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Abstract

This dissertation presents three test-generation techniques that are used to improve software qual-
ity. Each of our techniques targets bugs that are found by different stake-holders: developers,
testers, and maintainers. We implemented and evaluated our techniques on real code. We present
the design of each tool and conduct experimental evaluation of the tools with available alternatives.

Developers need to prevent regression errors when they create new functionality. This dis-
sertation presents a technique that helps developers prevent regression errors in object-oriented
programs by automatically generating unit-level regression tests. Our technique generates regres-
sions tests by using models created dynamically from example executions. In our evaluation, our
technique created effective regression tests, and achieved good coverage even for programs with
constrained APIs.

Testers need to detect bugs in programs. This dissertation presents a technique that helps
testers detect and localize bugs in web applications. Our technique automatically creates tests that
expose failures by combining dynamic test generation with explicit state model checking. In our
evaluation, our technique discovered hundreds of faults in real applications.

Maintainers have to reproduce failing executions in order to eliminate bugs found in deployed
programs. This dissertation presents a technique that helps maintainers eliminate bugs by gen-
erating tests that reproduce failing executions. Our technique automatically generates tests that
reproduce the failed executions by monitoring methods and storing optimized states of method ar-
guments. In our evaluation, our technique reproduced failures with low overhead in real programs

Analyses need to avoid unnecessary computations in order to scale. This dissertation presents
a technique that helps our other techniques to scale by inferring the mutability classification of
arguments. Our technique classifies mutability by combining both static analyses and a novel
dynamic mutability analysis. In our evaluation, our technique efficiently and correctly classified
most of the arguments for programs with more than hundred thousand lines of code.

Thesis Supervisor: Michael D. Ernst
Title: Associate Professor
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Chapter 1

Introduction

Software permeates every aspect of our lives. Unfortunately, wherever software is deployed, bugs
are sure to follow. A software bug is a defect in a program that prevents it from behaving as
intended. A 2002 study of the US Department of Commerce’ National Institute of Standards
and Technology concluded that software bugs cost the US economy at least 59 billion dollars
annually [122]. For instance, software bugs in the Therac-25 radiation therapy machine caused
patient deaths [92]. As another example, a prototype of the Ariane 5 rocket was destroyed after
launch, due to a bug in the on-board guidance computer program [63].

The software development cycle contains three phases involving code: implementation, test-
ing, and maintenance. Each each of these cycles, different stake-holders need to address issues
relating to software bugs. Developers have to prevent new bugs, testers try to detect hidden bugs,
and maintainers need to eliminate manifested bugs. In this dissertation we present techniques to
prevent, detect, and eliminate software bugs during these three phases. All our techniques achieve
better results than previous techniques for the same problems. Each of our techniques automati-
cally generates tests to address software bugs based on how and by whom the bugs get discovered:

o During the implementation phase, it is the developer’s task to prevent new software bugs
from being introduced into the software. We present a technique that automatically generates
tests to prevent software regressions.

e During the testing phase, it is the tester’s task to detect hidden software bugs. We present a
technique that automatically generates tests exposing failures in the software.

o During the maintenance phase, it is the maintainer’s task to eliminate software bugs dis-
covered by users. We present a technique that automatically generates tests that reproduce
failures to help eliminate software bugs.

In addition, this thesis also introduces a combined static and dynamic’ analysis for classifying the
mutability of references. The mutability classification increases the effectiveness of our prevention

IDynamic analysis observes the behavior of the program when it is executed to provide information such as exe-
cution traces, coverage information, and timing profiles. Static analysis examines the program’s source code without
executing it, for various kinds of information
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technique and the performance of our elimination technique.
There are previous several solutions for handling software bugs. Each of our technique builds
on, and improves such previous solutions.

Prevention A regression error occurs when working functionality ceases to work as intended, after
a program change. A common way to prevent regression errors is by using regression tests.
Regression tests exercise existing functionally while validating the expected results. When a
regression test fails, the developer can either fix the regression error or update the test. Unit
level regression tests any very useful. The execution time of unit level regression tests is fast,
and they make the tasks of locating regression errors easy. System level regression tests, on
the other hand, can take hours or days to execute. Thus, regression errors are discovered a
long time after being introduced, and locating them becomes much harder. Unfortunately,
since creating unit level regression tests is time consuming, they only exercise small parts
of the functionality for most programs, while system level regression tests exercise more
functionality.

We present a technique that automatically generates regression tests on the unit level. The
technique creates models of program behavior from example executions of the program.
Then the technique generates unit level regression tests for the program by using the models
to guide random test generation.

Detection Traditional testing is aimed at detecting bugs by executing the software under controlled
conditions and evaluating the results. The goal of the testing is to increase the confidence
of the tester that the software behaves as expected. However, due to the nature of the pro-
gramming language or the output, the tests are often lacking in either code coverage, or
specifications coverage.

We present a technique that generate tests to automatically detect failures in the domain of
dynamic web applications. In this domain tests are harder to create manually due to the
dynamicity of underlying languages, the frequency with which the code is modified, and
the heavy dependence of the program flow on user interaction. Our technique combines
dynamic test generation (27, 67, 133] with explicit state model-checking, which were not
exploited before for the task of locating bugs in dynamic web applications.

Elimination Debugging is the process of finding and eliminating bugs. First, the developer needs
to be able to reproduce the failure consistently. Once the failure can be reproduced, the de-
veloper can find the causing bug, and then try a solution for the bug. The task of reproducing
a failure becomes harder when the failure is discovered by a user in a deployed application
during the maintenance phase.

