfunction is zero at both the equator and pole,

f= 0 at g= 0, 1 ( 3.6)

We note that if the basic state potential vorticity gradient is

neglected, then (3.4) does not contain a term that explicitly depends

on both z and [t. If we assume separation of variables, it can be

separated into two ordinary differential equations, one for the

vertical structure of the perturbation and the other for the

meridional structure. Therefore we assume that y can be separated

as

V= O(Z) X(I) 3.7

Substituting (3.7) into (3.4) and neglecting O(e 2) terms, then we have,

- K20 = 0

2 ( 3.8 )

a- -2Q(g)X = 0

( 3.9 )

where K2 is a separation function which may depend on g.. The

definition of Q is



k22 k0 K

Q= { - K2

1-1 2 (32 1 u2 )

From (3.5) and (3.7), the boundary conditions for 0 are

38

( 3.10 )

at z = 1
( 3.11 )

and

(1-c) --- = 0
az

az
at z = 1

( 3.12 )

As for X, we have

at .= 0, 1 ( 3.13 )

If K is a constant, then (3.8), (3.11) and (3.12) are all

independent of . and are identical to those of Eady's model. The

solution for (3.8) can readily be written as

( = A cosh(Kz) + B sinh(Kz) 3.14

Substituting (3.14) into (3.11) and (3.12), the boundary conditions

for ( give
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A{(c-1)K sinh K + cosh K} + B{(c-1)K cosh K + sinh K} = 0

( 3.15 )

A + KcB = 0 ( 3.16 )

For A and B to have nontrivial solutions, we must require that the

determinant of the coefficients in (3.15) and (3.16) vanish, which is

2 coth K 1c -c+ -0
K K2

( 3.17 )

From (3.17), we can write c as a function of K,

c { ( K - coth K )K tanh K ) 1/2
2 K 2 2 2 2 ( 3.18 )

Since c is a constant, K has to be a constant also. We note that if

there is instability then c must be complex and the imaginary part of

c must be positive. This indicates that the radicand in (3.18) has to

be negative. Since, for all K,

K2 >tanh -

the only possibility for the radicand being less than zero is that

K < coth K
2 2
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Therefore, for instability to occur, we must require that

K < K = 2.3994c
( 3.19 )

where Kc is the critical value for instability. We note that, except for

K being unknown at this stage, (3.19) is exactly the same condition as

that in Eady's problem.

To determine K, we have to find the solution for X. Since e is a

small parameter, (3.9) is a standard WKB equation. From (3.10), we

note that, if K is less than 2ko then Q is positive everywhere.

Therefore the leading order asymptotic solution for x can readily be

written as(Bender and Orszag, 1978),

X D Q/4exp{ e-fQ1/2 dt } + D_ Q1/ 4 expe Q1/2d~x - 1

( 3.20 )

From (3.13), we know that (3.20) must be zero at both the equator

and pole. This requires that both D. and D be zero, therefore there

is no nontrivial solution for X. On the other hand, if K > 2ko, then

2
Q= { o0 - K2} = 0, at g= 1 and p=p 21-p.2 g2(-. 2 )

where

( 3.21 )



and

k
2=1 +1(1+4( )2)1/2
1 2 2 K

k
22-( 1 +4( 0 )2)1/2
2 2 2 K

( 3.22 )

( 3.23 )

We note that, for this particular basic flow, the squares of , and I 2

are symmetrical about 450 latitude. Since Q=O at these two latitudes,

equation (3.9) becomes a standard two-turning-point WKB problem.

For g > gl or t < g2 , Q is positive, therefore the solution for X is an

exponential function. For g 2<p<9 1, Q is negative, the solution is an

oscillatory function. While near g, or g 2, Q is approaching zero, and

the WKB solution does not exist. The solutions in these regions are

approximated by Airy functions. To match two one-turning-point

solutions in the region g 2<1,<g1,, a connection condition must be

satisfied,

(-Q)1/2dg =e(n- 1-)c
2

( 3.24 )

where n= 1, 2, 3,..., is a positive integer. Then the solution for X in

each region can be written as

X~ Q exp{-e-f- Q1/2d }, for L 1+ O(e2/3 )< g _ 1



x - 2 n ( ca )-1/6 A{ e- 2 / 3 a 1 (/3-- 1) }11 11
for 1- O(e 2/ 3 )  I5 g 1 + O(E 2 / 3 )

11

91

~2(-Q) -1/4 sin( lf (-Q)1/2 dL + 4 ) for g + O(e 2 / 3) < g < p1 + O(e 2/3)

2(-Q)4 2 1
J.L

-1/4 1/2X~ (-1) n+1 Q'2T( exp { e-A1 aQ d}, for)

X(-1) n+1 Q 114 f21/2 }, for

g2- O(e2/3 ) - < [L2t+ O(e2/3 )

0 < < L - O(e2/3)

( 3.25 )

where

dQ
m dLt

at g=g , m = 1, 2

From (3.24) and (3.25), we can see that n is the meridional

wavenumber. For given n and k0o, K is uniquely determined by

(3.24). Therefore, from (3.18), we can determine c. Since K must be

less than Kc for instability to occur and must be greater than 2ko for

X to have a nontrivial solution, the unstable range of K is 2ko<K<K c.

We note that there is a shortwave cutoff for instability as in Eady's

model. Moreover as n increases then, from (3.25), K must also

increase. Hence for each n there is a different cutoff zonal

wavenumber for instability.

42
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From (3.16), we can find B in terms of A, which can not be

determined by linear theory. Therefore, aside from this constant, the

vertical structure of the perturbation can be written as

= cosh(Kz) - sinh(Kz)
Kc ( 3.26 )

If the perturbation is unstable, c=cr+c i and ci#0, the amplitude and

phase of 0 are

c sinh(Kz) 2 c.sinh(Kz)
I1 = { (cosh(Kz)- r + ( i )2 }1/2

Kid2  2Klcl2 KcI ( 3.27 )

and

= tan -12 c.sinh(Kz)

Klc lcosh(Kz) - c sinh(Kz)
r ( 3.28 )

Since K is a constant, 141 and a are independent of latitude. For given

K, 0 is the same as that in Eady's model. The spherical geometry

shows no effect on the vertical structure of the perturbation. As for

the meridional structure, since Q is real, from (3.25), x is also a real

function. There is no meridional variation of phase.

From the solutions of 0 and X, we can write the perturbation

streamfunction as
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kcit
1 III e k . ik(k-crt)

= l _lL Re{ ee }
(1-e2)1/2 ( 3.29 )

Hence the meridional eddy heat flux can be expressed as

2kct
kc.e

=- 1 a a , 1x I12

(1-g2) 1/2 a% Bz 2(1-g 2)3/2 c 2  (3.30 )

We can see that the heat flux depends on ci . If the wave is neutral,

ci=0, there is no heat flux. If the wave is unstable, then it will

transfer heat poleward. Furthermore this heat flux is independent of

height and is proportional to IX12. As for the momentum flux, since

the perturbation does not have meridional phase variation, it is

identically zero,

uv - -0
a g ( 3.31)

In the following, we shall present some results from above

solutions. The basic state parameters, U0, No , 0, a and H, are the

same as in the previous chapter, therefore e=0.1212. Fig. 3.1 shows

the meridional structure of the basic flow at upper boundary as a

function of latitude. This is a cosine profile with the maximum

velocity at the equator and zero at the pole.



45

40

m/sec

30

o 20

10

0 15 30 45 60 75 90
latitude

Fig. 3.1. The meridional structure of the basic flow as a function of
latitude at z=1.

In fig. 3.2, we show the growth rate as a function of zonal

wavenumber k for each meridional wavenumber n, n= 1,2,3. It is

noted that, for each n, there is a critical zonal wavenumber ke . When

k<k c , the wave is unstable, while for k2k c , there is no instability.

Moreover, as n increases, kc decreases. Comparing the growth rates

for each n, we note that the lowest meridional mode has the largest

growth rate. The most unstable wave is k=6, which has a zonal scale

about 4500 km. This is very similar to the zonal scale of the most

unstable wave in Eady's model. For given n, the scale of the zonal

wave that has the maximum growth rate shifts toward longer scales

as n increases.
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Fig. 3.3 shows the steering level, which is zs=Cr, as a function of

k for n=1,2,3. We note that, for unstable waves, the steering levels

are all located at mid level. This also implies that all unstable waves

travel at the mean speed of the basic flow, which is exactly the same

as in Eady's model. For neutral waves, depending upon the sign in

(3.18), the steering level approaches either the upper or lower

boundary as k increases.

Fig. 3.4 shows the variation of 101 and a with height for the

most unstable wave, k=6 and n=l. We can see that i is nearly

symmetrical about mid level where the minimum amplitude is

located. The maxima of 141 are located at both upper and lower

boundaries. As for a, it is an increasing function of height. This

implies that the phase of the wave tilts upward and westward with

height, which indicates the conversion of available potential energy

of the basic state to the energy of the perturbation. As mentioned in

chapter i, for instability to occur, the absence of the basic state

potential vorticity gradient requires that the vertical scale of the

unstable wave is the same as the basic flow. Since 0 is independent

of i, the vertical structure of the perturbation in any meridional

location is the same as that shown in the figure.

