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ABSTRACT

This thesis concentrates on computationally efficient
modelling for the long-term prediction of Global Positioning
System (GPS) orbits. Reduced force models for the more
rapid computation of the averaged VOP equations are developed.
This is accomplished by considering the 2:1 resonant condition
of the GPS orbit as well as the very low nominal eccentricity.
Explicit analytically averaged expressions, in non-singular
equinoctial variables, are constructed for the potential
and element rates of the primary GPS resonant tesseral
harmonics [(2,2), (3,2), (4,2), (4,4)] . Numerical rates
returned by these equations are in good agreement with those
computed employing time-consuming numerical quadrature.
Analysis of the explicit formulae suggests that a passive
stationkeeping mechanism may be developed for the GPS
constellation by selecting an inclination to zero the semi-
major axis rate due to the dominant harmonic (3,2). The
inclination is found to be i 70.53 0 and results in a
dramatically stabilized groundtrack.
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Introduction

The Global Positioning System (GPS) is a navigational

system consisting of a constellation of satellites that

provide continuous radio frequency coverage of the Earth.

This system is designed to fulfill a need for accurate

position and velocity fixes not only for land based users, but

also for users in the near-Earth environment. The transmitted

satellite message contains information necessary for a user to

determine his position and velocity given that he can acquire

any four of the space vehicles in the constellation. This

information includes accurate representations of the vehicle

ephemerides as well as time and clock corrections. The actual

fix is accomplished by measuring the range to several of the

GPS satellites from which a user can reconstruct his position

in three dimensions. This is accomplished by generating a

replica of the satellite signal which is shifted in time until

correlation with the transmitted signal is achieved. The

time delay is then divided by the speed of light to produce

the required range data. Likewise, range rate is measured to

allow the computation of user velocity ( . The selected orbit

for GPS implementation is a 12 hour, low eccentricity trajectory

with a repeating groundtrack which will be very closely

monitored and controlled to insure maximum mission lifetime

and to facilitate user acquisition.

The requirement for stationkeeping stems from the real-

ization that the satellite motion is not Keplerian (not

movement under a strictly inverse square gravitational field).

If the motion were strictly Keplerian, then an initial set of

orbital elements (see Appendix A for an overview of orbital

elements and variation of parameters) could be chosen such

that the subsequent orbit would satisfy the mission constraints

in perpetuity. However, natural perturbations resulting from

the non-sphericity of the Earth, third body effects, and solar

radiation pressure cause deviations from the Keplerian orbit

for which corrections must periodically be applied. Specifi-



cally, the GPS mission constraints are:

(1) ±2 second deviation in the period, p(2). Since the

semi-major axis, a, is connected to the mean motion, n, and

the orbital period, T, through the relations

2 3
na =p

n T = 27

where, p = gravitational constant,

an equivalent bound can be given in terms of the semi-major

axis which can be computed from 6P for small 6P. For a

12 hour orbit, the corresponding bound on a is approximately

±822 meters. This will be used for the sake of convenience in

subsequent analysis.

(2) Bound on the eccentricity of .015, with a nominal value

less than .005 (3 ) . This will allow full coverage to be

provided with the minimum number of satellites.

(3) Bound on the groundtrack that requires that the geographic

node crossing stay within ±20 of the nominal value(2)

(4) Initial inclination of 63.440. This is the so-called

critical inclination for which the eccentricity growth due to

J3 is zero.

At this altitude, the inclination is expected to remain

quite stable and will accordingly be allowed to drift without

stationkeeping (2)

This thesis will be primarily concerned with the

construction of computationally efficient, compact, reduced

force models for the long-term prediction and orbital stability

studies of the GPS trajectory. A corollary matter will be

to estimate the time between stationkeeping maneuvers required

to maintain the mission constraints. A technical approach



with several components will guide the following presentation.

A variation of parameters (VOP) formulation of the orbit

prediction problem will be substituted for a brute-force Cowell

integration of the equations of motion. This is desirable

for a variety of reasons. First, VOP usually allows for the
more rapid and efficient computation of the orbit when the
perturbing accelerations are much smaller than the central
force term as is the case here. Second, this formulation has
the advantage of being amenable to averaging of the orbital

dynamics to produce equations that are computationally more
efficient. This point will now be discussed.

The unaveraged time history of the osculating orbital

elements can be broken into several temporal categories, those
being,

(A) short period - oscillations whose periods are less than

the orbital period.

(B) medium period.

(C) long period.

(D) secular - unbounded, non-periodic drifts in the elements.

The short periodic variations in the elements are bounded

and generally of low amplitude. In long-term orbit prediction

and especially in studies which serve to establish preliminary

stationkeeping guidelines, knowledge of these effects is

rendered superfluous by the much more substantial contributions

in the next three categories. Their presence then serves only
to increase integration time needlessly since the required

step-size is dictated by the highest frequency components. In

this thesis, the short periodic effects will be eliminated by

averaging (to first order, over two orbits) with respect to the

phase angle variable to produce a set of VOP equations in mean

elements.

The last component of the technical approach has to do

with the judicious selection of orbital elements in which to



express the VOP equations. The classical elements are poorly

defined for inclinations of 00 and 1800 and for eccentricities

near 0. The variation of parameters equations for these

elements become correspondingly intractable, both numerically

and analytically in regions about these singularities. This

requires inefficiently small step-sizes for their computation

in numerical programs and induces non-physical oscillations

in the elements. The GPS orbit does not have an inclination

singularity problem, but does have a low e singularity making

the pericenter very poorly defined. A change to another set

of orbital elements that are well conditioned everywhere will

serve to remove this singularity from the subsequently construc-

ted analytical models. A set of non-singular equinoctial

orbital elements will be employed to circumvent any numerical

ill-conditioning. These are described in Appendix A.

The thesis will be divided into three main sections.

Section I consists of a numerical study to determine reduced

force models for the integration of the GPS variation of param-

eters equations. Analytical justification for these reductions

will then be presented. Of major interest here will be the

low orbital eccentricity which will be shown to cause only a

mathematically prescribed subset of the gravitational field to

have a significant influence on a given orbital element.

The GPS orbit has a repeating groundtrack, in part by

virtue of its 2:1 commensurability with the Earth's rotation.

As a result, this is a resonant orbit as well. Generally, the

longitude dependent tesseral harmonics contribute rather low

amplitude, short periodic oscillations which are overwhelmed

by the effects of the first few zonal harmonics in

the Earth's potential. In the computation of the mean element

rates these effects are largely averaged out. However,

commensurability of the satellite's period with the rotation

of the Earth causes some of these terms to be amplified, the

result of which is large, long period oscillations in the

motion of the satellite in a way that is partially analogous



to resonance in a linear mechanical system. These resonant
tesserals can no longer be ignored since they now contribute
a significant portion of the vehicle's long term motion. In
fact, in some ways the tesserals are the only terms that affect
the relative geometry of the satellites in the constellation.
Until recently, there had been no analytical representation
of the tesseral potential in non-singular elements as has
existed classically for some years (4 ) . This deficiency has
required a Gaussian form of the VOP equations in which the
contributions of the tesserals is known only as a function

( 5)
position and velocity . Numerical averaging of the tesserals
must be performed at great computational expense.

Section II will present an analytically averaged potential
for the GPS resonant tesserals. On the basis of this, it will
be demonstrated that highly accurate computation of the mean
element rates will be possible without the need of time
consuming numerical quadrature. Appendix C presents a de-
scription of the computerized symbolic algebra involved in
the construction of the analytically averaged potential.

The development of simple, explicit analytical models for
the averaged element rates in Section II greatly assists in
the search for passive stationkeeping mechanisms since the
orbital physics are now more apparent. Section III will use
these expressions to construct a modified 12 hour circular
orbit which meets the orbital bounds almost entirely through
a passive stationkeeping mechanism. An estimate of the
required time between maneuvers necessary to maintain

the absolute and relative positions of the satellites for this
scheme is compared with that required given the nominal

mission profile.