We present an approach to reproduce failures efficiently, without introducing any changes to
the user’s environment, and with low execution overhead. This approach connects debugging
with testing by storing partial information on method entry, and generating units test that
reproduce an observed failure.

In this dissertation we have found that dynamic analysis is a very useful tool in addressing
problems related to software bugs, especially when combined with other types of analysis. Our

12



prevention technique uses dynamic analysis to create models of program execution and combines
dynamic analysis with randomized test generation. This combination has not been previously used
for creating regression tests. Our detection technique uses dynamic analysis (as part of the dynamic
test generation) to find the correlation between inputs and the paths taken during the execution. In
order to explore more functionally, our technique combines the dynamic analysis with explicit state
model checking to allow the simulation of multi-stage user interaction. This allows the dynamic
test generation to be effective for the domain of web-applications in which we are the first to
have tried it. Our elimination technique uses dynamic analysis to store information during the
execution. This information is used to revert the system to different states from before the failure
happened. We combine the dynamic analysis with static analysis used to reduce the overhead of
storing the information. Finally, our mutability inference technique combines scalable dynamic
analysis inference with the accurate lightweight static analysis inference to achieve a combined
scalable and accurate technique.

The different uses of the generated tests also determine the similarity of the tests to the observed
executions. When our technique generates tests to prevent bugs in existing working software, the
goal of the tests is to exercise functionality which is similar to the observed existing functionality.
When our technique generates tests to expose hidden bugs in the program, the goal of the tests
is to explore unrestricted different functionality. Finally, when our technique generates tests for
reproducing a failure, the goal of the tests is the imitate as closely as possible the original failing
execution.

Section 1.1 presents a detailed list of the contributions in this thesis.

1.1 Summary of Contributions

This dissertation presents the following contributions:

o A technique that combines dynamic analysis with random testing to automatically gener-
ate regression tests in order to reduce the number of new bugs introduced into object ori-
ented programs when the program is modified. An earlier version of this technique appeared
in [10].

The technique uses an example execution of the program to infer a model of legal call se-
quences. The model guides a random input generator towards legal but behaviorally-diverse
sequences that serve as legal test inputs. This technique is applicable to programs without
formal specification, even for programs in which most sequences are illegal.

We present an implementation of this technique, in a tool called Palulu, and evaluate its
effectiveness in creating legal inputs for real programs. Our experimental results indicate
that the technique is effective and scalable. Our preliminary evaluation indicates that the
technique can quickly generate legal sequences for complex inputs: in a case study, Palulu
created legal test inputs in seconds for a set of complex classes, for which it took an expert
thirty minutes to generate a single legal input.
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e A technique that leverages the combined concrete and symbolic execution technique, to au-
tomatically expose and localize crashes and malformed dynamically-generated web pages in
dynamic web applications. These common problems seriously impact usability of Web ap-
plications. Current tools for Web-page validation cannot handle the dynamically-generated

pages that are ubiquitous on today’s Internet. An earlier version of this technique appeared
in[11].

We present a dynamic test generation technique for the domain of dynamic web applications.
The technique utilizes both combined concrete and symbolic execution and explicit-state
model checking. The technique generates tests automatically, runs the tests capturing logical
constraints on inputs, and creates failing tests. It also minimizes the conditions on the inputs
to failing tests, so that the resulting bug reports are small and useful in finding and fixing the
underlying faults.

Our tool Apollo implements the technique for the PHP programming language. Apollo gen-
erates test inputs for a web application, monitors the application for crashes, and validates
that the output conforms to the HTML specification. We present Apollo’s algorithms and
implementation, and an experimental evaluation that revealed 302 faults in 6 PHP web ap-
plications.

* A technique that uses dynamic analysis to reproduce software failures in object-oriented
programs. The technique automatically converts a crashing program execution into a set of
deterministic and self-contained unit tests. Each of the unit tests reproduces the problem
from the original program execution. An earlier version of this technique appeared in [13].

The technique is based on the idea that it is not necessary to replay the entire execution in
order to reproduce a specific crash. For many crashes, creating a test case requires only
partial information about the methods currently on the stack. Our technique exploits the
premise of unit testing (that many bugs are dependent on small parts of the heap) and the fact
that good object-oriented style avoids excessive use of globals. The technique is efficient,
incurring low performance overhead. The technique has a mode, termed “second chance”
in which the technique will have negligible overhead until a crash occurs and very small
overhead until the crash occurs for a second time, at which point the test cases are generated.

We present ReCrashJ, an implementation of our approach for Java. ReCrashJ reproduced
real crashes from Javac, SVNK:it, Eclipsec, and BST. ReCrash] is efficient, incurring 13%-
64% performance overhead. In “second chance” mode, ReCrash] had a negligible overhead
until a crash occurs and 0%-1.7% overhead until the crash occurs for a second time, at which
point the test cases are generated.

e A technique that uses a combination of static and dynamic analysis to detect method param-

eters that will not change during execution. An earlier version of this technique appeared
in [14].

Knowing which method parameters may be mutated during a method’s execution is useful
for many software engineering tasks. A parameter reference is immutable if it cannot be
used to modify the state of its referent object during the method’s execution. We formally
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define this notion, in a core object-oriented language. Having the formal definition enables
determining correctness and accuracy of tools approximating this definition and unbiased
comparison of analyses and tools that approximate similar definitions.

We present Pidasa, a tool for classifying parameter reference immutability. Pidasa combines
several lightweight, scalable analyses in stages, with each stage refining the overall result.
The resulting analysis is scalable and combines the strengths of its component analyses. As
one of the component analyses, we present a novel dynamic mutability analysis and show
how its results can be improved by random input generation. Experimental results on pro-
grams of up to 185 kLOC show that, compared to previous approaches, Pidasa improves
both the run-time performance and the overall accuracy of immutability inference. Muta-
bility classifications are used in our first technique (prevention) to reduce the size of the
generated models, and in our third technique (elimination) to reduce the amount of informa-
tion stored on method entry.