In fig. 3.5, we show the amplitude of the most unstable wave

as a function of latitude. It is noted that the amplitude peaks near

450 and decays toward both the equator and pole. Since the basic

potential vorticity gradient, which will become large near the

equator, is neglected, the amplitude near the equator does not decay
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as rapidly as it might otherwise. There is no phase variation of the

meridional structure.

From the above results we note that this particular case on the

sphere is almost identical to Eady's model. The absence of the basic

state potential vorticity gradient causes the governing equation to

become a separable differential equation. Therefore the spherical

geometry only plays the same role as the plane geometry in

determining the meridional structure of the perturbation. It does

not have any significant effect on the behavior of the unstable

baroclinic wave. Furthermore, since we neglect the basic state

potential vorticity gradient in (3.4), the amplitude of the

perturbation in low latitudes may be too large and the eddy

momentum flux does not exist in this case. Therefore, to examine the

effect of spherical geometry on baroclinic instability, we should not

neglect the basic state potential vorticity gradient, especially the f s

term, in the governing equation.
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Fig. 3.3. As in fig. 2.2, except for the steering level.
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Fig. 3.4. The amplitude and phase of the most unstable wave, k=6
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Fig. 3.5. The amplitude of the most unstable wave as a function of
latitude.

49



50

CHAPTER IV

AN ANALOGUE OF CHARNEY'S MODEL ON THE SPHERE

From the previous chapter we note that, without the basic state

potential vorticity gradient, there is no significant difference

between the baroclinic instability problem on the sphere and that of

Eady's problem. As discussed in chapter i, Charney's model, which

includes the P-effect, has been used in many studies to investigate

baroclinic instability on a 3-plane. Therefore, to find out the effect of

spherical geometry and to develop a proper procedure to solve the

baroclinic instability problem on the sphere analytically, we shall

study an analogue of Charney's model.

In this chapter, we take Ps as an order one quantity. As in

Charney's model, the static stability, N2, is assumed to be a constant.

The basic state density is an exponentially decreasing function of

height,

-z
p=e

The basic zonal flow remains the same as that in chapter iii, which is

a linear function of height multiplied by a solid body rotation,

U = (1-g 2) 1/2Z (4.1
( 4.1 )



As mentioned before, this is equivalent to y independent zonal flow

on a 0-plane. We assume that the perturbation streamfunction has a

normal mode solution,

S= Re{ y(j,z)ek(-ct)
(1-g12 ) 1/2

(4.2)

Substituting (4.2) into (2.21), the resulting governing equation for y

is

z2  2 l_ + E 2  + + 1 + } = 0

pZ2 Z 2 2) .2 2  Z-C p2  p2

(4.3 )
Since there is density variation with height, besides the Ps term and

the barotropic term, a baroclinic term which has the value of unity is

also present in the basic state potential vorticity gradient. We note

that, except for the explicit meridional variations, equation (4.3) is

very similar to the governing equation of Charney's problem.

The meridional boundary conditions, which require that the

perturbation streamfunction be zero at both the equator and pole,

are the same as (3.6),

V=0 , at =O, 1 (4.4)
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We assume a horizontal rigid surface at the ground, therefore the

lower boundary condition can be written as

c0 + =O
z( 4.5 )

Due to the existence of the basic state potential vorticity gradient, the

necessary condition for instability allows us to replace the upper

rigid plane with a boundary condition at infinity, which is,

V = 0, as z- oo ( 4.6 )

We note that the vertical boundary conditions, (4.5) and (4.6), do not

explicitly depend on g for this particular basic flow and are identical

to those of Charney's model.

To examine the effect of spherical geometry on baroclinic

instability, we need to be able to determine the properties of the

unstable baroclinic waves as explicitly as possible. Although there

were many studies of Charney's problem in the past(Charney, 1947;

Kuo, 1952, 1973; Lindzen and Rosenthal, 1981; Branscome, 1983,

etc.), most of these studies indicated that the analytic solutions of

Charney's model are complicated and need a lot of numerical

calculations to determine the properties of the unstable baroclinic

waves. Furthermore, due to the presence of the basic state potential

vorticity gradient, (4.3) depends on both latitude and height and is
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more difficult to solve than Charney's problem. Therefore, we have

to simplify the problem.

Branscome(1983) introduced a shortwave approximation to

study Charney's problem. As discussed in chapter i, by using this

shortwave approximation, the basic state potential vorticity gradient

did not enter the leading order equation. Therefore, the solutions

were easier to find and simpler. Moreover, the properties of the

unstable baroclinic waves could be determined without any

complicated calculations. Though these perturbation solutions are

not valid for the whole zonal wave spectrum, in comparison with the

exact solution, they do give reasonable results even at synoptic scale

wavenumbers.

We shall apply this approximation to simplify the problem by

assuming that the perturbation's zonal wavenumber is O(e-2). Since

the short waves are shallow, we rescale k, z and c as

k= e- 2k , z = e1 and c= e c'

where k 0, C and c' are taken as order one quantities. In terms of 5,

after dropping the prime of c', (4.3) and (4.5) become,

k..4 4l+ +1+ }=0
DC2 - 2 (1-_g2) 9 2 E12 -C 12 412

(4.8 )
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c ++ =0
(4.9)

We note that the basic state potential vorticity gradient is O(e)

smaller than other terms in (4.8), therefore it does not appear in the

leading order perturbation equation. Because of the existence of the

Ps term, which depends on both p. and , we can not directly apply

separation of variables to (4.8) as in chapter iii. Instead, we shall

apply a two-scale formalism to the meridional variable to separate

the perturbation's fast variation meridional structure from the

vertical structure. We assume that N has two different meridional

scales and can be written as

V = (,L,4) x() ( 4.10 )

where rl is the fast variation meridional scale. In order to retain the

g. variations to lowest order so that the boundary conditions in . can

be satisfied, the meridional variations must be even more rapid than

in the Eady problem, and we must define

l = -21 ( 4.11 )

x is the principle meridional structure of the perturbation and 0 is

the vertical structure with slow meridional variation. Furthermore,

we assume that the governing equation for X is



-%n 2 Dg 2a42 -27 -QZ=0Ea 2
( 4.12 )

where Q is an unknown function of p. and will be determined by

solving the vertical structure equation. From (4.10) and (4.12), the g

derivative term in (4.8) becomes

2  l 
2

X all a~ a

Substituting (4.10) and (4.13) into (4.8), we have the governing

equation for , which is

12 - 3 -K20++C +a) +1-I. 2F 22- D L2(1-12) pL2 {X a a a+}

+ F6 (b+ -L- )=0
-c 2 ( 4.14 )

where we define that,

( 4.13 )

k"

K2 = 0 _ Q2

9.2 (1- 
2 ) g2

b= +1
2

Since Q is unknown, K is also an unknown function of g. b is the

leading order basic state potential vorticity gradient.

55

and

( 4.15 )

( 4.16 )

We note that
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(4.12) is a standard WKB equation and its asymptotic solution can be

written as

X'~ exp{ E -2  e2nqn d }n=O ( 4.17 )

where

2 2 dq
q =Q, 2q0ql+ - =0,

d( 4.18 )

and

2q q + + dq-q n2 2.
d t •- in-i - ( 4.19 )

With (4.17), the rl derivative term in (4.14) can be calculated as

1 . =Z 2n qn

X n= n (4.20 )

Therefore 0 does not really depend on x or rl. If Q is not an order one

quantity somewhere in the meridional domain, then this two-scale

expansion will not be valid near that location. We need to apply a

local expansion to solve (4.8) in that region.

From (4.6), (4.9) and (4.10), the boundary conditions for 0 are,

c -+0=0, at C=0
- ( 4.21)



and

¢= 0 as -) oo ( 4.22 )

For X, the boundary conditions are

X=0, at V=O0,1 ( 4.23 )

We note that there are two unknowns, K and c, in these equations.

By requiring that (4.21) and (4.22) be satisfied by the solution of

(4.14), we can find K as a function of c. Once K is known, from (4.15),

we can determine Q. Since K is a function of c, Q will also depend on

c. Then c is determined by requiring that X meet the boundary

condition (4.23).

In the following, we shall apply a perturbation method to solve

(4.14). We assume that

00oo

n=O
n=o

C = e n 
n  and

n=O

( 4.24 )

Since, if co is real there is a singularity at C=c o, we need an inner

equation to properly describe the behavior of 0 near this layer. We

introduce an inner variable,

=EI(-C0) (4.25 )

00

K= I nK
n=0
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In terms of , (4.14) becomes

-& - -_ 2K2 4i + 2b { 1+ ec } + O(e4 ) = 0
2 D4 4_C 4-C

( 4.26 )

where i is the inner solution for the vertical structure and can be

expressed in the same form as 0 in (4.24).

The leading order perturbation equations and boundary

conditions are,

0-K20 0 =L 0

( 4.27 )

c - + 0 =0, at C=O

S0=1= 2 = ....... =0, as -- oo

( 4.28 )

( 4.29 )

and

- L 0i =0
2 00

( 4.30 )

We note that these equations do not explicitly depend on pL. After

satisfying the upper boundary condition, the solution of (4.27) can be

written as

-Ko ( -c)

( 4.31 )
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where Ao is a constant. We lose no generality by taking Ao to be

independent of p., because any such dependence can be absorbed in

X. The lower boundary condition (4.28) requires that

1
K =1

OC
( 4.32 )

Since co is a constant, Ko has to be a constant also. This implies that

% is just a simple exponentially decreasing function of height and

does not vary with latitude. Furthermore, since Ko is a constant, the

leading order vertical scale does not vary with latitude. The solution

of (4.30) is A +B. Since, in terms of , the leading order of (4.31) is

just A0 , therefore A=0 and B=Ao, and the leading order inner solution

is

i =A
o o0 ( 4.33 )

Except for the fact that Ko is unknown at this stage, these leading

order solutions are the same as those of Branscome(1983).