Section I: Reduced Force Models for GPS Orbits

In long-term prediction and stability analysis of orbits

it is common practice to average the variation of parameters

equations to remove short periodic components from the

orbital dynamics. This means that the non-resonant tesseral

harmonics, which contribute only short period effects, can be

neglected. This allows for a significant reduction in the

force models required to integrate the VOP equations. Also,

since the satellite orbit for GPS will be well outside the

earth's atmosphere, drag is negligible. However, integrating

the averaged VOP equations forced by the remaining perturba-

tions is still needlessly inefficient. As it will soon by

shown numerically, with analytic justification to follow, the

low GPS eccentricity strongly decouples the perturbations in

their effects on the various element rates. It does so in

such a way that only a subset of those remaining will have an

appreciable effect on a given element. The same property will

also allow for a dramatic truncation of the lunar potential.

The numerical study must begin with a set of orbital

elements at epoch. All runs in the section were made with*:

e =0 h = k = 0

M = = = 0 ; 0 = 0
o o

i = 63.440 * p = 0, q = .618

In appendix B, an expression is derived whose solution

yields the semi-major axis required for a repeating ground-

track, given a commensurability condition. For a 2:1

commensurability, the corresponding a = 26559.9 km. Section

III, which deals with stationkeeping, will consider the effect

on the long-term orbital evolution of adjusting these epoch

values.

All ESMAP simulations performed with an epoch of
January 1, 1980 (0 hours, 0 minutes, 0 seconds).



Numerical Approach

The numerical approach to the problem was conducted
using the Earth Satellite Mission Analysis Program (ESMAP)(6)
The modified version used( 7 ) is presently resident on the
Amdahl 470 at the Charles Stark Draper Laboratory. The
program computes the mean element rates in the presence of a
user defined subset of a 4 x 4 geopotential field, luni-

solar effects, and atmospheric drag. The numerical attack was
to select a certain subset of the full perturbation model
deemed dominant in the long-term evolution of an element.
This reduced force model was used to integrate the equations
of motion for a 200 day arc, the result of which was compared
with a similar run using all perturbations. Those models that
compared most favorably (i.e., were closest for the longest
time) were selected. A matrix of the runs is presented in
Table 1.

Aiding in the selection of the models was the Harmonic
(8 ) (9 )

Analysis Program , This is an implementation of first

order solutions to the variation of parameters equations in

classical elements. These solutions are based on Kaula's

formulation of the gravitational potential in classical
(4)orbital coordinates,

pRe F mp(i) G (e)S (,MR,) (1)
VPm P p=0 m = Gpq kmpq

where
Smpq - m even

Zmpq cos L(-2p)w + (£-2p+q)M + m(G-,)

Sm z - m odd

+ ES9 m - -m even sin (-2p)w + (£-2p+q)M + m(Q - 6)

Cm - m odd



Run # Zonals Tesserals Luni-Solar Effects

S1 J2 NONE NONE

2 J2 ,J3 ,J 4,J 2  4 X 4 FIELD 1 SOLAR, LUNAR TERMS THROUGH (36

2
3 J2 J 3 4'J2  4 X 4 FIELD, ObD ORDER 1 SOLAR,LUNAR TERMS

HARMONICS EXCLUDED a 6
THROUGH (a)R3

4 NONE (2,2) (3,2) (4,4) NONE

w 5 NONE (3,2) (4,4) NONE

6 NONE (3,2) NONE

7 J2 (3,2) (4,4) NONE

8 J2 (3,2) NONE

9 J2 (3,2) 1 SOLAR TERM, LUNAR TERMS

THROUGH (a 6
3

10 J2 (3,2) (4,4) 1 SOLAR TERM, LUNAR TERMS

0 THROUGH ( 6
R 
3

11 J2 (3,2) (4,4) 1 SOLAR TERM, 1 LUNAR

TERM a (R 2
3

12 J3 (2,2) (4,2) NONE

13 J3 (2,2) (4,2) 1 SOLAR TERM, 1 LUNAR

TERM a )2
R 3

az 14 J3 (2,2) (4,2) 1 SOLAR TERM, 2 LUNAR

STERMS a (R )2 () 3
15 J~ J3 (2,2) (4,2) (3,2) R ' 3 a 2 a 3

2 1 SOLAR TERM, 2 LUNAR TERMS a(R 2, (R )
3 3

Table 1. List of ESMAP Runs

~ -i~- ' --jl-~-L' '- ~i-- P-I ----*c-r--- ----P - - ~___ i



e = Greenwich hour angle

R = equatorial radius of the earth

G (e) = polynomials in the eccentricity
£pq

F (i) = polynomials in the cosine of the orbital inclination£.mp

p = gravitational constant

k = degree of harmonic

m = order of harmonic

The pertinent drift rate solutions are given by
(4)

R 2 F mpG pq ( k - 2p + q)SZmp
mmpq e nmpAampq =Re I na + 2 (£-2p)) + (Z-2p+q)M + m(Q - 6)

SF1mpGpq(e2/ 2  1/2
SFmpGpq(l-e2 1-e 2 (-2p+q)- (-2p) SmpqAe =mpq =Re k+3na e&E-2p)A + (£-2p+q)M + m( - 0)6

Ak mpq = pRe (3 F ,mp/i) G EpqS mpq
na+3 (1-e2 )1/2sin i E -2p)j + (k-2p+q)M + m(i-)

S mpq is defined as the integral of Simpq with respect to

its argument. HAP seeks to identify the resonant tesserals

and computes their contributions to the evolution of the

orbital elements given epoch values of a, e, and i. The

program suffers however from a zero eccentricity singularity

in the solution for the eccentricity drift. Thus, the



nominal epoch value of 0 for the GPS eccentricity was not

used. The actual epoch values input to the program were

a = 4.164 Earth radii = 26558.57 km

e = .001

i = 63.440

The resonant tesserals selected by the program were

taken as good initial guesses for the construction of the

reduced models. One interesting point is that no odd order

(m = odd) tesserals are among those listed. This indicates that

the odd order harmonics contribute only short period effects

which would be filtered out of the long-term dynamics by

the numerical quadrature. On this basis, the odd order

harmonics were deleted from the models in a first step at

reduction.

Inspection of the HAP output in Figure 1 gives an idea

of what harmonics will dominate by degree L and order M.

The node crossing rate (D [NODE] ) is determined primarily

by (3, 2) and (4, 4) with all other contributions at least an

order of magnitude less. This is also true of the semi-major

axis rate (D [A] column). The eccentricity growth, on the

other hand, is dominated by (2, 2) and (4, 2) (D [E column).

This served as a basis for constructing the tesseral portion

of the reduced models. The major zonals were then included

and their effects weighed. The lunar potential has factors

in the expansion which are of the form( 3 n where R

is the Earth-moon distance. This ratio is small, so that an

attempt was made to truncate the potential to at most two

terms.
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0( A)
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O(E 0 I) D (____( M)
(DEG) (DEG) (DEG)
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ORBITAL FREQ. = 2.016 C/DAY

VELOCITY_ CCMP. C w/SEC)
RADIAL TRANS. NORMAL

(NOOEJ_ POSITION COMPONENTS (M)
(DEG) RADIAL TRANS. NORMAL

S2 P"P -!F,33929- 7-21D '1 1.36D- 9.f40 06-.-:.09 01 .110) 01 2.30-94 3.70- OA 1. 03 5.5D 01 5.4 02 5.7D :! 4.60- -0 2
2 2 1 1631.l5 1.96D 02 3.120-03-4.000-04 1.790 02-1.86D 02 5.31D-05 8.50 04 -3.AD 03 1.5D 02 1.2D 03 1.3D )j 1.90 00 2
3 2 1 1032.71-6.310 03 4.060-Oe 8.C70-33-5.720-02 1.85D 02 3.230-02 6.10 04 9.1D 34 170, 04 8.90 02 9.40-1) 3.9D 01 2
= -2 9 -1 7 33 .991 .6b0- Ot-If-1,2-lU -de -07 7.1iT --0 0-u 0ov -e4V02 -D2 3 6a 4. O0 I5 --eD0-7 45 0Z- -2-
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I4 1 0331e.23 1.91D 03-1.830-08-3.580-03 6.640-03-4.110 01 1.750-03 1.40 04 -4.00 04 1.2D 03 2.CD 02 4.20-31 1.7D 31 3
5 2 2 06632.471-1.140 02 1.64D-09 3.250-04-3.47D-03 7.480 00-1.370-04 2.50 33 3.70 03 2.40 02 3.60 01 3.80-34 1.60 00 2