The rest of the dissertation is organized as follows. Chapters 2—5 discuss the main parts of the
thesis, introduce the problems and algorithms by examples, and present the design of the exper-
iments that evaluate the work. The chapters correspond to the main components of the work—
bug prevention by automatically creating regression tests (Chapter 2), bug detection in dynamic
web applications (Chapter 3), bug elimination using stored object states (Chapter 4), and mutabil-
ity analysis infrastructure (Chapter 5). Each of the chapters is self contained and can be read in
any order. Finally, Chapter 6 summaries this dissertation and presents several directions for future
work.
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Chapter 2

Prevention

This chapter presents a test generation technique to help developers prevent software regressions.
A software regression occurs when existing working functionality ceases to work as a result of
software changes.

Regression testing is commonly used to prevent software regressions. Regression testing in-
volves the creation of a set of test cases, covering as much of the software functionality as possible,
and the frequent execution of the tests during development. Working on software that has minimal
or no regression tests is like walking on eggshells: every change can break something. However,
unlike walking on eggshells, the damage is not always immediately obvious.

The task of creating regression tests is time-consuming. As a result of limited resources, de-
velopers often neglect the creation of regression tests, or more typically create a set of tests that
doesn’t cover most of the existing functionality.

In this chapter we present an automated way of creating test inputs for object- oriented pro-
grams [40, 110, 149, 156, 157]. A test input for an object-oriented program typically consists of a
sequence of method calls that use the public interface (API) defined by the program under test. For
example, List 1 = new List(); 1.add(1); 1.add(2) is a test input for a class that implements a
list. Tests inputs can be automatically or manually augmented with assertions to create regression
tests. For many programs, most method sequences are illegal: for correct operation, calls must oc-
cur in a certain order with specific arguments. Techniques that generate unconstrained sequences
of method calls without the use of formal specifications are bound to generate mostly illegal inputs.

For example, Figure 2-1 shows a test input for the tinySQL database server'. Before a query
can be issued, a driver, a connection, and a statement must be created, and the connection must
be initialized with a meaningful string (e.g., “jdbc : tinySQL”). As another example, Figure 2-8
shows a test input for a more complex API.

Model-based testing [29, 35, 52,70, 73,76, 108, 121, 144, 147] offers one solution. A model
can specify legal method sequences (e.g., close() cannot be called before open(), or connect()
must be called with a string that starts with “jdbc :”). But as with formal specifications, most
programmers are not likely to write models (except perhaps for critical components), and thus
non-critical code may not take advantage of model-based input generation techniques.

Thttp://sourceforge.net/projects/tinysql
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TextFileDriver d = new TextFileDriver();

Conn con = d.connect("jdbc:tinySQL",null);

Stmt s2 = con.createStmt();

s2.execute ("CREATE TABLE test (name char(25), id int)");
s2.executeUpdate("INSERT INTO test(name, id) VALUES(’Bob’, 1)");
s2.close();

Stmt sl = con.createStmt();

sl.execute("DROP TABLE test™);

sl.close();

con.close();

Figure 2-1: Example of a manually written client code using the tinySQL database engine. The
client creates a driver, connection, and statements, all of which it uses to query the database.

To overcome the problem of illegal inputs, we developed a technique that combines dynamic
model creation and testing. Our technique creates a model of method sequences from an example
execution of the program under test, and uses the model to guide a test input generator towards the
creation of legal method sequences. Because the model’s sole purpose is aiding an input generator,
our model inference technique is different from previous techniques [7, 36, 154, 161] which are
designed primarily to create small models for program understanding. Our models must contain
information useful for input generation, and must handle complexities inherent in realistic pro-
grams (for example, nested method calls) that have not been previously considered. At the same
time, our models need not contain any information that is useless in the context of input generation
such as methods that do not mutate state.

Our generator uses the model to guide its input generation strategy. The emphasis on “guide” is
key: to create behaviorally diverse inputs, the input generator may diverge from the model, which
means that the generated sequences are similar to, but not identical to, the sequences used to infer
the model. Generating such sequences is desirable because it permits our test generation technique
to construct new behaviors rather than merely repeating the observed ones. Our technique creates
diverse inputs by (i) generalizing observed sequences (inferred models may contain paths not ob-
served during execution), (ii) omitting certain details from models (e.g., values of non-primitive,
non-string parameters), and (iii) diverging from models by randomly inserting calls to methods not
observed during execution. (iv) combining instances created from different sequences to further
explore possible functionality. Some of the generated inputs may be illegal-—our technique uses
heuristics that discard inputs that appear to be illegal based on the result of their execution [111].

In this chapter, we present the following contributions:

e We present a dynamic model-inference technique that infers call sequence models suitable
for test input generation. The technique handles complexities present in real programs such
as nested method calls, multiple input parameters, access modifiers, and values of primitives
and strings.

e We present a test-input generation technique that uses the inferred models, as well as feed-
back obtained from executing the sequences, to guide generation towards legal, non-trivial
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sequences.

e We present Palulu, a tool that implements both techniques for Java. The input to palulu is a
program under test and an example execution. Palulu uses the example execution to infer a
model, then uses the model to guide the input generation in creating inputs. Palulu’s output
is a collection of test inputs for the program under test.

e We evaluate Palulu on a set of real applications with constrained interfaces, showing that
the inferred models assist in generating inputs for these programs. We also show that tests
created using our models on highly constrained object oriented programs achieve better cov-
erage than tests created using the universal models.