The first order equations for O and 4O can be written as

0o bo
L- =-+2KK ---- = L 0o0 a1 0 0 -C 1 0

0

and

0 1

( 4.34 )

( 4.35 )
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The lower boundary condition for ,1 is

-1 = 0 -To

0 - 1 - 1 
( 4.36 )

The only difference between these equations and those of

Branscome(1983) is the existence of the 2KoK 1 term in (4.34). From

Hildebrand(1976), the particular solution of ,1 can be found as

e-K 0(- co) 2K-c -K(x-c
= ee L1 od x } d4

r S ( 4.37 )

After integration, the solution for 1 is

-Ko ( -co)

1 = Aoe {(- K1)2 1

b 2Ko(;-c)
+ - [e E ( 2Ko( -c ) ) + In K o(-c ) ] }2K 1

0 ( 4.38 )

where the definition of El(x) is(Abramowitz and Stegun, 1964)

E (x) = e dt, x 0
x t
x (4.39 )

If x is negative, then



( 4.40 )

and

E.(x) = e dt,
t

-X

x>0

( 4.41 )

Therefore, if C < co, 01 will be complex. This feature is due to the

existence of the basic state potential vorticity gradient. Since we

look for instability, we shall only choose the positive sign in (4.40).

The lower boundary condition yields

K + be 2 E (-2) - K2c - K2c - be 2 ( E(2)- i)
1 2 1 o 1 2 o 1 E(2)

( 4.42 )

K, is a complex function. Since b varies with 1/g2, K1 also varies with

1/g2. In terms of , the first two orders of p can be approximated as

11 b
+ = A 1 + e{ -K + -(--K)-- (E +In 2)

o 10K 2 2K 0
0 0

K2 .2  E + In 2 -1
+ 82 _ o eb (IneK + 0

2 0 2 (4.43 )

where Eo = 0.5772..., is Euler's constant. It is noted that if < 0, then

( 4.44 )

El (x) = -Ei(-x ) + i , x< 0

In = In (-4) - in
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The general solution of (4.35) is also A +B. After matching with

(4.43), we can determine A and B. Therefore the first order inner

solution is

= A {-K + (K2C - be-2 E (-2) b (E + In 2))}1 o K 0 o 1 2 o

( 4.45 )

Since (4.38) and (4.45) depend on b, they will vary with latitude.

Except for b being a function of g, these solutions are virtually

identical to those of Branscome(1983).

The second order perturbation equations for 4 and gi are

02 1 0 2 1 0g 2 X T a" (b-Co)2

= L 1+ L 
( 4.46 )

and

L 1 =. + K20i 0
0 2 0 0 -C1

The lower boundary condition for 0 is

Do o ao
c + =-c - c 0

0 D 2 1 D 2 DC

( 4.47 )

( 4.48 )
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Because we are mainly interested in determining c2, there is no need

to find a solution for (4.46). Instead, we require that 02 remain

finite. Therefore we multiply (4.46) by a homogeneous solution and

integrate it from =0 to (-e,

oo oo00

fe-K (,)L2d = eKo(r- o)(L 1+ L2o) dt

( 4.49 )

After integration by parts and applying the upper and lower

boundary conditions, (4.49) gives the solvability condition, which is,

eK = f ( L1 +L2 o) e dr
0 1 28 =0 J 1+

( 4.50 )

To satisfy this condition, we must require that

2 -2 2 -2
2K K + K2= b2e 2F- 2K 3c + 3K4c 2- 2K 2c be E (-2)- K 2C

0 2 1 0 2 0 1 01 1 0 1

-2 2 -2 -2
-b( 1+e E1(-2))- b e E(-2){ 4e- E1(-2) + 2-int}

( 4.51 )

where

oo

F=J { E (2K( -o))+e e
0 0

-2K(c-%)

In K0 ( - c ) }0 0

( 4.52 )



Since 0 is independent of gL, the Tr derivative term in (4.46) is not

present in (4.51). The solution of (4.47), after matching with (4.43),

is

K2 2
S=A { o---b(4-c ) In K (4-c
2 0 2 1 0 1

+ b ( 2 - E -In 2)} + constant.
1 0

( 4.53 )

Since we do not have the solution of 0 2, the constant term in (4.53)

can not be determined. Except for the arbitrary constant Ao, so far

we have the leading order plus the O(e) correction of the vertical

structure. Moreover we have obtained K0, K 1 and K2 as functions of

b, co, cI and c2. To determine c, we shall turn our attention to the

fast variation meridional structure.

From (4.16), Q can be approximated as

.2_ k
Q2 l2 o - K2 -e2K K - e2 (2K K +K 2 )}

1- .2 2 (1-_g 2 ) 0 0 1 0 2 1
( 4.54 )

Since Ko is a constant, the leading order of (4.54) is the same as

(3.10). From (4.17) and (4.18), the leading order asymptotic solution

for X is

X (Q2) -exp{ + e-2 (Q2) d }
( 4.55 )
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As discussed in chapter iii, in order that x has a nontrivial solution,

we must have at least one turning point where QO(e2). This requires

that K0 be equal or larger than 2ko. For Ko>2ko, from the previous

chapter, we note that there are two locations where the 0(1) term in

(4.54) is zero. Since both Ko and cI are constant while b is a function

of pt, from(4.42), we know that K 1 can not be zero at both locations.

Therefore K o can not be larger than 2ko. For Ko=2ko, the 0(1) term in

(4.54) has a double root at =9 o,

k2

o K2 = 0, at p.=
i2(_2) 0

At this location, we can set 2KoK 1

where

( 4.56 )

to zero by requiring that

K2C = 1 + b e2 (-Ei(2 ) + in)
o 1 2 o

b = - + 1 = 23 + 10 2 s
o

Therefore 2ko is the only possible value of Ko. Consequently there is

a single location, go=sin(45 0 ), where Q<O(E2). Since the leading order

of Q has a double root at this point, we will refer to this point as a

second-order turning point. We note that the value of K0 is different

from that of chapter iii. The main reason is that, since Q is

approximated as a perturbation series in (4.54), the difference

( 4.57 )

( 4.58 )

0 2
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between Ko and 2ko in the previous chapter is present only at O(e2)

here.

Since Q will not be an 0(1) quantity as -. 0, the WKB solution

is not valid in this region. We need a local solution of (4.8) to

properly describe the behavior of y in this region. Therefore we

expand coefficients in Taylor series around o and change variable

from g to y, where

y -1 (g - )

( 4.59 )

In terms of y, (4.8) becomes

• "- E-8 -( 1+ E 8 2 )K2N + e2 2-

aD2 DC0 Dy2

+ (b - e 4F 13y)+( ) =0
0-C 

0

Cc 
( 4.60 )

The upper and lower boundary conditions remain the same as (4.6)

and (4.9). As in the WKB regime, near C=co, we change variable from

r to =e-(C-co). The resulting equation for this inner region is

e2boV

- 2 K2 + b + O(e) = 0
a 2  a 0 -C1 -C2 -... 4.611 2 ( 4.61 )

The first three order perturbation equations for V are



- - K2Yo= Lyo =
DC2 0 0 0 0

No boo
LoVl =DC C-c°

S b 2 2 4 13s cblbo 0L l= -bo _ ° + 8Ky2 W + 0  0
02 3 -c 0 y2 -C (-C )2

As for i, the first three order perturbation equations are

'0 0

L' i' =0
0 1

, i - o b o
L = + K2 i' -

0 2 0 0 -C

( 4.65 )

(4.66 )

( 4.67 )

Since the leading order equation and boundary conditions for '

are the same as those in the WKB regime, the solution is the same as

(4.31) except now the coefficient may be a function of y, i.e.,

-K(-(4.68
V = Bo(Y) e o ( 4.68 )

67

and

( 4.62 )

( 4.63 )

( 4.64 )

and
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The lower boundary condition gives the same condition as (4.32).

Now Ko0 is a known value, we can determine co,

1 1
o K 2k

o o0 ( 4.69 )

We note that co is real and is inversely proportional to the zonal

wavenumber only. This is different from the result of

Branscome(1983) where co is inversely proportional to the total

wavenumber. After matching with (4.68), the leading order inner

solution fi is

o =B0 o( (4.70 )

The procedure to solve (4.63) and (4.66) is the same as that for

the WKB regime. The solutions for them are,

-K(-co b 2Ko(r((-c)E
1 = Be { + b[e1 (2K (-c ))

1 o 2 2K1 o

+ In K (C-c )] }
( 4.71 )

and

, =B o{-K + 
1 [1-bo(E+1n2)]}

2K o
0 ( 4.72 )

The lower boundary condition for V, gives the same result as (4.58),

therefore c I can be written as



1 1 -2c { -- be ( E(2 ) - in)}
K2 2

0 ( 4.73 )

We note that, due to the existence of the basic state potential

vorticity gradient, c I is complex. Therefore the leading order growth

rate will depend on the magnitude of Ps. Furthermore, since Ko is

inversely proportional to the zonal wavenumber, both cI and l1 will

become large as the wave becomes longer. Hence these perturbation

expansions will break down for long waves.

