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NOTES ON THE
EULER-MACLAURIN SUMMATION FORMULA

These notes are intended to supplement the Casimir effect problem of Problem Set 4.
That calculation depended crucially on the Euler-Maclaurin summation formula, which
was stated without derivation. Here I will give a self-contained derivation of the Euler-
Maclaurin formula. For pedagogical reasons I will first derive the formula without any
reference to Bernoulli numbers, and afterward I will show that the answer can be ex-
pressed in terms of these numbers. An explicit expression will be obtained for the re-
mainder that survives after a finite number of terms in the series are summed, and in an
optional appendix I will show how to simplify this remainder to obtain the form given by
Abramowitz and Stegun.

The Euler-Maclaurin formula relates the sum of a function evaluated at evenly spaced
points to the corresponding integral approximation, providing a systematic method of cal-
culating corrections in terms of the derivatives of the function evaluated at the endpoints.
Consider first a function defined on the interval −1 ≤ x ≤ 1, for which we can imagine
approximating the sum of f(−1) + f(1) by the integral of the function over the interval:

f(−1) + f(1) =
∫ 1

−1

dx f(x) + R1 , (1)

where R1 represents a correction term that we want to understand. One can find an
exact expression for R1 by applying an integration by parts to the integral:

∫ 1

−1

dx f(x) = f(−1) + f(1) −
∫ 1

−1

dx x f ′(x) , (2)

so

R1 =
∫ 1

−1

dx x f ′(x) , (3)

where a prime denotes a derivative with respect to x.



EULER-MACLAURIN SUM FORMULA, 8.323, SPRING 2003 p. 2

1. Expansion by successive integrations by parts:

We want an approximation that is useful for smooth functions f(x), and a smooth
function is one for which the higher derivatives tend to be small. Therefore, if we can
extract more terms in a way that leaves a remainder term that depends only on high
derivatives of the function, then we have made progress. This can be accomplished
by successively integrating by parts, each time differentiating f(x) and integrating the
function that multiplies it. We can define a set of functions

V0(x) ≡ 1 , V1(x) ≡ x , (4)

and

Vn(x) ≡
∫

dx Vn−1(x) . (5)

Eq. (5) is not quite well-defined, however, because each indefinite integral is defined
only up to an arbitrary constant of integration. Regardless of how these constants of
integration are chosen, however, one can rewrite Eq. (1) by using Eq. (3) and then
successively integrating by parts:

f(−1) + f(1) =
∫ 1

−1

dx f(x) +
∫ 1

−1

dx V1(x) f ′(x)

=
∫ 1

−1

dx f(x) + V2(1)f ′(1) − V2(−1)f ′(−1) −
∫ 1

−1

dx V2(x) f ′′(x)

=
∫ 1

−1

dx f(x) +
[
V2(1)f ′(1) − V2(−1)f ′(−1)

]

−
[
V3(1)f ′′(1) − V3(−1)f ′′(−1)

]
+

[
V4(1)f ′′′(1) − V4(−1)f ′′′(−1)

]
+ . . .

+
[
V2n(1)f2n−1(1) − V2n(−1)f2n−1(−1)

]
−

∫ 1

−1

dx V2n(x) f2n(x)

=
∫ 1

−1

dx f(x) +
2n∑
�=2

(−1)�
[
V�(1) f �−1(1) − V�(−1) f �−1(−1)

]

−
∫ 1

−1

dx V2n(x) f2n(x) ,

(6)
where fn(x) denotes the nth derivative of f with respect to x.
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2. Elimination of the odd � contributions:

Eq. (6) is valid for any choice of integration constants in Eq. (5), so we can seek a
choice that simplifies the result. Note that V1(x) is odd under x → −x. We can therefore
choose the integration constants so that

Vn(−x) =
{

Vn(x) if n is even
−Vn(x) if n is odd .

(7)

This even/odd requirement uniquely fixes the integration constant in Eq. (5) when n is
odd, because the sum of an odd function and a constant would no longer be odd. We are
still free, however, to choose the integration constants when n is even.

Using the even/odd property, Eq. (6) can be simplified to

f(−1) + f(1) =
∫ 1

−1

dx f(x) +
2n∑
�=2

(−1)�V�(1)
[
f �−1(1) − (−1)� f �−1(−1)

]

−
∫ 1

−1

dx V2n(x) f2n(x) .

