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ABSTRACT

An analytical study of baroclinic instability on the sphere is
presented. We study analogues of both Eady's and Charney's
problems on the sphere. Furthermore, we derive analytic solutions
for the problem of a general meridional profile of the basic flow.

The governing equation is the quasigeostrophic potential
vorticity equation on the sphere. We adopt a shortwave
approximation and a two-scale assumption to derive the approximate
solutions for these problems. These solutions contain a second-order
turning point whose location is very important in determining the
properties of the unstable waves. This second-order turning point is
located at the maximum of the meridional temperature gradient and,
because of the variation of the Coriolis parameter, it is always located
on the poleward side of the westerly zonal flow maximum.

Furthermore, the analytic solutions indicate a very close
relation between baroclinic instability on the sphere and that on a
B-plane. In fact, if B-plane is located at the latitude of the turning
point, the study of a uniform zonal flow should be able to correctly
derive most of the properties of the baroclinic unstable waves on the
sphere. Nonetheless, the spherical geometry and the meridional
profile of the basic flow have significant effects on the perturbation's
meridional structure and the eddy momentum flux, which can not be
correctly predicted by a B-plane study.



Although the analytic solutions have some limitations and are
not valid for long waves, they are still able to capture the essential
features of baroclinic instability on the sphere. Furthermore, these
have implications for parameterizations of the eddy fluxes in climate
modeling and allow one to predict the properties of the unstable
waves for given meridional profiles of the basic flow, which may be
useful for guiding numerical studies.
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CHAPTER 1

INTRODUCTION

Since the pioneering works of Charney(1947) and Eady(1949),
the theoretical study of baroclinic instability has been one of the most
important topics in atmospheric dynamics. In the literature, there are
two different geometrical assumptions in the studies of baroclinic
instability; one is plane geometry and the other is spherical geometry.
The difference in geometry has led to somewhat different approaches
to studying the problem. Both analytic and numerical analyses have
been adopted to investigate the baroclinic instability problem in plane
geometry, but only numerical analyses have been used to study this
problem on the sphere. Furthermore, although many aspects of
baroclinic instability are similar in both geometries, there are some

aspects that remain to be understood.

The purposes of this study are: (1). to find an analytic solution
for the baroclinic instability problem on the sphere; (2). to learn how
the properties of the baroclinic unstable waves on the sphere are
determined; (3). to find out the effects of the spherical geometry and
the meridional profile of the basic flow on the behavior of these

unstable waves.

In the following, we shall discuss the effects of these two

geometrical assumptions on the methods applied to study the

10
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baroclinic instability problem. Also, we shall discuss the similarities

and differences between the results with these different geometries.
(a). the plane geometry

Since the work of Charney(1947), the plane geometry
assumption has been adopted in most of the theoretical studies of
baroclinic instability. This assumption neglects the curvature effect
of the earth and the meridional variation of the Coriolis parameter,
except that a B-plane is used where the gradient of the Coriolis
parameter is retained. With the quasigeostrophic approximation, the
governing equations of the large scale atmospheric motions can be
reduced to a single equation, which is the B-plane quasigeostrophic
potential vorticity equation. This single governing equation not only
simplifies the baroclinic instability problem in plane geometry, but
also provides information about the necessary condition for
instability(Charney and Stern, 1962; Pedlosky, 1964a)~ and bounds on
the phase speed and growth rate of the perturbations. Although the
plane geometry assumption is unrealistic for the earth's atmosphere,
since the baroclinic instability process is mainly a midlatitude

phenomenon, it can still be justified.

For a uniform zonal mean flow, the governing equation of the
baroclinic instability problem is a trivial two-dimensional differential
equation, which can be easily reduced to an ordinary differential
equation for the perturbation's vertical structure. It is easy to solve

either analytically or numerically. There are two different models
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that were adopted by most of the theoretical studies in plane
geometry; one is Eady's model on a f-plane and the other is Charney's

model on a B-plane.

(i). Eady's Model

Eady(1949) introduced the simplest model on a f-plane, where
the B-effect is neglected, that displays the baroclinic instability
process. The basic state of this model has constant density and static
stability. The mean flow is a linear function of height without
meridional variation. Since there is no basic state potential vorticity
gradient in the governing equation, the necessary condition of
instability can be satisfied if both upper and lower boundaries be
horizontal rigid planes. Since the basic state potential vorticity
gradient is zero, the equation and the boundary conditions are very
simple. Therefore this instability problem can be solved analytically

without any difficulty.

The results of this problem show that the instability only
occurs at low zonal wavenumbers. Since, as the wave becomes
shorter, the perturbation will be trapped near one of the boundaries,
the necessary condition for instability can no longer be satisfied.
Therefore, there is a shortwave cutoff for instability. The lowest
meridional wavenumber has the largest growth rate. The most
unstable wave has a zonal scale similar to the synoptic scale eddies
of the atmosphere. The phase speeds are the same for all unstable

waves. The unstable waves have the same vertical scale as that of



the mean flow. The amplitudes of the unstable waves have a
minimum near mid-level and increase toward both boundaries. The
phase of these unstable waves tilts westward and upward, which is
the same condition for the baroclinic conversion of energy from the
mean field to the perturbation. Furthermore the eddy heat flux is
poleward everywhere. Since the basic flow has no meridional

variation, there is no eddy momentum flux in this model.
(i1). Charney's Model

Charney(1947) studied a more realistic model that retains both
the B term and the vertical variation of the basic state density, which
is an exponentially decreasing function of height. The basic state
potential vorticity gradient is no longer zero in this model.

Therefore, from the necessary condition for instability, the upper
rigid boundary condition can be relaxed and replaced by the

radiation condition at infinity.

From the discussion of Held(1978), Branscome(1983) and
Pedlosky(1987), the existence of a nonzero basic state potential
vorticity gradient has two significant effects on this baroclinic
instability problem. One is that there is a singularity in the
governing equation and the other is that there are important changes

in the vertical and horizontal scales of the unstable disturbances.