The remainder of the chapter is organized as follows. Section 2.1 presents the technique.
Section 2.2 describes an experimental evaluation of the technique. Section 2.3 surveys related
work, and Section 2.4 concludes the chapter

2.1 Technique

The input to our technique is an example execution of the program under test. The output is
a set of test inputs for the program under test. The technique has two steps. First, it infers a
model that summarizes the sequences of method calls (and their input arguments) observed during
the example execution. Section 2.1.1 describes model inference. Second, the technique uses the
inferred models to guide input generation. Section 2.1.2 describes test input generation.

2.1.1 Model Inference

For each class observed during execution, our technique constructs a model called a call sequence
graph. Call sequence graphs are rooted, directed, and acyclic. The edges represent method calls
and their primitive and string arguments. Each node in the graph represents a collection of object
states, each of which may be obtained by executing the method calls along some path from the
root to the node. In other words, a node describes the history of calls. Each path starting at the root
corresponds to a sequence of calls that operate on a specific object—the first method constructs the
object, while the rest of the methods mutate the object (possibly as one of their parameters). Note
that when two edges point to the same node, it does not necessarily mean that the underlying state
of the program is the same.

The call sequence graph (model) for the class is a summary of call sequence graphs for all
instances of the class. The model inference algorithm constructs a model in two steps. First, it
constructs a call sequence graph for each instance of the class, observed during execution. Second,
it creates the model for the class by merging all the call sequence graphs of instances of the class.

2.1.1.1 Constructing the Call Sequence Graph

A call sequence of an object contains all the calls in which the object participated as the receiver
or a parameter, with the method nesting information for sub-calls. Figure 2-2(b) shows a call
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S=tinySqQL
Conn=Connection
Stmt=Statement
DR="DROP TABLE test"

CR="CREATE TABLE test (name
char(25), id int)"

DR="DROP TABLE test"
IB="INSERT INTO test (name, id)
VALUES('Bob’, 1)"

s1=Conn.createStmt() $1=new Stmt(Conn)

O
s1=Conn.createStmt() $ 1=new Stmt(Conn)

IS.parse(s1,DR)

(a) Class and string literal
abbreviations

. s1 = Conn.createStmt()
. — s1 = new Stmt(Conn)
. sl.execute(DR)
. — TS.parse(s1, DR)
—— TSParser.DropTable(s1)
. ——— new DropTableStmt(s1)
. — sl.setStmt(SQLStmt)
8. sl.close()
(b) Call sequence for object

sl

R N R T

(d) Public-call sequence

(c) Call sequence graph for s1 | ) ¢or g1

Figure 2-2: Constructing a call sequence graph for an object. (a) Abbreviations used in Figures 2-2
and 2-4. (b) Call sequence involving object s1 in the code from Figure 2-1. Indented lines (marked
with arrows) represent nested calls, grey lines represents state-preserving calls, and lines in bold
face represent non-public calls. (c) Call sequence graph for s1 inferred by the model inference
phase; it omits state-preserving calls. The path A-B-C represents two calls (lines 4 and 7) nested
in the call in line 3. (d) Public call sequence graph, after removing from (b) an edge corresponding
to a non-public call.

sequence of the Stmt instance s1 from Figure 2-1. A call sequence graph of an instance is a
graph representation of the object’s call sequence—each call in the sequence has a corresponding
edge between some nodes, and calls nested in the call correspond to additional paths between the
same nodes. Edges are annotated with primitive and string arguments of the calls, collected during
tracing. (Palulu records method calls, including arguments and return values, and field/array writes
in a trace file created during the example execution of the program under test.)

The algorithm for constructing an object’s call sequence graph has three steps. First, the algo-
rithm removes state-preserving calls from the call sequence. Second, the algorithm creates a call
sequence graph from the call sequence. For nested calls, the algorithm creates alternative paths in
the graph. Third, the algorithm removes non-public calls from the graph.

Figure 2-2 (c) shows the call sequence graph corresponding to the call sequence in Figure 2-
2 (b). The call sequence graph indicates, for example, that it is possible to transition an instance of
Stmt from state A to state C either by calling s1.execute() or by calling TS.parse(s1, DR) and then
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calling s1.setStmt(SQLStmt). Figure 2-2 (d) shows the final call sequence graph for the instance
s1, after removing non-public calls.

Next, we describe the steps in the algorithm for constructing an object’s call sequence graph:

1. Removing state-preserving calls. The algorithm removes from the call sequence all calls
that do not modify the state of the object.

State-preserving calls are of no use in constructing inputs, and omitting them reduces model
size and search space without excluding any object states. Use of a smaller model containing only
state-changing calls makes test generation more likely to explore many object states (which is one
goal of test generation) and aids in exposing errors. State-preserving calls can, however, be useful
as oracles for generated inputs, which is another motivation for identifying them. For example, the
call sequence graph construction algorithm ignores the calls in lines 5 and 6 in Figure 2-2(b).

To discover state-preserving calls, the technique use the immutability analysis technique (Chap-
ter 5) on the subject program. A method parameter (including the receiver) is considered im-
mutable if no execution of the method changes the state of the object passed to the method as the
actual parameter. The “state of the object” is the part of the heap that is reachable from the object
by following field references.

2. Constructing call sequence graph. The call sequence graph construction algorithm is
recursive and is parameterized by the call sequence, a starting node, and an ending node. The top-
level invocation (for the entire history of an object) uses the root as the starting node and a dummy
node as the ending node?.

