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E. NONLINEAR OPERATIONS ON GAUSSIAN PROCESSES

1. Orthogonal Functionals of Correlated Gaussian Processes

Wiener (1) and Barrett (2) have discussed an orthogonal hierarchy {GN(t, KN, x)} of

functionals of a zero-mean Gaussian process x(t). Wiener considered the case in which

x(t) is white Gaussian noise; Barrett considered the case in which x(t) is non-white

Gaussian noise. They have shown that these functionals of the same Gaussian process

x(t) have the following type of orthogonality

GN(t, KN, x) GM(t, LM, x) = 0 N € M (1)
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where the bar indicates ensemble average.

We shall prove that the same type of orthogonality that exists for these functionals

of the same Gaussian process also exists for functionals of correlated Gaussian proc-

esses. That is, we shall prove that

GN(t, KN, X) GM(t, LM, y) = 0 N * M (2)

with x(t) and y(t) stationary, correlated, zero-mean Gaussian processes. The orthogonal

G-functions are defined as

N] 
(N)

V=O 00 00v=0 -m -cc

X Rxx(TN-2v+ N-2 v+2) ... Rxx (TN-1 TN) dT 1 ... dTN  (3)

and

GM(t,L M ,y ) = ... a vLM( . .- M ) y(- 1) ... (t--M_2v)
v=0 oo o

X R yy(M-2v+l- M-2v+2)... Ryy( Ml- M) dl- .. doM  (4)

where KN( T 1 ... TN) is an arbitrary symmetric function of the T's, and LM( Crl' ... M)

is an arbitrary symmetric function of the o's. The set of constants a (N) is the coef-
N-Z v th 0 N-2 t c

ficient of s in the N -order Hermite polynomial HN(s), which is defined (3) as

[N]
HN() = (N) N-2v (5)

v=0

a(N) (-1) N!
N-2v 2 (N-2v)! v!

The functions R (T) and R yy(T) are the autocorrelation functions of the x and y proc-xx yy N1M N N-i
esses, respectively. The expression ] equals N if N is even, and equals N if N

is odd.

We shall also prove that

GN(t, KN, x) GN(t, LN, y) = N! ... KN(Tl' ... "N) LN(- 1 .. -N)

X Rxy1(Trl1) ... Rxy (TN- N) dT 1 .. N dTNdo 1 ... do-N (7)
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where R xy() = x(t) y(t+T).

Since Eqs. 2 and 7 will be proved valid for an arbitrary symmetric kernel LM,

because it can be shown that

GM(t+a, L M , y) = GM(t, LJ, Y)

where

L (- 1 ... TM
) = LM(ol +a, .... oM+a)

then Eqs. 2 and 7 imply that the two following equations are true:

GN(t, KN, x) GM(t+a, LM, y) = 0

GN(t , KN, x) GN(t+a, LN, y) = N! _

N M

and

(8)

(9)

(10)

KN(T 1, . TN) LN(o 1 +a, •. . N+a)
-oo00

X Rxy (T l- 1) ... Rxy (TN-N ) dT 1 ... dNdo-1 .
.. do-N()

(11)

In proving the orthogonality condition given by Eq. 2, we shall consider only the case

of N > M, because the proof for M > N is similar to that for N > M.

The expression for GM(t, LM, y) in Eq. 4 contains only operations of degree M, or

lower, in y. For example, the term

S00-00

00

... a 2LM(o- ... oM ) y(t- 1) ... y(t-M_2v)

X Ryy(oM-2v+l-o-M2v+2) ... R yyo-Ml- - M ) do-l ... do-M
(12)

contains the product of M-2v y's and is thus of degree M-2v in y. Therefore to prove

Eq. 2 for N > M it is sufficient to prove that

GN(t, KN, x)
00 00

... L(cr,... j) y(t-o- ) ... y(t-o-j) do- ... do-. = 0
-00 -00

j =0,...N-1

(13)

for all symmetric kernels GN and L..

We shall now prove Eq. 13 valid. If we expand GN(t, KN, x) as in Eq. 3 and inter-

change order of integration and averaging, then Eq. 13 becomes
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.. L( j) ... N2v N .. TN)

X x(t-T 1 ) ... x(t-TN-2) Y(-1) ... y(-j)

X Rxx N-2v+1 TN2v+2 ) .. Rxx( N-TN)dT1 ... dNd 1 ... = 0, ... N-1

(14)

The averaging operation in Eq. 14 is the average of a product of Gaussian variables.

This average is the sum, over all ways of pairing, of products of averages of pairs of

the Gaussian variables. We now divide the averaging operation in Eq. 14 into two parts:

in part 1 each y is paired with an x for averaging; in part 2 at least two y's are paired

together for averaging. If in part 2, for a particular j, we first average two y's that

are paired together (because of the symmetry of L. it does not matter which two) and

integrate on their corresponding sigmas, then the rest of the expression is again in the

form of the left-hand side of Eq. 14, except that j is smaller by 2. Therefore if we

prove the set of Eqs. 14 in order of increasing j, then for each j it is only necessary

to prove that the term from part 1 is zero, because the term from part 2 will have been

proved equal to zero in the proof of the (j-2) equation of Eqs. 14.

If we perform part 1 by pairing and averaging of each y with an x, and pair and

average the remaining x's among themselves, then Eq. 14 can be replaced by

... Lj(- j)KN(T1 ... TN) Rxy (T-1  )... Rxy j(T j--

X R (T j+I+2) ... Rxx(T N-1 N) dT 1 ... dTNdo- ... do-.
J

N-j

b (N 0 j = 0, ... N-1 (15)N-2 v, jaN-2vv=0

which is part 1 of the averaging, and then a proof of Eq. 15 will constitute a proof of Eq. 14.

The constant b n2v,j is the number of ways in which j y's can be paired with j of

N-2v x's and the remaining N-2v-j x's paired among themselves. It should be noted that

this pairing can exist if and only if j and N are either both even or odd, and v - (N-j).

To prove Eq. 15 valid we shall prove that

N-j

b a(N)
= b N-2v,j = 0N j = 0,...N-1 (16)
=The method of proof is to show that the orthogonality of the Hermite polynomials implies

The method of proof is to show that the orthogonality of the Hermite polynomials implies
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the validity of Eq. 16. The Hermite polynomials defined in Eqs. 5 and 6 are orthogonal

with respect to the weighting function e - s /Z. That is,

00
-0c

(s) H (s) e 2 ds =
HN(S) HM(S) e - s

0

N !

N#M

N=M
(17)

Now let u be a Gaussian random variable of zero mean and unit variance. Thus, the

probability density, p(u), is given by

1 -u /2
p(u) = -- e (18)

The expected value of the product of two Hermite polynomials in u is then

HN(u) HM(u) = HN(u) HM(u) p(u) du
-co

_- c HN(u) HM(u) eu/Z du
27 -cc

(19)

By substituting Eq. 17 in Eq. 19 it can be seen that

HN(u) HM(u) = 0 N # M (20)

Any positive integer power of u can be written as a weighted sum of Hermite polyno-

mials in u of degree less than or equal to the power of u. That is, for any positive

integer j there exists a set of constants {cj, M} which satisfies the equation

J
uJ= C MHM(u )  (21)

M=O M (

It can be shown that

uJHN(u) = 0 j = 0, ... N-1

because from Eq. 21

UHN() =
M=O

cj, MHM(u) HN(u)

and because from Eq. 20 the average values in Eq. 23 are zero.

