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Problem 1: Wigner’s Symmetry Representation Theorem

This problem will be a guided exercise in which a proof of Wigner’s theorem* will
be constructed. The proof that you will construct is a modified version of the proof
given in Weinberg’s textbook. This version is in my opinion simpler, and it also avoids
what I believe is a minor flaw† in Weinberg’s argument. Weinberg in turn claims to have
remedied a flaw in Wigner’s original proof, so historical precedent seems to suggest that
any proof of Wigner’s theorem is flawed. If you find any flaws in this one, you will get
extra credit.

First, we need some definitions that will be used in the statement of the theorem.
Consider a quantum theory formulated on a Hilbert space H . A physical state corre-
sponds to a ray R in the Hilbert space, where a ray is defined as a set of normalized
vectors (〈Ψ |Ψ〉 = 1), where |Ψ〉 and |Ψ′〉 belong to the same ray if they are equal up to a
phase (i.e., if |Ψ′〉 = eiθ |Ψ〉 for some real θ). I will use the notation |Ψ〉 ∈ R or R � |Ψ〉
to indicate that |Ψ〉 belongs to the ray R , and I will define R(Ψ) to denote the ray that
contains the vector |Ψ〉. We will consider a transformation T defined on physical states,
so T maps one ray onto another. I will sometimes use the abbreviation T (Ψ) to denote
T

(
R(Ψ)

)
, the image under T of the ray that contains the vector |Ψ〉. T will be said to

be probability-preserving if
|〈ψ′

2 |ψ′
1 〉| = |〈ψ2 |ψ1 〉| (1)

whenever
|ψ′

1〉 ∈ T (ψ1) and |ψ′
2〉 ∈ T (ψ2) . (2)

* The theorem was originally proven in Gruppentheorie und ihre Anwendung auf die
Quanten-mechanik der Atomspektren (Braunschweig, 1931), pp. 251–3, by Eugene P.
Wigner. An English translation was published by Academic Press in 1959.

† On pp. 92 and 93 of Weinberg’s text, he uses a number of equations in which C1
or C′

1 appears in the denominator, where C1 and C′
1 are expansion coefficients of an

arbitrary state in a particular basis. The argument is therefore inapplicable to states for
which these particular coefficients vanish. The gap can be filled, but doing so makes the
proof more cumbersome.
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If U is an operator on the Hilbert space H , then T is said to be represented by U if

|Ψ〉 ∈ R implies U |Ψ〉 ∈ T (R) . (3)

An operator U on H is said to be linear if

U
(
α |ψ1〉 + β |ψ2〉) = αU |ψ1〉 + β U |ψ2〉 , (4)

and it is said to be antilinear if

U
(
α |ψ1〉 + β |ψ2〉) = α∗ U |ψ1〉 + β∗ U |ψ2〉 . (5)

An operator is said to be unitary if

〈Uψ2 |Uψ1 〉 = 〈ψ2 |ψ1 〉 , (6)

and it is said to be antiunitary if

〈Uψ2 |Uψ1 〉 = 〈ψ2 |ψ1 〉∗ . (7)

Now Wigner’s theorem can be stated:

Given any probability-preserving invertible transformation T on the
rays of a Hilbert space H , then one and only one of the following two
statements is true:

(a) We can construct an operator U on the Hilbert space H which repre-
sents T and which is linear and unitary.

(b) We can construct an operator U on the Hilbert space H which repre-
sents T and which is antilinear and antiunitary.

In either case, the operator U is uniquely defined, up to an overall phase.

To prove the theorem, we begin by proving some properties that T must have if it is
probability-preserving and invertible. Let |ψ1〉, |ψ2〉, . . . be a complete orthonormal set
of vectors in H . For each k = 1, 2, . . . , choose some particular vector

|ψ̃k〉 ∈ T (ψk) . (8)

(a) Show that the vectors |ψ̃1〉, |ψ̃2〉, . . . also form a complete orthonormal set of vectors
in H .

(b) Now consider the vectors

|φk〉 ≡ 1√
2

( |ψ1〉 + |ψk〉
)
, (9)
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for k = 2, 3, . . . . Show that for each k,

T (φk) � 1√
2

( |ψ̃1〉 + eiθk |ψ̃k〉
)

(10)

for some real θk.