Figure 2-3 shows a pseudo-code implementation of the algorithm. The algorithm processes the
call sequence call by call, while keeping track of the last node it reached. When a call is processed,
a new edge and node are created and the newly created node becomes the last node. The algorithm
annotates the new edge with the primitive and string arguments of the call.

Nested calls are handled by recursive invocations of the construction algorithm and give rise
to alternate paths in the call sequence graph. After a call to method c is processed (i.e., an edge
between nodes n; and n, is added to the graph), the algorithm creates a path in the graph starting
from n; and ending in n,, containing all calls invoked by c.

For example, Figure 2-2(c) contains two paths from state A to state C. This alternative path con-
taining TS.parse(sl, DR) and sl.setStmt(SQLStmt) was added because the «call to
si.execute() (line 3) of Figure 2-2(b) invokes those two calls (lines 4 and 7).

3. Removing non-public calls. After constructing the object’s call sequence graph, the algo-
rithm removes from the graph each edge that corresponds to a non-public method. Thus, each path
through the graph represents a sequence of method calls that a client (such as a test case) could
make on the class. Non-public calls are removed from the graph after it is constructed because
removing them in the same way as state-preserving calls would create paths that were never seen
in the original execution.

For example, Figure 2-2(d) presents the call sequence graph after removing the edge corre-
sponding to the non-public method s1.setStmt (SQLStmt) in Figure 2-2(c).

2Dummy nodes are not shown in Figures 2-2 and 2-4.
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// Insert sequence cs between nodes start and end.
createCallSequenceGraph(CallSequence cs, Node start, Node end) {
Node last = start;
for (Call ¢ : cs.toplevelCalls()) {
Node next = addNewNode();
addEdge(c, last, next); // add "last --c--> next"
CallSequence nestedCalls = cs.getNestedCalls(c);
createCallSequenceGraph(nestedCalls, last, next);
last = next;

}
replaceNode(last, end); // replace last by end

}

Figure 2-3: The call sequence graph construction algorithm written in Java-like pseudo-code. The
algorithm is recursive, creating alternate paths in the graph for nested calls. The algorithm uses
the following auxiliary functions. topLevelCalls returns the list of calls that involved the ob-
ject as a parameter, but were not nested in any other call that involved the object as a parameter.
addNewNode adds a new node to the graph. addEdge adds an edge for the method given by its
first parameter, between the nodes given by its second and third parameters. getNestedCalls
returns a call sequence containing all the calls nested in its parameter. replaceNode replaces, in
the graph, the node pointed to by its first parameter with the node pointed to by its second.

Figure 2-4: Call sequence graphs for s1 (from Figure 2-2(c)), s2 (not presented elsewhere), and
the merged graph for class Statement.

2.1.1.2 Merging Call Sequence Graphs

Once the algorithm finished generating the call sequence graphs for all the observed instances of
each class, the algorithm merges them into the class’s model as follows. First, merge their root
nodes. Whenever two nodes are merged, merge any pair of outgoing edges (and their target nodes)
if (1) the edges record the same method, and (ii) the object appears in the same parameter positions
(if the object is the receiver of the first method it must be the receiver of the second, similarly for
the parameters); other parameters, including primitives and strings may differ. When two edges
are merged, the new edge stores their combined set of primitives and strings.

Figure 2-4 shows merging of call sequence graphs. The left and center parts show the graphs for
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s1 and s2, while the right part shows the merged model for the Stmt class. The edges corresponding
to sl.execute(DR) and s2.execute(CR) are merged to create the edge s.execute(DR|CR).

2.1.1.3 Advantages of the Call Sequence Graph

Following the call sequence graph can lead to generation of legal sequences that were not seen
in the original execution, or that exercise the program behavior in interesting corner cases. For
instance, a valid call sequence from the model in Figure 2-4(c) might try to create a table and then
close the connection (in the original execution, after the table was created, the statement was used
to issue a query). Another possible sequence might try to drop the table “test” and then try to
insert rows into it, causing a missing table exception to be thrown. Both of those examples exhibit
behavior that should be checked by a regression test. For instance, the regression test for the latter
would check for the missing table exception.

2.1.2 Generating Test Inputs

The input generator uses the inferred call sequence models to guide generation towards legal se-
quences. The generator has three arguments: (1) a set of classes for which to generate inputs, (2)
call sequence models for a subset of the classes (those for which the user wants test inputs gener-
ated using the models), and (3) a time limit. The result of the generation is a set of test inputs for
the classes under test.

The input generator mixes generation using universal models (that allow any method sequence
and any parameters) and generation using the models inferred from the example execution. The
generator 1s incremental: it maintains an (initially empty) component set of previously-generated
method sequences, and creates new sequences by extending sequences from the component set
with new method calls.

The input generation has two phases, each using a specified fraction of the overall time limit.
In the first phase, the generator uses universal models to create test inputs. The purpose of this
phase is initializing the component set with sequences that can be used during learned model-
based generation. This phase may create sequences that do not follow the inferred models, which
allows for creation of more diverse test inputs. In the second phase, the generator uses the inferred
models to guide the creation of new test inputs.

An important challenge in our approach is creating tests that differ sufficiently from observed
executions. Our technique achieves this goal by (i) generalizing observed sequences (inferred
models may contain paths not observed during execution), (ii) omitting certain details from models
(e.g., values of non-primitive, non-string parameters) (iii) diverging from models by randomly
inserting calls to methods not observed during execution, and (iv) sequences that are created in the
first phase of generation can be inserted in the second phase.

2.1.2.1 Phase 1: Generation Using Universal Models

In this phase, the generator executes the following three steps in a loop, until the time limit expires.
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1. Select a method. Select a method m(Ty, ..., Tk) at random from among the public methods
declared in the classes under test (7 is the type of the receiver). The new sequence will have
this method as its last call.