If we use the expansion for the Hermite polynomial (Eq. 5), then Eq. 22 becomes

(22)

j = 0,. (23)
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[N2
u a (N) N-2v

v=0O v

Equation 24 contains the average of products of a Gaussian variable.

identical to that used in deriving Eq. 15 from Eq. 14, it can be shown that

is only necessary to consider the pairing (for averaging purposes) of each
N-2v. With this pairing, Eq. 24 becomes

a u in u . With this pairing, Eq. 24 becomes

N-j N-2v+j
2 (N) ( 2

bvO N-2 v, aN-2v = 0

In a manner

in Eq. 24 it

u in u j with

j = 0, ... N-1 (25)

where the constant bN-vj is the same as in Eq. 15. Since the variable u has unit vari-

ance, Eq. 25 becomes Eq. 16.

We have now proved Eq. 2, since Eq. 16 has been proved and it proves Eq. 15 which

proves Eq. 13, which in turn proves Eq. 2.

We shall now prove Eq. 7. If we expand GN(t, LN, y) as in Eq. 4 and apply the orthog-

onality expressed in Eq. 13, then the left-hand side of Eq. 7 becomes

GN(t, K N , x) GN(t, LN, y)

00

= GN(t, KN, x)
-o

a (N) LN (( N) Y(t-1) ... y(t-N) do-1 .. d N  (26)
-oo

From Eq. 6 it can be seen that aN = 1.

The averaging operation in the right-hand side of Eq. 26 involves the average of

products of the Gaussian variables x and y. We now divide this averaging operation

into two parts: in part 1 each y is paired with an x for averaging; in part 2 at least

two y's are paired together for averaging. If in part 2 we first average two y's that

are paired together and integrate on their respective sigmas, then that term has the

form

00

GN(t, KN, x)
00

-oo00
. N-2 ) Y(t- 1) ... y(t-o-N- 2 ) dl 1 . .. dfN_ 2

(27)

where

LN(- 1 .... "N) R yy((rN-1- N) dON_-ld" N

(24)

o oo00

LN-2 1' ' N-2 f-0;0
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From Eq. 13 it is seen that expression 27 is equal to zero. Therefore in performing the

averaging in the right-hand side of Eq. 26 it is necessary to consider only the terms of

part 1, that is, those terms in which each of the N y's is paired with an x. However,

in the expansion of Eq. 3 for GN(t, KN, x), only the term in which v = 0 has at least N x's,

and that term has exactly N x's. There are N! different ways in which N y's can be

paired with N x's. If we use only the v = 0 term from Eq. 3, and use the pairing of each

y with an x, and use the fact that a = 1, then Eq. 26 becomes Eq. 7, which was to

be proved.

2. A Crosscorrelation Property of Certain Nonlinear Functionals of Correlated

Gaussian Processes

We shall now show that the crosscorrelation between a G-function of one Gaussian

process and a nonlinear no-memory function of a second correlated Gaussian process is,

except for a scale factor, independent of the nonlinear no-memory operation. In partic-

ular, if x(t) and y(t) are stationary, correlated, zero-mean Gaussian processes, and if

f is a nonlinear no-memory operation on y, then the crosscorrelation (a function of the

delay a) between GN(t, KN, x) and f[y(t+a)] is given by

-- 00 00

X Rxy(T 1+a) ... Rxy(TN+a) d 1 ... dTN (28)

It should be noted that in the right-hand side of Eq. 28, only the scale factor Cf depends

on the nonlinear no-memory operation f.

Before proving Eq. 28 we shall relate this work to the results of others. Bussgang(4)

proved that for stationary, correlated, zero-mean Gaussian processes the crosscorrela-

tion between one process and a nonlinear no-memory function of the second process is

identical, except for a scale factor, to the crosscorrelation between the two Gaussian

processes. If we use the notation of the previous paragraph, Bussgang's result is

given by

x(t) f[y(t+a)] = C, Rx (a) (29)

where C' is a function of the nonlinear no-memory operation, f. We shall now show that

Eq. 29 is a special case of Eq. 28 with the two parameters, N = 1 and K 1() =1 (T

Substituting these parameters for GN(t, KN, x) in Eq. 3, we obtain

Gl(t, 5(7T ), x) = 8(T 1 ) x(t-T 1 ) dT 1 = x(t) (30)
1 1 loo
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If we substitute these parameters and Eq. 30 in Eq. 28, we obtain Bussgang's result:

x(t) f[y(t+a)] = Cf 5(T 1 ) Rxy (TI+a) dT 1 = Cf Rxy(a)

By setting Cf = C , we have shown that Eq. 28 implies Eq. 29.

Another related paper is that of Nuttall (5) on separable processes. By using Nuttall's

definition of "separable," it can be shown that GN(t, KN, x) is separable with respect to

y(t). However, for N # 1, the processes GN(t, KN, x) and y(t) are uncorrelated, and

therefore, for our purpose, some of Nuttall's theorems on properties of separable proc-

esses have to be modified slightly. For example, Nuttall proves that the fact that one
process is separable with respect to a second process implies, and is implied by, the
fact that the crosscovariance function between the first process and a nonlinear no-

memory function of the second process is identical, except for a scale factor, to the
crosscovariance function between the first process and the second process. This theorem

could be modified to state: The fact that one process is separable with respect to a

second process implies, and is implied by, the fact that the crosscovariance function

between the first process and a nonlinear no-memory function of the second process is,
except for a scale factor, independent of the nonlinear no-memory operation. With
respect to our work, this modified theorem means that Eq. 28 implies that GN(t, KN, x)
is separable with respect to y(t), and that the separability of GN(t, KN, x) with respect
to y(t) implies the invariance of the crosscorrelation function to nonlinear no-memory

operations.

Another of Nuttall's (5) results is that the square of a zero-mean Gaussian process
x(t) is separable with respect to itself, and hence has the invariance property

[x (t)-x 2 (t)] fl[x (t+a)] = C11 [x 2 (t)-x 2 (t)] x (t+a) (31)f1

By evaluating the average in the right-hand side of Eq. 31, we obtain

[x 2 (t)-x 2 (t)] fl[x 2 (t+a)] = 2C1 Rxx(a) (32)

We shall now show that Eq. 28 implies Eq. 32. From Eq. 3 we note that

G 2[t, 6(T 1 )6(T 2 ), x] = X2(t) - X2(t) (33)

The nonlinear no-memory operation fl on x2 (t) can also be viewed as a different non-

linear no-memory operation f2 on x(t) as follows:

f (x) fl(x2 ) (34)
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If we substitute from Eqs. 33 and 34 in Eq. 32, then the left-hand side of Eq. 32 becomes

[x 2 (t)-x 2 (t)] fl[x2 (t+a)] = GZ[(t, 5(T 1 )5(T2), ] f2 [X(t+a)]

Substituting Eq. 28 in the right-hand side of Eq. 35, we obtain

(35)

[x2 t) 2 (t) ] f 1 [x2 (t+a)] = Cf 2
1 f2

(T 1 ) 6(T) R XX(T 1+a) Rxx (T+a) dT dT 2
(36)

If we carry out the integration, Eq. 36 becomes

[x2(t)-x2(t)] f 1 [x 2 (t+a)] = Cf Rxx(a)

By equating Cf with 2C"f we see that we have derived Eq. 32 from Eq. 28.
With respect2 to Nuttalls (5) separable class, it can be shown that

With respect to Nuttall's (5) separable class, it can be shown that

(37)

GN[t, 5(Tl)... 6TN), x]

is separable with respect to itself. To prove this separability, it is only necessary to

prove that the invariance property exists, that is, that

GN[t, 6(T 1)... (TN), x] f{GN[t+a, 6( 1 ) ... 6(TN), x]}

is, except for a scale factor, independent of the nonlinear no-memory operation, f. By

viewing the nonlinear no-memory operation on

GN[t+a, 5(T 1 )... (T N), x]

as a different nonlinear no-memory operation on x(t+a), and by then using Eq. 28, we

can see that the invariance property does exist.

