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8.323: Relativistic Quantum Field Theory I

PROBLEM SET 6

REFERENCES: Peskin and Schroeder, Sections 3.1 – 3.3.

Problem 1: The Dirac representation of the Lorentz group

Show that the defining property of the Dirac matrices,

{γµ, γν} = 2gµν ,

is sufficient to show that the matrices

Sµν =
i

4
[γµ , γν]

have the commutation relations of the Lorentz group, as specified by Eq. (3.17) of Peskin
and Shroeder. The notation for antisymmetrization introduced in Problem 2 of Problem
Set 5 may prove useful.

Show also that
[γµ , Sρσ] = (J ρσ)µ

ν γ
ν ,

where (J µν)αβ is defined by Eq. (3.18) of Peskin and Schroeder,

(J µν)αβ ≡ i
(
δµ
α δ

ν
β − δµ

β δ
ν
α

)
.

Problem 2: Explicit tranformation matrices

Evaluate explicitly the 4 × 4 matrix used to represent a boost along the positive
z-axis,

B3(η) ≡ e−iηK3
= e−iηS03

.

Use Peskin and Schroeder’s conventions for the Dirac matrices. How is η related to the
velocity of the boost?

Similarly evaluate the 4 × 4 matrix used to represent a counterclockwise rotation
about the positive z-axis,

R3(θ) ≡ e−iθJ3
= e−iθS12

.
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Problem 3: Wigner rotations and the transformation of helicity

The Lorentz transformation properties of spin-1
2 particles are actually completely

dictated by the properties of the Lorentz group, even if we don’t know anything about
the Dirac equation.

Consider for example an electron in an eigenstate of momentum �p with eigenvalue
�p = 0; i.e., an electron at rest. We know from nonrelativistic quantum mechanics that the
electron will have two possible spin states, which we can label as spin-up and spin-down
along the z-axis. If we denote these states by |�p = 0,±〉, then

Jz |�p = 0,±〉 = ±1
2
|�p = 0,±〉 .

If we were to perform a rotation on such a state, the momentum would remain zero,
and so the two-state system would transform under the spin-1

2 representation of the
rotation group, as in nonrelativistic quantum theory. The nonrelativistic theory must
apply, because the transformation properties in the nonrelativistic theory were dictated
completely by properties of the rotation group, and the rotation group is a subgroup of
the Lorentz group.

In the relativisitic theory, there must be a unitary operator U(Λ) corresponding the
each Λ in the Lorentz group. We can use the operators representing boosts to construct
a state of nonzero momentum along the z-axis with a definite helicity h:

∣∣∣∣pẑ, h = ±1
2

〉
= U

(
Bz(η(p))

) |�p = 0,±〉 ,

where η(p) is the boost parameter (rapidity) that brings a rest vector to pẑ. Note that
η(p) will depend on the mass m of the electron, so we assume that it has been specified.
Note also that Jz commutes with Kz, so the state described by the equation above is
still an eigenstate of Jz.

We can also define states of definite helicity in any other direction. Let
∣∣∣∣�p, h = ±1

2

〉
≡ U(B�p ) |�p = 0,±〉 ,

where
B�p = R(p̂)Bz

(
η(|�p |)) ,

where R(p̂) is the rotation that rotates the positive z axis into the direction of �p . These
states give a complete basis for the Hilbert space of free one-particle electron states.

(a) Consider the state ∣∣∣∣pẑ, h = ±1
2

〉
,
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and imagine boosting it in the positive x-direction, by a velocity β

|ψ〉 = U
(
Bx(η(β))

) ∣∣∣∣pẑ, h = ±1
2

〉

= U
(
Bx(η(β))Bz(η(p))

) |�p = 0,±〉 .

Compute the Lorentz transformation

Bx(η(β))Bz(η(p)) ,

expressing your answer in the form of a 4 × 4 Lorentz matrix Λµ
ν . What is the

momentum �p ′ of the state |ψ〉?
(b) To express |ψ〉 in terms of the original basis vectors, we need the inner products

〈�p ′, h′ |ψ 〉 =
〈
�p = 0, h′

∣∣U†(B�p ′)U
(
Bx(η(β))Bz(η(p))

)∣∣�p = 0,±〉
.

Since U(Λ) is a unitary representation of the group,

U†(B�p ′)U
(
Bx(η(β))Bz(η(p))

)
= U

(
B−1

�p ′ Bx(η(β))Bz(η(p))
)
.

Note, however, that
RW ≡ B−1

�p ′ Bx(η(β))Bz(η(p))

brings a momentum vector at rest back to a momentum vector at rest, and hence it
is a pure rotation. It is called the Wigner rotation. Since the matrix elements of U
for rotations are already known, the matrix element needed here is known. Compute
the Wigner rotation for this case, describing it first as a Lorentz matrix Λ. What is
the axis of rotation? What is the angle of the rotation?

(c) Now consider the m→ 0 limit, keeping p and η fixed. This would be the appropriate
limit to describe a massless particle with momentum of magnitude p. Show that the
Wigner rotation angle approaches zero in this limit, and hence that the helicity of a
massless particle is Lorentz invariant.