(8)

Note that the terms in V�(1) for even � involve the difference of f �−1 at the two endpoints,
while the terms for odd � involve the sum. Eq. (8) describes a single interval, however, and
our goal is to obtain a formula valid for any number of intervals. We will do this by first
generalizing Eq. (8) to apply to an arbitrary interval a ≤ x ≤ a + h, and then applying
it to each interval in a succession of evenly spaced intervals. When this succession is
summed, the even � terms involving the differences of the endpoints will cancel at each
interior point, but the odd � terms will add. The odd � terms can therefore make a
considerably more complicated contribution to the answer, but we can force them to
vanish by using the remaining freedom in the choice of integration constants. When n is
even in Eq. (5), we choose the integration constant so that

∫ 1

−1

dx Vn(x) ≡ 0 . (9)

Eq. (9) is always true for odd functions, so it is true for all n > 0. It then follows for all
n > 1 that

Vn(1) − Vn(−1) =
∫ 1

−1

dx Vn−1(x) = 0 . (10)

If n is odd then Eq. (7) implies that Vn(−1) = −Vn(1), and so

Vn(1) = Vn(−1) = 0 for all odd n > 1 , (11)
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as desired.

The Vn’s are now uniquely defined. In our construction we used the antisymmetry
property of Eq. (5) to fix the constant of integration for odd n, and the vanishing of the
integral in Eq. (9) to fix the integration constant for even n. Eq. (9), however, holds
also for odd n, and is sufficient to fix the integration constant for the odd n cases. The
functions Vn(x) can therefore be defined succinctly by

V0(x) ≡ 1 , (12a)

Vn(x) ≡
∫

dx Vn−1(x) , and (12b)

∫ 1

−1

dx Vn(x) ≡ 0 (for n > 0) . (12c)

We can use these properties to build a table for the lowest values of n:

n Vn(x) Vn(1)

0 V0(x) = 1 1

1 V1(x) = x 1

2 V2(x) =
x2

2
− 1

6
1
3

3 V3(x) =
x3

6
− x

6
0

4 V4(x) =
x4

24
− x2

12
+

7
360

− 1
45

5 V5(x) =
x5

120
− x3

36
+

7x

360
0

6 V6(x) =
x6

720
− x4

144
+

7x2

720
− 31

15120
2

945

(13)

Eq. (11) guarantees that only the even-� terms contribute to Eq. (8), so we can set
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� = 2k and rewrite Eq. (8) as

f(−1) + f(1) =
∫ 1

−1

dx f(x) +
n∑

k=1

V2k(1)
[
f2k−1(1) − f2k−1(−1)

]

−
∫ 1

−1

dx V2n(x) f2n(x) .

(14)

3. Application to an arbitrary interval:

To apply Eq. (14) to an arbitrary interval a < x < a + h, one needs only to change
variables. Let f(x) = f̃(x̃), where

x̃ = (x + 1)
h

2
+ a . (15)

Rewriting Eq. (14) in terms of f̃(x̃), while dividing the whole equation by 2 for later
convenience, one has

1
2
[
f̃(a) + f̃(a + h)

]
=

1
h

∫ a+h

a

dx̃ f̃(x̃)

+
1
2

n∑
k=1

(
h

2

)2k−1

V2k(1)
[
f̃2k−1(a + h) − f̃2k−1(a)

]

− 1
2

(
h

2

)2n−1 ∫ a+h

a

dx̃ V2n

(
2
h

(x̃ − a) − 1
)

f̃2n(x̃) ,

(16)

where f̃n(x̃) denotes the n’th derivative of f̃ with respect to its argument x̃. Now that
the original f and x have been eliminated, we can drop the tilde superscripts that appear
in Eq. (16).

4. Application to an arbitrary sum of intervals:

The problem can now be completed by extending Eq. (16) to an interval a < x < b,
divided into m steps of size h = (b − a)/m. Adding an expression of the form (16) for
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each interval of size h, one has

m∑
k=0

f(a + kh) =
1
h

∫ b

a

dx f(x) +
1
2

[
f(a) + f(b)

]

+
1
2

n∑
k=1

(
h

2

)2k−1

V2k(1)
[
f2k−1(b) − f2k−1(a)

]

− 1
2

(
h

2

)2n−1 ∫ a+h

a

dx V2n

(
2
h

(x − a) − 1
) m−1∑

k=0

f2n(x + kh) .