We shall now prove Eq. 28 true. We expand

[R (0)] - 1/2 y(t+a). That is, if we define

u(t+a) = [Ryy(0)] - 1/ 2 y(t+a)

then we can write

00oo

f[y(t+a)] =
j=O

f[y(t+a)] in Hermite polynomials in

(38)

c.Hj[u(t+a)]
3j

(39)

By use of the orthogonality (Eq. 17) of the Hermite polynomials,

that c. is given by

it can be seen

_ CC00 _Cooc



(VIII. STATISTICAL COMMUNICATION THEORY)

C. - i (s) H(s) e /2 dsf(s) Hj(s) e

We shall now show that each H.[u(t+a)] can be expanded as a G-function of u. We first

expand these Hermite polynomials as in Eq. 5. Thus

H [u(t+a)] = L a j) 2 Lv[u(t+a)]j- 2 V

The right-hand side of Eq. 41 can then be rewritten as

Hj[u(t+a)] =
Sv=0

ai) f
o- o .

X R (O-. -v
uu J-2v+1

.. J- 6(1) ... " 5(-j) u(t+a-r-l) ... u(t+a-j-2 )

j v+ ) .. . R (-j ( - ) do-1  ... do-.
j-2v+2 uu j-1 j 1 J

The fact that the right-hand side of Eq. 42 is equal to the right-hand side of Eq. 41 is

shown by performing the integration in Eq. 4Z and by using the fact that

R (0) = u(t) u(t) = y(t)[R yy(0)uu yy -1/2 y(t)[Ryy(0)]-1/2 = 13y (43)

Comparing the right-hand side of Eq. 42 with the definition of a G-function given by Eq. 4,

we find that

Hj[u(t+a)] = Gj(t+a, Lj, u) (44)

where

Lj( - ... l a-) = 5 (( ) ... 6 )

We substitute Eq. 44 in Eq. 39 to obtain

(45)

00co
f[y(t+a)] = Z

j=0
cjGj(t+a, L., u)

3 3 3

Using Eq. 46, we now evaluate the left-hand side of Eq. 28 and obtain

GN(t, KN, x) f[y(t+a)] = cjG.(t+a, L, u) GN(t, KN, X)j=0 N

Notice that u(t) and x(t) are correlated Gaussian variables with the crosscorrelation

(40)

(41)

(42)

(46)

(47)
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function given by

Rxu(T) = x(t) u(t+T) = x(t) y(t+T)[xRu yy(0)] - 1/2 = Rxy(T)[R yy(0)]-1/2

Changing orders of averaging and summation in Eq. 47, and using Eqs. 10 and 11 to

evaluate the averages, we obtain

oota)
GN(t, KN, x) f[y(t+a)] = CNN !

.. KN(T,1'
_0o

TN) LN(- l+a, ... a N+a)

X Rxu 1 1 ) ... Rxu (TN-- N) dT 1 ... dTNd ... d-

By substituting Eqs. 48 and 45 in Eq. 49, we obtain

GN(t, KN, x) f[y(t+a)] = CNN ![R y(0)]- N/2 100

-oo0
KN(T 1 . . . TN) (l+a) . .

X Rxy (T- 1 ) ... Rxy(TN- N) dT 1 ... dTNdO-1

After integration on the sigmas, Eq. 50 becomes

GN(t, KN, x) f[y(t+a)] = cNN![R yy(0)] - N/2 KN(T 1

X Rxy (T +a) . .. Rxy(TN+a) dT 1 .. dTrN

... do-N

.. TN)

(51)

Equation 51 proves Eq. 28 valid if Cf is defined as

Cf cNN ![R(0)] - N / 2

If we use the definition of cN given in Eq. 40, Cf can be written as

Cf = [R yy(0)] - N f(s) HN(s) e - s / 2 ds

D. A. Chesler
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F. FM SPECTRA FOR GAUSSIAN MESSAGES

1. Introduction

Wiener has shown how to calculate the power density spectrum of an FM signal that

is modulated by a Gaussian message (1). We shall consider here (a) the infinite series

representation of slightly different FM signal spectra, (b) some bounds on the error,

which are incurred by approximating these infinite series with finite partial sums, and

(c) the asymptotic behavior of wideband FM spectra and bandwidth relations.

2. Spectrum Computation

Let z t be a Gaussian random waveform from an ergodic ensemble, with the expected

value

E[z ]=1 (1)

If we call the derivative of z t (which we shall assume to exist almost everywhere) a mes-

sage, then the signal

iazt

gt = e (2)

can be regarded as a phasor representation of an FM signal with no carrier and a

Gaussian modulating message. The quantity a, which is the rms phase deviation of the

signal, is assumed to be positive. By representing gt as a series of orthogonal homoge-

neous polynomial functionals, Wiener (2) obtained its autocorrelation function, R (T),

in terms of the autocorrelation function of zt, Rzz(T), as

2 a R (T)
-a

R (7) = e e (3)
gg

It then follows immediately that the power density spectrum of g , S (f), is given by
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Sgg (f) = Rgg(T) e dT
oo Zn

=e e-a a H (f) (4)
n=O n!

where

H (f)= 6(f)
o

oo i2rf
H (f) = Rz() e dT = S (f) (5)

-oo

Hn(f) = Hn-1(x) H 1 (f-x) dx

We shall return to a discussion of this spectrum.

To review Wiener's theory and for purposes of comparison, we shall compute the

autocorrelation function for

ct = cos (azt) (6)

without orthogonalizing the series of polynomial functionals, as Wiener did. We could

just as easily do this for gt of Eq. 2, but it is interesting to note the result for ct.