2. Create a new sequence. For type T, of each parameter of method m, attempt to find, in
the component set, an argument of type 7; for method m. The argument may be either a
primitive value or a sequence s; that creates a value of type 7. There are two cases:

e If 7; is a primitive (or string) type, then select a primitive value at random from a pool
of primitive inputs (our implementation seeds the pool with inputs like 0, 1, -1, ‘a’,
true, false, ”, etc.).

e If T} is a reference type, then use null as the argument, or select a random sequence s;
in the component set that creates a value of type 7}, and use that value as the argument.
If no such sequence exists, go back to step 1.

Create a new sequence by concatenating the s; sequences and appending the call of m (with
the chosen parameters) to the end.

3. Add the sequence to the component set. Execute the new sequence (our implementation
uses reflection to execute sequences). If executing the sequence does not throw an excep-
tion, then add the sequence to the component set. Otherwise, discard the sequence. Se-
quences that throw exceptions are not useful for further input generation. For example, if
the one-method input a = sqrt(—1); throws an exception because the input argument must
be non-negative, then there is no sense in building upon it to create the two-method input
a = sqrt(-1);b = log(a);.

Example. We illustrate input generation using the universal models on the tinySQL classes.
In this example, the generator creates test inputs for classes Driver and Conn. In the first it-
eration, the generator selects the static method Conn.create(Stmt). There are no sequences
in the component set that create a value of type Stmt, so the generator goes back to step 1.
In the second iteration, the generator selects the constructor Driver() and creates the sequence
Driver d = newDriver(). The generator executes the sequence, which throws no exceptions.
The generator adds the sequence to the component set. In the third iteration, the generator se-
lects the method Driver.connect(String). This method requires two arguments: the receiver of
type Driver and the argument of type String. For the receiver, the generator uses the sequence
Driver d = new Driver(); from the component set. For the argument, the generator randomly
selects “’ from the pool of primitives. The sequence isDriver d = new Driver(); d.connect(‘”).
The generator executes the sequence, which throws an exception (i.e., the string “” is not valid a
valid argument). The generator discards the sequence.

2.1.2.2 Phase 2: Generation Using the Inferred Models

In this phase the generator uses the inferred model to guide the creation of new sequences. We call
the sequences that the model-based generator creates modeled sequences, which are distinct from
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the sequences generated in the first phase. The generator keeps two (initially empty) mappings.
Once established, the mappings never change for a given modeled sequence. The mo (modeled
object) mapping maps each modeled sequence to the object constructed by the sequence. The cn
(current node) mapping maps each modeled sequence to the node in the model that represents the
current state of the sequence’s mo-mapped object.

Similarly to the generator from Phase 1, the generator attempts to create a new sequences by
repeatedly extending modeled sequences from the component set. The component set is initially
populated with the (universally modeled) sequences created in the first generation phase. The
generator repeatedly performs one of the following two actions (randomly selected), until the time
limit expires.

e Action 1: create a new modeled sequence. Select at random a class C and an edge E that
is outgoing from the root node in the model of C Let m(7y, . . ., T;) be the method that edge
E represents. Create a new sequence s’ that ends with a call to m, in the same manner as
the generation in phase 1—concatenate any sequences from the component set to create the
arguments for the call, then append the call to m at the end. Execute s” and add it to the
component set if it terminates without throwing an exception. Create the mo mapping for
s'—the s’ sequence mo-maps to the return value of the call to m (model inference ensures
that m does have a return value). Finally, create the initial cn mapping for s’—the s” sequence
cn-maps to the target node of the E edge.

e Action 2: extend an existing modeled sequence. Select a modeled sequence s from the
component set and an edge E outgoing from the node cn(s) (i.e., from the node to which s
maps by cn). These selections are done at random. Create a new sequence s’ by extending
s with a call to the method that edge E represents (analogously to Action 1). If a parameter
of m is of a primitive or string type, randomly select a value from among those that decorate
edge E. Execute s’ and add it to the component set if it terminates without throwing an
exception. Create the mo mapping for s'—the s’ sequence mo-maps to the same value as
sequence s. This means that s’ models an object of the same type as s. Finally, create the cn
mapping for s’—the s’ sequence cn-maps to the target node of the E edge.

Example. We use tinySQL classes to show an example of how the generator works. The generator
in this example uses the model presented in the right-hand side of Figure 2-4. In the first iteration,
the generator selects Action 1, and method createStmt. The method requires a receiver, and the
generator finds one in the component set populated in first generation phase (last two lines of the
following example) The method executes with no exception thrown and the generator adds it to
the component set. The following shows the newly created sequence together with the mo and cn
mappings.

sequence s mo(s) | cn(s)

Driver d = new Driver();
Conn ¢ = d.connect("jdbc:tinySQL"); st A
Statement st = c.createStmt();

25



In the second iteration, the generator selects Action 2 and method execute. The method
requires a string parameter and the model is decorated with two values for this call (denoted by DR
and CR in the right-most graph of Figure 2-4). The generator randomly selects CR. The method
executes with no exception thrown and the generator adds it to the component set. The following
shows the newly created sequence together with the mo and cn mappings.

sequence s mo(s) | cn(s)

Driver d = new Driver();

Conn ¢ = d.connect("jdbc:tinySQL");
Statement st = c.createStmt(); st C
st.execute("CREATE TABLE test (name char(25), id int)");

2.2 Evaluation

This section presents an empirical evaluation of Palulu’s ability to create test inputs. We mainly
compared Palulu to JOE [111]. JOE is a test input generation technique that uses universal models,
and was shown to out perform all of its competitors. Section 2.2.1 shows that test inputs generated
using Palulu inferred models yields better coverage than test inputs generated by JOE. Section 2.2.2
shows that Palulu regression tests can find more regression errors than regression tests generated
by JOE, and a hand crafted test suite. Section 2.2.3 illustrates that Palulu can create a test input for
a complex data structure, for which JOE was unable to create a test input.