Due to the presence of a singularity in the governing equation,

it is more difficult to find an analytic solution for this baroclinic

13



instability problem. Though analytic solutions did not exist in the
original work of Charney, they were derived in later studies(Kuo,
1952, 1973; Lindzen and Rosenthal, 1981 and etc.). Nonetheless,
these solutions were very complex. It required numerical
calculations to determine the perturbation's growth rate, phase speed

and other properties.

Branscome(1983) introduced a shortwave approximation to
simplify this baroclinic instability problem. The shortwave
approximation assumes that the perturbation's total wavenumber is
larger than other terms in the governing equation. Therefore, after
rescaling, the basic state potential vorticity gradient is an order
smaller than other terms in the resulting equation. Then he applied
a perturbation method to solve the equation. Since the basic state
potential vorticity gradient is not present in the leading order
equation, the perturbation solutions are much easier to find.
Moreover these perturbation solutions are much simpler than the
exact solutions. Therefore the properties of the unstable baroclinic
waves are more explicit and can be determined without complicated

numerical calculations.

Fig. 1.1, taken from Branscome(1983), shows the phase speeds
and growth rates as functions of the total wavenumber, which is
scaled by the radius of deformation, from the results of both Lindzen
and Rosenthal(1981) and this shortwave approximation. We note

that, although these perturbation solutions from the shortwave



approximation are not valid for the whole wave spectrum, they do

give reasonable results even at synoptic scale wavenumbers.

Furthermore, we see that only certain neutral points exist in
the solutions. There is no shortwave cutoff for instability. This is
due to the existence of a nonzero basic state potential vorticity
gradient, i.e., as the wave becomes shorter, the vertical scale also
shrinks proportionally so that the instability can still occur.
Therefore, in contrast with Eady's model, the presence of the basic
state potential vorticity gradient allows the unstable perturbations in

Charney's model to select their own vertical scale.

The phase speeds of the unstable waves are near the minimum
speed of the basic flow rather than the mean speed as in Eady's
model. The maximum amplitude of the most unstable wave is at the
ground. The perturbation's phase variation with height is confined
near the surface, so the eddy heat flux is also confined in this region.
Since there is no meridional variation in the basic flow, there is no

eddy momentum flux.

For a nonuniform zonal flow, the baroclinic instability problem
on a plane geometry becomes even more difficult to deal with. Since
the basic flow is a function of both vertical and meridional variables,
the separation of variables can not be directly applied to the
governing equation. To simplify the problem, a two-scale formalism
can be applied to the meridional variable to quasi-separate the

equation into a vertical structure equation and a fast variation

15



meridional equation(Stone, 1969; Gent, 1974; Killworth, 1980;
Ioannou and Lindzen, 1986). The perturbation's vertical structure
equation is similar to that in the uniform zonal flow problem. The
fast variation meridional structure equation is approximated by a
WKB equation. Depending on the meridional domain, this equation is
either a simple WKB problem(finite domain) or a two-turning-point
problem(infinite domain). Then these two equations can be solved

separately to determine the properties of the unstable waves.

The results from these studies showed that, in the presence of
horizontal shear in the basic flow, the unstable perturbations would
select their own meridional scales. Moreover, there is an eddy
momentum flux associated with the unstable baroclinic waves.
Pedlosky(1964b) and Stone(1969) found that this momentum flux is
always against the meridional gradient of the basic flow and changes

sign at the jet center.

16
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Fig. 1.1. The phase speeds (upper) and growth rates (lower) as
functions of the total wavenumber from the exact
results (short dashes) of Lindzen and Rosenthal(1981)
and the shortwave approximation (solid), taken from
Branscome(1983).

17
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(b). the spherical geometry

On the sphere, both the earth's curvature and the full
meridional variation of the Coriolis parameter are retained. The
governing equations of the large scale atmospheric motions can not
be easily reduced to a single equation. Although Hollingsworth,
Simmons and Hoskins(1976) did introduce a quasigeostrophic
potential vorticity equation on the sphere, since its coefficients
depend on both meridional and vertical variables, it is more difficult
to solve analytically than that in the plane geometry. Therefore, as
yet, there is no analytic study of the baroclinic instability problem on

the sphere.

The numerical studies(Hollingsworth, 1975; Moura and Stone,
1976; Simmons and Hoskins, 1976) showed that the eddy momentum
flux is an essential feature of baroclinic instability on the sphere.
They found that the stability properties and the structure of the
most unstable waves are qualitatively similar to those on a P-plane,
but that the spherical geometry has significant effects on the location
of the disturbances and on the eddy momentum fluxes, which vary

greatly from profile to profile of the basic flow.

Even though the quasigeostrophic approximation formally
breaks down near equator, the quasigeostrophic equations have been
used in the numerical studies of baroclinic instability on the sphere.
Moura and Stone(1976) found that, since the amplitudes of unstable

waves are small near the equator, the unstable solutions of the
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quasigeostrophic model do not differ much from those of the balance
equations. Moreover, Simmons and Hoskins(1976) showed that the
results from the quasigeostrophic equations are generally similar to
those of the primitive equations. Therefore, the quasigeostrophic
approximation does not appear to affect the properties of baroclinic

instability on the sphere.

Although a numerical analysis can investigate more realistic
atmospheric flows and provide more accurate results for the
baroclinic instability problem on the sphere, the determination of
cause and effect relationships may be difficult. The existence of the
quasigeostrophic potential vorticity equation on the sphere and the
introduction of the shortwave approximation by Branscome(1983)
gives us an opportunity to analytically study the baroclinic
instability problem on the sphere. With this study we hope to be
able to provide a link between the B-plane analytic analyses and the
numerical analyses on the sphere. Also, the analytic éolutions may
be able to provide us information about how the perturbation's
growth rate, phase speed, vertical structure, meridional structure,
heat and momentum fluxes are determined. These results may be
useful in improving parameterizations of the eddy fluxes in climate
modeling. Moreover, we may be able to predict the structure of the
perturbations for a given meridional profile of the basic flow from

these analytic expressions.