Employing a double angle formula, the cosine power series, and the binomial series,

we obtain

RCC(T) = E[cos (azt+T) cos (azt)]

= E cos a(z t+ -Zt) + cos a(zt++zt

= E (-a2 n ( z 2n 2n(z
n= (2n)! t+T- t+T+Zt

= E (-a)n 1 )n2n m 2n-m m Zn-mb
n=O (2n) ! 2 ?Z t+ t t

SEn (-a n Zn 2p 2n-2p (7)[ E - z z(7)0 (Zn)! p=0 t+ t

in which 2p is substituted for m in the last step because odd values of m give only zero

terms. Next, we interchange the order of summation and averaging. From the facts
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that the average of a product of Gaussian variables is equal to the sum over all ways of
pairing variables of the products of averages of these pairs, and that we can use Eq. 1,
we find

E [z2pz2n-2p]
EZt+T t =

( 2 p) (n-2p) j! E [zt+zt]
even j

z<min[2Zp, 2n-2p]

* ( 2 p-j-1)(2p-j-3)... (1) E(2 p - j)/2 [z]

(2n-2p-j-1)(2n-2p-j-3).. .(1) E(2n-2p-j)/2 [2]

min[p, n-p]

k=0

(2p)! (2n-2p)! 2k

(2k)! (p-k)! (n-p-k)! 2 n-2k z z

in which j is replaced by 2k because only terms with even j contribute

bining Eqs. 7 and 8, we obtain

to the sum. Com-

00 n

R (T) = i
n= p=O

min[p, n-p]

k=0

(-a2)n 2k
(-a ) R (T)

(2k)! (p-k)! (n-p-k)! 2 n-2k zz

If we let p = p - k, v = n - 2k, and sum in a different order, we obtain

00

Rc (T)=

k=0O v=O p=0

(a2)2k aV 2k

(2k)! p.! (v-p.)! Z

(2k) 2k

2 v=0
[a2k~)j0

2V
va

V 2L-.2

z=0

The first sum in Eq. 10 is a hyperbolic cosine. Substitution of X for v - p. converts the
double sum into two identical, independent exponential series, and we obtain

R cc(T) = e-a cosh [a R z z (T)Rcc( Lzzj

If we consider the signal,

s t = sin (azt)

a similar computation yields the autocorrelation function

(11)

(12)

00

k=0
(10)
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2
R (T) = e - a sinh [aRzz(T)] (13)

We notice that the crosscorrelation function vanishes:

Rcs(T) = (14)

For each signal, gt, ct, or s t , it follows from the preceding discussion that the corre-

sponding power density spectrum can be expressed as a term-by-term transform of the

series for the correlation function, in a form very much like that of Eqs. 4 and 5. Here-

after, we shall use the spectrum of Eq. 4 to represent the spectrum of an FM signal.
lx

Notice that for large arguments (values of x) both cosh x and sinh x approach 1 e . This

fact ensures that the spectra in the three cases will be similar when a is sufficiently

large. [We shall not be more precise about this matter.]

3. Spectrum Approximation and Errors

Observe that the FM signal power is equal to unity:

-a aRzz)
S (f) df = R (O)= e e = 1 (15)

-00 99

Also, since

H (f) df = R (0) 1, for all n (16)
n zz

the total power omitted by leaving out the terms in Eq. 4 for which n belongs to some

index set E, is given by

2 2n
A=e-a a (17)

nEE

Because the total FM signal power is unity, A also represents the fractional power

associated with the index set E. In the time domain, A can be interpreted as the actual

and fractional mean-square error in the FM signal if the power density spectrum is

shaped by ideal filtering so that its shape is that of the sum of the remaining terms.

Hence, an interesting problem is to find the most important terms in the series of Eq. 4,

and to bound the error, A, when all less important terms are left out.

If x is assumed to be positive, then all the terms of the series

oo n
ex = x (18)

n=0 n!

are positive. The difference between two adjacent terms is readily computed. We have
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n n-1 n-1x x x x
n! (n- ) ! -i (n- ) ! (19)

Now we can see that the terms grow in magnitude with increasing n until a maximum is
reached, and then decrease toward zero as n continues to increase indefinitely. The
largest term is the one for which

n = N(x) (20)

where N(x) is the integral part of x. (Actually, if x is an integer, we have a pair of
largest terms, but it will not be necessary to distinguish this special case in the following
discussion.) Hereafter, we shall assume that x > 2. Notice that this implies that N(x) > 2.
[We shall also use x < 3 N(x) and x < 2N(x).] In any event, it should be clear that the
important terms of the sum in Eq. 18 are grouped around N(x).

First, we calculate a loose upper bound on the tail of the series in Eq. 18 above the
important terms. Choose a number u that satisfies the inequality

It then (21)

It then follows that

3 (22)N[(+u)N(x)] - N(x) + 1 > (1+u) N(x) - 1 - N(x) + 1 = uN(x) > u (22)
Since terms decrease with increasing n when n > N(x), all terms in a partial sum beyond
N(x) will exceed the last term. In particular, if r is the value of the N[(1+u)N(x)] term,
then

N[(1+ )N(x)] x n ru 2x
ex > >ru 

(23)n=N(x)

where we have underbounded the number of terms in the partial sum by using
inequality 22. Notice that the N[(l+u)N(x)] + 1 term is r x , which is

N[(l+u)N(x)]+ 1

bounded by r x the next term is bounded by r , and so on. We can
bound the sum over the tail beyond N[(l+u)N(x)] by

n o [m r
S< r x (1+u) N(x)

n=N[(u)N(x)]n! m= (+u)N(x) _ xn=L+uNx+)N ini 1 - (1+u) N(x)

r xN(x) < 2r (24)
x (24)

u N(x) N(x )

We have
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x 1 < x 1 (25)
N(x) x-1 x- 1

This explains why u was chosen to obey inequality 21. By substituting inequality 25 and

r from inequality 23 in inequality 24, we can rewrite the bound as

xn 3ex

n>(l+u)x u u- x

Similar manipulations yield a bound on the tail of the series in Eq. 18 below the

important terms. Choose a number v that satisfies the inequality

0 < v < 1 (27)

This time, we underbound the number of important terms below N(x) as follows:

N(x) - N[(1-v)N(x)] + 1 > N(x) - (1-v) N(x) + 1 = vN(x) + 1 > vx - v + 1 > vx (28)

If s is the value of the N[(1-v)N(x)] term, then,

N(x) n
ex > , x svx (29)

n=N[(1-v)N(x)] n!

N[( 1-v)N(x)]
The N[(1-v)N(x)] - I term is s x . which is bounded above by s(1-v), the pre-

ceding term is bounded by s(l-v)2 , and so on. Thus,

N[(1-v)N(x)] xn co s s
S  n < s(l-v)m  1 - l-v) - (30)

n=0 m=O

Combining Eqs. 28, 29, and 30, we obtain

n x
x e (31)n! 2

0-<n,<(1-v)(x-1 )  v x

What do Eqs. 26 and 31 mean? They imply that the power density spectrum of an

FM signal (Eq. 4) with a2 > 2, can be approximated by the partial sum

2 2n
S (f) = e-a  a H (f) (32)
gg 2 2 n. n

(1-v)(a 1)<n.<(l+u)a

with an error (from Eq. 17),

A< 3 + 1 (33)
u 2 1 a2 va

uu a a
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Equation 33 shows, among other things, that the terms that contribute significantly to
the sum tend to cluster around n = a" in a narrowing band (expressed as a fraction of

2
a , not in absolute terms) as a increases. In fact, if Hn(f) does not change too rapidly
with n when n is large, we shall have a good approximation for sufficiently large a:

S (f) H N (f) (34)gg N(a2 )

This interesting behavior suggests that we take a look at the general behavior of Hn(f)
for large n to determine what the limiting spectrum is like.