1 , 2 ::40 ? 01 700D-0I- - 0 O- C- .. 0'0 1 4.17-31- 9.-90-07 10.9 '2 1.60 01 7.30 q 2.-9 o0 -R-9 44 7.60 903 2
6 2 3 l6631.ns-9. AD-02-1.81D-06 2.32D-07-1.04D-01 1.080-01 3.180-07 A.90 '1 2.10 00 1.20-31 7.20-01 7.6D-3. I.1D-3- 2
6 & 2 13316.236 2.79D 01-2.60C-10-5.180-05 2.380-04-5.950-01 7.540-35 2.00 02 -5.EC 02 2.60 01 2.80 00 6.00-34 2.50-01 2

6 6 2 1221'.62 2.21D-01 1.38D-06-4.53D-C7 7.930-02-8.250-02 1.530-07 3.80 01 -4.50 00 1.50-01 .30-01 1.70-3) 2.20-03 2
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7 6 2 0221'.e24-5.76D-01 5.420-12 1.C80-06-8.00D-06 8.270-03 1.08D-05 2.80 30 1.2C 01 4.70 00 4.00-02 1.3D-3 , 5.20-03 2
8 LL 3 0316.236 2.39D-01-2.25D-12-4.480-07 2.530-06-5.150-03 3.920-06 1.7D 30 -5.30 00 1.50 03 2.50-02 5.2D-)~ 2.10-03 2

9 E 3 0221m.824-1.05D-01 9.910-12 1.970-07-1.36C-06 1.510-03 3.120-07 5.10-31 2.20 00 1.70-01 7.2D-03 2.30- . 9.40-04 2

PMS eEAT PERIOD FOo L)16=

RMW AAPLITUDE FOQ 0Q=
QM5 A DMLITUDE FOP O) 0

0.5C82490 04
0-24 6110 15
0.33131670 05
C.14042710 CA

8SS AMDLITLDES 0=0 TO 0) Q

9PS AMPLITUDE
RSS AMPLITUDE
FSS AMPLITUDE

26.753

0-994644D __ _ _
0.99395010 05
0.37153510 04

Figure 1. Output of Harmonic Analysis Program.



The selected set of reduced models that resulted is:

Figure 2 clearly shows that by far the most important

contribution to the semi-major axis rate is the resonant

tesseral (3,2). This observation is used in Section III to

develop a passive stationkeeping procedure that can be

implemented choosing epoch elements based on nulling just

a(3,2). The addition of (4,4) produces a model that is much

closer to the all perturbations run, however there remains a

discrepancy that results in a divergence of 50 meters after

Element rate Model Illustration

(3,2) , (4,4) , J2 Figure 2

(3,2) , (4,4) , J 2, Figure 3

solar point mass term,

1 lunar term a )2

(2,2), (3,2), (4,2) J3, Figure 4

J2' 2 lunar terms a

R R ~ term
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200 days. The inclusion of the J2 zonal eliminates the

discrepancy and completes a model which is virtually

indistinguishable from the full force representation. The

presence of J2 is surprising since mathematically, the semi-

major axis rate due to this harmonic is 0. The observed

effect is a resonance phenomenon and is caused by the

influence of J2 perturbation on the mean longitude coupling

into the a rate.

The geocentric longitude of the ascending node is

controlled by the same geopotential harmonics as the semi-

major axis. As previously stated, there is in fact consider-

able coupling between the two. In Figure 3 it is seen that

a J2, (3,2) model constitutes a significant portion of the

perturbed motion. The addition of the full lunar potential

(through (a/R3 ) ) produces much closer agreement, but exposes

the need to introduce (4,4). A truncation of the lunar

potential in the final model was possible by including only

one term, proportional to (a/R3 )2 , with nearly no degradation.

Evidently contributions from higher order terms are

essentially negligible.

Figure 4 shows the k component of the eccentricity since

some of the more interesting variations were found here. A

model containing J3, (2,2), and (4,2) produced the major portion

of the growth. Inclusion of a lunar potential term proportional

to ( )2 in an attempt to model the medium period oscillation

apparent in the all perturbations run, had virtually no

effect, a rather intuitively surprising result. Adding the

next term ((a/R 3) 3), however, yielded the desired evolution

with all other terms contributing much less. The divergence

between this model and the full field model is due to the

same resonance phenomena observed in the semi-major axis rate.

Since the mean longitude is coupled into the eccentricity it

must be properly modelled as well. Therefore the addition of

J2 and (3,2) to the final model to correct for errors in the
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mean longitude, results in excellent agreement with "ALL

PERTS."*

All of the reduced models are suitable for judging

the long-term stability of the GPS orbit. They are also

found to be excellent replacements for full force

representations over long time spans and may be used to

integrate the averaged VOP equations with good results.

One is reminded that the "ALL PERTS" run is in all cases

the full field of ESMAP perturbations, exclusive of the odd

order tesseral harmonics.



Analytical Approach

The observed decoupling between the geopotential

harmonics in their effects on the mean element rates can be

justified on analytical grounds. Likewise, the neglect of

terms in the lunar potential is mathematically justifiable.

Each of these will now be considered in detail.

The basic expansion for the geopotential comes from a

solution of Laplace's equation, V2U = 0, in spherical

coordinates and is given by(4)

U I = N " nm nm + nmU ar n=2 m=0 r

where, p = gravitational constant = G(m + m )e s

m = mass of satellites

m = mass of Earthe

r = distance from Earth to satellite

R = equatorial radius of the Earth

= geocentric latitude

X = geographic longitude of the satellite

Pnm (sin p) = associated Legendre function of degree,
n, and order, m

Cnm, S = empirically determined gravity harmonic

coefficients

The terms in this expansion for which m = 0 are called zonal

harmonics and arise due to the nonsphericity of the Earth

along a meridian. Accordingly, they possess symmetry about

the Earth's rotation axis. The terms for which m 0 are

called tesseral harmonics and represent the longitudinally

18



dependent deviations from sphericity.

As will be demonstrated more thoroughly in Section II,

it is desirable to have the potential expressed directly

in orbital elements. In implementing the Variation of Para-

meters equations this circumvents the computationally costly

coordinate transformations otherwise required and allows for

analytical averaging to remove short period components. An

algebraic conversion of the spherical harmonic disturbing

potential, (2), to classical elements has been available due

to Kaula for several years, (1). A similar expression in

the non-singular elements needed for GPS analysis has only

recently been developed and for a general harmonic is the real

part of (10)

Rn , n

SCnm Vm S(pq) (3)nm a \a Cnm /n,s 2ns=-n

+C0

X Y t-n-l,s(k,h) exp j(t X - mO
t=-_0

where, a = satellite orbit semi-major axis

Cnm= Cnm jS ; j =
nm* nm - nm

X = mean longitude M + w + Q

0 = Greenwich hour angle

S(m,s) (p,q) is a special function, related to the Jacobi2n

polynomials P (U,) that contains the equinoctial elementsn

p and q which orient the orbital frame with respect to inertial

space. The S function arises from the rotation of the

spherical harmonics in (2) into the orbital reference frame.