After matching with ry0 and f 1, the second order inner solution

K2 2

S= B { -- b -cl) In K (4-c)
2 0 2 0 I 0 1

+ (2- E -In 2) } +constant
2 o (4.74 )

As in the WKB region, we will not solve (4.64).

that the solvability condition for y2 be satisfied.

Instead, we require

This yields that

D2B b- Bo{ 8K2 y2+8 K P e-E (-2) +.- (e2E (-2) -ir )

Dy2 0  0 0 s 1 4 2 1

2 2. 4--2 " 2 1

+ 2K3c - b2e' 2F + K2c b ( 2 +3e 2E (-2) - in )-K 2c } = 0
0 2 0 0 1 0 1 0 1

( 4.75 )

69
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where the definition of F is the same as (4.52). We change variable

from y to Y where

_l P -2 s(-2) e 2 (E.i(2)-it)
Y = (32K)1/4+ K (-2) e-1(32Ko)1/4( - s K

o 0

( 4.76 )

In terms of Y, (4.75) becomes a parabolic cylinder equation,

2+(v+ 2)B = 0
2 2 4 o

( 4.77 )

where we define that

S+ 1= 1 b2 e -2F - 2K3c + 1 -b + ( 20 e-2E (-2))2

2 (32K) 1/4  0 02 4 o0

2-2 -2
-be E (-2)( 3e E (-2) + 2 -i ) }0 1 1

( 4.78 )

Since the meridional boundary conditions require that x be zero at

both boundaries, the leading order asymptotic solutions of X away

from the turning point are

X- D1(Q2 )-1/4{exp{ - 2f (Q)l/2d }, for g + O(e) <g - 1

( 4.79 )



SD 2(Q2 -1/4exp{ E-2 () /2d c }, for 0 < < P - O(E)

( 4.80 )
The possible solutions for Bo that can match asymptotically with

(4.79) and (4.80) is the parabolic cylinder functions of integer order.

Therefore, v must be an integer. For given v=n, the solution for Bo is

S= He (Y) e4
B =He (Y & ") e

( 4.81 )

where Hen is a Hermit polynomials of order n and

He (Y) = 1,0 He (Y) = Y and He(Y) = y2_- 1

We note that n is equivalent to the meridional wavenumber. From

(4.78), c2 can be written as

C - ( n + 2 )(32K2)1/2 + b2e2F + ( 2 e-2E (-2))2+ - b
2 2K3  2 0 0 1 4 o

0 2-2 -2

- be-2E (-2)( 3e 2E1(-2) + 2 -ir ) }
0 1

( 4.83 )

It is easy to see that c2 depends on n. Since the perturbation

expansion of Q prevents Ko from being larger than 2ko, the

meridional wavenumber can not be included in ko. Therefore, unlike

the solutions in the previous chapter and in P-plane analyses, the

contribution from the meridional wavenumber only occurs at O(e 2).

( 4.82 )
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Furthermore only the real part of c2 depends on n, therefore only the

phase speed will be a function of the meridional wavenumber at this

order. We can not determine the relation between the growth rate

and the meridional wavenumber at this order. The numerical

analyses(Simmons and Hoskins, 1976; Frederiksen, 1978) indicated

that the lowest meridional wavenumber has the largest growth rate.

Furthermore, Frederiksen found that the differences among different

meridional wavenumbers are small for the short waves, which is

consistent with the contributions of the meridional wavenumber to

the growth rate and phase speed being small in our solutions.

For given n, after matching (4.81) with (4.79) and (4.80), we

can determine D 1 and D2 . Then the solution of the leading order

perturbation streamfunction is complete. In the following, we shall

present and discuss some of the results from the above analytic

solutions. Since we can not determine the growth rate as a function

of the meridional wavenumber, we shall only consider the case n=l.
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(a). The growth rate and Phase speed

From the above analytic solutions, we note that the growth rate

and phase speed are determined at the turning point. For this

particular basic flow, the turning point is located at 450 latitude. To

O(E), the dimensional phase speed is

. U
c E - { c +ec }

r a 0 ir

U (1-)1/ 2 f2)1/2 f 1-{ 1 + . ( 0.67(1+ ))}
k NH k NH 2 2

0 0 0

( 4.84 )

where

fo0 = 2 0 and go =

fo is the Coriolis parameter at the turning point. We note that

P N2H2 ON2H 2

s 0 00
2 2 aUo f2 U2 (1-g 2"/2

0go o(1- ( 4.85 )

and

22(1-020)1/ 2

o a ( 4.86 )
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is the gradient of the Coriolis parameter. Since U 0(1-lo)1/ is the

velocity of the basic flow at 450, (4.85) is the same as the y

parameter of Branscome(1983), which is

PN2H00

f2 af2..
o z (4.87 )

In fact, if a(l-o/0 ) 2/k is replaced by the total wavenumber on a

P-plane, then (4.84) is identical to that of Branscome's study. Since

,s is positive for westerly flow, the O(e) correction of the phase speed

is always negative and is larger for longer waves.

To O(e 2), in terms of y, the dimensional growth rate is

U
a. =e k - ( ec + e2 C2i )

U a(1-12) f 2  a(1l-. 2)1 /2 f
= 0.425(1+y)o 1 o [ 0.26(1+y) + 0.67]}

k N2H2  k NoH 1+7
0

(4.88 )

The maximum growth rate occurs at

k = 2a(1- 2)1/2  o 0.67~}m NH +y4.89
o ( 4.89 )
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Since k is an integer, the most unstable wavenumber should take the

integer value of (4.89). The last term in (4.88) comes from

transforming (4.75) into a parabolic cylinder equation. Except for

that term, (4.88) and (4.89) are very similar to Branscome's result.

Since y is positive, the O(e 2) correction to the growth rate is negative.

We note that the valid ranges for these perturbation expansions not

only depend on the zonal wavenumber but also on the values of the

basic state parameters.

Figs. 4.1 and 4.2 show the perturbation's growth rates and

phase speeds as functions of the zonal wavenumber k for U0 =20, 30,

40 m/sec. and No= 2x10-4 sec.-2. Other basic state parameters are the

same as those in chapter iii. Since the growth rate and phase speed

are inversely proportional to k, longer waves have larger growth

rates and phase speeds. Nonetheless, as k becomes smaller, the

corrections to the growth rate and phase speed become larger, these

growth rates and phase speeds will become negative for long waves.

Therefore these perturbation expansions are not valid for long

waves. Since the growth rate and phase speed are proportional to

U 0, larger U0 have larger growth rates and phase speeds. The

differences among the growth rates and the phase speeds of

different values of U0 are larger for longer waves. Furthermore, the

maximum growth rate and phase speed shift toward longer waves as

Uo becomes larger. These maxima occur at the wavenumbers near

the limit of the shortwave expansion.
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Figs. 4.3 and 4.4 are the same as those in figs. 4.1 and 4.2,
2 -4 -4 -4

except for N = 1x1 , 2x10 , 3x10 sec -2 and Uo= 30 m/sec. As

expected, the growth rate and phase speed are inversely

proportional to the static stability. The maximum growth rate shifts

toward longer waves as No becomes smaller, but the maximum phase

speed shifts toward shorter waves as No becomes smaller.



1/day 0.7

0.6-

0.5

S0.3

0.2 -

0.1 -

0.0

- 20 m/s
+- 30 m/s
-- 40 m/s

0 5 10 15 20 25 30

zonal wavenumber k

Fig. 4.1. The perturbation's growth rates for solid body rotation as
functions of the zonal wavenumber k for Uo = 20, 30, 40

2 -4
m/sec., N 0= 2x10 4 sec.- 2 and other basic state parameters

the same as chapter iii.
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Fig. 4.2. As in Fig. 4.1, except for the phase speeds.
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Fig. 4.3. The growth rates as functions of the zonal wavenumber k
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for No = 1x10 , 2x10 , 3x10 sec-2, Uo= 30 m sec- 1 and

other basic state parameters the same as those in chapter iii.
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Fig. 4.4. As in Fig. 4.3, except for the phase speeds.
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(b). The meridional structure of the unstable wave

Since x exponentially decays toward both the equator and pole,

the primary meridional structure is near the turning point. From

(4.76) and (4.81), we note that Bo decays and oscillates with a

meridional scale of e-1. Since k is scaled by e-2, the perturbation's

meridional scale should be proportion to the order of k1/ 2 .

Furthermore B0 has a maximum at Re(Y)=0, therefore the

perturbation's maximum amplitude is located at,

e3e-2 Ei(2)
gm = g0 +

mo Ko ( 4.90 )

Figs. 4.5 and 4.6 show gm as a function of k for different values

of Uo and No. Since the O(e) correction to gm is positive, it is located

on the poleward side of the turning point. This poleward deviation

from go is inversely proportional to the zonal wavenumber k, so g m

moves away from g 0 as the wave becomes longer and approaches go

as the wave becomes shorter. Furthermore, this deviation from 1o is

proportional to Uo and is inversely proportional to No. Figs. 4.7 and

4.8 show the leading order of the meridional amplitude and phase

variation as functions of latitude for k=8,16,24 and n=1. We note

that the amplitudes decay rapidly away from Lm . The meridional

scale decreases as the zonal scale decreases, but the phase does not

differ much for different k. Furthermore, the existence of the



80

meridional phase variation implies that an eddy momentum flux is

present in this problem.
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Fig. 4.5 The location of the perturbation's maximum amplitude as a
function of the zonal wavenumber k for Uo=20, 30 and 40
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Fig. 4.7. The meridional amplitude functions of k= 8, 16, 24 and n=1

for Uo=30 m/sec. and No= 2x10 sec.-2.
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Fig. 4.8. As in Fig. 4.7, except for the meridional phase variation.
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(c). The vertical structure of the unstable wave

From (4.31) and (4.68), we note that the perturbation's leading

order vertical structure is an exponentially decreasing function of

height. Since Ko is a constant and Ko=2ko, the vertical scale is

proportional to the zonal scale and does not vary with latitude. Due

to the existence of the basic state potential vorticity gradient, the O(E)

correction to 4 is complex. Therefore there is an O(E) phase variation

with height.