4. Limiting Spectrum and Bandwidth for Wideband FM

Recall the definition of H (f) from Eq. 5. Remember that power density spectra are
non-negative, so that Hn(f) > 0, for all n, f. From Eq. 16, the integral over any Hn(f)
is unity. This suggests interpreting H 1 (f) as the probability density function of a random
variable with zero mean (symmetry of power density spectra about the origin). Assume

that the variance, 2, is finite, with 2 f2 H 1(f) df. H (f) looks like the density

function of the distribution of a sum of n independent random variables, each variable
being distributed according to H 1 (f). Under these conditions, the Central Limit Theorem
is valid (3). Therefore, the cumulative distribution of the sum approaches that of a
Gaussian random variable with zero mean and variance no-2, as n increases. Under
somewhat more restrictive conditions on HI(f), we can say that, for increasing n,

Hn(f) - (2wn -1 / 2 e-f2 / (2 n -2 )  almost everywhere (35)

In general, the convergence will not be uniform. On the other hand, if we are mainly
interested in the location of the major part of the power, the integrated power density
spectrum is a natural expression with which to work, and we shall have convergence
under less restrictive conditions, as we have already pointed out, for

Hn(x) dx f (2rnon2 1/ 2 e -x/(2n2 dx (36)
00 -Co

In either case, the wideband FM spectrum tends to a Gaussian shape, a fact that is intui-
tively justified by the Gaussian amplitude density of the modulating message.

We return for a moment to the finite variance assumption, a2 < cc. Remember that
HI(f) = Szz(f) is the power density spectrum of the normalized phase signal, zt. Hence,
we conclude that the finite variance assumption implies an essentially bandlimited phase
signal spectrum, with tails that can be estimated by a Tchebychev bound in general, or
by a less conservative bound in more restricted cases. Moreover, the power density
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spectrum of the message itself must be limited. The power density spectrum of the

message, -12-z (converting from radian to cyclic measure) is

Sz z,(f) = fz H(f) (37)

The finite variance assumption implies that, given any E > 0, there exists a finite fE with

the property that

SSz z' z(f) df + Sz z (f) df = 2 f 2 HI(f) df < (38)

2 rrrr E Z 2r E

Thus, by choosing E as small as desired and finding the smallest f that satisfies

inequality 38, we can say that the message bandwidth is essentially f . Therefore, the

finite variance assumption can be interpreted as a limitation on message bandwidth.

We note one final bandwidth relationship. The power of the unnormalized (cyclic
a 2 2

measure) message, 2- zI, is a - . Since Gaussian waves seldom exceed approximately

three times their rms value, we can say that the peaks of the message waveform almost

always fall below 3ao. On the other hand, Eqs. 34 and 36 imply that, for large values

of a, the FM signal power density spectrum will fall almost entirely within a band of

frequencies extending from 0 up to approximately 3au. Hence, in the limit for wide-

band FM, the peak frequency deviation of the message does, indeed, control the signal

bandwidth.
A. D. Hause
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G. AN OPTIMUM RECEIVED PULSE SHAPE FOR PULSE CODE MODULATION

In discussions of pulse code modulation (1) it is usually assumed that the receiver

consists of a threshold detector (or level selector) that samples a received waveform

every T o seconds and decides in which of J prescribed voltage intervals the sample

lies. The received waveform is assumed to consist in part of an infinite train of iden-

tical pulses with unit peak value and period T . These pulses have been modulated so

that the peak voltage of each pulse can take on any one of J possible values. Statistically
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independent Gaussian noise is added to this modulated pulse train to form the received

waveform. There exists a one-to-one correspondence between the J voltage intervals

and the J possible pulse peak voltages.

Since the sampling is assumed to be periodic, it is possible (2) to choose a band-

limited pulse in such a way that only the amplitude of one pulse (plus the Gaussian noise)

is measured at any sampling instant. Each of the other pulses makes no contribution to

the voltage at that instant. We thus have Gaussian noise interference, but no interpulse

interference. Pulse code modulation is known (3) to be quite efficient for combating

additive Gaussian noise.

In this report we shall relax the assumption that the sampling occurs strictly periodi-

cally and allow a jitter in the sampling times. However, the sampling times will be

mutually independent.

We may contend with additive Gaussian noise in the standard manner (1). However,

we must now cope with the fact that spurious contributions from many pulses will be

superimposed upon the contribution of the desired information-bearing pulse. These

spurious contributions will be called "interpulse interference."

We shall now define a criterion for deciding which of two received pulse shapes gives

rise to more or less interpulse interference. Our next step will be to discuss how we

can obtain an optimum received pulse shape.

1. Criterion for an Optimum Received Pulse Shape

If we are given two unmodulated individual output pulses, rl(t) and r 2 (t), whose peak

values lie in the time interval 2 ' 2 we shall say that rl(t) gives rise to less

interpulse interference if I[rl(t)] < I[r 2 (t)], where

I[r(t)] = q(t)[r(t)-d(t)] 2 dt (1)
-00

with

d 1 for all t satisfying p(t) > 0
d(t) =

0 elsewhere

q(t) = p(t-nTo)
n=-oo

and p(t) is the probability density function for the sampling instant during the time

interval - 2 0 "

We assume that the detector samples the received waveform once and only once

during each time interval ((m- -)To, (m+!)To), with m = 0, ±1, 2, ... and that the
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probability density function for the sampling instant within each interval is the same for

all intervals.

We can justify formula 1 as a criterion for comparing our pulses because (a) the

desired unmodulated pulse, d(t), has unit value at all instants when a sample might be

taken in order to retrieve any information voltage associated with the pulse whose peak
L T

value lies in the time interval - , -)]. The function d(t) has the value zero at all

other possible sampling instants and thus cannot interfere with any other pulses. (b) The

squared difference between r(t) and d(t) in the integrand of formula 1 is weighted by the

factor q(t). This restricts the integration to possible sampling instants only.

Thus, if I[r(t)] is small, then r(t) must be close to d(t) at all possible sampling

instants. Hence, the receiver should be able to extract the voltage information from

each pulse separately, since it must cope with only a small amount of interpulse inter-

ference.

2. The Minimization of I[r(t)]

By using the elementary calculus of variations and Fourier methods the writer has

found that a necessary condition for I[r(t)] to be minimum by varying r(t) is

T n=-oo R(f- = P(f) (2)
o n=-oo

where T0 is the signaling period, and

-j Zft ' -jZft
R(f) = r(t) e dt; P(f) = p(t) e- dt

-co -oo

Equation 2 has the solution:

1 whenever p(t) > 0

r(t) is undefined whenever q(t) = 0

0 elsewhere

Thus, at possible sampling times, r(t) = d(t).

If we now add the constraint that R(f) be zero outside the frequency interval (-W, W),

then we replace Eq. 2 with

1 R n = P(f) for f in (-W, W) (3)
o n=-oo o

The writer has obtained a proof of the existence and uniqueness of the solution of

Eq. 3. This solution is
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+ ... + P(xM) D M'

R(x ) =

where D M is the determinant

for x. in (-W, W)

elsewhere

DM = (TM

P(O)

P _ _

(-M + 1
T
\O

D(i, is the cofactor of the (i, j)
M

say fo, in the interval (-W, W).