They are computed according to the following rules



m-r (l+p 2+q2 )-(p+jq) r-m (r-m,r+m) (Y) r
n-r

(m,r) (n+m)(n-m)! + 2 +2 -m m-r (m-r,r+m)
2n (n+r)!(n-r) n--m

-m < r < +

(+p2 +q2 r (pjq)m-r (m-r,-m-r) y) r < - m
+p+q (pjq) () r <- m

n+r

(4)

> m

(Y)

where,

2 2
S= (1-p 2-q = cos i

(l+p 2+q 2

dn
n

dx

The expression of the form Y 'Y (k,h) is another special

function in the eccentricity analogs h and k, closely related

to the standard Hansen coefficients, X , (e).
0a

n,m = (k+jh)m-t n,-m 2 +k 2 )

t G +m-t,

n,m = (k-jh)t-m n,m (h2+k 2 )n (k-jh) XU+tm (h
t E +t-m,=0

o=O

t < m

(5)

t > m

(-) n2nn' (l-x) (l+x) B

m

r (l- (,+X) (l-x2)P ( , ) (x)n



where,

X - constant Newcomb operators

(see Appendix C)

Last of all,

Vm  (n-s) 'n,s (n-m)! P (0)n,s

ds
where, P (0) -

n,s dv
P (v)
n v = 0

P (0) = (-1) (n-s) P (0)n,-s (n+s)! n,s

P (v) = Legendre polynomial of order, n
n

The preliminary simplification of (3) is begun by re-

calling that the GPS orbit is resonant due to the 2:1

commensurability with the Earth's rotation. In general, the

averaged elements of the orbit will be influenced by terms in

the geopotential for which the trigonometric argument of (3) is

slowly varying, or mathematically started, terms for which

t X - m 80 0 (7)

t = m&

(6)

(8)



But e/X is equal to 1/2 so that equation (8) becomes

t m (9)2

Now if m/2 is not an integer, then a harmonic of order m cannot

contribute to the resonant potential . One immediately notes

that all odd order harmonics are non-resonant. Consequently,

they contribute short periodic oscillations which can be

neglected for long-term averaged orbit studies. This result

is consistent with the numerical section. (9) allows the resonant

potential to be expressed as

U - R C exp j m (X - 20 (10)nm a a nm 2

nE 5 (m,s) -n-l,s
X V ms) (p,q) Y (k,h )n,s 2n m

s=-n 2

Since ( e) is approximately .24, further truncation of (10)
a

is effected by eliminating terms associated with powers of this

ratio greater than four. Thus, the full resonant potential can

now be expressed as the real part of

4 -n n m

S- a 4 C nm exp i(X-2e6 (11)
n=2 m=0 n

n
XE V m S(ms) (pq) y-n-l,s (k,h)

s-n n,s 2n m

m = 0, 2, 4



A final simplification is achieved by noting that

the index s is constrained in three ways. First, since the

eccentricity is not to exceed .015 between corrections,

truncation of the Hansen coefficients (5) to the third power

of h and k is allowable. This can be obtained by introducing

a constraint on s of

m
s < 3

2 -
m = 0, 2, 4

Second, the rotational transformation places further

limits on s such that

n = 2

n = 3

n = 4

-2 < s < 2

-3 < s < 3

-4 < s < 4

(13)

Lastly, the coefficients (6), behave as

Vm = 0
n,s In - sI = odd (14)

Intersecting these three constraints allows s to take on only

the values displayed in Table 2.

Table 2 - Allowed Values of s for GPS Resonant Potential

n m s

2 0 -2, 0, 2

2 -2, 0, 2

0 -3, -1, 1,3
1 -1, 1, 3

0 -2, 0, 2
4 2 -2, 0, 2,4

4 0, 2, 4

(12)



An array of harmonics with their associated Hansen

coefficients can now be constructed and is given in Table 3.

Table 3 - Required Hansen Coefficients for
Resonant Potential

GPS

rnm 0 2 4

-3,-2 Y-3,-2

-3,0 -3,0Y Y
0 1

-3,2 -3,2
0 1

-4,-3 -4,-1
3 0 Y1

-4,-1 -4,1
0 1

-4,1 -4,3
0  1

-4,3Y
0

-5,-2 -5,-2 -5,0
4 0 1 2

-5,0 -5,0 -5,2
0 1 2

-5,2 -5,2 -5,4 -5,4
0  1 1 2

From this array and the definition of the modified Hansen

coefficients, (5), the resonant potential can be written term

by term:

+0 (02) -3
2,2 4 0

24



2

(e )(a

2 -3, -2
= (k-jh) X2 -2

2,0

(h + k 2 )

2 -3,-2
(k + jh) X 2 02,0

C2 2

2 (2,0)
2,0 4

-3,0 + 2
1 2,2 4

where

(k-jh) X '
3,0

(k-jh) LX3,0
Ixi f

(k+jh) ir2
E 1,0

R e) 30

a 30 [ 3,-3 6

-3,0
2,1

(h2

-3,-2
2 ,1

0,-3) -4,-3
0

+ k2)

(h2 + k2J

+ 0 (0,-1) -4 -1
+ -i 6 ' (17)3,-1 6 0

+ (0,1) -4, + 0 (03) -4,3
3,l 6 0 3,3 6 0

where

-Y3, - 2

0

-3,0
Y

-3,2
Y0

U* -
2 2 a

(16)

(2,2) -3,2]

-3,-2Y
1

-3,0
1

-3,2
1

U
3 0

-
a

-3,0 x-3,0X + X
0,0 1,l

S(2,-2) -3,-2S Y
4 1

E1 - 2  2 -2
e ] 2,-2



3 -4,-3
= (k - jh) X)'

3,0

(k - jh) ' 4f,-
1,f

= (k + jh)

= (k + jh)

14 -1

-4,-1
2,1

-4,-1+ X 1
2,1

-4,-1
Y

-4,1
Y

-4,3Yo
0

3e )
(a

32
C3 2 ej e-21 32_,-1

(18)

2
+ V3

3,3

where

(2,3) - 4,S Y6 1

2 -4 -1
= (k - jh) 2 X-4,-

2,0

Y-41  - 4,+ -4 , 1

1 0,0 1,1

= (k + jh)
2 -4, -3

2,0

where

-4,-3YO

-4,-3
3,0

(h 2

(h 2

+ k 2

+ k 2j)

32
U3 2 a

2 (2,1) -4,1
3,1 6 1

-4,-1
1

(h 2 + k 2 )

-4
1

$6(2,-1) Y 4,-11S Y
6 1



s 8 (0-2) -5,-2 + v 4 0
8 0 4,0

+ S
4,2

where

Y0-5, - 2

0

(0,2) y -5,2]
8

= (k - jh) 2 X-5,-2
2,0

-5,0 -5,0
0 0,0

+-5,0+ i
1,l

(h 2

= (k + jh)
2 -5,-2

2,0

4R )
Ra

C* e j  -2ev 2
42 4-2

2 (2,0) -5,0+ V S Y
4,0 8 1

2
+ V

4,2
(2,2) -5,2S Y
8 1

+ 2 (24) -5
4,4 8 1

where

-5,-2Y 1

-5,0
1

-5,2
1

-5,4
1

S(k - jh) X-5-2

= (k - jh)

= (k + jh) 52 0

-5,0+ X 1
2,

-5,-2+ X
2,1

(k + jh) -5,-4
3,0

* ' p
4 0  -
40 a

4
Ce) 4

a 40
V 0

4,-2
(19)(0,0) -5,0S Y

8 0

+ k 2 )

-5,2
Y00

U* -
4 2 a

(2,-2)
8

(20)

(h2 + k2)

(h2 + k 2



* P c e2  42 0 , (4,0) -5,0(2U - C e (21)44 -a 44 ,0 8 2

+ V4 S(42) -5,2 + 4  ( 4 , 4 ) -5,4
4,2 8 2 4,4 8 2

where

-5,0 2 -5,0Y250 (k - jh) 2 X2,0

-5,2 -5-2 -5 -2  2 2Y2 = X ,0 + X (h + k )
2 0,0 1,l

Y24 (k + jh) 2 X 52,0 4

It is notable that some harmonics have associated Hansen

coefficients which contain only even powers of the eccentricity,

while others contain only odd powers. In general one finds,

for the GPS orbit, that harmonics for which n - m/2 is even,

are dependent only on the even powers of h and k. Similarly

for n - m/2 odd, only odd powers appear.