Fig. 4.9 shows, to O(E), the perturbation's vertical amplitudes at

the turning point as functions of height for the zonal wavenumbers 8,

16 and 24. Since the meridional variation of the vertical structure

only exists at O(e), the amplitude profiles at other latitudes may not

differ too much from these profiles at the turning point. We note

that longer waves have deeper scales. Since, from (4.67), N 1 is

inversely proportional to Ko, the O(E) correction to the vertical

structure will be larger for longer waves. Therefore, as shown in fig.

4.9, the lowest wavenumber has a more complex structure. The

maximum amplitudes occur at the surface. Fig. 4.10 shows the

leading order phases of the vertical structures. We note that the

magnitude of the phases decrease with height, which implies the

phases of these unstable waves tilt upward and westward. As

mentioned in chapter iii, this is the condition for the conversion of

the available potential energy of the basic flow to the growth of the

perturbation. Furthermore, the magnitude and scale of the phase

change decrease as the zonal wavenumber increases.
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Fig. 4.9. As in Fig. 4.7, except for the amplitudes as functions of

height at the turning point, which is located at 450 latitude.
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Fig. 4.11. As in Fig. 4.7, except for the eddy momentum fluxes.
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Fig. 4.12. As in Fig. 4.9, except for the eddy heat fluxes at the
turning point.
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(d). The eddy fluxes

The eddy momentum and heat fluxes can be written as,

2kcit at

v"=- 1 aY D aY ke 2i1a

(1-L2)1/2 a% aZ 2(1-g2)3/2 a (4.91 )

and
2kct a

= .a a ke 1121XII

a al 2(1-t 2)  g( 4.92 )

where a, is the vertical phase and ( is the meridional phase.

Because of the presence of the basic state potential vorticity gradient,

the unstable perturbations in this model not only have vertical phase

variations but also have meridional phase variations. Therefore both

fluxes are nonzero in this model.

Fig. 4.11 shows the eddy momentum fluxes as functions of

latitude for the zonal wavenumbers 8, 16 and 24. We note that,

since the momentum flux is proportional to IX12 , these profiles are

similar to the amplitude profiles, but with smaller meridional scales.

From (4.92), we note that the eddy momentum flux is proportional to

the gradient of the perturbation's meridional phase. Since the

gradient of these phases, as shown in fig. 4.8, do not change sign,

these momentum fluxes are poleward everywhere. Fig. 4.12 shows

the eddy heat fluxes as functions of height at the turning point. We

note that, near the surface, the eddy heat fluxes do not decrease as



87

rapidly as the amplitudes of the perturbations. But the magnitude

of these fluxes decreases very rapidly near the critical layer.

From the above discussion, we note that this particular

problem on the sphere is very closely related to the baroclinic

instability problem on a 3-plane. The perturbation's growth rate,

phase speed and the vertical structure are almost identical to those

from Branscome(1983). Nonetheless the spherical geometry plays an

important role in determining the location of the maximum

amplitude and the eddy momentum flux. Although these analytic

solutions are not valid at long waves, they provide simple analytic

expressions for the perturbation's growth rate, phase speed, vertical

structure and meridional structure. Moreover we have learned how

and where the growth rate and phase speed were determined.

The above analytic procedure, which consists of a two-scale

formalism and a local expansion method, is more elaborate than

those used heretofore in the p-plane analyses where only one of

these two methods was adopted. The application of the local

expansion near the turning point showed that only one turning point

can exist in our solutions. Thus the perturbation's meridional

structure near the turning point can only be approximated by a

parabolic cylinder function of integer order. The existence of a

second-order turning point is not an essential difference between our

solutions and those on the P-plane with two first order turning

points(Ioannou and Lindzen, 1986). In fact, our second-order
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turning point is a limiting case of the two first order turning points

problem. We note that the connection condition for the two-turning-

point problem is

i (-Q 2)1/2dg = e 2 (n + 1 )r
2

S(-Q2)1/2 ( g)

where 9 l, 1 2 are the first order turning points. This is just Ioannou

and Lindzen's Eq. (2.12) written in our notation. When e is small,

these turning points must be very close to each other, i.e., close

compared to the radius of deformation. In the asymptotic limit, we

can combine these two turning points into a single second-order

turning point and approximate the solution in this region by a

parabolic cylinder function of integer order. Note however that the

width of the region which joins togather the exponentially decaying

solutions is of order the square root of the zonal wavenumber both in

our solutions(see Eqs. 4.76 and 4.56) and in the P-plane

solutions(Ioannou and Lindzen, 1986). Because of our shortwave

approximation, this width is of order the radius of deformation in our

solutions.

From the above solutions, we note that the vertical structure in

the WKB regime when evaluated at the turning point is the same as

that in the turning point solution, and the leading order meridional

structure can be directly derived from (4.12) by requiring that it be
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approximated by a parabolic cylinder function of integer order near

the turning point. Therefore, to determine the properties of the

unstable baroclinic waves, we only need to solve the perturbation

equations in the WKB regime. In the following chapter, we will adopt

this simplified procedure to study the instability properties of a

general meridional profile.
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CHAPTER V

A GENERAL MERIDIONAL PROFILE PROBLEM

Since the procedure developed in the last chapter is not limited

to finding analytic solutions for that particular problem, we can

apply it to investigate the instability problem of a general meridional

profile. By comparing with numerical calculations(Simmons and

Hoskins, 1976), we can also determine if our analytic solutions give

reasonable results. Moreover, from these analytic solutions, we shall

be able to find out how and where the properties of baroclinic

unstable waves on the sphere are determined.

In this chapter, we assume that the basic flow is

u = M(g) z (5.1

where M is the unspecified meridional structure and the vertical

structure is still taken as a linear function of height. Other basic

state parameters are the same as those in the last chapter. By

assuming that the perturbation streamfunction has a normal mode

solution as that in (4.2), the governing equation for this general

profile can be written as
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k2
-_ ._ e k - 1 21-- 2  .[ 1

DZ2  az g2(1-2)2 g2 g2 Z- (I-U2)1/2 CM

[Ss(1- 2)1/2 g21_.2 1/2Z 82
+ (l- 2)1 2  [ (1-p2)1/ 2 M] } = 0

92M 9 2 M D12

(5.2 )

We see that M appears only in those terms

the basic state potential vorticity gradient.

for y are

c ( 1- 2 )l1 2 L + N= 0 at z = 0
M az

that are associated with

The boundary conditions

( 5.3 )

and

= 0 as z-+oo and at = 0, 1
(5.4)

Since c is multiplied by (1-g 2)1/2/M, except for a solid body rotation,

the lower boundary condition will no longer be independent of

latitude. This dependence on g may cause the perturbation's leading

order vertical structure to vary with latitude.

As in the last chapter, we adopt the shortwave approximation

and change variables from z to C. After rescaling, (5.2) becomes
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k 2 - E4

.. __ + E4L _ + LL 0 1

(l 21/2 , 3 (1_j 2)1/2 [ (1 )1 2M]} = 0

12M 112M o!2

where ko, c and C are the same as (4.7).

perturbation's fast variation meridional

To separate the

structure from the

structure, we assume that

V = O(g9,) X(VT)

where 11 is the fast variation meridional variable and is the same as

(4.11). The governing equation for x is again of the form

2L _-Q2 ,= 4 2 -Q2 x= 02 2 ( 5.7 )

After substituting (5.6) and (5.7) into (5.5), the governing equation

for 0 is

a2d _ - K20 + E44 +T 1- t 2 7 D) + 2}
aD2  a2 -21 2 X2 )  llD2  2 +

+ -b-----Fb 
3 U1_2)1 2' a2

+ 21/2 b - -2M [(1-2)1/2 M]} = 0

M

( 5.8 )

(5.5 )

vertical

( 5.6)



where we define that

P ( 1 - g 2 ) 1/ 2

b= +1
g27M ( 5.9 )
k2

K2 0 _2 Q2

L2(1-g2) g2
( 5.10 )

b is the leading order of the basic state potential vorticity gradient

and is a function of i and M. K is a function of zonal wavenumber

and Q. As mentioned in the last chapter,

-= , I2n q
x 0rl no, (5.11)

therefore (5.8) does not depend on x or rl. The boundary conditions

for 0 and x are

(1-2) 1/ 2 c + = 0,
M 8r

0=0, as -

at ~ = 0
( 5.12 )

( 5.13 )

and

at g = 0, 1
( 5.14 )
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Now we can apply the perturbation method to solve (5.8). The

perturbation expansions of 0, K and c are the same as those of (4.24).