(17)
Note that when one adds up the left-hand sides of the expressions of the form (16), all the
terms have coefficient 1 except for the first and last term, each of which have coefficient
1
2 . In Eq. (17), the sum is written with all terms having coefficient 1, and the correction
for the first and last term has been moved to the right-hand side.

For all practical purposes, including the application to the Casimir effect in Problem
Set 4, Eq. (17) is all that is necessary. For the Casimir application a = 0, b = ∞, and
h = 1, so Eq. (17) becomes

∞∑
k=0

f(k) =
∫ ∞

0

dx f(x) +
1
2
f(0) − 1

12
f ′(0) +

1
720

f ′′′(0) − 1
30, 240

f ′′′′′(0) + . . . .

(18)
On the problem set the sum on the left started at 1 instead of 0, so the coefficient of f(0)
on the right was −1

2
instead of 1

2
. (Note that the coefficient of the f(0) term was printed

incorrectly in Huang’s book and in 8.323 problem sets from past years.)

Before leaving the subject, however, one might want to establish the connection
between Eq. (17) and the usual expression of the Euler-Maclaurin formula in terms of
Bernoulli numbers, and one might wish to find a cleaner way to express the final term
of Eq. (17), often called the remainder term. One normally does not evaluate this term,
but one wants to use it to argue that the remainder is small.

5. Connection to the Bernoulli numbers:

The Euler-Maclaurin summation formula is stated in Abramowitz and Stegun,* here-
after called A&S, as follows:

* M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, With For-
mulas, Graphs, and Mathematical Tables, p. 806.
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Let F (x) have its first 2n derivatives continuous on an interval (a, b). Divide

the interval into m equal parts and let h = (b−a)/m. Then for some θ, 1 > θ > 0,

depending on F (2n)(x) on (a, b), we have

m∑
k=0

F (a + kh) =
1
h

∫ b

a

F (t) dt +
1
2
{F (b) + F (a)}

+
n−1∑
k=1

h2k−1

(2k)!
B2k{F (2k−1)(b) − F (2k−1)(a)}

+
h2n

(2n)!
B2n

m−1∑
k=0

F (2n)(a + kh + θh) .

(19)

Disregarding for now the remainder term (the 3rd term on the right), Eq. (19) agrees

with Eq. (17) provided that

B2k

(2k)!
=

V2k(1)
22k

. (20)

According to A&S, p. 804, the Bernoulli numbers Bn are defined in terms of the Bernoulli

polynomials Bn(x), which are defined by the generating function

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(for t < 2π). (21)

The Bernoulli numbers are given by

Bn = Bn(0) . (22)

From these relations one can easily (i.e., easily with the help of a computer algebra

program) calculate the lowest Bernoulli polynomials:
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n Bn(x) Bn = Bn(0)

0 B0(x) = 1 1

1 B1(x) = x − 1
2

−1
2

2 B2(x) = x2 − x +
1
6

1
6

3 B3(x) = x3 − 3
2
x2 +

1
2
x 0

4 B4(x) = x4 − 2x3 + x2 − 1
30

− 1
30

5 B5(x) = x5 − 5
2
x4 +

5
3
x3 − 1

6
x 0

6 B6(x) = x6 − 3x5 +
5
2
x4 − 1

2
x2 +

1
42

1
42

(23)

By comparing Eqs. (23) with Eqs. (13), one can conjecture the equality

Vn(x) = Ṽ n(x) , (24)

where

Ṽ n(x) ≡ 2n

n!
Bn

(
x + 1

2

)
. (25)

To prove this equality, it is sufficient to verify that Ṽ n(x) satisfies the relations (12),
since these were the relations that defined Vn(x). It is straightforward to determine the
properties required for Bn(x) so that Ṽ n(x) obeys each of the relations (12):

B0(x) = 1 , (26a)

Bn(x) = n

∫
dx Bn−1(x) , and (26b)

∫ 1

0

dx Bn(x) = 0 (for n > 0) . (26c)
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Eq. (26a) was already written within Eqs. (23). To verify Eq. (26b), differentiate the
generating equation (21) with respect to x:

t2ext

et − 1
=

∞∑
n=0

dBn(x)
dx

tn

n!
. (27)

One can obtain another expansion of the same quantity by multiplying the generating
equation by t:

t2ext

et − 1
=

∞∑
n=0

Bn(x)
tn+1

n!

=
∞∑

n=1

Bn−1
tn

(n − 1)!
.