The set {xi}, i = 1, 2, ... , M

the band (-W, W). That is,

(a) x. is contained in (-W, W)
1

(b) xi+ 1 = x i + 1/T °

P (T1

P(O)

P o
MT

21PP

P -M + 3
STo

T

p(M-2)

P(O)

element of DM, and x. is any prescribed value of f,

is the set of ordered 1/To translates of x. that lie withinJ

for i = 1, 2, . . ., M;

for i = 1, 2, . . ., M - 1;

(c) x. = f for some j, j = 1, 2, ... , M;

and we compute M as follows: Let d be the largest positive integer (or zero if there is

none) that is such that f + d is contained in the interval (-W, W). Let g be the largest
o g

positive integer (or zero if there is none) that is such that fo - is contained in theo

interval (-W, W). Then M = d + g + 1.

3. Examples

Having defined the symbols in formula 4, let us now apply the formula to

cific examples.

EXAMPLE 1. Suppose that we are signaling at a rate that is at least as

Nyquist rate (i. e., 1/To > 2W), and that (-W, W) is an open interval. Then,

are computing the integer M, we find that d = g = 0. Hence M = 1. Thus

reduces to

some spe-

fast as the

when we

formula 4

-W <x <W1

elsewhere

Therefore, when we are signaling at a rate faster than the Nyquist rate, the best that

we can do is to shape the received pulse spectrum so that it matches the spectrum of the

R(xl) ToP(x )
0
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probability density function, p(t), as far out as we allow our pulse bandwidth to extend.

When we signal at a rate that is slower than the Nyquist rate, then M > 1, and more

terms enter into formula 4. Thus there is a marked difference in the solution when

ZWTo is less than or greater than unity.

EXAMPLE 2. This example is intended to demonstrate what computations must be

made when we apply formula 4. Let 2WT = 2, and

p1 [ + cos 2Tr

p(t) = 5

0

where 0 < 6 4T. Hence,

6<t _<
2 2

elsewhere

P(f)= sin 7T6f 1 in Tr6 (f-)
P(f) +

16 (f-

sin T6 f+ )

2 r a(f+)

If R(f) is to be bandlimited to the open interval (-W, W), then we compute M for dif-

ferent values of f as follows:

For -W < f < 0, d = 1, g = 0; hence M = 2.

For fo = 0, d = 0, g = 0; hence M = 1.

For 0 < f < W, d = 0, g = 1; hence M = 2.

Thus

P(O)

D M =

P(0P(O) 1

o o

if M = 2
P(O) T 0

if M= 1

Direct application of formula 4 now yields

T
o

P(f) - P f + T P

1 P - 1) T1[ )
(TT

R(f) = T

P(f) -P P
T T o \o/

-W <f < 0

f= 0

0<f<W

D. W. Tufts

1 -P - 1 1P I
o o--1 (T0
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H. CONSERVATION OF BANDWIDTH IN NONLINEAR OPERATIONS

When a bandlimited signal is filtered nonlinearly, the width of the spectrum of the
resulting signal, in general, has no bounds. Expansion of the spectrum is characteristic
of nonlinear operations, and hinders their use in communication channels whose band-
width must usually be constrained.

However, filtering does not, loosely speaking, add any new degrees of free-
dom to a signal. For example, when a bandlimited signal is filtered by a non-
linear operator without memory that has an inverse, a sampling of the output
signal at the Nyquist rate obviously specifies the situation completely even though
the output is not bandlimited; the inverse operation can be performed on the
samples instead of on the signal; this yields, in effect, a Nyquist sampling of the
original signal, which is completely specified by the samples. It seems plausible,
therefore, that some of the spectrum added by invertible nonlinear filtering is
redundant, and hence that it could be discarded without affecting the possibility
of recovering the original signal.

We shall discuss a situation (Fig. VIII-1) in which a function of time, x(t), whose
bandwidth is 2co centered about zero, and whose energy is finite, is filtered by any
nonlinear operator without memory, N, that has an inverse and has both a finite maxi-
mum slope and a minimum slope that is greater than zero. The spectrum of y(t) is then

BANDLIMITED EXPANDED , J BANDLIMITED
SIGNAL BAND SIGNAL SIGNAL

(LINEAR) BANDLIMITER

OF WIDTH 2 ow

NONLINEAR OPERATOR WITHOUT
MEMORY , TRANSFER CHARACTERISTIC
INDICATED

Fig. VIII-1. Bandlimiter following a nonlinear operator without memory.
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narrowed down to the original passband by means of a bandlimiter, B. It will be shown

that the cascade combination of B following N has an inverse. This is equivalent to

our stated hypothesis concerning recoverability.

a. Notation

Lower-case letters (for example, x) are used to denote functions of time. The value

assumed by x at time t is x(t). An operational relation N (underlined, capital letter)

between two functions of time, say x and y, is indicated by

y = N(x); y(t) = F(x(T)) (1)

in which the second equation relates the specific value of y at time t to that of x at time

T. Spectra are denoted by capital letters; for example, X(w) is the spectrum of x(t).

I denotes the identity operator that maps each function into itself. We shall have

occasion to use the following symbols:

A + B, denoting the sum of operators A and B.

A * B, denoting the cascade combination of operator A following B.

A -1, denoting the inverse of the operator A, with the property that A * A- = I.

b. Outline of the Method of Inversion

It is required to show that B * N has an inverse and to find it. The essential diffi-

culty is that the bandlimiter B has no inverse by itself, since its spectrum is identically

zero outside the passband. It would have an inverse (simply the identity operator) if the

LINEAR

x (t) - (t) Fig. VIII-2. An equivalent split form for B * N.

N +Nb = N
ARBITRARY

input to it lay entirely in the passband, but y is not such a signal. To circumvent this

difficulty, we resort to the following device: N is split into the sum of two parts

(Fig. VIII-2)

N=Na +N (2)

of which N is linear (hence N is a pure gain). Thus
-a -a

B * N = B * (N + N b) (3)

and, since B is linear and hence distributive,
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B * N = B * N + B * Nb (4)

We can now find the inverse of the part B * N because the spectrum of the output of-a
N lies within the passband of B. However, B * N suffers from the original difficulty.

a -b
Nevertheless, we can find the inverse of B * N by virtue of the fact that the inverse of

a sum of two operators, one of which is linear, can be expressed as an iteration involving

the inverse of only the linear operator (1). For, consider the sum operator

H=H + H b  (5)- -a -b

-1
in which H is linear and has a known inverse, H , whereas H is arbitrary. Consider-a a b
also the following iteration formula, which involves no inverse other than that of H :

K -1
-1 -a

(6)
K =H -  H * * K n = 2,3,...
-n -a -a -b -n-

If K converges to K, which itself satisfies the iteration formula, Eq. 7, then K

must be the inverse of H, because

-1 -1
K = H- I - H - * H b * K (7)- -a a b

Multiplying by Ha and rearranging, we obtain
-a

H *K+H b K =I

or, using Eq. 5, we have

H * K = I (8)

which shows that K is indeed the inverse of H.

It will be shown that the iteration converges as required whenever the operator
-1H * H b is a contraction, a condition that is fulfilled when H, whose inverse is sought,a -b

is not too different from H , whose inverse is known.