In chapter ii, we present the derivation of the quasigeostrophic

potential vorticity equation on the sphere and discuss the properties
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of this equation. In chapter iii, we investigate an analogue of Eady's
problem. In chapter iv, we study an analogue of Charney's problem
and determine a proper procedure to solve the baroclinic instability
problem on the sphere. In chapter v, we study the instability problem
for a general meridional profile of the basic flow. In chapter vi, we

summarize and conclude our study.



CHAPTER 11
THE GOVERNING EQUATION

The governing equation in this study is the quasigeostrophic
potential vorticity equation on the sphere, which was introduced by
Hollingsworth, Simmons and Hoskins(1976). This equation, except
for having coefficients which are explicit functions of latitude, is very
similar to the quasigeostrophic potential vorticity equation on a
B-plane. As mentioned in chapter i, the quasigeostrophic
approximation did not have significant effects on the baroclinic
instability problem on the sphere, so we adopt this equation as the
governing equation in this study. Since there are many analytic
studies(Eady, 1949; Kuo, 1952, 1973; Branscome,1983 and etc.) on a
B-plane or f-plane, this similarity between the equation on the
sphere and that on a B-plane may give us an important clue on how
to find an analytical solution on the sphere. In this cilapter, we
follow the work of Hollingsworth, Simmons and Hoskins(1976) to

derive the governing equation and discuss some of its properties.

This governing equation is derived from Lorenz's Model(1960),
which conserves the sum of kinetic energy and available potential
energy but does not allow the variation of static stability. Since the
equations of Lorenz's model are in vector invariant form, they can be
presented in spherical coordinates. We introduce ¥ as the
streamfunction, X the velocity potential, ® the geopotential and p the

pressure. Then the equations of Lorenz's model can be written as

21
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CVvp = J (P, V¥ +f) - V- f VX
ot (2.1)
%%=—J(‘P,T)+om
(22)
V2 =V { V¥
(23)
o0 __RT
o’ P (24)
VX = - 90
P (2.5)
where
c=—(i—RTs) and f=2Qu.
op cpp

Here T, is the horizontal averaged temperature, p=sin(latitude), R the
gas constant, C, the specific heat at constant pressure, Q the angular
velocity of the sphere and w=dp/dt, the vertical velocity in pressure
coordinates. As noted by Hollingsworth et al., this model is

essentially an energetically consistent extension to the sphere of the

usual B-plane quasigeostrophic model. On the sphere,

J(A,B)._._l.(.a_A.a_B._a_A_.iﬁ
a> Ohop  on oA
(2.6)
VA = i A L (22 2A
a(l-p2)2or a op

(27)
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2A 9 oA
a2 { 12 oA2 au[( ) ou

1}
(28)

where a is the radius of the sphere, A the longitude, bold face
characters, i and j, the unit vectors in longitudinal and latitudinal
directions. By definition, the nondivergent part of wind is a function
of the streamfunction; therefore the zonal and meridional parts of it

can be written as

y =il 0¥
a ol
(2.9)
yo— 1 a¥
1.2
a (1-p%)"* o ( 2.10 )

We linearize the equations by assuming that the
streamfunction and temperature can be separated into -a basic state

plus a small perturbation,

Y= (y, ¥
(u,p)+ (211)

T=T (g, T
(K, p)+ (212)

From (2.3), (2.4) and (2.9), we can derive the thermal wind relation,

aT__fa pau
oL (1-p?)2 Rop (2.13)
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After neglecting nonlinear terms and dropping the primes, equations

(2.1) to (2.5) give,

u 2 2 -
_a.._l___u—ﬁ. VZlP___.__l_..a_‘{.i{ 20 — d [ (l_u2)1/ U]}
ot a(l_u2)1/2 oh a2 oL au2 a

+f.a_(°._2QkL2§_X

op a2 op

(214)
Sa;-‘- a(l_u2)1/2 sax T=- a(l_fuZ)IIZ g\}{! %%:'; +oo

(215)
V2@ = V-f V¥

( 2.16)
0® __RT
op p (217 )

To derive a single equation that is analogous to the B-plane

quasigeostrophic potential vorticity equation, two approximations

have to be adopted,

TV
(1) neglect 2017H29X in (214)
a® oK

(2) replace (2.16) by &=f¥

These approximations were introduced by Dickinson(1968) for the

case of vertically propagating planetary waves. As pointed out by

24



Hollingsworth et al., the first one implies that the divergent part of
the meridional wind is small in comparison with the geostrophic
meridional wind, which is consistent with traditional
quasigeostrophic scaling. With regard to the second one,
Hollingsworth et al. show that errors introduced by this
approximation are consistent with the usual quasigeostrophic

approximation.

From approximation (2) and equation (2.17), we have

1-_Ipo¥
R op ( 2.18)

In terms of ¥, (2.15) yields

20__ (2, u 9,0 foaw, 1 ¥ foau
p 9t a(l-pd)2 A 3p Roop a-pH2 oA 3p Ro dp

)

(219)
Substituting (2.19) into (2.14) with approximation (1), then we have

the single governing equation on the sphere,

2
(.@._'__U___i)(vhy_*__a_(.f_gﬂ))

ot a(1-pu2)12 oA op Ro op
- 2 -
2 23172
+Lfygg Sylouriuy 82 Db,
g2 o ou2 a (1-p%)2 9p Ro dp

(2.20)
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To check if this approximated equation would yield results in
good agreement with those of Lorenz's model, Hollingsworth et al.
applied both in a two-layer system to study the same baroclinic
instability problem. The static stability is taken as a constant. The
basic flow is a solid body rotation in the upper layer and a rest state

in the lower layer.