(28)

Comparing like powers of t in expansions (27) and (28), one finds

dBn

dx
= n Bn−1(x) , (29)

which is equivalent to Eq. (26b). Finally, to verify Eq. (26c), one can integrate the
generating equation over x from 0 to 1:

∫ 1

0

dx
text

et − 1
= 1 =

∞∑
n=0

tn

n!

∫ 1

0

dx Bn(x) . (30)

Again by comparing powers of t, one verifies Eq. (26c). Thus Ṽ n(x) obeys all of the
relations (12), and hence Vn(x) = Ṽ n(x).

Having established Eq. (24), it follows immediately that

V2k(1) = V2k(−1) =
22k

(2k)!
B2k(0) , (31)

which is just what is needed to verify Eq. (20), and hence the agreement of our series
expansion with that of A&S.

Appendix: Simplification of the remainder term:

The remainder term is the final term on the right-hand side of Eq. (17), given by

R = −1
2

(
h

2

)2n−1 ∫ a+h

a

dx V2n

(
2
h

(x − a) − 1
) m−1∑

k=0

f2n(x + kh) . (32)
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The goal of this appendix is to manipulate the remainder into the form given by A&S,
as shown in Eq. (19) of this document. I am including this appendix for completeness,
but it is not physically important and you need not read it if you are not curious.

First, notice that our definition of n is different from A&S’s, since the sum on
the right-hand side of our Eq. (17) extends up to n, while the sum in A&S’s equation
(Eq. (19)) extends only up to n−1. Thus, if our remainder term is to agree with A&S’s, it
should be expressed in terms of f2n+2, not f2n as in Eq. (32). To accomplish this change,
we will integrate by parts twice. The surface term vanishes for the first integration by
parts, since V2n+1 has an odd subscript and therefore vanishes at the endpoints according
to Eq. (11). For the second integration by parts there is a surface term which must be
kept. In detail, the two integrations by parts yield

R =
1
2

(
h

2

)2n ∫ a+h

a

dx V2n+1

(
2
h

(x − a) − 1
) m−1∑

k=0

f2n+1(x + kh) (33a)

=
1
2

(
h

2

)2n+1

V2n+2(1)
m−1∑
k=0

[
f2n+1

(
a + (k + 1)h

) − f2n+1(a + kh)
]

− 1
2

(
h

2

)2n+1 ∫ a+h

a

dx V2n+2

(
2
h

(x − a) − 1
) m−1∑

k=0

f2n+2(x + kh) . (33b)

Now notice that the first term on the right-hand side of Eq. (33b) can be rewritten using

f2n+1
(
a + (k + 1)h

) − f2n+1(a + kh) =
∫ a+h

a

dx f2n+2(x + kh) , (34)

which allows one to combine the two terms:

R =
1
2

(
h

2

)2n+1

V2n+2(1)
∫ a+h

a

dx w(x) G(x) , (35)

where

w(x) = 1 − V2n+2

(
2
h

(x − a) − 1
)

V2n+2(1)
(36)

and

G(x) =
m−1∑
k=0

f2n+2(x + kh) . (37)

Using Eqs. (24), (25) and (31) to rewrite this expression in terms of B2n+2, one finds

R = h2n+1 B2n+2

(2n + 2)!

∫ a+h

a

dx w(x) G(x) , (38)
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where

w(x) = 1 − B2n+2

(
x−a

h

)
B2n+2

. (39)

To complete the argument, one needs to use the fact that

|B2n| > |B2n(x)| (for n = 1, 2, . . ., and 0 < x < 1) , (40)

which we will prove below. This implies that the second term in Eq. (39) has magnitude
less than 1, and hence

w(x) > 0 . (41)

Furthermore, from Eq. (26c) the second term in Eq. (39) vanishes when integrated over
x from a to a + h, so ∫ a+h

a

dx w(x) = h . (42)

Eqs. (41) and (42) imply that we can interpret w(x) as a weight factor in the computation
of a weighted average, with

〈
G(x)

〉 ≡ 1
h

∫ a+h

a

dx w(x) G(x) . (43)

If we assume that every term on the right-hand side of Eq. (37) is continuous, then G(x)
is continuous, and we can apply the mean value theorem* to conclude that, somewhere
in the range of integration (a < x < a+h), G(x) must be equal to its mean value

〈
G(x)

〉
.