These concepts will now be made precise in a series of lemmas. First, the conver-

gence of the iteration will be established for arbitrary operators satisfying certain con-

ditions. Then we shall identify B * N with H and, after studying properties of B and

N, show that B * N may be split in such a way as to satisfy these conditions.

c. The Space L 2

Consider (2) a collection, L2, of all functions x(t) that are defined on the infinite

interval, -c < t < cc, with the property that the following integral, denoted Jx l, exists

and is finite:

100
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lx = Ix(t) 2 dt < oc (9)

With each pair x, y, in L Z a disan'- , I x-y 1, is associated. By definition, x = y when-

ever x-yf = 0.

We shall be concerned with operators such as H that map L 2 into itself. An operator

H is called (3) a contraction in L 2 if it satisfies the condition

11 I(x) - H(y) I< a 1Ix-y I 0 < a < 1 (10)

for all pairs x, y, of members of L 2 .

d. Lemma 1: Convergence of the Iteration for the Inverse

Any operator H that maps the space L Z into itself has an inverse that may be com-

puted by an iteration formula, provided that the following conditions are satisfied:

(i) H may be split into a sum of two operators. Thus

H = H + H (1 1)

-1
in which H is linear and has an inverse, H , and H(0) = H (0) = H(0) = 0. (The condi-

-a a -a b
tion H(0) = 0 is not at all necessary, but it simplifies the iteration.)

-1
(ii) The cascade operator Ha * Hb is a contraction.-a b
The iteration formula has the form

K =0-o

-1
K =H (12)
-1 -a

-1 -1
K =H -H *H * K n = 2, 3,...
-n -a -a -b -n-i

Proof: We shall show that the sequence _Kn} is a Cauchy sequence.

Using formula 12, we obtain

K -K = -H 1 *H K - H -H *H K

-I -1
=H *H *K -H 1 *K n = 2, 3, (13)

-a -b -n-2 -a b -n-

-1
Since H * H is a contraction, we can apply Eq. 10 to Eq. 13 to obtain, for all z in L,-a -b

--(K - Kn)(Z)1 < a (K - -n-2)(z)I
= an-I aH -(z)II 0 < a - 1, n = 2, 3, . . . (14)

101
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in which the second inequality is obtained by applying the first inequality (n-1) times, and
-1

making use of the fact that Hal * Hb(0 ) = 0 by hypothesis.-a * yhyohss
Suppose, next, that m > n, with n = 1, 2, .... Then, by the triangle inequality,

II(Km - Kn)(z)i = II ([Km - K-m- ]+ [-K 1 - K -2] +... [K - Kn]) (z)

- I(K - K m )(Z)I + . . . + II(Kn+l - Kn)(z) (15)

Then, by applying Eq. 14 to Eq. 15, we obtain

I - K )(Z) (a m - 1 + ... an) H 1Ha(z)

n m-n-1 -1= an( +. . + 1) IIH :(z)II
an(1 - a m - n )  1

SHl(z)jj
-a -a

(-1~Z/Hn 1_(z)_11
San (l-a) m > n, n = 1,2 . . (16)

where we have summed the geometric progression. Since H (z) belongs to L2, H 1 (Z)-a 2 a

is finite, and the right-hand side can be made arbitrarily small by choosing n to be suf-

ficiently large. Hence K is a Cauchy sequence. The Riesz-Fisher theorem therefore-n

ensures the existence of a unique x with the property that

K (z)- -x as n - oo (17)
-n

The operator K is now defined by

K(z) = x (18)

K satisfies the iteration formula, Eq. 7, because

K(z)-(H 1 - H 1 * H * K) (z)

K n (z) ( - + K ( z ) K (z) (H - H 1 * H * K)(z)

K(z) - K (z) + K (z) - (H - H 1 * H *K (z)j (19)n n a -a -b

= x -K (z) + H-1 -I( a*H *K ) (z)- H - H 1 *H *K (z) (20)-n -a -a b -n-1 a -a b

< IIx - Kn(z)II + IInK (z) - xll (21)-n 11 -n-1

The triangle inequality was used to get Eq. 19, and Eqs. 18 and 12 were used to get

Eq. 20 from Eq. 19. The contraction condition was used to get Eq. 21.
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Since K (z) -x, by Eq. 17, the right-hand side of Eq. 21 can be made arbitrarily
s-n

small, so that

K(z) = H
-1 Z

- H H * K (z)-a b
(22)

(23)

Since this is true for all z in L 2 , K satisfies the iteration formula

-1 -1
K = H - H *H * K

-a -a -b -

Rearranging terms and multiplying by IHa *, we have

a ba+ Hb) *K =H * K=I

so that K is the inverse of H.

e. Bandlimiting

The bandlimiting operator in L 2 , B, is defined by

B(y) = z;

(24)

(25)t f_ sin T dT
0 y(t-T) dT

Since both x(t-T) and (sin T)/7 are in L 2 , their product

Eq. 25 exists in the Lebesgue sense (4). The Fourier 1

are given by Wiener (5) as

is in L 1, and

transforms alsc

the integral in

exist in L 2 and

Y(W) = l.i.m. 1
A-oo rr-A

A1
B(w) = 1. i. m. -

A-oo -A

= 0, I > ;

OA

Z(w) = 1.i.m. 1 iA
A-o i J-A

(26)y(t) e - jwt dt

sin t e-jt dt
t

1, W- < 0

z(t) e-3*t dt

(27)

(28)

Moreover, Y(w) B(w) must be in L 2 so that

Z(w) = Y(w) B(wo) (29)

Lemma 2: If B denotes the bandlimiting operator in L 2 (Eq. 25), then for all y in L 2
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IJB(y)I < I[y

Proof: Parseval's theorem is applicable.

B(y) = z(t)f 2 dt =

-00 -00
I Z(o ) 2 de =

By definition (Eq. 9),

o

-co
dw

IY() I2 de = Ilyll

f. Lemma 3: Splitting the Nonlinear Operator

A nonlinear operator without memory N defined on L 2 by

N(x) = y; N(x(t)) = y(t)

which satisfies the dual Lipschitz conditions

0 < p y< oo

(32)

(33)

for all x l and x 2 in L 2 , and which is monotonic, can be split into the sum of two opera-

tors:

N = N + N b-a -b

-1
of which N is linear, and has the property that N * Na -a -b
city, we assume that N(0) = N (0) = N b(0) = 0.