Fig. 2.1, taken from Hollingsworth et al.(1976) fig. 1, shows the
growth rates and phase speeds from both models as a function of the
perturbation zonal wavenumber. We can see that, in general, the
solutions of this approximated equation underestimate the growth
rate and overestimate the phase speed. Nonetheless they are in very
good agreement even at low wavenumbers where approximation (2)

would give a larger error.

Fig. 2.2, taken from their fig. 2 and fig. 3, show the amplitude
and phase of the fastest growing mode as a function of latitude for
both models. We note that the amplitudes show little difference
between these two models. As for phase, there are some differences
near the equator. Since the amplitude is very small near the

equator, these differences are not important.

These results indicate that those approximations that were
introduced during the derivation of (2.20) do not have any

significant effect on the nature of baroclinic instability on the sphere.
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Fig. 2.1 The growth rates (a) and phase speeds (b) from Lorenz's
model(solid) and approximated equation(dashes) as a
function of zonal wavenumber, taken from fig.1 of
Hollingsworth, Simmons and Hoskins(1976).
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Fig. 2.2 The perturbation's phases (a) and amplitudes (b) as a
function of latitude from both Lorenz's model(upper) and
approximated equation(lower), taken from fig. 2 and
fig. 3 of Hollingsworth, Simmons and Hoskins(1976).
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To compare with B-plane analyses, we shall change (2.20) from
pressure coordinates to height-coordinates and nondimensionalize

the equation. We introduce

t=2t
U
0
u=Uu
0
z=Hz*

20 )
N2=_g_ s_NZ N2
6 oz 0
S
v2= L y?
2
a

where ( )* is a nondimensional quantity, H the scale height, U, the

characteristic wind velocity, N? the Brunt-Vaisala frequency, N, the

characteristic value of N, g the gravity, and 6, the horizontal

averaged potential temperature. With the aid of the hydrostatic

equation, after dropping the stars, the resultant nondimensional

equation is

2, _u 98,109 po¥ £ 1 ¥
ot (1-pH)2 A" poz \F Oz p? 1-p? A2

a / 2 a‘IJ
+ 1_ it
au\( 1) au 1}
+8_W{E§_ﬁi[(1_u2)1/23]__.1__i _Q...a_a_)}=0
oA uZ u2 au2 p(l_u2)1/2 oz N2 0z

(221)
The definitions of € and B are



N H Nf)H2
g=—— , and B =
2Qa s 2£2aU0

(222)

It is easy to see that € is proportional to the ratio between the radius

of deformation and the radius of the sphere, while Bs is analogous to

the B parameter on a B-plane. For the earth's atmosphere,

a ~ 6400 km, N§ ~2x10% sec?, Q=729x 10" sec

H ~ 8 km, U0 ~30m sec’

thus, €=0.1212 and B.=0.457. We can see that, in general, € is a small

quantity and B, is approximately an order one quantity. If pis

replaced by u,, then

__1.__. _Q_ and _.a_ = ___1__ i_
(1-p)¥2 3 oy (1-HDV2 3

9 _
oX
and we note that the resulting equation is exactly the same as the

nondimensional quasigeostrophic potential vorticity equation on a

B-plane(from Pedlosky,1987), that is
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- 2 2 1)
(Trudy L 22t (&8, 28, Ty P

ot ox P 0z N2 0z X ay2 ayz
- l_a_(_%ili) 1=0
poz pN?oz
(223)
where
N D (1-2)12 N’D”
S=—2 , and = g 0

ZQH L uO ZQaUO

0 (224)

L and D are the perturbation's characteristic horizontal and vertical
scales, and p, the value of p at 459, Usually both S and B are order

one quantities for synoptic scale disturbances. Therefore the main
difference between these two equations is that the coefficients in

(2.21) vary with latitude while those in (2.23) are constants.

Since (2.21) is analogous to (2.23), we can apply some results
from B-plane theory to the sphere. One of them is the necessary
condition for instability(Charney and Stern,1962; Pedlosky, 1964a).
We assume that the perturbation streamfunction has a normal mode

solution,

¥ = yip,z) e

where c¢ is the phase speed and may be complex, and k is the

planetary zonal wavenumber, k=1,2.3,..., integer. Then we multiply
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the equation resulting from (2.21) by py*, where y* is a complex
conjugate of vy, and integrate over a meridional cross section. After

integration by parts, we have

2
Jj{gﬁlﬂ|2+e—2lﬁwz-+82(l—u2)li‘;fflz}azau

N2 oz 1-p

12 _
=J J‘ —QMZ— [ ﬁs_ 82‘8‘2—'[(1—LL2)1/26] _ __le_i _Q_.a_li.) } 9zou
00

—u ou? p(1-p2)12 0z " N2 0z
(1_u2)1/2
1 -
pu? [wi? U %
+J{ 2 2172 u 0z }0 oM
o N9 21z
(1-p%) (2.25)

The following boundary conditions have been applied to derive

(2.25),

¥=0 at p=0,1

(226)
and
(%Jr (1—:2)“2 aa_x aa:’— (1—»22)1’2 3\71»1 gf -0 AEea
(227)

If z—oo, the upper boundary condition is taken as ¥=0 , then there is
no contribution from the integrated term at z,. Since the left hand

side of (2.25) is real, the imaginary part of the right hand side must
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be zero. Therefore if there is instability, which means that c, is

positive, then we must require that

1 Z
ol 2 32— 9 ..P_aU
-& 9 1- —=)}02z0
!!I - |2 { B = 2[( Yeul- (2% 32 p2 )} Zou
(1 u2)1/2
1 . )
+q oLl il - du }0 o
0 N | —L— " %2
(1-p5) ( 2.28)

This is the necessary condition for instability on the sphere, which

requires that one of the following conditions be met:

(1). the basic state potential vorticity gradient changes sign
within the domain;

(2). the basic state potential vorticity gradient term is
balanced by the boundary terms at z=0 and z=z;

(3). the basic state potential vorticity gradient is zero and the

boundary terms have opposite signs.