Now, it is possible to tell how the resonant harmonics

decouple in the element rates by inspection. To do this, a set

of low eccentricity equinoctial VOP equations is presented

for which powers of h and k greater than 1 have been neglected

da 2 U
dt na a (22)

o

dh _ 1 / U h U k(l+p 2 +q 2) pU + q
dt -na 2 9k 2 -X0) 2na 2 9p + q (23)



dk _ 1 + a k2 2
dk _ 1 U k U h(l+p2+q 2 )

dt na 2  -h 2 f ) 2na
na o2na

p a- +p

dX _ 2 U +
dt na Da

1 h U +
2na2 ( -h +2na )

k +

(1+p +q 2 ) p DU U

2na 2  ap ag

(25)

dp _ -p(l+p2 +q 2 ) k _U
dt 2na 2 ) h

h U
3 +
8k

U \
3x

0 )

(l+p 2+q 2) 2 U (26)

4na

2 2
dq _ -q(l+p2 +q2 )  k ( U
dt 2na 2 ) h

h _U + DU
ak a

2 2 2(l+p +q ) 2 U
2 4p4na

The procedure is a simple matter of selecting as dominant,

in a particular element rate, those harmonics that contribute

terms in the 0t h power of h and k. To facilitate the analysis

all terms in (22) - (27) that have factors of h and k, will be

neglected since they contain powers of the eccentricity of no

less than one. The VOP equations can now be written as

da 2 DU
dt na UX

0

dh _1 U
dt 2 Tk

na

dk 1 DU
dt 2 3h

na

(22a)

(23a)

(24a)

qU
q 3 (24)

(27)



od -2 9U (l+p 2+q )  p U q U
dt na 9a 2na2 9qp q

22 g2 2 2dp -p(l+p +q ) U + +p +q2) 2 U
dt 2na o 4na2

2 2 2 2 2dg = -q(l+p +q ) DU (l+p +q ) 2 U
dt 2 a 2 p2na o 4na

(25a)

(26a)

(27a)

Now, in those rates whose remaining terms have no derivatives

with respect to h and k, potential harmonics that contain
th

0 powers of h and k will dominate (n-m/2 even). In cases

where derivatives of h and k appear, harmonics that contain

1 st powers of h and k will dominate (n-m/2 odd). A quick check

yields Table 4.

Table 4 - Analytically Predicted Models

Element rate Dominant Harmonics

A J 2 ,J 4 ,(3,2), (4,4)

h J3, (2,2), (4,2)

k J3, (2,2), (4,2)

0Xo J2' J4' (3,2), (4,4)

J 2 ' J4' (3,2), (4,4)

eJ2' J4' (3,2), (4,4)



The table is readily extended using the parity of n-m/2

as a guide. This decoupling is exactly that demonstrated

in the numerical study performed by ESMAP. It is necessary

to realize that the observed harmonic decoupling is not

generally valid. However, in the case of the GPS orbit, the

near zero eccentricity has caused this to happen. Support for

this contention comes from a consideration of the Soviet

Molniya communications satellites which move in highly eccentric

(~.74), 12 hour orbits at the critical inclination of nearly

650. These satellites have partially stabilized groundtracks

which give rise to resonance as for GPS. However, it is found

that the dominant harmonic affecting period change and nodal

drift is (2,2) rather than (3,2). In fact the transition

between (3,2) dominance and (2,2) control of the semi-major

axis appears to be an eccentricity of approximately .05(11)

In the numerical section, terms of the lunar potential

were required to adequately model the nodal drift and eccen-

tricity growth. This was especially evident in the case of

the eccentricity where the exclusion of the (3) 3 term would

have resulted in the failure to model a significant medium

period oscillation. The result was surprising since we might

have expected the 3 2 term to exert the dominant influence.

An analytical approach is possible to explain the phenomenon

as well as show which terms, if any, of the lunar potential

will dominate in their effect on the other element rates.

To illustrate, the lunar potential is given by (12)

F(L) L n=2 ) P (cos i) (28)
L n=2 RL n

where, PL = lunar gravitational constant

RL = earth-moon distance

r = earth-satellite distance

= angle between r and RS -L
P (cos i) = nth Legendre polynomialn



The corresponding averaged potential of interest here can

be written, after multiplying by (a/a) n, as(12)

(L) L (an 1 rn- RL n=22 Pn(cos p) dX (29)
R n=2 RL 2o a n

where, X = mean longitude - M + w + 0

Now (cos p) can be rewritten in terms of the true longitude,

L(=f + w + Q, f = true anomaly), as

cos a = al cos L + B1 sin L (30)

where, al' 1 - direction cosines of the moon relative

to the equinoctial orbital frame.

It is well known that powers and products of trigonmetric

functions in an argument can be rewritten as the same functions

containing multiples of that argument. Thus the Legendre

polynomials can be expressed in terms of even multiples of

L if n is even and odd multiples if n is odd. The first two

are(12):

P2 (cos i) = S2 +  S3 cos 2L + 3S1 sin 2L - 1 (31)

1 5 5P3 (cos ) l a 4 cos 3L - B1 S sin 3L (32)

+ 3al1  S2 - 1 cos L + 3 1  S2 - 1 sin L

where

S A functions of a1 and P1



In general an even order Legendre function will contain

the arguments nL, (n-2)L ... OL while an odd order

function will contain nL, (n-2)L ... lL. This transfor-

mation allows (29) to be rewritten in terms of sin NL and cos NL

which is especially convenient since the averaging integrals

can now be solved via the zeroth order, modified Hansen

coefficient(10)

Yn,m -1 ( r)n
YO = 7f a

0
exp(jmL) dX (33)

A list of the first few integrals is(12)

P2 (cos

P 3 (cos ):

1

0

1 2

27r

1(2 Tr

1 2 7r
2rr

1

2iJ f

2 Tr 0 f

2
r )2

a(r )2a

ra)

3 2 2
dX = 1 + (h + k

2 (34)

5 2 2
cos 2LdX - (k - h

sin 2LdX = 5hk

35 2 2
cos 3LdX - k(3h - k )

8

35 2
sin 3LdX - h(h -

8

(35)

23k )

5 3(h 2 2
cos LdA = - k (h + k ) +

(r sin LdX- h (h + k) + 1
a 2 4]



Generalizing one finds that for n even in eq. (29) even

powers of the eccentricity result and for n odd, odd powers

result.

Continuing, one notices that for h = k%0O, as in the

GPS case, the dominant contributions to the VOP equations

for h and k are

dh ,. 1 F (36)
dt 2 -kna

dk - 1 F ((37)dt 2 9hna

After differentiation, terms in the lunar potential for

which powers of h and k are even will yield at least first

powers of the eccentricity. On the other hand, terms in the

potential which contained odd powers may yield 0th power

contributions to the h and k element rates. Following this

reasoning for very low eccentricity

dk dh (38)
dt dt

2  2

dh _L a -5 1 (39)

dt RL L na

t R L n 2 (40)



The result is consistent with the inability to model a

medium period oscillation in h and k by the first term

in the lunar potential. Thus it has been demonstrated that

the second term a )3 dominates due to the low GPS
(RL

eccentricity. All higher order terms contribute negligible

effects since they contain correspondingly higher powers of

the ratio (a)

This type of analysis can be extended to the other

elements treated in the numerical study. Eliminating all

terms for which first or higher powers of h and k will be

present, the rate dXo/dt can be stated as

oX 2 aF
S 2 F (41)dt na 5a

No differentiation with respect to h and k is indicated so that

only terms in the lunar potential for which there are 0th

powers of the eccentricity will exert any appreciable

influence. Here only a )2 will have a significant effect on

RL
the mean rate for X as shown in the numerical study.