The first three order perturbation equations for 0 are

- Ko Lo o =
0 00 (5.15)

ao b o
LO 0=- + 2KoKo- o (1- = L1

0 1 0 (1-2) 1/2 1 0

_ -2_2 g.: ao
L2 = L+ (2KK +K2  2 ai g0 2 1 1 0 2 1 0 g2 Xalg

( 5.16)

c (1-g 2 )1/ 2

M b0

M Co)

( 5.17 )

The upper boundary condition for n is

00 = 01 = 2 = ....... = 0,
as . oo

At C=0, the condition for n is

(1-L2)1/2 c 0 +0 = 0
M oag o

(1- 2)1/2 a 1 (1- 2) 1/2

(1- 21/2 2 1L-L2)1/2 2)1/2 0

M oa 2 M 1 D M 2 a

( 5.18 )

( 5.19 )

( 5.20 )

( 5.21 )

M
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As in the last chapter, near =co(1-g 2)1/2/M, we change variable

from to 5 where

E-1( C- (1-u2)
1/2

M ( 5.22 )

Since co is multiplied by (1-g 2)/M, in general, the critical layer will

vary with latitude. In terms of , (5.8) becomes

S _ a 2 _ 2K2 i +
a 2 aC

+ o(e3 ) = 0
(1- 2)1/2

M 1 2

( 5.23 )

The first three perturbation equations for Oi can be written as

=L ' =0

L =0

01

(
* 4 b49

L' _ + K2 i - 0
0K2 10 ( )1/2

M

Since the leading order equations for 0 and Oi are the same as

those in the previous chapter, the solutions can readily be written as

5.24 )

5.25 )

( 5.26 )
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( 5.27 )

and

( = Ao o ( 5.28 )

Here, for convenience, we allow Ao to depend on IX. The lower

boundary condition requires that

K= M
o (1-g 2) 1/2 C,

( 5.29 )

We note that, unless M is a solid body rotation, Ko is no longer a

constant. Therefore, in general, the leading order perturbation's

vertical structure will vary with p. and the vertical scale will not

remain the same for all latitudes.

From (5,16) and (5.25) , the first order solutions for 0 and 4i are

-(Ko -1) 1 b [2(Ko - 1)

4, = Aoe {( 2- K 1 ) + K [e
1 2 1 2K

0

E1 {2(K 0-1)}+1n(K 0-1) ]

( 5.30 )

and

1 0 0 K 0b1 M1 2 0
0

(5.31)
where El(x) is the same as (4.39) and E0 is Euler's constant. Since

El(x)=-Ei(x)+int, (5.30) and (5.31) are complex functions below the
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critical layer. As discussed in the last chapter, the existence of b is

responsible for these complex values in the O(e) correction.

Substituting (5.30) into (5.20), we have

K 1 + be- 2E (-2) - K2c ( 1 - 2)1/2

1 2 1 1 M (5.32 )

Since El(-2)=-Ei(2)+in, K1 is a complex function. After matching with

(5.27) and (5.30), the O(e 2 ) inner solution 0i can be written as

K22
(t = Ao{ 2O b(- (1-U 2)/2 1 ) In Ko(5- 

( 1- 2)1/2
2 0 2 M 1 0 M 1

+ (2 - E - In 2) } + constant
2 o ( 5.33 )

In comparison with the solutions of chapter iv, we note that the

general profile M makes little change in the form of the solutions.

Nonetheless, since Ko and b implicitly depend on M, the meridional

profile of the basic flow may have some effects on the perturbation's

vertical structure.

To determine K2 and Ao, we just require that the solvability

condition for 02 be met, which gives
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2K K+ K2 =- 2K3C (1-u 2 )1 /2 +b 2e{ F- E (-2)[4e 2 E(-2)+2-iu]}
02 1 02 M 1 1

+ K2 (1- I 3K2c (1 - 2be E (-2) - 1
01 M 01 M 1

- 2E ..i. 2. { aAo
+be 1+-2 +e 1 ( - 2 ) ) + 2 A0  o

2 X al A 0 D

aK
1 o

2K D t

( 5.34 )

where F is the same as (4.52). Since, in general, Ko and Ao are

functions of g, the g derivative term in (5.17),

SK 1 A
1 8a o = A e2nq 0 1 o

ae n=o Ao alXaq aA( 5.35 )

will not vanish. Therefore, unlike (4.51), these terms are present in

(5.34). Without losing generality, we can eliminate them from K2 by

requiring that

A = K1/2

o o (5.36 )

Since Ko, K 1 and K2 are known, from (5.10), Q can be

approximated as

k2

Q2U { - K2 - E2K K - 2(2K K + K2)
-1-. 2 .2(1_. 2) 0 0 1 0 2 1

( 5.37 )
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As discussed in chapter iv, for x to have a nontrivial solution, we

need a second-order turning point within the meridional domain.

Furthermore, x must be approximated by a parabolic cylinder

function of integer order. These conditions require that the leading

order term of (5.37) and its first derivative be zero at the turning

point. Therefore, at g=go,

k
2

O - K2 = 0
_g2( _ 2) 0 ( 5.38 )

and

k2 (2g2-1) DK
S -K -= 0

L3(1-g2)2 0 OL ( 5.39 )

Since Ko depends on co, there are two unknowns, co and go, in these

two equations. Substituting (5.29) and (5.38) into (5.39), we can

eliminate ko and co and derive an equation for go,

aM M
- + M 0, at = go

( 5.40 )

Since, from (2.13),

2 2- ap (1-. 2)1/2 D.gM)
(P2  pgR aD

2pg aM M
pgR all g ( 5.40a)
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where <p is latitude, this second-order turning point, 9 0, is located at

the maximum of the meridional temperature gradient. We note that

(5.40) depends on M only. Therefore, the location of the turning

point is solely determined by the meridional structure of the basic

flow. For westerly flow, since the derivative of M must be negative

to satisfy (5.40), the turning point is on the poleward side of the

maximum of the basic flow. Furthermore, because of the existence of

the derivative term in (5.40), the distance between go and the

maximum of the basic flow depends on the meridional scale of the

basic flow. If the scale is broader then the distance will be larger

and vice versa.

Once the location of the tuning point is determined, co can be

found from (5.29) or (5.38), i.e.,

M(.L )  IoM(g o)

oK (1- 2)1/
2  

- k
0 00 (5.41)

From the local expansion in the last chapter, we note that K 1 must be

zero at the turning point to satisfy the lower boundary condition.

Therefore, from (5.32), we can determine c1 as

c2(1-p2)1/2 1

l0 0 1 +be-2(-Ei(2) + in )}
M(g ) 2 o Io ( 5.42 )
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where b0 is the value of b at g=ot,

f s(1-g2)"
2

b=1+ S 0

0 2M( 0oo ( 5.43 )

Away from the turning point, (5.7) has a WKB solution. To satisfy

the boundary conditions(5.14), X must exponentially decay toward

both the equator and pole. Therefore the leading order asymptotic

solutions for x are

X - d, (0 )-1/4exp{ - e-2 (Q2 1/ 2dt },

Sd , (Q2 /4exp{ 124 (Q2 1/2d t },

for g + O(E) < p < 1

for 0 <5 p g- O(E)

( 5.45 )
Since Q is not an order one quantity near to, these WKB solutions are

not valid in this region. Therefore, we expand Q as a Taylor series

around go,

Q2 =D (g-io)2 - eD 1(g-pgo) - e 2 D 5.46where (5.46)

where

02 0 -o 2K20 g2 (1-g2)2 0 o ( 5.47 )

( 5.44 )



D = -( 2K K)
1 ag 1- 2  0 1 pLg

2

D =- (2K K + K2)
2 1- 2  0 2 1 -Ito

Then we change variable from g to y, where

ED
y = 7-1(4D )1/4( -.. 0 .- 1

0 0 2D

( 5.48 )

( 5.49 )

( 5.50 )

As discussed in the last chapter, to match with X in the WKB regime,

we need X be a parabolic cylinder function of integer order in the

turning point regime. Therefore, we must require that

n += -(4D )-1/2( 1
2 4D_

D 2)
( 5.51 )

here n=0,1,2,..., is an integer. In terms of y, (5.7) can be

approximated as

2

+( n+ 1  ) X = 0
Sy2 2 4

Its solution is a parabolic cylinder function of order n,

102

( 5.52 )
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2

X = He (y) exp{- Y 5n 4 (5.53 )

where Hen(y), as in (4.82), is a Hermit polynomials of order n. As

noted in the last chapter, n can be thought of as the meridional

wavenumber. For a given n, we can match (5.53) with (5.44) and

(5.45) to determine d1 and d2. From (5.34) and (5.49), we can find c2

as

3(12) 2 D2C (1-"0) 1-21[ 1] 2e-2 F
c ° o [- (4Do)/2(n + 2 +  1 ]+ 1-b + b2e2F2 2M2 )  2 0 2 4D 4 0 0

-b e-2E (-2)(3e-2 E(-2) + 2 -it )}

( 5.54 )

We note that only the phase speed is affected by the meridional

wavenumber; therefore the growth rate as a function of n can not be

determined at this order. To this stage, we have completed the

solutions for the perturbation's leading order vertical structure and

fast variation meridional structure. Also, we have determined c to

O(e2). In the following we shall discuss the properties of these

solutions. As in chapter iv, we only consider the case n=l.