Proof: Let N be the linear operator defined by-a

(34)

is a contraction. For simpli-

N (x) = y;-a
1

y(t) =- (Y+P) x(t)

and let Nb be defined by

1
y(t) = N(x(t)) - 1 (y+p) x(t)2

so that Eq. 34 is satisfied by construction. From Eqs. 35 and 36 it follows that

N - * N(x) = y;-a b
-1 2 1 N(x(t)) - yN N (x(t)) =  N(x(t))- (y+p) x(t)-a b Y+P 2

2
- + N(x(t)) - x(t) (37)

The operator N-1The operator N * N will be shown to be a contraction. Let x (t) and x2 (t) be any
-a -b 1 2

two real numbers, and suppose that x 2 (t) > xl(t). Using Eq. 37, we obtain

N- 1 * (t)) - 1 2* Nb(X(t))
Na N(x (t)) -Na (x (t)) [N(x (t)) - N(xl(t))] - [xz(t) - xl(t)]
-a b Z -a b I ' +P Z -
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-oo

(31)

Nb(X) = y;

(35)

(36)

(38)

S1 x2 - x,1 N( 1 N(x -(x) y11 x. - xl , 1
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The right-hand side of Eq. 38 is the difference of two expressions, each of which is

positive because x 2 (t) > x (t), and N is assumed to be monotonic. Suppose, first, that

the difference is positive or zero. Then, by using the upper Lipschitz condition of

Eq. 33, we obtain

- 1  -1 2
-a Nb(xZ(t)) -a Nbx1(t)) + P -[x2 (t) - x(t)] - [x2 (t) - xl(t)]

S+ [x 2 (t) - x 1 (t)] (39)

When the difference in Eq. 38 is negative the lower Lipschitz condition may be used

instead to give Eq. 39 with the inequality and sign reversed. Hence

Na * Nb(xz(t)) - N1a Nb(x(t) a x2(t) - xl(t) 0 - a - < 1 (40)

which implies that

II 1 *Nb(x) - N * Nb(x )II 1 ax2 x 0 < a <1 (41)
a-a b b1 I 2 1II

and therefore N 1 * N is a contraction.
-a -b

We can now prove our principal hypothesis.

g. Theorem on Bandwidth Redundancy

The operator B * N, consisting of a bandlimiter, B, following a monotonic nonlinear

operator without memory, N, restricted to inputs that are in L 2 (have finite energy),

and whose spectrum is nonzero only in the passband of B, has an inverse in L 2 that can

be found as the limit in the mean of an iteration, provided that the following conditions

are satisfied:

(i) N satisfies the dual Lipschitz conditions

PIIxZ(t) - x1 (t)ll < IIN(xZ(t)) - N(x 1 (t))l yj x2(t) - x 1 (t)ll 0 < p < y < 00 (42)

for all real x 1 (t), x 2 (t).

(ii) For simplicity only, the passband of B is confined to -o 0< W < o , and N(0)= 0.

The iteration formula is

-1
(B*N) = 1. i.m. K

-n
n--oo

-1
K = N (43)-1 -a

-1
K N B * N * K n = 2, 3,..-n -a - -b -n- 1
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in which

1
(x) = y; y(t) = 2 (+0y) x(t) (44)-a

and

N b = N - N a  (45)

Proof: Since B is linear, we have

B*N=B*(N a +N =)B N +B N (46)

But because N is linear and B * N is restricted to inputs within the passband,

B * N = N (47)-- -a -a

so that

-1 -1
(B * N) =N-- (48)a -a

Moreover, (B * N a) * (B * Nb) is a contraction, because

(B * N )* (B N (B N (49)a -b a b

-1= * Na *N b  (50)

where the sequence of B and Na can be interchanged, since both are linear. Now, by

using Lemma 2, first, and then Lemma 3, we obtain

IB * N  *Nb(x 2 ) - B N- * Nb()

-a -a

Hence (B Na)- * (B * Nb) is a contraction. Since (B * N )-1 exists and is linear,
Lemma 1 is applicable and the theorem is proved. (Note that B * N-1 and B -1 both

a - b
map bandlimited signals into bandlimited signals.)

h. Extensions of the Theorem

With slight modifications the theorem is valid when N(0) # 0 and for arbitrary pass-
bands.

The no-memory condition is not essential - any monotonic operator that meets the
slope conditions will do. In fact, the theorem is valid for any operator that is close
(in the specified sense) to a linear operator.

The theorem can be shown to be valid in the more general case of a continuous
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No(x),SLOPE IS

AVERAGE OF 0 AND 7
y = x/ ._N )

7= MAXIMUM SLOPE OF N(x)

S= MINIMUM SLOPE OF N (x)

Fig. VIII-3. Graphs of the operator N, and its linear part, Na .

nth APPROXIMATION TO THE INVERSE, x(t),OF z(t)

th
Fig. VIII-4. Schematic form for the n approximation to the inverse

-1 .
of B * N. (Note that N 1 is a pure gain.)

-a

Fig. VIII-5. Realization of the inverse of B * N by means
of a feedback system.
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operator that is monotonically increasing, and that satisfies only the upper Lipschitz

condition in some arbitrarily small neighborhood of the origin and outside some other

arbitrarily large neighborhood of the origin. Such an operator can be approximated in

L 2 as the limit of a sequence of bounded slope operators.

i. Interpretation of the Theorem

When N has a derivative the theorem is applicable, provided that this derivative has

an upper bound, y, and a lower bound, p, that is greater than zero. The graph of N can

then be bounded by two straight lines, as in Fig. VIII-3. The graph of N (x) is a straight-a
line, whose slope is the average of the slopes of the bounding lines.

The iteration has the schematic form shown in Fig. VIII-4, and may be realized, at

least formally, as the feedback system shown in Fig. VIII-5.

The rapidity of convergence of the iteration is greater than that of the geometric
2

series, 1 + a + a + .. ., in which a = (y-P)/(y+p). For rapid convergence it is there-

fore desirable that the difference between maximum and minimum slopes be small.

j. Imperfect Bandlimiting

An ideal bandlimiter is not realizable. However, it can be approximated, for example,
by a Butterworth filter. We shall compute a bound on the error in the inverse signal,
x(t), that results from this approximation.

We have shown that x(t) satisfies without error the following relation:

x = (B*N) (z) = N (z) - B * N * Nb(x) (52)-a a

In place of B we use an approximate bandlimiter, B', which satisfies the restriction

IB'(Ow) < 1 -co < W < 00oo

whence, just as with B (Eq. 30), we have, for y in L 2

B'(y)ll < 1lyll (53)

This ensures that the iteration converges when B' is used in place of B. That is, there

exists some x' with the property that

x = N (z) - B' * N- 1 *N (x') (54)-a - -a -b

Subtracting Eq. 53 from Eq. 54, we get for the error in x,
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-1 * ' * N-1S- x1I = IB * Nb(x) - B' * N b(X')I

= I(B*N_ *N(x)-BItN *N (x)-- a - -a b

+(B' N * NI(X) -' B*_ NN * Nb(x') ) (55)

Applying the triangle inequality, we get

Ix' - < (B-B') * N-1 * N (x)+ B' N- N - B' N N b() (56)
-a b a -(x) -a

-1
Since the operator B' * Na * N b in the second term on the right-hand side is a contrac-

-a b
tion, we may write

-1 ii I,
x' - xJ (B-B') - N * Nb(x) + a x' - xl (57)

whence we get

Ilx' - xl (IB-B') * N a *Nb (x)i

= ci (B-B') *Nb(x)li (58)

1 -1
in which we have combined the constants - and N into c.

I - a -a
It is clear, then, that the error in determining the original signal, x, is proportional

to the error with which B' operates on Nb(x), and becomes small as B' approaches B.

If the approximate bandlimiter, B', is realizable, there is an irreducible error.

However, if a delay in the inversion is tolerable, x can be recovered with any desired

accuracy by combining the bandlimiter with a delay, and delaying the signal z by a cor-

responding length of time in each iteration cycle.
G. D. Zames
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