The model for the semi-major axis shows that no lunar

terms are required to achieve good agreement with an all

perturbations run. The correct expression for this rate is

da 2 F (42)
dt na Da

However, since there is no explicit dependence of the averaged

lunar potential on A for any power of a the rate is zero, as

expected.

Thus analytical justification can be found for the select-

ion of the reduced force models for GPS, largely on the basis

of the extremely low nominal eccentricity.



Section II A New Method for Treating Resonant Tesserals

The inclusion of resonant tesserals in long-term orbit

prediction has, until recently, presented a real problem.

The efficient computation of tesseral resonance effects has

been hindered by the absence of an analytical expression for

the disturbing potential in non-singular elements. This

necessitated the use of the Gaussian formulation of the VOP

equations in conjunction with a numerical quadrature process.

In the Gaussian formulation, the element rates are expressed

in terms of the distrubing acceleration via(12)

a.
a. - _1 _ i = 1,..6 (43)

where,

Q = tesseral disturbing acceleration

a.t
ai partial of the it h element with

respect to velocity.

The disturbing acceleration is given by

(r
9r

tU
Q(t)

(12)

T T
U p + U / a+ DU + D X (44)

where, r = position vector of the satellite in the

coordina'te frame of the acceleration vector

P = potential function described in equation (2)



The indicated partials are computed from(1 2 )

U _ P
r 2r n=2

co

(n + 1) (a = S nmsin mX

+ Cnm cos mlPnmP (sin )

U ) _ a mp (sin ) S cos mX - C sin ml
r r nm nm nmn=2 m=0

O C DP (sin q)
DU - P E (a ) :S sin mX + C cos m nm
S r n=2 r m= nm nm

(45)

(46)

(47)

There is considerable overhead entailed in the numerical

implementation of this method. As coded in ESMAP, each

evaluation of the Gaussian VOP equations [Eq. (43)]

the following manipulations:

requires

(a) The computation of the partials of the equinoctial

elements with respect to velocity, Da. (6)

(b) A transformation of spacecraft coordinates from the mean

of 1950 to body (Earth) fixed coordinates(6)

(c) The computation of spherical coordinates, (r,X,4),

from the rectangular, (x,y,z), coordinates of the body

fixed system. (6)



(d) Calculation of the partials of the potential with

respect to the coordinates (r,X,q) from (45) - (47)(6)

(e) A transformation of these partials in spherical

coordinates back into rectangular body-fixed coordinates

according to(6)

U _ x U xz BU y aU

r / 2 2 x+yx +y

BU _ y U yz x 2Uay r ar 2 x 2 2 ax +y

au z au x +y aU+ (50)az r r 2 apr

(f) A transformation of acceleration vector components to

the mean of 1950 coordinate system after which the element

rates are computed from equation (43)

This overhead is now multiplied since a numerical

process is used to obtain the averaged element rates. Math-

ematically, this numerical process is specified by(6)

F -NT + 2r. N
n 0 1

a - 2 E n A (F) dF (51)
2 =1 F -NTr+(i-1)27rN

n



N = number of orbits to be averaged over

F = eccentric longitude H E + Q + w

E = eccentric anomaly

A (F) = high precision element rate computed

using Eq. (43)

n = number of quadratures used

The procedure used to evaluate this integral is to fit the

integrand in Eq. (51) to an orthogonal polynomial in the

eccentric longitude over N/n orbits. The integral of the

orthogonal polynomial can be evaluated analytically. This

method of computing integrals is known as numerical quadrature

and is required when the integrand does not exist as a

tractable analytic function of the integration variable.

Considerable overhead is incurred, the extent of which is

determined by the highest specified power of the interpolating

polynomial. As shown in Table 5, the computation time entailed

in computing the averaged orbital element rates is greatly

increased through the inclusion of the numerical quadrature

for resonant tesseral harmonics.

Table 5 - Computational Cost of Numerical Averaging

Test Case Time, CPU ( ) - (1)
Centi-seconds

(1) Reference

All zonals, All luni-solar terms, 314 0

no tesserals

(2)
th

12  order quadrature, 2 orbits 2020 1706

tesserals included

(3)

24th order quadrature, 2 orbits 3735 3421

tesserals included

where



The computation time is greatly increased when the

tesseral harmonics are added to the perturbation field and

goes up in direct relation to the quadrature order. If one

subtracts the reference run from each of the other two

assuming that what is left can be attributed to computation of
th

the tesserals, it is seen that the 24 order quadrature case

is almost exactly twice as costly to run as the 12
th order

case. Clearly, elimination of the averaging quadrature would

greatly facilitate the rapid calculation of the tesseral

resonance contributions to the element histories.

As mentioned in Section I, a way to circumvent this

problem classically has been available due to Kaula for several

years (1). This contribution has seen widespread use, but is

of limited utility in the study of low eccentricity GPS type

orbits.

However, recent results also stated in the first section,

now allow for the construction of analytically averaged,

explicit VOP equations in non-singular elements. The low

eccentricity of the GPS orbit facilitates the rather radical

truncation of the final expressions with respect to h and k

to yield Variation of Parameters equations with terms

containing powers of the eccentricity no greater than one.

This form of analytical averaging removes short periodic terms

and resonant terms proportional to high powers of e. The rates

for (2,2), (3,2), (4,2) and (4,4) can be found in Appendix C

along with the computerized algebra involved in this deriv-

ation.

Using the debug option of ESMAP
(  the element rates

generated by the numerical averaged orbit prediction were

compared with those produced by the new explicit formulae.

The test cases run were



Case 1 Case 2

h= 0 h =0
e = 0 le = .01

k = 0 k = .01 .01

p = 0 p = 0

q = .618095 q = .618095

X= 0 X= 0

a = 26559.9 km a = 26559.9 km

6 = 1.73553625 radians 6 = 1.73553625 radians

The Greenwich hour angle is based on an epoch date of

January 1, 1980. A matrix of the results is seen in Table 6.

The mean longitude rates are not included in this table.

The difference of several orders of magnitude between the mean

motion and the contributions to the mean longitude rate due

to perturbations limited the utility of this comparison.

Agreement is generally quite close,with the rates due to (3,2)

dominating where expected. It will be noticed in the zero

eccentricity case, that the ESMAP runs produce small non-zero

rates when zero is predicted by the explicit formulation.

Inspection of the expressions in Section 1 and Appendix C will

verify that this discrepancy is not due to truncation on the

eccentricity and that the prediction of zero is indeed correct.

Rather,the difference is taken to be due largely to quadrature

noise involved in the ESMAP numerical average. When the rates

are extremely small as in the case of (4,2) and (4,4), it

is expected that the apparent deviations can be attributed

in greatest part to errors in the quadrature. Remaining

discrepancies are probably due to uncertainty in the calcu-

lation of the correct Greenwich hour angle at epoch.

