# XVII. COMPUTATION RESEARCH** 

Martha M. Pennell R. L. Rappaport Veronica E. McLoud Gail M. Fratar Kathleen A. Szabo

## A. GENERALIZED POLYNOMIAL ROOT-FINDING PROGRAM FOR A TIME-SHARED COMPUTER

The availability of the Project MAC time-sharing system ${ }^{1}$ has enabled us to write a computer program, called Quixot Dulcin (see below), which in turn automatically writes, compiles and executes a $M A D^{2}$ program to find roots of polynomials whose coefficients may be expressed symbolically as functions of variables called parameters. There may be any number of parameters and the user has the option of declaring one of these to be varying. At execution time the program loops around the value of this parameter thus enabling the user to compute the functional dependence of the roots.

To use this program all one needs to know is how to write his coefficients as MAD arithmetic expressions ${ }^{3}$ and how to operate his remote console. Quixot Dulcin leads the user through a series of questions and from his responses creates the necessary MAD code. Only in a time-sharing environment is such an approach feasible. In their studies of dispersion relations, members of the Plasma Electronics Group have made such extensive use of Quixot Dulcin that we no longer have any requests to program such a problem.

The user is first queried for the degree of his polynomial (it must be $\leqslant 19$ ) and the name he wishes his program to have so that he may refer to it in the future. He then is asked to state the symbols ( 6 or less alphanumeric characters) he wishes to use for his parameters. Next he is asked for the MAD algebraic expression for the real and imaginary part of each coefficient. These expressions are functions of the symbols he has just typed in and may contain the following: sine, cosine, square root, arctangent, arcosine, absolute value. With this information Quixot Dulcin writes a program in the MAD language and tries to translate it into the equivalent binary code. If, however, the user has typed in an incorrect MAD expression (i.e., an incomplete set of parentheses or a missing operation), Quixot Dulcin enters a correction mode whereby the user may make the necessary changes and a second try to compile the binary code is attempted. The correction mode is entered and re-entered automatically until the binary code is created. Quixot Dulcin then loads this program and transfers control to it. Immediately the user is asked for the numerical values for each of the parameters whose symbols he had just previously typed in. The program then computes the coefficients and roots, and types them both on the user's console. The user is then asked for the next value of the parameter he had declared to be varying. One push on the break button enables him to

[^0](XVII. COMPUTATION RESEARCH)

```
L\ADGZ QUIXET DULCIN
H2331.7
EXECUTIXN.
CXMPLEX RXXTS OF A COMPLEX POLYNOMIAL, GIVEN ALGEBRAIC CMEFFICIENTS
GHAT NAILG YZU LIKE TZ NAME YGUR PROGRAM. (SIX LETTERS AR LESS, PLEASE.)
    *** *** *** ****
*** BE CAREFUL*** FOR IF THERE ARE ANY EXISTING FILES MITH THIS FIRST NAME,
THEY IILL BE DESTROYED
    *** *** **** ***
TEST
TYPE THE DEGREE OF YOUR PXLYGTMIAL AS A TWO-DIGIT INTEGER,E.G. 12 OR 05
03
DO NCT IJSE AS PARAGETER NANES 'I' ANO 'DEG'
TYPE THE NAME OF THE VARYING PARAVETER.
ALPHA
TYPE THE NAMES 又F ALL THER PARAMETERS, ZNE PER LINE, THEN SKIP A LINE.
BETA
GAMMA
CAEFFICIENTS--SKIP A LIME AFTEP TYPING EACH COEFFICIENT.
DO NXT TYPE PAST PGSITIGN VARKED BY *
TYPE REAL ALGEBRAIC CAEFFICIENT OF THE O POMER. *
ALPHA +EETA+GA MA
```



```
2.+SQRT.(ALPHA*ALPHA )
TYPE REAL ALGEBRAIC CAEFFICIENT XF THE 1 P`:MER. *
3.
TYPE IMAG ALGERRAIC COEFFICIENT XF THE 1 PROEP. *
0.
TYPE REAL ALGEBRAIC CAEEFFICIENT OF THE 2 PXUER. * *
-GAMNA+5.
TYPE IMAG ALGEbRAIC COEFFICIENT OF THE 2 P&MER. *
O.
TYPE REAL ALGEBRAIC CDEFFICIENT ZF THE 3 PQNER. *
0.
TYPE IMAG ALGEBRAIC COEFFICIENT IF THE 3 POUER. *
-BETA
DD YOU YANT TO :MAKE CORRECTIONS
N?
    FILE TEST MAD CREATED
LENGTH 00407. TV SIZE 00012. ENTRY 00151
    *** *** *** ***
```