It is easy to see that these conditions are the same as those on a

B-plane. We note that baroclinic instability of Charney's and Eady's
Models require that either condition (2) or (3) be met. Since the
form and properties of (2.21) and (2.23) closely resemble to each
other, we can construct spherical models that are analogous to these

two. Therefore we may be able to apply some of the methods from
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those analytical studies of these two models to solve (2.21)
analytically for certain kinds of basic flows. Moreover we can
compare them with results from those studies to determine the

effect of spherical geometry on baroclinic instability.



CHAPTER 1III
AN ANALOGUE OF EADY'S MODEL ON THE SPHERE

The simplest model that displays the baroclinic instability
process was introduced by Eady(1949). The most significant feature
in Eady's model is that there is no basic state potential vorticity
gradient in the governing equation. As noted in the previous
chapter, this feature requires that both upper and lower boundary
terms be of opposite sign for instability to occur. Although the
absence of the basic state potential vorticity gradient is unrealistic
for application to the atmosphere, this model demonstrates the
essential character of baroclinic instability. Therefore, in our analytic
study of baroclinic instability on the sphere, we shall begin by

investigating an analogue of the Eady problem.

To derive the analogue of Eady's model on the sphere, we shall

assume that B is small. Furthermore, p and N? are taken as

constants. The basic flow has constant vertical shear and has a solid

body rotation for the meridional structure, i.e.,

(3.1)

We note that, in (2.21), the important basic flow terms are divided
by (1-u2)1/2, therefore this flow can be seen as equivalent to

meridionally uniform zonal flow on a B-plane or f-plane. Then we
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look for the perturbation streamfunction that has a normal mode

solution,

‘I’=Re{ 1!!!!&2221)/2 eik(?\.—-ct) }
(1-p2) (32)

where k=1,2,3,..., is the zonal wavenumber. * Since ¢ is small for the

earth's atmosphere, it can be used as a perturbation parameter. We

rescale k and [ as

— o1 — 2
k=g l_(o and B =¢ BO (33)

where kjand B, are taken as order one quantities. From (2.21), the

resulting equation for v is

k2 —-¢2

2 —n2 A2 2

L +@lIE DU BV (g 197) =0
3 u2(1-p2) uz ouz p2z-c 0

(34)

It is noted that the basic state potential vorticity gradient is O(g?2),
except near the equator where p approaches zero. Therefore, in
general, it is very small in comparison with other terms in (3.4) and
will not enter the leading order governing equation. The vertical

boundary conditions are

(z-c ) _y=0 at z=0,1
0z (3.5)
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These rigid boundaries are required for instability to occur at leading
order. For the meridional boundary conditions, we just require that

the streamfunction is zero at both the equator and pole,

y=0 at pn=0,1 (3.6)

We note that if the basic state potential vorticity gradient is
neglected, then (3.4) does not contain a term that explicitly depends

on both z and p. If we assume separation of variables, it can be
separated into two ordinary differential equations, one for the

vertical structure of the perturbation and the other for the

meridional structure. Therefore we assume that y can be separated

as

V=0(2) 1) (37)

Substituting (3.7) into (3.4) and neglecting O(e?) terms, then we have,

QZ%._KZ(D:O
9z (3.8)

i?‘x._ —ZQ( ) =0
a2 X

(39)

where K2 is a separation function which may depend on p. The

definition of Q is



k2
Q= l.lz 0 K2

= { -
1-p?  p2(1-p?) ( 3.10)

From (3.5) and (3.7), the boundary conditions for ¢ are

(1-0) 2 _p=0 at z=1
0z (3.11)
and
c2 =0 at z=1
0z (3.12)
As for y, we have
x=0 at u=0,1 ( 3.13)

If K is a constant, then (3.8), (3.11) and (3.12) are all

independent of p and are identical to those of Eady's model. The

solution for (3.8) can readily be written as

¢ = A cosh(Kz) + B sinh(K2) (3.14)

Substituting (3.14) into (3.11) and (3.12), the boundary conditions

for ¢ give
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A{(c-1)K sinh K + cosh K} + B{(c-1)K cosh K + sinh K} = 0

(3.15)

For A and B to have nontrivial solutions, we must require that the

determinant of the coefficients in (3.15) and (3.16) vanish, which is

+9.9!h__1<_-_1_.=0
K K2 (3.17)

2
c -C

From (3.17), we can write ¢ as a function of K,

172
C=—1= }

1 K K K K
— & - coth & )( & - tanh &
2 {(2 2)(2 2)

ol b

(3.18)

Since ¢ is a constant, K has to be a constant also. We note that if
there is instability then ¢ must be complex and the imaginary part of
¢ must be positive. This indicates that the radicand in (3.18) has to

be negative. Since, for all K,

-K-ztanh K
2 2

the only possibility for the radicand being less than zero is that

-K-< coth K
2 2



Therefore, for instability to occur, we must require that

K<K =2.399%4
¢ (3.19)

where K. is the critical value for instability. We note that, except for

K being unknown at this stage, (3.19) is exactly the same condition as

that in Eady's problem.

To determine K, we have to find the solution for . Since € is a

small parameter, (3.9) is a standard WKB equation. From (3.10), we

note that, if K is less than 2k, then Q is positive everywhere.
Therefore the leading order asymptotic solution for y can readily be

written as(Bender and Orszag, 1978),

x~D Q" exp{ &1 f Q”du}+ D Q'”“exp{-e—lfo“zdu}

(3.20)
From (3.13), we know that (3.20) must be zero at both the equator
and pole. This requires that both D_ and D_ be zero, therefore there

is no nontrivial solution for x. On the other hand, if K > 2k, then

k2
2
Q=-H—(—22—_K?1=0, atp=p and p=p
12 p2(1-p2) L 2 (321)

where
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u2=l+l(1+4(52)2)1/2

12 2 K (3.22)
and

2_1_1 k0 21172

”2=E_E(1+4(E) )

(3.23)

We note that, for this particular basic flow, the squares of p, and Ky

are symmetrical about 459 latitude. Since Q=0 at these two latitudes

b

equation (3.9) becomes a standard two-turning-point WKB problem.