Thus there exists some number θ in the range 0 < θ < 1 such that

G(a + θh) =
〈
G(x)

〉
=

1
h

∫ a+h

a

dx w(x) G(x) . (44)

Using the above relation to replace the integral in Eq. (38), one has finally

R = h2n+2 B2n+2

(2n + 2)!
G(a + θh)

= h2n+2 B2n+2

(2n + 2)!

m−1∑
k=0

f2n+2(a + kh + θh) ,

(45)

which matches the remainder term in A&S’s equation (Eq. (19)).

* See, for example, Methods of Mathematical Physics, Third Edition, by Sir Harold
Jeffreys and Bertha Swirles (Lady Jeffreys), Cambridge University Press, 1962, p. 50,
section 1.132.
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We have reached the end, but to complete the proof we must justify the inequality
(40). This inequality was necessary to assure the positivity of w(x), which in turn was
necessary for the mean value theorem.

The only proof that I could construct for this inequality depends on showing that
the general shape of the Bernoulli polynomials Bn(x) in the interval (0, 1), for n ≥ 3, is
always one of four possibilities, depending on n mod 4. Sample graphs illustrating these
shapes are shown on the following page. Specifically,

n mod 4 = 0: Bn(x) is symmetric about x = 1
2
. The maximum is at x = 1

2
, where

Bn > 0, and the minimum is at x = 0 and x = 1, where Bn < 0. The slope is
negative for 1

2 < x < 1, and vanishes at the endpoints of this region.

n mod 4 = 1: Bn(x) is antisymmetric about x = 1
2 , and vanishes at x = 0 and

x = 1. Between x = 1
2 and x = 1 the function rises monotonically to a maximum

and then falls monotonically.

n mod 4 = 2: Bn(x) is symmetric about x = 1
2 . The minimum is at x = 1

2 , where
Bn < 0, and the maximum is at x = 0 and x = 1, where Bn > 0. The slope is
positive for 1

2 < x < 1, and vanishes at the endpoints of this region.

n mod 4 = 3: Bn(x) is antisymmetric about x = 1
2
, and vanishes at x = 0 and

x = 1. Between x = 1
2

and x = 1 the function falls monotonically to a minimum
and then rises monotonically.

Note that we have already shown (by Eqs. (11), (24), and (25)) that Bn(x) vanishes at 0
and 1 for n odd. The remaining properties listed above can be shown by induction: one
verifies that B3(x) is being correctly described, and then one uses Eqs. (26b) and (26c)
to show that the properties for each value of n mod 4 imply the properties for (n + 1)
mod 4.

(Note that graphically it appears that the zeros of B6(x) and B10(x) coincide, but this
is not exactly true. The zeros of B6(x), B10(x), and B14(x) lie at 0.2475407, 0.2498447,
and 0.2499903, respectively.)

From the description above for Bn(x) when n is even, one can see that the maximum
absolute value of the function in the range 0 < x < 1 must occur either at the endpoints
or at x = 1

2 . We can determine which of these two it is by using the generating function
(21) to derive an identity that relates them.

Consider the generating equation (21) for x = 0, but with t replaced by t/2:

∞∑
n=0

Bn(0)

(
t
2

)n

n!
=

1
2

t

e(t/2) − 1
. (46)
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By manipulating the right-hand side, it can be re-expressed in terms of Bernoulli functions
by using the generating equation:

∞∑
n=0

Bn(0)

(
t
2

)n

n!
=

1
2

t

e(t/2) − 1
· e(t/2) + 1
e(t/2) + 1

=
1
2

te(t/2) + t

et − 1

=
1
2

{ ∞∑
n=0

Bn

(
1
2

) tn

n!
+

∞∑
n=0

Bn(0)
tn

n!

}
.

(47)

Comparing like powers of t on both sides of the equation, one finds

Bn(0)
2n

=
1
2

{
Bn

(
1
2

)
+ Bn(0)

}
, (48)

which implies that

Bn

(
1
2

)
= −Bn(0)

[
1 − 1

2n−1

]
. (49)

It follows that |Bn(0)| >
∣∣Bn

(
1
2

)∣∣, and therefore Eq. (40) holds. Our proof excluded the
special case B2(x), which differs from the cases of larger n in that its derivative does not
vanish at 0 and 1. It can easily be verified, however, that the maximum absolute value
of B2(x) for 0 < x < 1 must occur at x = 1

2 or at the endpoints, so Eq. (49) can again
be used to show that Eq. (40) applies in this case as well.