The quite close agreement of the explicit formulation

of the averaged orbital element rates with the ESMAP numerical



A = ESMAP NUMERICAL AVERAGING*

B = EXPLICIT ANALYTICALLY AVERAGED THEORY

(2,2) (3,2) (4,2) (4,4)

A -.52665524xl0
-1 0  .32655463xl0- 7  .67463011x10- 1 1  .64613481x1-0

B 0.00 .32663116xl0
- 7  0.00 .64369884xl0-8

A -.15124436x10-1
0  -. 18350001x0 - 1 5  .77901248x0-1 4  .19364701x10- 1 4

B -.15105023xl0-10 0.00 .78079905xl0
- 1 4  0.00

A .72077044xl0-11 .16154185x10-14  .30750092x10- 1 2  .66049711x10- 1 5

B .72294856X10- 11 0.00 .30180676x10- 1 2  0.00

A -.36835041x10-14 -.86728999xl0- 1 2  -. 29027992x10- 1 6  .24183411xl0- 1 3

B 0.00 -. 867415332x10- 1 2 0.00 .235731083xl0-13

A -.19563118x10
- 1 5

B 0.00

-.74039139x10
- 1 2

-.73767031xl0
- 1 2

.6533585xl0-16

0.00

-. 14570422xl0
- 1 2

-. 14537423x10
- 1 2

A .13955590x10-8  .32674893x10- 7  .55937390x10- 1 0  .64651533x10- 8

B .15073953xl0
8  .32663116x0-7 .35297236x0-10 .64369884x10-8

A -.15135507xl0
- 1 0  .746150032x10- 1 4  .73980128xl0- 1 4  -.96582411x10-

1 4

-10 -14 14 -13
B -.15105023x10 .82641452x10

- 1 4  .953004264x10
- 1 4  -.118882411x0-1

3

A .72077418x10-1 1  .50586221x10- 1 3  .31031528x10-12 .32055724x10- 1 4

k .72294856x10-l .47746979x0-1
3  .300775915x0-1

2  .24697801xl0
- 1 5  .01

A -.28841727x0-1 2  -. 86746704xl0- 1 2  -.21144907x10-1 4  .24177542x10-1 3

12 12 -14 -13
B -.28491258x10 1 2  -. 867415332x0-

1 2  -.21239864x0-
1 4  .235731083x10-13

A -.58693955x10-1 3  -.74096397xl0-12 -.16580821x10- 1 4  -.14576559xl0 -1 2

B -.59016852xI0-13 -.73745325x10-12 -.18361513x104 -.14536L094x102

Table 6. Comparison of Analytical with Numerical Computation of Mean Element Rates.

ESMAP Quadrature: 24th order Gaussian quadrature

2 orbital periods in averaging interval

1 quadrature partition per averaging interval



method, as seen in Table 6, is very interesting. It

represents the first numerical verification of the assump-

tions and consequent algebra involved in the construction of

an analytically averaged potential for the tesseral harmonics

in non-singular elements, and, as such, is quite valuable.

Several major advantages come from the existence of

explicit, analytically averaged element rates. First, the

computational overhead incurred by the use of the Gaussian

formulation of VOP is completely eliminated. Since numerical

quadrature was seen to be the primary determinant of CPU time

it is reasonable to expect that the new expressions will run

in a fraction of the time. Second, as will be shown in

Section III, analytical expressions are more physically reveal-

ing and tend to suggest stationkeeping mechanisms that are not

otherwise apparent.



Section III: Stationkeeping

The mission lifetime of the Global Positioning System

will be determined by several factors, among them the mean

time between failure of key satellite components and the on-

board capability (reserve fuel supply) to maintain the

mission constraints on the presence of natural perturbations.

Ideally, the spacecraft reliability should be the primary

determinant of the useful lifetime. Stationkeeping maneuvers

should be minimized to circumvent the limited onboard fuel

capacity of the satellite.

The results of Sections I and II will now be used as a

basis to estimate the required time between stationkeeping

maneuvers. Figure 2 shows that, for the nominal mission

profile, the semi-major axis grows by approximately 670 meters

in two hundred days. It will be recalled that the ±2 second

bound on the orbital period equates to a ±822 meter change in

the semi-major axis. Accordingly, it is seen, assuming

containing linearity, that an orbital adjustment will be

necessary in 245 days. Figure 3 shows a 1.6 degree regression

in the geographic node crossing over two hundred days. Since

the constraint on this parameter is ±2 degrees, stationkeeping

would be required (based on the best case of linearity at

the tail of the curve) every 250 days. The eccentricity grows

from a nominal of zero to .000286 in the same span which is

well below the upper bound of .015. Thus corrections will be

necessary about every 8 months if no attempt is made to adjust

the epoch orbital elements to provide better passive control.

One suggested solution to this problem is to target

the orbital period for -1 second off nominal (-411 meters

in a)(13). The period would then be allowed to increase to

its upper bound of +2 seconds (+822 meters). The need for

stationkeeping the period would be reduced to every 368 days.

Offsetting the semi-major axis to 26559.5 km to accomplish

this also serves to stabilize the groundtrack as is evident

44



in Figure 5. The eccentricity again presents no previous

problem, so that this method will extend the interval

between orbital adjustments to, approximately, once per year.

This scheme is dependent on the semi-major axis always

increasing. The expressions for the averaged VOP equations,

discussed in Section II and presented in Appendix C, provide

a basis for testing the validity of this scheme. It was

demonstrated earlier that the (3,2) harmonic is the dominant

perturbation on the semi-major axis. Thus (da/dt)3,2 from

Appendix C will be taken to be a realistic analytical model

and is given by

da 3 -30((S 3 , 2 q - C3 , 2 P) sin(26 - X)dt 312 3,2

+ (-C 3 ,2q - 3,2p) cos(26 - X)) B1 /2 Re3

X(2q 2 + 2p2-1) / ((1 + p2 + q2)3 a7/2) (52)

Eqn. (52) suggests that certain values of the trigonometric

argument (26 - X) could actually cause the semi-major axis

to decrease. Given that this argument would be expected to

stay nearly constant for a resonant tesseral harmonic, the

decrease in a would be due to the selection of a particular

epoch value, o0 , for the mean longitude. Figure 6 shows that

for various epoch node placements, as well as different

mean anomalies at epoch, the semi-major axis can actually

decrease, rather than increase as previously predicted.

Therefore, the magnitude and sign of the offset in semi-major

axis will depend on individual consdieration of the motion

of each satellite in the constellation. Even satellites

moving within the same orbital plane would have to be control-

led individually since differences in their mean anomalies
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at epoch might dictate that the period be targeted on the

high side of nominal to achieve the desired interval between

stationkeeping maneuvers.

Eqn. (52), however, presents a much more interesting

physical result, one that promises to make stationkeeping

almost entirely passive. It will be noticed that A(3,2)

contains a factor of the form (2q2 + 2p2 - 1). Setting this

to zero would yield an inclination for which the semi-major

axis rate due to the dominant (3,2) harmonic would be zero.

2q2 + 2p2 - 1 = 0 (53)

or

2 2
p + q = 1/2 (54)

tan2 ()2 1/2 , (55)

which implies an inclination of i = 70.528780. Figures 7 and 8

tell the story. The semi-major axis growth is greatly

reduced, increasing only 100 meters in 200 days from a nominal

value of 26559.9 km. The groundtrack also appears to stabi-

lize, the geographic node regressing by 1.2 degree in the same

span. The linear drift in the groundtrack is expected , since

a repeating groundtrack semi-major axis has not been computed

for the new inclination. Doing so, with the aid of Appendix B

yields a = 26559.6465 km. Now the semi-major axis is seen

to grow as before, but a really dramatic reduction in the node

crossing drift has been achieved, amounting to only .16 degree

in 200 days, a factor of ten improvement (Figures 7 and 8).