2.2.1 Coverage

We compared Palulu generation’s using the inferred models to JOE [111]’s generation using the
universal models in creating inputs for programs with constrained APIs. Our hypothesis is that
tests generated by following the call sequence models will be more effective, since the test gen-
erator is able to follow method sequences and use input arguments that emulate those seen in an
example input. We measure effectiveness via block and class coverage, since a test suite with
greater coverage is generally believed to find more errors.

2.2.1.1 Subject programs

We used four Java programs as our subject programs. Each of these programs contains many
classes with constrained APIs, requiring specific method calls and input arguments to create legal
input.

e tinySQL? (27 kLOC) is a minimal SQL engine. We used the program’s test suite as an
example input.

3http ://sourceforge.net/projects/tinysql
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classes for which technique || block coverage
all tested | generated at least one input
Program classes | classes || JOE Palulu JOE | Palulu
tinySQL 119 32 19 30 19% | 32%
HTMLParser | 158 22 22 22 34% | 38%
SAT4]) 122 22 22 22 27% | 36%
Eclipse 320 70 46 46 8.0% | 8.5%

Figure 2-5: Classes for which inputs were successfully created, and coverage achieved, by using
JOE’s test input generation models, and Palulu’s model-based generation.

¢ HTMLParser* (51 kLOC) is real-time parser for HTML. We used our research group’s
webpage as an example input.

e SAT4J° (11 kKLOC) is a SAT solver. We used a file with a non-satisfiable formula, taken
from DIMACSS, as an example input.

o Eclipse compiler’ (98 kLOC) is the Java compiler supplied with the Eclipse project. We
wrote a 10-line program for the compiler to process, as an example input.

2.2.1.2 Methodology

As the set of classes to test, we selected all the public non-abstract classes, for which instances
where created during the sample execution. For other classes, we do not infer models and therefore
the inputs generated by the two techniques will be the same.

The test generation was run in two phases. In the first phase it generated components for 20
seconds using universal models for all the classes in the application. In the second phase, test
input creation, it generated test inputs for 20 seconds for the classes under test using either Palulu’s
inferred models or the universal models.

Using the generated tests, we collected block and class coverage information with emma®.

2.2.1.3 Results

Figure 2-5 shows the results. The test inputs created by following the call sequence models achieve
better coverage than those created by JOE.

The class coverage results differ only for tinySQL. For example, without the call sequence
models, a valid connection or a properly-initialized database are never constructed, because of the
required initialization methods and specific input strings.

The block coverage improvements are modest for Eclipse (6%, representing 8.5/8.0) and HTML-
Parser (12%). SAT4J shows a 33% improvement, and tinySQL, 68%. We speculate that programs

4http ://htmlparser.sourceforge.net
5http://vf:ww. sat4j.org

6ftp ://dimacs.rutgers.edu

7http ://www.eclipse.org

8http ://emma.sourceforge.net
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Test Suite Number of Tests | Faulty Implementation | False Positives
Manually-Written 190 14 0
JOE 2016 42 1
Palulu 1465 . 64 |

Figure 2-6: Faulty implementations found in the RatPoly experiment by three test suites.
Manually-written, generated by Palulu, and generated by JOE [111]. The first column is the num-
ber of tests in the test suite. The second column contains the number of faulty implementations
reported by the test suite. The third column is the number of correct implementation that failed at
least one test (false positive).

with more constrained interfaces, or in which those interfaces play a more important role, are more
amenable to the technique.

The results are not dependent on the particular time bound chosen. For example, allowing JOE
100 seconds for generation achieved less coverage than generation using the call sequence models
for 10 seconds.

2.2.2 Palulu Generate Effective Regression Tests

This section describes an experiment that evaluates the effectiveness of Palulu’s regression test
generation. We compared the generation using Palulu models against JOE [111] which gener-
ates tests using the universal models, and against a manually-written test suite (crafted over six
years). Briefly, a test suite generated using the Palulu models found more bugs than both the suite
generated by JOE, and the manually-written suite.

2.2.2.1 Subject programs

RatPoly is a library for manipulating rational-coefficient polynomials. Implementing the required
API was an assignment in MIT’s software engineering class. We had access to 143 student im-
plementations, the staff implementation, and a test suite used for grading. The staff test suite
contains 190 tests and 264 dynamic assertions and been augmented over the period of 6 years by
the course staff. We have no reason to believe that its actual completeness was below the average
state-of-the-practice in the real world. The staff solution (naturally) passed all the tests.

2.2.2.2 Methodology

We used Palulu and JOE to create a regression test suite for the staff implementation. Our goal was
to discover faulty implementation submitted by the students. As the example input to Palulu, we
wrote a small program exercising different methods of the RatPoly library.

28



Class Description Requires
VarInfoName | Variable name

VarInfo Variable description VarInfoName
PptSlice2 Two variables from a program point VarInfo, PptToplLevel, Invariant
PptTopLevel | Program point PptSlice2, VarInfo

LinearBinary | Linear invariant (y = ax + b) overtwo | PptSlice2
scalar variables
BinaryCore Helper class LinearBinary

Figure 2-7: Some of the classes needed to create a valid test input for Daikon’s BinaryCore class.
For each class, the requires column contains the types of all objects one needs to construct an
object of that class.