For u >y, or u < ,, Q is positive, therefore the solution for 7 is an
exponential function. For p,<u<p,, Q is negative, the solution is an

oscillatory function. While near p, or p,, Q is approaching zero, and

the WKB solution does not exist. The solutions in these regions are

approximated by Airy functions. To match two one-turning-point

solutions in the region p,<p<p,, a connection condition must be

satisfied,

“'2
f<—0)1’2du=e(n-%-)n

g (3.24)

where n= 1, 2, 3,..., is a positive integer. Then the solution for ¥ in

each region can be written as

X~ Q.w'exp{—s‘lf:l Q1/2du }, for T O <p<l
1
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X~ ZJ; ( z—:al)‘l’6 Ai{ g2/3 alm(u-ul) } for b= O <p< Bt O(e?3)

)-1/

p‘l
1~ 2(-Q) " sin(e ] Q)2 du+E) for p+ OE¥3) << p+ OE2?)
4 2 1

1

X ~ (_1) n+1 2,/;( z,:az)--IIGAi{ 23 321/3(11‘“2) } uz— 0(82/3) Su< }J.2+ 0(82/3)

2
x~ (-1) n+1 Q'1/4exp{-e“1f; Q'?dp b for 0<p<p - OE>

(325)

where

From (3.24) and (3.25), we can see that n is the meridional

wavenumber. For given n and k;, K is uniquely determined by
(3.24). Therefore, from (3.18), we can determine c. Since K must be
less than K_ for instability to occur and must be greater than 2k, for
x to have a nontrivial solution, the unstable range of K is 2k <K<K..
We note that there is a shortwave cutoff for instability as in Eady's
model. Moreover as n increases then, from (3.25), K must also
increase. Hence for each n there is a different cutoff zonal

wavenumber for instability.
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From (3.16), we can find B in terms of A, which can not be
determined by linear theory. Therefore, aside from this constant, the

vertical structure of the perturbation can be written as

¢ = cosh(Kz) - sinh(Kz)

Kc ( 3.26)

If the perturbation is unstable, c=c +c; and c¢;#0, the amplitude and

phase of ¢ are

csinh(Kz) , csinh(Kz)

[¢] = { (cosh(Kz) - —'—-——2— )"+ ( -—'_2_)2 Y12
Kel Kel (327)
and
csinh(Kz
o= tan'1{ - Sinh(K2) }
K|c|"cosh(Kz) - ¢ sinh(Kz) (328)

Since K is a constant, |¢| and o are independent of latitude. For given
K, ¢ is the same as that in Eady's model. The spherical geometry

shows no effect on the vertical structure of the perturbation. As for

the meridional structure, since Q is real, from (3.25), % is also a real

function. There is no meridional variation of phase.

From the solutions of ¢ and y, we can write the perturbation

streamfunction as
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ket ik(A—c 1)
\P:%Re{ e“e '}
(1-p) (3.29)

Hence the meridional eddy heat flux can be expressed as

2kcg

— P — kce
TTo—1 0¥¥ __ i P

(1-p2)2 3 9z 2(1-p2)¥cp ( 330)

We can see that the heat flux depends on c;. If the wave is neutral,
c;=0, there is no heat flux. If the wave is unstable, then it will
transfer heat poieward. Furthermore this heat flux is independent of
height and is proportional to Ixl2. As for the momentum flux, since
the perturbation does not have meridional phase variation, it is

identically zero,

uv = 2=
a

Q)
Q |V
)2
I
o

(331)

In the following, we shall present some results from above

solutions. The basic state parameters, Uy N, Q, a and H, are the
same as in the previous chapter, therefore €=0.1212. Fig. 3.1 shows
the meridional structure of the basic flow at upper boundary as a
function of latitude. This is a cosine profile with the maximum

velocity at the equator and zero at the pole.
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Fig. 3.1. The meridional structure of the basic flow as a function of
latitude at z=1.

In fig. 3.2, we show the growth rate as a function of zonal

wavenumber k for each meridional wavenumber n, n=1,2,3. It is

noted that, for each n, there is a critical zonal wavenumber k.. When
k<k., the wave is unstable, while for k>k_, there is no instability.
Moreover, as n increases, k., decreases. Comparing the growth rates
for each n, we note that the lowest meridional mode has the largest
growth rate. The most unstable wave is k=6, which has a zonal scale
about 4500 km. This is very similar to the zonal scale of the most
unstable wave in Eady's model. For given n, the scale of the zonal
wave that has the maximum growth rate shifts toward longer scales

as n increases.
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Fig. 3.3 shows the steering level, which is zg=c,, as a function of
k for n=1,2,3. We note that, for unstable waves, the steering levels
are all located at mid level. This also implies that all unstable waves
travel at the mean speed of the basic flow, which is exactly the same
as in Eady's model. For neutral waves, depending upon the sign in
(3.18), the steering level approaches either the upper or lower

boundary as k increases.

Fig. 3.4 shows the variation of |¢| and a with height for the
most unstable wave, k=6 and n=1. We can see that |¢| is nearly
symmetrical about mid level where the minimum amplitude is
located. The maxima of || are located at both upper and lower
boundaries. As for a, it is an increasing function of height. This
implies that the phase of the wave tilts upward and westward with
height, which indicates the conversion of available potential energy
of the basic state to the energy of the perturbation. As mentioned in
chapter i, for instability to occur, the absence of the basic state
potential vorticity gradient requires that the vertical scale of the
unstable wave is the same as the basic flow. Since ¢ is independent
of u, the vertical structure of the perturbation in any meridional

location is the same as that shown in the figure.