To compare with the results from Simmons and Hoskins(1976),

we take M to be the same three basic meridional profiles as theirs,
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.2 0
M(L) = sin t g, for 300 jet,

M= f675(1-2-1/2 , for 550jet,
1 + 9(2 2)2

3

= (1-g 2 )1/2 , for solid body rotation. ( 5.55 )

Fig. 5,1, taken from Simmons and Hoskins(1976), shows the

meridional cross sections of these three basic zonal flows and

temperatures. We note that their basic flows are not linear functions

of height. Furthermore, their basic state temperature fields are

functions of both latitude and height, therefore their static stability

parameters are not constant. Since these basic state parameters are

not identical to ours, we can not directly compare their solutions with

our solutions. To derive an equivalent constant static stability, we

take the horizontal averaged temperature(Hoskins and

Simmons,1975; Simmons and Hoskins, 1975) to calculate N2, then

take the vertical average of it. For Uo, we take their value of the

mean flow at the meridional maximum and at 350 mb, which is

approximately z=1 in our model. The scale height is calculated from

the hemispherical mean temperature. Therefore we find
-1

N = 2.0 x10-4 sec , H- 7.4 km and e =0.11
0

Since Ps is a function Uo, its value for each profile is

3 =0.39, for 300 jet
S

= 0.53, for 550 jet

= 0.59, for solid body rotation.
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Fig. 5.1. The meridional cross sections of the basic flows and
temperatures for the 300 jet (a), the 550 jet (b), and for solid
body rotation (c), taken from Simmons and Hoskins(1976).
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(a). The perturbation's growth rate and phase speed

To O(e), in dimensional form, the phase speed can be written as

* M(g 0)Uo f a(1-.2) 1/2 f
c = 0 { 1+ [o - 0.67(1+y) ] }r k NH k NH 2

o o (5.56 )

where y is a general form of (4.87),

N2H 2200

f0 M(go)Uo ( 5.57 )

fo and o0 are the Coriolis parameter and its gradient at the turning

point. To O(e 2), the dimensional growth rate is

M(lo) U  f 2  a( 1-2)1/2 f
c~ = 0.425(1+y) o o { 1 [ 0.2 6(1+y) + ] }

k N2H2  k N H 1+y
0 0

( 5.58 )

We note that the growth rate and phase speed are determined

at the turning point. Since the location of the turning point depends

on M, c will be determined at different locations for different

meridional profiles of the basic flow. As expected, if M is a solid

body rotation, then (5.56) and (5.58) are identical to (4.84) and

(4.88). Therefore these expressions are the general forms for the

perturbation's growth rate and phase speed. Furthermore, since
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M( o)Uo is the characteristic velocity of the basic flow at the turning

point, these expressions are similar to the perturbation's growth rate

and phase speed for a uniform zonal flow on a P-plane. Hence, with a

proper choice of the basic state parameters, a uniform zonal flow

problem on a 3-plane may be able to provide correct results about

the perturbation's phase speed and growth rate. This may be the

reason that, as indicated by Simmons and Hoskins(1976), there is

much similarity between the P-plane and spherical calculations.

Figs. 5.2 to 5.7 show the growth rates and the phase speeds as

functions of the zonal wavenumber k for the solid body rotation, the

300 jet and for the 550 jet. The "short wave" results were calculated

from (5.56) and (5.58). The PE and QG results, taken from Simmons

and Hoskins(1976), were calculated from the primitive equations and

the quasigeostrophic equations, respectively. We note that the

magnitudes of the growth rate and the phase speeds from these

analytic expressions are generally in agreement with the numerical

calculations. As expected, shorter waves give better agreement.

Except for the solid body rotation case, the wavenumbers of the

maximum growth rate and phase speed based on the approximate

expressions do not agree with those of Simmons and Hoskins. Since

the most unstable waves are near the limit of the shortwave

approximation, the perturbation expansions of (5.56) and (5.58) can

not provide accurate growth rates and phase speeds for these waves.

Furthermore, the two-scale assumption has implicitly assumed that

the meridional scale of the basic flow is larger than the

perturbation's meridional scale, and thus the accuracy of (5.56) and
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(5.58) may also be affected by the meridional scale of the basic flow.

Since the meridional scales of the jet profiles are much narrower

than the scale of the solid body rotation, the approximate expressions

give poorer results for the jet profiles.
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Fig. 5.2. The perturbation's growth rates as functions of the zonal
wavenumber for the solid body rotation: the "Short wave"
results were calculated from (5.58), PE and QG results, taken
from Simmons and Hoskins(1976), were calculated from the
primitive equations and the quasigeostrophic equations,
respectively.
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Fig. 5.3. As in fig. 5.2, except for the phase speeds.
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Fig. 5.4. The perturbation's growth rates as functions of the zonal
wavenumber for the 300 jet.
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Fig. 5.5. As in fig. 5.4, except for the phase speeds.
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Fig. 5.6. The perturbation's growth rates as functions of the zonal
wavenumber for the 550 jet.
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Fig. 5.7. As in fig. 5.4, except for the phase speeds.



112

(b). The meridional structures of the unstable waves

As discussed in chapter iv, the primary meridional structure is

near the turning point. Since y and k were scaled by e- 1 and e-2, the

meridional scale has a scale of O(kl/2). From (5.50), for n=l, the

perturbation's maximum amplitude is located at

eD

m = 0 2D
0 (5.59 )

We note that go is the leading order approximation of gm. Since Do

and D 1 depend on k, gm depends weakly on the zonal wavenumber.

Fig. 5.8 shows gm as a function of k for the solid body rotation, the

300 jet and for the 550 jet. The straight lines are the locations of the

turning point for these three profiles. We note that the distance

between g0 and the meridional maximum of the basic flow depends

on the meridional scale of the basic flow. Furthermore 'm converges

to g0 more quickly for the jet profiles than for the solid body

rotation.

The leading order phase of the meridional structure is

S= - Im{ e-2f (Q2)1/2dg}, for > g0 + O(e)
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a = -D 1 (g-o), for l -O(e) < p < + O(e)
0 1/2 

0 0

0

a = Im{ -2 (2) 1/ 2dg } , for . < go - O(e)

0 ( 5.60 )

Figs. 5.9 to 5.11 show the amplitudes and phases for zonal

wavenumber 8 as functions of latitude for those three profiles. As

mentioned in the previous chapter, the amplitude decays rapidly

away from the turning points. Since the solid body rotation has the

largest meridional scale, its perturbation also has the largest

meridional scale. Therefore the perturbation's meridional scale not

only depends on the zonal wavenumber but also depends on the

meridional scale of the basic flow. Although there are rapid

variations of the phases near the equator or the pole, the amplitudes

are small in these regions, and they do not have a significant effect

on these unstable waves. Moreover we note that the gradients of the

phases change sign for the jet profiles. Since the eddy momentum

flux is proportional to the gradient of the phase, this implies that the

eddy momentum fluxes will change sign for these two jet profiles.
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(c). The vertical structures of the unstable waves

From (5.27), the perturbation's leading order vertical structure

can be written as

M k NHz
0 = exp{ + 1}

M( ) a(1-,2)1/ 2 f 0 ( 5.61 )

Thus 0 is an exponentially decreasing function of height. Since Ko

depends on k, as in chapter iv, the perturbation's vertical scale is

proportional to the zonal scale. Ko is also a function of M, except in

the case of solid body rotation, so the perturbation's leading order

vertical structure varies with latitude in general. The steering level

is located at

Z = c (1-u2)1/ 2 H
s r M

( 5.62 )

Fig. 5.12 shows zs at the turning point as a function of the zonal

wavenumber for those three profiles. We note that the steering

levels are near the lower boundary and decrease as waves become

shorter. Since cr is multiplied by (1-j± 2) 1/2/M, although the

perturbation's phase speeds showed significant differences among

these three profiles, the steering levels at the turning points do not

differ too much among these profiles.
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Away from the critical layer, =co(1-g 2) 1/2/M, the leading order

vertical phase a, can be written as

-1 -2 bn7 2(Ko-1)
a=tan {ee - (bo- b)+e-(e - 1 ) H(Ko -1)}

v 2K 0
o (5.63 )

where H(x)=O if x>O and H(x)=l if x<O. Near C=co(1- t2) 1/2/M, cv iS

C.

-1 C -- 2 (1-g2)1/2C C
a = tan {- __M ( b 0-b )- eb( - r )tan-' (  o

V K 0 M c

C

Ko 0
0

( 5.64 )

Fig. 5.13 shows, to O(e), the amplitudes of the zonal wavenumber 8 at

the turning point as functions of height for those three profiles. We

note that, in general, the perturbation's amplitudes for these three

basic flows are very similar. The amplitudes have maxima at the

surface and decrease with height except near the critical layers. Fig.

5.14 shows the leading order vertical variation of the phases. The

phase profiles also show similarities among the different basic flows.

From these figures, we note that the meridional profile of the basic

flow does not significantly affect the perturbation's vertical

structure.
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(d). The eddy fluxes

The eddy heat and momentum fluxes are still given by (4.91)

and (4.92). From (5.60), (5.63) and (5.64), we can derive the leading

order of these eddy fluxes. Fig. 5.15 is the same as fig. 5.13, except

for the vertical profiles of the leading order heat fluxes. Since the

perturbation's vertical structure are similar for those three basic

flows, the eddy heat fluxes are also very similar. These fluxes have

maxima at the surface and decrease with height.