2.2.2.3 Results

Palulu found more faulty implementations than JOE, even though it contains fewer tests; both
Palulu and Joe found more faulty implementations than the manual test suite.

Figure 2-6 compares the results for the manually-written test suite, Palulu, and JOE. We have
manually inspected all failing test cases and found out that they have been triggered by 19 under-
lining errors.

2.2.3 Constructing a Complex Input

To evaluate the technique’s ability to create structurally complex inputs, we applied it to the
BinaryCore class within Daikon [59], a tool that infers program invariants. Daikon maintains
a complex data structure involving many classes to keep track of the valid invariants at each pro-
gram point. BinaryCore is a helper class that calculates whether or not the points passed to it
form a line. BinaryCore was suggested by a developer of Daikon as an example of a class whose
creation requires a nontrivial amount of setup. We now describe this setup in broad strokes to give
the reader an idea of the complexity involved (see Figure 2-7 for a list of constraints):

e The constructor to a BinaryCore takes an argument of type Invariant, which has to be
of run-time type LinearBinary or PairwiseLinearBinary, subclasses of Invariant.
Daikon contains 299 classes that extend Invariant, so the state space of type-compatible
but incorrect possibilities is very large.

e To create a legal LinearBinary, one must first create a legal PptTopLevel and a legal
PptSlice2. Both of these classes require an array of VarInfo objects. The VarInfo
objects passed to PptS1lice2 must be a subset of those passed to PptTopLevel. In addition,
the constructor for PptTopLevel requires a string in a specific format; in Daikon, this string
is read from a line in the input file.

e The constructor to VarInfo takes five objects of different types. Similar to PptTopLevel,
these objects come from constructors that take specially-formatted strings.

e None of the parameters involved in creating a BinaryCore or any of its helper classes may
be null.
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0€

anually-written test input (written by an expert) _Palulu-generated test input

1Teitype ProglgT.('nt"; B oglangType typel ProglangType.pare("int");
ProglangType filereptype = ProglangType.parse("int"); || ProglangType type2 = ProglangType.parse("int");
Proglangyp reptype = filereptype.fileToRepType(Q);

VarComparability comp . Bk ' VarComparability compl

VarComparability.parse(®, "22", inttype); VarComparability.parse(®, "22", typel);
VarComparability comp2 =
VarComparability.parse(®, "22", type2);

rinfo[] ice = new VarIf]{v,Z; SN rInfo[] new VarInfo[] {v1, v2};
arInfo] pptvis = new VarInfo[] _‘ v2, v3};

PptSlice slicel tlettempslice(vl, v2);

1naroe BinaryCei; BaryCore 1bcl = new iaryCore(invZ);

Figure 2-8: The code listing on the left is a test input written by an expert developer of Daikon. It required about 30 minutes to
write. The code listing on the right is a test input generated by Palulu using inferred models created from an example execution of
Daikon. For ease of comparison, we renamed automatically-generated variable names and grouped method calls related to each
class (but we preserved any ordering that affects the results).



First, we tested our hypothesis that generating a legal instance of BinaryCore is not trivial.
JOE [111] was unable to generate a legal instance of BinaryCore in 24 hours. Next, we created
the model, using as input to Daikon an example supplied with the Daikon distribution. Our input
generator generated 3 sequences that create legal different BinaryCore instances, and about 150
helper sequences in 10 seconds.

Figure 2-8 (left) shows a test input that creates a legal BinaryCore instance. This test was
written by a Daikon developer, who spent about 30 minutes writing the test input. We are not
aware of a simpler way to obtain a BinaryCore.

Figure 2-8 (right) shows one of the three inputs that Palulu generated for BinaryCore. For ease
of comparison between the inputs generated manually and automatically, we renamed automatically-
named variables and reordered method calls when the reordering did not affect the results. Palulu
successfully generated all the helper classes involved. Palulu generated some objects in a different
way from the manual input; for example, to generate a Slice, Palulu used the return value of a
method in PptTopLevel instead of the class’s constructor.

2.3 Related Work

Palulu combines dynamic call sequence graph inference with test input generation. Previous tech-
niques for test input generation required hand written models, while techniques that used dynamic
analysis to generate models focused on program understanding. This section discusses related
work in each area in more detail.

2.3.1 Dynamic Call Sequence Graph Inference

There is a large literature on call sequence graph inference; we discuss some techniques most
closely related to our work. Cook and Wolf [36] generate a FSM from a linear trace of atomic,
parameter-less events using grammar-inference algorithms [9]. Whaley and Lam [154] combine
dynamic analysis of a program run and static analysis of the program’s source to infer pairs of
methods that cannot be called consecutively. Meghani and Ernst [97] improve on Whaley’s tech-
nique by dynamically inferring methods specifications, and using them to create FSMs that are
logically consistent with the specifications. Ammons et al. [7] use machine learning to generate
the graph; like our technique, Ammon’s is inexact (i.e., the inferred state machine allows more
behaviors than those observed in the trace).

In all the above techniques, the intended consumer of the inferred graphs is a person wanting
to gain program understanding. Our end goal is generating test inputs for object-oriented APIs;
the consumer of our graphs is a mechanical test input generator, and the model is only as good
as it is helpful in generating inputs. This fact imposes special requirements that our inference
technique addresses. To be useful for real programs, our call sequence graph inference technique
must handle program traces that include methods with multiple input parameters, nested calls,
private calls, primitive parameters, etc. On the other hand, the size of the graph is less crucial to
us. In addition, the models of the above techniques mostly discover rules affecting one object (for
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instance, opening a connection before using it). In cont