In fig. 3.5, we show the amplitude of the most unstable wave
as a function of latitude. It is noted that the amplitude peaks near
459 and decays toward both the equator and pole. Since the basic
potential vorticity gradient, which will become large near the

equator, is neglected, the amplitude near the equator does not decay
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as rapidly as it might otherwise. There is no phase variation of the

meridional structure.

From the above results we note that this particular case on the
sphere is almost identical to Eady's model. The absence of the basic
state potential vorticity gradient causes the governing equation to
become a separable differential equation. Therefore the spherical
geometry only plays the same role as the plane geometry in
determining the meridional structure of the perturbation. It does
not have any significant effect on the behavior of the unstable
baroclinic wave. Furthermore, since we neglect the basic state
potential vorticity gradient in (3.4), the amplitude of the
perturbation in low latitudes may be too large and the eddy
momentum flux does not exist in this case. Therefore, to examine the
effect of spherical geometry on baroclinic instability, we should not

neglect the basic state potential vorticity gradient, especially the B

term, in the governing equation.
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Fig. 3.2. The growth rate as a function of zonal wave number for
each meridional wave number n, n=1,2,3.
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Fig. 3.3. As in fig. 2.2, except for the steering level.
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Fig. 3.4. The amplitude and phase of the most unstable wave, k=6
and n=1, as a function of height.
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Fig. 3.5. The amplitude of the most unstable wave as a function of
latitude.



CHAPTER 1V

AN ANALOGUE OF CHARNEY'S MODEL ON THE SPHERE

From the previous chapter we note that, without the basic state
potential vorticity gradient, there is no significant difference
between the baroclinic instability problem on the sphere and that of
Eady's problem. As discussed in chapter i, Charney's model, which
includes the B-effect, has been used in many studies to investigate
baroclinic instability on a B-plane. Therefore, to find out the effect of
spherical geometry and to develop a proper procedure to solve the
baroclinic instability problem on the sphere analytically, we shall

study an analogue of Charney's model.

In this chapter, we take B, as an order one quantity. As in
Charney's model, the static stability, N2, is assumed to be a constant.

The basic state density is an exponentially decreasing function of

height,

O
l
o

The basic zonal flow remains the same as that in chapter iii, which is

a linear function of height multiplied by a solid body rotation,

G = (l— 2)1/22 ( 41 )
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As mentioned before, this is equivalent to y independent zonal flow

on a B-plane. We assume that the perturbation streamfunction has a

normal mode solution,

( Z)eik(x—ct)
¥=Re{ > 212 }
(1-u5)Y (42)

Substituting (4.2) into (2.21), the resulting governing equation for

1S

? B
2 - —112 A2 2
Q—‘f—ﬂ—ez-f—lz- +821§a“2’+“’{ ;+1+8222}=0
oz 92 pXl-pd W2 ou2  z-C y W

(43)
Since there is density variation with height, besides the B term and
the barotropic term, a baroclinic term which has the value of unity is
also present in the basic state potential vorticity gradient. We note
that, except for the explicit meridional variations, equation (4.3) is

very similar to the governing equation of Charney's problem.

The meridional boundary conditions, which require that the
perturbation streamfunction be zero at both the equator and pole,

are the same as (3.6),

y=0, at u=0,1 (4.4)



We assume a horizontal rigid surface at the ground, therefore the

lower boundary condition can be written as

c-@’-+\y=0
0z (45)

Due to the existence of the basic state potential vorticity gradient, the
necessary condition for instability allows us to replace the upper

rigid plane with a boundary condition at infinity, which is,
y=0, as z— ©° (4.6)

We note that the vertical boundary conditions, (4.5) and (4.6), do not

explicitly depend on p for this particular basic flow and are identical

to those of Charney's model.

To examine the effect of spherical geometry on baroclinic
instability, we need to be able to determine the properties of the
unstable baroclinic waves as explicitly as possible. Although there
were many studies of Charney's problem in the past(Charney, 1947;
Kuo, 1952, 1973; Lindzen and Rosenthal, 1981; Branscome, 1983,
etc.), most of these studies indicated that the analytic solutions of
Charney's model are complicated and need a lot of numerical
calculations to determine the properties of the unstable baroclinic
waves. Furthermore, due to the presence of the basic state potential

vorticity gradient, (4.3) depends on both latitude and height and is
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more difficult to solve than Charney's problem. Therefore, we have

to simplify the problem.

Branscome(1983) introduced a shortwave approximation to
study Charney's problem. As discussed in chapter i, by using this
shortwave approximation, the basic state potential vorticity gradient
did not enter the leading order equation. Therefore, the solutions
were easier to find and simpler. Moreover, the properties of the
unstable baroclinic waves could be determined without any
complicated calculations. Though these perturbation solutions are
not valid for the whole zonal wave spectrum, in comparison with the
exact solution, they do give reasonable results even at synoptic scale

wavenumbers.

