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INFORMAL NOTES
DISTRIBUTIONS AND THE FOURIER TRANSFORM

Basic idea:

In QFT it is common to encounter integrals that are not well-defined. Last week
we talked about the two point function 〈0 |φ(x)φ(y)| 0〉 for spacelike separations
(x − y)2 = −r2, which is given formally by

D(r) =
−i

2(2π)2r

∫ ∞

−∞
dp

peipr√
p2 + m2

.

If this integral is defined in the usual way as

lim
Λ→∞

∫ Λ

−Λ

dp
peipr√
p2 + m2

,

then it does not exist. The integral can be defined by putting in a convergence factor
e−ε|p|:

lim
ε→0

∫ ∞

−∞
dp

peipre−ε|p|√
p2 + m2

.

But how does one know whether a different convergence factor would get the same
result? One way to resolve these issues is to treat the ambiguous quantity as a
distribution, rather than a function. All tempered distributions (to be defined below)
have Fourier transforms, which are also tempered distributions. Furthermore, we can
show that the ε-prescription used above is equivalent to the tempered-distribution
definition of the Fourier transform.

Distribution:

A distribution is a linear mapping from a space of test functions to real or complex
numbers. (An operator-valued distribution maps test functions into operators.)

Test Functions:

The space of test functions {ϕ(t)} determines what type of distribution one is dis-
cussing. The test functions for tempered distributions belong to “Schwartz space,”
the space of functions which are infinitely differentiable, and the function and each of
its derivatives fall off faster than any power for large t. The Gaussian is a good exam-
ple of a Schwartz function. Any function in Schwartz space has a Fourier transform
in Schwartz space. (The Fourier transform of a Gaussian is a Gaussian.)
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Functions as Distributions:

Given any function f(t) which is piecewise continuous and bounded by some power
of t for large t, one can define a distribution Tf by

Tf [ϕ] ≡
∫ ∞

−∞
dt f(t)ϕ(t) .

Since ϕ(t) falls off faster than any power, this integral will converge. Note that
because the class of ϕ(t)’s is very restricted, the class of possible f(t)’s is very large.

Fourier Transform:

For any function f(t) which is integrable, meaning that
∫ ∞

−∞
dt |f(t)|

converges, define

f̃(ω) ≡
∫ ∞

−∞
dt e−iωtf(t) .

Fourier Transform of a Distribution:

To motivate the definition, suppose f(t) is integrable, and consider

Tf̃ [ϕ] =
∫ ∞

−∞
f̃(ω)ϕ(ω) dω

=
∫ ∞

−∞
dt

∫ ∞

−∞
e−iωt f(t) ϕ(ω) dω

=
∫ ∞

−∞
dt f(t) ϕ̃(t)

= Tf [ϕ̃] .

Note that these integrals are absolutely convergent, so there is no problem about
interchanging the order of integration. So, for any distribution T , define its Fourier
transform by

T̃ [ϕ] ≡ T [ϕ̃] .

Note that any function f(t) which is piecewise continuous and bounded by some
power of t for large t can define a distribution, and can therefore be Fourier trans-
formed as a distribution.
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Relation to ε convergence factor:

Suppose f(t) is not integrable, and so does not have a Fourier transform. Suppose,
however, that there exists a continuous sequence of “regulated functions” fε(t) which
are integrable for ε > 0, which satisfy

|fε(t)| < |f(t)| ,

and which for each t satisfy
lim
ε→0

fε(t) = f(t) .

Example: fε(t) = f(t)e−ε|t|. Note that the regulator that we used for the two-point
function at spacelike separations has this property. To show: if we Fourier transform
fε(t) and take the limit ε → 0 at the end, it is the same as the distribution-theory
definition of the Fourier transform.

Proof:

The distribution-theory definition of the Fourier transform is

T̃f [ϕ] ≡ Tf [ϕ̃]

=
∫ ∞

−∞
dt f(t) ϕ̃(t) .

The ε prescription is to use

T ∗
f [ϕ] ≡ lim

ε→0
Tf̃ε

[ϕ] .

We need to show these are equivalent. Use

T ∗
f [ϕ] = lim

ε→0

∫ ∞

−∞
dω f̃ε(ω)ϕ(ω)

= lim
ε→0

∫ ∞

−∞
dω

∫ ∞

−∞
dt e−iωt fε(t)ϕ(ω)

= lim
ε→0

∫ ∞

−∞
dt fε(t)ϕ̃(t) .

If we can take the limit inside the integral, we are done!
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Last step is proven with Lebesgue’s Dominated Convergence Theorem: If hε(t) is a
sequence of functions for which

lim
ε→0

hε(t) = h(t) for all t,

and if there exists a function g(t) for which
∫

dt g(t)

converges, and for which

g(t) ≥ |hε(t)| for all t and all ε,

then
lim
ε→0

∫
dt hε(t) =

∫
dt h(t) .

Note, by the way, that the existence of the integrable bounding function g(x) is
absolutely necessary. A simple example of a function hε(t) for which one CANNOT
bring the limit through the integral sign would be a function that looks something
like:

Analytically, this function can be written as

hε(t) =
{

1 if 1
ε

< t < 1
ε

+ 1
0 otherwise .

Note that the square well moves infinitely far to the right as ε → 0, so hε(t) → 0 for
any t. But the integral of the curve is 1 for any ε, and hence it is 1 in the limit. The
Lebesgue Dominated Convergence theorem excludes functions like this, because any
bounding function g(t) must be ≥ 1 for all t, so g(t) cannot be integrable.