Fig. 5.16 shows the leading order eddy momentum flux as

functions of latitude. Unlike the heat fluxes, these momentum fluxes

differ significantly from profile to profile. As in chapter iv, the eddy

momentum flux for the solid body rotation is poleward everywhere.

The momentum flux for the 550 jet is mostly poleward, but there is

very small equatorward flux at high latitudes. For the 300 jet, the

momentum flux changes sign near the location of the perturbation's

maximum amplitude. The equatorward flux is stronger than the

poleward flux. Fig. 5.17, taken from Simmons and Hoskins(1976),

shows the meridional cross sections of the momentum fluxes

calculated from the primitive equations. The comparison between

fig. 5.16 and 5.17 show that the momentum fluxes from the

numerical calculations and from our approximate solutions are in

good agreement. It seems that the analytic solutions of this study

are able to capture the essential features of the momentum fluxes for

different meridional profiles of the basic flows.
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From (4.92), we note that the sign of the eddy momentum flux

is determined by the perturbation's meridional phase gradient. From

(5.60), the leading order meridional phase gradient can be written as

8 2 Ki = - E1( )1/20 K for t > L + O(E)
1-g2 D1/2 i '

D
=-e_1 - i . for - O(e) < < + O(E)

2D1/2 0 0

0

K
= e-( )1/2 o K1 for g < .t - O(e)

1-2 1/2 ( 5.65 )

where

k2

D= o -_K2

2(1g2) 0 ( 5.66 )

Since Dli is the g derivative of Kli at the turning point, the sign of

(5.65) only depends on the function Kli, which is

-2 s ( 1- 2 )1/2  M (1- 2 ) 1/ 2  ( 1 - 2 ) 1/ 2

K =e -2{ (l+ S) - (1+
li 2M (1-g 2)1/2 M( 0) o2M

( 5.67 )

We note that (5.67) only depends on M, .o0 and Ps . Since Lo is

determined by M only, for given M and Ps , we can determine Kli as a

function of latitude. It is easy to see that, without the Ps term, Kli is

zero for a solid body rotation. Therefore the existence of the Ps term

is very important to correctly present the effect of the spherical
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geometry on the baroclinic instability problem. From (5.65) and

(5.67), we can see that the eddy momentum flux is positive at low

latitudes for westerly flow. This is the same conclusion as that of

Hollingsworth, Simmons and Hoskins(1976).

From (5.65), we note that, for the eddy momentum flux to

change sign, Kli must be zero somewhere other than the turning

point. Therefore Kli must have a minimum in the domain. Table 1.

only shows the locations of the minima of Kli for the observed

seasonal averaged zonal flows(from Oort, 1983) and Ps=0.5. Different

values of p s do not cause much change of the locations. The existence

of the minima in Kli indicate that the eddy momentum fluxes will

change sign for these observed flows. The locations of the minima

K li vary with seasons and different zonal flows. This feature implies

that the meridional profile of the basic flow has a very important

role in determining the behavior of the eddy momentum flux.

Moreover it implies that our solutions are sensitive to the meridional

profile of the basic flow. Since the locations of Kli=O are close to each

other and the minimum of Kli is located in between for each

observed zonal flow, the implies that the location of the minimum

also close to the location of the maximum convergence of the eddy

momentum flux. Table 2. shows the locations of zeros in the

observed eddy momentum fluxes. We note that the zeros of the

observed eddy momentum fluxes also vary with seasons, but the

differences are not as great as in table 1. From table 1 and table 2,

we note that our approximate solutions are able to predict the

change of sign of the eddy momentum flux from the observed zonal
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flow, but they are not able to predict accurately where the change of

sign occurs or the location of the eddy momentum flux extremes.

Since the properties of the unstable waves are mainly determined at

the turning point, which is located at the maximum of the meridional

temperature gradient, the meridional variation of the basic flow is

very important in determining the behavior of the unstable waves

on the sphere. Although the analytic solutions are for a general

meridional profile of the basic flow, because of the limitations of the

perturbation expansion and the two-scale assumption, the meridional

s6ale of the basic flow will affect the accuracy of these solutions. In

particular the solutions break down if the basic flow is rapidly

varying, otherwise they capture the essential properties of baroclinic

instability on the sphere. Furthermore, our solutions show the very

close relation between baroclinic instability on the sphere and that

on a 1-plane, if the P1-plane is located at the proper latitude.
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Table 1. The locations of the minima of Kli for the
flows and Os= 0.5, calculated from (5.67).

observed zonal

Winter Summer Difference

U(200) 350 450 100

U(500) 400 500 100

U(850) 400 500 100

U(mean) 350 500 150

U(200)-U(850) 350 450 100

Table 2. The locations of zeros in observed eddy momentum fluxes.
[u'v'] is the vertical averaged transient eddy momentum

flux and [u'v']+[u*v*] is the total flux, from Oort(1983)

Winter Summer Difference

[u'v'] 5 3 0 580 50

[u'v']+[u*v*] 510 570 60
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CHAPTER VI

SUMMARY AND CONCLUSION

Since the quasigeostrophic potential vorticity equation on the

sphere is analogous to the quasigeostrophic potential vorticity

equation on a 3-plane, we are able to apply some of the P-plane

methods to perform an analytic study of the baroclinic instability

problem on the sphere.

In chapter iii, we studied an analogue of Eady' problem on the

sphere. The results are almost identical to those of Eady's model.

Due to the absence of the basic state potential vorticity gradient, the

spherical geometry does not play a significant role in determining

the properties of the unstable waves and does not induce any eddy

momentum flux.

In chapter iv, we developed a straightforward perturbation

procedure to solve an analogue of Charney's problem on the sphere.

This procedure, which consists of a shortwave approximation and a

two-scale formalism, is able to obtain the analytic solutions for the

baroclinic instability problem of a general meridional profile of the

basic flow. Since we adopted the shortwave approximation, only a

second-order turning point can exist in our perturbation solutions.

The properties of the unstable waves on the sphere are mainly

determined at this turning point. The perturbation's growth rate and

phase speed are determined by the basic state parameters at the
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turning point. The location of the perturbation's maximum

amplitude strongly depends on the location of the turning point. Due

to the presence of the Ps term in the equation, there is an eddy

momentum flux in this problem. Since the Ps term is divided by 2,

the meridional variation of the Coriolis parameter has a significant

effect on the properties of the unstable waves. As expected, the

perturbation solutions are not valid at long waves. Moreover, the

properties of the unstable waves and the valid range of the

shortwave approximation are affected by the values of the basic

state parameters.

In chapter v, we studied the baroclinic instability problem of a

general meridional profile. From the perturbation solutions, we

learned that the turning point is located at the maximum of the

meridional temperature gradient, which is solely determined by the

meridional profile of the basic flow. For a westerly mean flow, the

turning point is always located on the poleward side of the mean

flow maximum, which is the same conclusion as those of the

numerical studies(Moura and Stone, 1976; Simmons and Hoskins,

1976). Furthermore, we found that the perturbation's growth rate,

phase speed and the vertical structure at the turning point are very

similar to those of Branscome(1983). Therefore, with a proper choice

of the basic state parameters, the p-plane analysis of a uniform zonal

flow can provide reasonable results for these properties of the

unstable baroclinic waves on the sphere.
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In comparison with the numerical study of Simmons and

Hoskins(1976), the magnitudes of the perturbation's growth rate and

phase speed from these perturbation solutions are in reasonable

agreement with the numerical calculations. Except for the solid body

rotation case, these perturbation solutions were unable to locate

accurately the most unstable waves. This failure is caused by the

limitations of both the shortwave approximation and the two-scale

assumption. Since the turning point is determined by the meridional

profile of the basic flow, the perturbation's meridional structures are

different from profile to profile of the basic flow. But the

perturbation's vertical structures at the turning points and the eddy

heat fluxes did not show significant differences for different basic

flows.

The comparison between the leading order eddy momentum

fluxes and those of Simmons and Hoskins(1976) showed that they

are in good agreement. From these analytic solutions, we noted that

the sign of the eddy momentum flux only depends on the

perturbation's meridional phase gradient. Since this gradient is

mainly a function of the meridional profile of the basic flow, we can

predict the sign of the eddy momentum flux from these perturbation

solutions for a given meridional profile of the basic flow. In

comparison with the observed eddy momentum flux, these analytic

solutions were able to predict qualitatively correct latitudinal

variations of the mean transient eddy momentum flux from the

observed seasonal averaged zonal wind profile. However these

analytic solutions are not able to determine accurately the locations
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of the change of sign and of the eddy momentum flux extremes from

the complex observed mean states, because of the linearization

assumption(Edmon et al., 1980).

Although these analytic solutions have many limitations, i.e.,

the simplified basic states, the shortwave approximation and the

two-scale assumption, they still capture the essential features of

baroclinic instability on the sphere. From this study, we have

learned

(a). that there is a very close relationship between the baroclinic

instability problem on the sphere and that on a f3-plane,

(b). how and where the properties of the baroclinic unstable waves

are determined,

(c). the effects of the spherical geometry and the meridional

profile of the basic flow on the properties of the unstable

waves.

These analytic solutions can be applied to predict the properties of

the unstable waves for any given meridional profile of the basic flow.

This information is of considerable value for guiding numerical

studies and for improving parameterizations of eddy fluxes in

climate modeling.
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