(XVII. COMPUTATION RESEARCH)

```
IM aroep ta rerun your program in the future, yeu must type the fyllaming seguence.
LTADGG TEST BUTTON MARINT ROZTS
EXECUTIXN.
pRESS 'break' buttIN to change papameters.
TYPE BETA
.1
TYPE GAMMA
-.2
TYPE ALPHA
3.
CxEFFICIENTS
```

```
    PTMER REAL IMAG
```

    PTMER REAL IMAG
        0 .29000E 01 .50000E 01
        0 .29000E 01 .50000E 01
        1 . 300J0E 01 .ODOONE 00
        1 . 300J0E 01 .ODOONE 00
        2 .52000E 01 .00000E 00
        2 .52000E 01 .00000E 00
        3 .00000E 00 -1.000DOE-01
        3 .00000E 00 -1.000DOE-01
    3 \text { PXITS}
    3 \text { PXITS}
            REAL IMAG
    ```
            REAL IMAG
```




```
        -.819058E 00 .881453E 00
```

        -.819058E 00 .881453E 00
        .260404E 00 -.886375E 00
        .260404E 00 -.886375E 00
    TYPE ALPHA
2.
CXEFFICIENTS

```
```

    PN诊 REAL
    ```
    PN诊 REAL
        0 . 19000E 31 .40000E 01
        0 . 19000E 31 .40000E 01
        1 .30000E O1 .00000E 00
        1 .30000E O1 .00000E 00
        2 .52000E 01 .00000E 00
        2 .52000E 01 .00000E 00
        3 .00000E 00 -1.00000E-01
        3 .00000E 00 -1.00000E-01
    3 ROXTS
    3 ROXTS
        REAL IMAG
        REAL IMAG
        .562232E 00 -. 519989 02
        .562232E 00 -. 519989 02
        -.793484E 00 .745879E 00
        -.793484E 00 .745879E 00
            .231252E 00 -.746986E DO
            .231252E 00 -.746986E DO
TYPE ALPHA
> QUIT,
R 26.816+19.800
```

change the values of all the parameters; two pushes ends the program.
The subroutine which actually computes the roots is Share Distribution No. 692 modified for use on the time-sharing system. It uses Muller's Method. ${ }^{4}$ The main control program written in MAD works as follows. MAD statements are created from the MAD expressions that the user has typed in. These statements are inserted between already existing MAD statements which query the user for his numerical values and MAD statements to compute and print out the answers.

Currently work is being done to improve both the accuracy and the speed of the subroutine to compute the roots. In addition a second program is being checked out which will enable the user to type in a complex algebraic expression for his coefficients, i.e., he will not have to perform the algebra to separate his coefficients into their real and imaginary parts.

Martha M. Pennell

## References

1. C. Marceau, a former member of the Research Laboratory of Electronics, wrote the original program.
2. B. Arden, B. Galler, and R. Graham, "The Michigan Algorithm Decoder," University of Michigan, April 1965.
3. Ibid, p. 12.
4. D. E. Muller, "A Method for Solving Algebraic Equations Using an Automatic Computer," Mathematical Tables and Other Aids to Computation (National Research Council, Washington, D.C., October 1956), pp. 208-215.

[^0]:    *This work was supported in part by the National Science Foundation (Grant GK-524).