The theorem does apply, however, to

lim
ε→0

∫ ∞

−∞
dt fε(t)ϕ̃(t) .
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Take

hε(t) = fε(t) ϕ̃(t) ,

h(t) = f(t) ϕ̃(t) ,

and

g(t) = |f(t) ϕ̃(t)| .

Bottom Line:

The ε prescription used by physicists is equivalent to the unambiguous definition of
the Fourier transform in tempered-distribution theory. That is, if the function to be
Fourier-transformed f(t) is not integrable, one can proceed as long as one can find
an integrable regulator fε(t) such that

|fε(t)| < |f(t)| ,

and for each t,
lim
ε→0

fε(t) = f(t) .

One can then Fourier transform fε(t) instead. In the general case one cannot take the
limit ε → 0 immediately, but one must leave ε in the expression for the distribution.
Only after the distribution is evaluated for a particular test function can the limit
ε → 0 be taken. Remember, for example, that we wrote the Fourier transform of the
Feynman propagator as

i

p2 − m2 + iε
.

With the ε in place one can carry out integrals involving the propagator, and then
one can take the limit ε → 0 at the end. If one tried to set the ε term to zero
immediately, then the poles in the propagator would lead to ill-defined integrations.

The two-point function at spacelike separation:

When we applied the regulator e−ε|p| to the integral for the two-point function at
spacelike separation, we found that we could obtain a definite function,

D(r) = lim
ε→0

−i

2(2π)2r

∫ ∞

−∞

peipre−ε|p|√
p2 + m2

=
m

4π2r
K1(mr) .

The distribution theory analysis, however, did not justify the last step of taking the
limit ε → 0, but instead indicated that we should keep ε in place until after the
distribution has been applied to a test function. In the previous lecture I showed
that the integral shown above can be evaluated exactly with finite nonzero ε, and
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the result involved K1m(r + iε), and also the imaginary part of a Struve function
H1(im(r + iε)) and the real part of a Bessel function J1(im(r + iε)). If one defines

−i

2(2π)2r

∫ ∞

−∞

peipre−ε|p|√
p2 + m2

≡ D̃(r, ε) ,

then the distribution theory approach implies that we should evaluate this distribu-
tion on a test function ϕ(r) by computing

lim
ε→0

∫ ∞

0

dr D̃(r, ε) ϕ(r) .

We, however, would like to simplify this further by taking the limit through the
integral sign and using

lim
ε→0

D̃(r, ε) =
m

4π2r
K1(mr) .

Since ϕ(r) is required to be very well behaved, one needs only a moderate amount of
uniformity in the limit above to justify bringing the limit through the integral sign,
using again the Lebesgue dominated convergence theorem. A uniform limit would
mean that for every δ > 0 there exists an ε such that

∣∣∣D̃(r, ε) − m

4π2r
K1(mr)

∣∣∣ < δ .

To bring the limit through the integral sign, it would be enough to show that for
every δ > 0 there exists an ε such that

∣∣∣D̃(r, ε) − m

4π2r
K1(mr)

∣∣∣ < g(r) δ ,

where g(r) is some fixed function which blows up no faster than a power as r → ∞,
so that ∫ ∞

0

dr g(r) ϕ(r)

would be guaranteed to converge. I assume that this can be made to work, but I
will not pursue it further.

There is, however, an interesting point to look at concerning the use of different
regulators. The distribution analysis shows that any regulator should be equivalent
to any other, provided only that

|fε(t)| < |f(t)| ,

and for each t,
lim
ε→0

fε(t) = f(t) .
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This includes the possibility of a sharp cutoff at Λ = 1/ε. So

∫ 1/ε

0

dp
peipr√
p2 + m2

should be an acceptable regulator. But earlier we rejected this definition, because it
looked like the limit did not exist. To understand what is happening, it is easiest to
integrate by parts:

∫ 1/ε

0

dp
peipr√
p2 + m2

=
1
ir

eir/ε 1√
1 + m2ε2

− m2

ir

∫ 1/ε

0

dp
eipr

(p2 + m2)3/2
.

The second term is well-behaved, since it falls off at large p as 1/p3. This integration
by parts is just the recipe that I recommended for a purely numerical evaluation of
the two-point function. For the exponential regulator the surface term vanished, but
this time we have the problematic term proportional to eir/ε. This factor has no
limit as ε → 0 if one thinks of it as a function, but as a distribution it vanishes:

lim
ε→0

∫ ∞

0

dr eir/εϕ(r)

is defined by first Fourier transforming ϕ(r) at p = 1/ε, and then taking the limit
ε → 0, or equivalently p → ∞. But the Fourier transform of a Schwartz function is
also a function of Schwartz type, and therefore it falls off faster than any power as
p → ∞.

In the above argument I ignored the factor of 1/r that arose in the Fourier transform.
For the spacelike separation problem r must be positive, so we restrict the ϕ(r) to
vanish if r ≤ 0. But we have not yet specified how the test functions ϕ(r) should
behave as r → 0. Following the general philosophy of choosing test functions to
be extremely well-behaved, we can require each test functions to vanish in an open
neighborhood about r = 0. We do not fix the size of these open neighborhoods, but
just insist that for each acceptable ϕ(r), there is some δ > 0 such that ϕ(r) = 0
if r < δ. Then multiplication by 1/r is perfectly well-defined operation on test
functions, and we are justified in setting

1
ir

eir/ε 1√
1 + m2ε2

to zero.