We shall apply this approximation to simplify the problem by

assuming that the perturbation's zonal wavenumber is O(e2). Since

the short waves are shallow, we rescale k, z and ¢ as

k=e2k, z=¢{ and c=¢cC
0 (4.7)

where kg, { and c' are taken as order one quantities. In terms of g,
after dropping the prime of c', (4.3) and (4.5) become,
k2 & B,
Py _ —IL L+ 4_LL_LIL .§HL{_+1+LL} 0
o¢? "3t uz(l—uz) p? ou? g-c o p? u?
(4.8)



o, .
c +y=0
o (49)

We note that the basic state potential vorticity gradient is O(g)
smaller than other terms in (4.8), therefore it does not appear in the

leading order perturbation equation. Because of the existence of the

B term, which depends on both p and {, we can not directly apply

separation of variables to (4.8) as in chapter iii. Instead, we shall
apply a two-scale formalism to the meridional variable to separate
the perturbation's fast variation meridional structure from the

vertical structure. We assume that y has two different meridional

scales and can be written as
V= 0,8 x() (4.10)

where m is the fast variation meridional scale. In order to retain the
p variations to lowest order so that the boundary conditions in p can
be satisfied, the meridional variations must be even more rapid than

in the Eady problem, and we must define
n=e2 (4.11)

x is the principle meridional structure of the perturbation and ¢ is

the vertical structure with slow meridional variation. Furthermore,

we assume that the governing equation for y is
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By gy B im0
on Ou. (4.12)

where Q is an unknown function of p and will be determined by
solving the vertical structure equation. From (4.10) and (4.12), the p

derivative term in (4.8) becomes

_Qz.llL_8—4{Q¢+822QZ._Q 4_33?_})C
o2 xomaon - ou? (413)

Substituting (4.10) and (4.13) into (4.8), we have the governing

equation for ¢, which is

QZ_Q_SQQ_KZ(‘H_ ) +£71—u2{l§x.i11+82@2&}
o2 d¢ H2(1-p2) p2 xomou oyl

+—9L(b+———c) 0

{-c p? ( 4.14)
where we define that,
2
K2= Ko _1-p?
u2(1-p?)  u? (4.15)
and
B
b= —‘;*+1
H (4.16)

Since Q is unknown, K is also an unknown function of u. b is the

leading order basic state potential vorticity gradient. We note that
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(4.12) is a standard WKB equation and its asymptotic solution can be

written as

x~ exp{ e‘zf 2 e?'q_dt}
n=0 (4.17)

where

dq
2 2
4,=Q° 29q+—* =0,
5 (4.18)

and

n-1
29,0, +" T~ Gy nx2.
J=1 (419)

With (4.17), the n derivative term in (4.14) can be calculated as

n=0 (420)

Therefore ¢ does not really depend on % or . If Q is not an order one
quantity somewhere in the meridional domain, then this two-scale
expansion will not be valid near that location. We need to apply a

local expansion to solve (4.8) in that region.

From (4.6), (4.9) and (4.10), the boundary conditions for ¢ are,

90 4 _ _
c—+6¢6=0, at (=0
a5 - (421)
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and

¢=0 as {— o (422)
For %, the boundary conditions are

x=0, at p=0,1 (423 )

We note that there are two unknowns, K and c, in these equations.
By requiring that (4.21) and (4.22) be satisfied by the solution of
(4.14), we can find K as a function of c. Once K is known, from (4.15),
we can determine Q. Since K is a function of ¢, Q will also depend on

c. Then c is determined by requiring that ¥ meet the boundary

condition (4.23).

In the following, we shall apply a perturbation method to solve

(4.14). We assume that

¢=Z£"¢, C=ze"c , and K=i8"Kn
n=0 n=0 n=0

(4.24)

Since, if c, is real there is a singularity at {=c,, we need an inner
equation to properly describe the behavior of ¢ near this layer. We
introduce an inner variable,

—_ o—ly7__
=e7(5¢y ( 4.25)



In terms of &, (4.14) becomes

a_zq)l_ 2&_ 2K 2 égg.)i 1+-8_C7-_ O =0
e Soe © ¢+§_Cl{ §‘°1}+ (e%)

( 426 )

where ¢! is the inner solution for the vertical structure and can be

expressed in the same form as ¢ in (4.24).

The leading order perturbation equations and boundary

conditions are,

P, )
—a—g—z_—Ko(Do:Loq)o:O

(427)
c %y 6 =0, atf=0
_+ - s a =
0o 0 ( 4.28)
¢0=¢1=¢2=.. ..... =0, as {—oo° (429 )
and
2ol
Lo
9% (4.30)

We note that these equations do not explicitly depend on p. After

satisfying the upper boundary condition, the solution of (4.27) can be

written as

-K, (&
Ae0 v

©
<)
]
)

(431)
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where A, is a constant. We lose no generality by taking A, to be
independent of p, because any such dependence can be absorbed in

x- The lower boundary condition (4.28) requires that

K =—
) (432)

Since ¢, is a constant, K, has to be a constant also. This implies that

¢, is just a simple exponentially decreasing function of height and
does not vary with latitude. Furthermore, since K, is a constant, the

leading order vertical scale does not vary with latitude. The solution
of (4.30) is AE+B. Since, in terms of &, the leading order of (4.31) is

just A,, therefore A=0 and B=A,, and the leading order inner solution
is
i=A
% =" ( 433)
Except for the fact that K, is unknown at this stage, these leading

order solutions are the same as those of Branscome(1983).

The first order equations for ¢ and ¢'can be written as

a¢0 b<|>0
Loq)l = 3&‘ -+ 2K0K1¢0 - C_CO = L1¢0 ( 4 34 )
and
i
L9, =0

(435)



The lower boundary condition for ¢, is

%, 39,
C—+¢ =—C—-
0ok 1 1ag ( 4.36)

The only difference between these equations and those of
Branscome(1983) is the existence of the 2K;K, term in (4.34). From

Hildebrand(1976), the particular solution of ¢; can be found as

K(Gc) ¢ 2K(gc) (K (xc)
=e ' °Je ° O{Je ° °L1¢de}dg

& S (437 )

¢

1

After integration, the solution for ¢, is

K (G-c
o=Ae " P {(tox)t

1o 2 1

b 2K (G¢)
o [e E (2K (§-c))+InK )1}

0 (438)

where the definition of E,(x) is(Abramowitz and Stegun, 1964)

ooe-t
E1(x)=JT-dt, X #0
. (439 )

If x is negative, then
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(4.40)
and
T -t
Ei(x) =-J‘9t——dt, x>0
-X (4.41)

Th