Now define
|ψ′

1〉 = |ψ̃1〉
|ψ′

k〉 = eiθk |ψ̃k〉 for k = 2, 3, . . . ,
(11)

so
T (φk) � |φ′k〉 , where |φ′k〉 =

1√
2

( |ψ′
1〉 + |ψ′

k〉
)
. (12)

(c) Now consider the vectors

|Φ(θ)〉 ≡ 1√
2

( |ψ1〉 + eiθ |ψ2〉
)
, (13)

where θ is a real number. By considering the inner product of these vectors with the
|ψk〉 and with |φ2〉, show that either

T
(
Φ(θ)

) � ∣∣Φ′
+(θ)

〉
, where

∣∣Φ′
+(θ)

〉
=

1√
2

( |ψ′
1〉 + eiθ |ψ′

2〉
)

(case A) (14a)

or

T
(
Φ(θ)

) � ∣∣Φ′
−(θ)

〉
, where

∣∣Φ′
−(θ)

〉
=

1√
2

( |ψ′
1〉 + e−iθ |ψ′

2〉
)

(case B) . (14b)

If θ = nπ, where n is an integer, then these two cases are identical. Otherwise∣∣Φ′
+(θ)

〉
and

∣∣Φ′
−(θ)

〉
belong to different rays, so only one of the two cases can apply.

The choice between case A and case B is not our choice, but is determined by the
properties of T , which defines the ray T

(
Φ(θ)

)
.

(d) Show that for a given transformation T , the same case in Eqs. (14a) and (14b)
applies to all values of θ. (Hint: Suppose that case A applies for θ = θA and case
B applies for θ = θB , where θA 	= nπ and θB 	= nπ. Consider the inner product
〈Φ(θB) |Φ(θA) 〉.)

(e) Now consider the vectors

|ΨN (α2, α3, . . . , αN )〉 =
1√
N

( |ψ1〉 + eiα2 |ψ2〉 + eiα3 |ψ3〉 + . . .+ eiαN |ψN 〉), (15)
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where α2, α3, . . . , αN are real numbers. For case A, show that
T

(
ΨN (α2, . . . , αN )

) � ∣∣Ψ′
N,+(α2, . . . , αN )

〉
, where

∣∣Ψ′
N,+(α2, . . . , αN)

〉
=

1√
N

( |ψ′
1〉 + eiα2 |ψ′

2〉 + eiα3 |ψ′
3〉 + . . .+ eiαN |ψ′

N 〉) ,
(16a)

and for case B, show that
T

(
ΨN (α2, . . . , αN)

) � ∣∣Ψ′
N,−(α2, . . . , αN)

〉
, where

∣∣Ψ′
N,−(α2, . . . , αN )

〉
=

1√
N

( |ψ′
1〉 + e−iα2 |ψ′

2〉 + e−iα3 |ψ′
3〉 + . . .+ e−iαN |ψ′

N 〉) .
(16b)

(Hint: Note that for N = 1 and N = 2, this statement has already been proven.
See if you can construct an argument using induction on N which demonstrates the
result for all N .)

(f) Now we are ready to consider an arbitrary vector, which can be expanded in the
complete orthonormal basis as

|Ψ〉 =
∞∑

k=1

Ck |ψk〉 . (17)

Show that for case A,

T (Ψ) � ∣∣Ψ′
+

〉
where

∣∣Ψ′
+

〉
=

∞∑

k=1

Ck |ψ′
k〉 (18a)

and that for case B,

T (Ψ) � ∣∣Ψ′
−

〉
where

∣∣Ψ′
−

〉
=

∞∑

k=1

C∗
k |ψ′

k〉 . (18b)

(g) For case A, define

U |Ψ〉 =
∣∣Ψ′

+

〉
=

∞∑

k=1

Ck |ψ′
k〉 , (19a)

and for case B define

U |Ψ〉 =
∣∣Ψ′

−
〉

=
∞∑

k=1

C∗
k |ψ′

k〉 , (19b)

where |Ψ〉 is the state defined in Eq. (17). From part (f), U is clearly a representation
of T , as defined by Eq. (3). Show for case A that U is linear and unitary, and for
case B that it is antilinear and antiunitary.

(h) Finally, prove that U is unique up to an overall phase. (Hint: Assume that U1 and
U2 both satisfy all the properties described in the theorem. Consider the product
U−1

2 U1, which in either case A or B is a linear transformation which maps each ray
onto itself. Show that such a map is necessarily an overall phase times the identity
operator.)