It is now proper to return to the stationkeeping scheme

in which the semi-major axis is biased to improve orbital

stability, keeping in mind that the magnitude and sign of the



26260.30

26260.20

o-ALL PERTURBATIONS 4x4 FIELD io = 63.440 ao 
= 26559,9 km

o-ALL PERTURBATIONS 4x4 FIELD i, = 70 .5 28 7 7 0 a o = 2 6 5 5 9 .9 k m

A- ALL PERTURBATIONS 4x4 FIELD io = 70.528770 ao = 26559.6465 km

,, 26560.00

26559.80

26559.60 I
0 20 40 60 80 100 120 140 160 180 200

DAYS

Figure 7. Semi-major Axis (km) vs. Time for Modified Mission Orbits

g ____-_. _- _;--r__ - .__~r- . ---_~__ ~L_~ __ _ _



20 40 60 80 100 120 140 160 180

DAYS

Figure 8. Geographic Longitude of Ascending Node ( Deg ) vs. Time for Modified Mission Orbits

270.80

270.40

270.00

260.60

260.20

259.80

259.40

259.00
200

--Cri-L-~slrru~ ~ Lc~=;~ X -- ~ - , - --I.~-'- . -*~---- -----"C--"' . -ICIT.-



bias required will be dependent on the initial selection

of the mean longitude. Long arcs were run (1000 days) with

all perturbations (odd order tesserals removed) for the

following cases

a = 26559.5 km a = 26559.2465 km
o o

i = 63.440 i = 70.528780
o o

X = 0 = 0
o O

Both semi-major axes represent a bias of -400 meters from

nominal (-1 sec, period). Figure 9 shows that the semi-major

axis, when A(3 ,2) has been zeroed, grows 853 meters in 1000

days, as opposed to 2.8 km in the i = 63.440 case. Likewise,

Figure 10 demonstrates that the geographic node crossing

remains extremely stable for the new inclination over this

same 1000 day span, while in the other case, the drift is

approximately 250. Therefore it seems that the new incli-

nation of 70.528780 and the corresponding nominal semi-major

axis of 26559.6465 result in greatly reduced stationkeeping

requirements for the GPS mission. An argument might be

introduced that since the new inclination is not that required

to zero the eccentricity growth due to J3, the eccentricity

will grow unacceptably fast, degrading the desirability of the

new orbit. Figure 11 shows that this is not the case. The

eccentricity at the end of 1000 days is .00175 for

i = 70.528780, well within acceptable limits. Thus, on the

basis of an analytical model, great physical insight has been

provided into the orbital dynamics of GPS and has suggested

a new orbit, very close to the original, but more desirable

since stationkeeping is required at much less frequent

intervals. The result has arisen from the removal of the

dominant (3,2) harmonic in its effect on the semi-major axis.
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The preceding scheme is effective since the next contribution

to the semi-major axis rate (and consequent groundtrack

drift), the (4,4) harmonic term, is much smaller.

The foregoing analysis leads one to ask if the idea of

an inclination that induces stability in the groundtrack

for very low eccentricity, resonant orbits could be extended

generally for any integer number of revolutions per day.

The stability of the groundtrack is highly coupled to the

constancy of the semi-major axis. Thus one would like to

develop a procedure to yield that inclination, if it exists,

for which the semi-major axis rate due to the dominant tesseral

harmonic is zero.

For convenience the semi-major axis rate is restated as

da _ 2 U (56)
dt na a (56)

0

The dominant resonant tesseral harmonic, for a given

commensurability, is the first (i.e., lowest degree and order)

harmonic which contains terms with the zeroth powers of the

eccentricity. For a commensurability of N revolutions per

day, the lowest permissible order will be m = N. The degree

is now prescribed. For N even the degree of the dominant

harmonic must be n = N + 1 while for N odd, n = N. The two

cases yield different results and will be treated separately.

The results are similar to those of R. R. Allan based on
(14), (15)

zeroing the inclination function Fmp(i)(14), (15) However,

Allan does not exploit the result as a means of constructing

passive stationkeeping orbits.

i



N even

In the a rate, the dominant resonant harmonic is

(N + 1i, N). The potential for this harmonic is expressed

as the real part of

U N+1,N eN+ C N+,N exp j(X - NO)

N+l

x EVN S (N,s) (pq) Y-N-2,s (kh) (57)
(N+l) VN+l,s 2N+2 1

Referring to the definition of the function Y N-2'S(kh)

leq. (5)j one sees that zeroth powers of h and k can appear
in the semi-major axis rate for s - 1 = 0 or s = 1. The

corresponding function S (N + 1) can now be written according

to eqn. (4) as

N,l ( (2N+1)! 22 -NN-1 (N-1,N+1) (
S2(N+l) q) (N+2)!(N)' (l+p +q ) (p-jq) Pl

where y = cos i

It is clear that the only way for (da/dt) to become zero aside

from the trivial case of p = q = 0, is if the Jacobi polyno-

mial P(N-,N+l) (cos i) can be made to vanish. There is a

convenient expression for the computation of the first

degree Jacobi polynomial, of the form (1 6 )



p ( = (x)P x) = a - + ( + B 2) x2 1 (58)

According to this formula,

(N-1,N+1)
l1 (cos i) = -1 + (N +1) cos i (59)

Now if this polynomial is set to zero one finds that

1cos i = 1(60)N + 1 (60)

Solution of this equation for i, will yield an inclination

for which a(N+1,N) is zero. As seen in the case of the GPS

orbit this has the effect of greatly reducing the drift of
the orbital period and the groundtrack. Table 7 shows the

first few solutions to eqn. (60).

Table 7 - Stable Inclinations

Number of revolutions per day, N Inclination, i (deg)

2 70.52878

4 78.46304

6 81.78679

8 83.62063

10 84.78409
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N odd

In the semi-major axis rate, the dominant resonant

harmonic, by virtue of containing 0 th power eccentricity

terms, is (N, N). The S function corresponding to the

zeroth power terms can be expressed as,

SN,I (2N)1 (N-1,N+1)2N (pq) = (2N) (l+p 2 +q 2 )-N(p-jq) N- (N-,N+) (cos i)
(N+1) !(N-i) 0

(61)

But the zeroth degree Jacobi polynomial is always equal to 1.

Thus it may be seen that a locking inclination, for which the

semi-major axis rate due to the dominant resonant harmonic

is zero, does not exist for the odd number of revolutions per

day case.
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Section IV: Conclusions and Recommendations for Future
Work

Reduced perturbation models have been constructed

for the long-term analysis of GPS orbits. The compactness
of these models, as displayed in the table on page 12, was
a result of several factors. First, since the GPS orbit has
a repeating groundtrack, it was found to be resonant, the
consequence of which (for the 2:1 commensurability) was a
justification for eliminating the odd order tesseral harmonics.
Second, the very low nominal eccentricity of the GPS orbit
was discovered to strongly decouple the resonant harmonics
in such a way that not all of them had an appreciable effect
on every mean element rate. A similar analysis, also based on
the low eccentricity, led to a substantial truncation of the
lunar potential. For the sake of computational efficiency,
these reduced perturbation models could be used in lieu of
full force representations since they produce accurate results
over very long areas.

Explicit, analytically averaged VOP equations, truncated
for low eccentricity, have been developed for the GPS resonant
harmonics (Appendix C) employing the tesseral disturbing
potential in non-singular equinoctial elements. Table 6 showed
that for the test cases selected, these equations reproduced
well the rates returned by ESMAP's numerical averaging. It
is expected that despite the considerable number of terms to
be evaluated in some of the explicit element rates, GPS long
term orbit prediction may be performed in a fraction of the time
required by programs employing numerical quadrature.

The avilability of explicit formulae for the VOP equations
led to some rather interesting insights into the GPS staion-
keeping problem. An inclination was found that zeroed the
semi-major axis growth due to the dominant resonant harmonic
(3,2). This had the effect of stabilizing the groundtrack
dramatically. The inclination was i" 70.530 in contrast to



the nominal value of 630 cited in the literature. On the

basis of the Section III results, it is recommended that the
GPS orbits be retargeted to the new inclination. Doing so

would significantly extend the arc over which the mission
constraints could be maintained passively.

In the area of future work, several directions are fore-
seen. First, there has been as yet no good check on the
computational savings gained by implementation of the reduced
force models. In ESMAP, the undesired tesseral harmonic
coefficients were set equal to zero to produce the required
model. However, with the current program logic, the setup

associated with the numerical average was still performed even
though the ultimate contribution to the mean element rates was
zero. As a consequence, the CPU time required to run the

reduced models vs. that required for the full field was not

appreciably different. It is therefore suggested that ESMAP

be modified to accomodate the reduced models directly so

that the extent of the expected advantages may be assessed.

It is also proposed to implement a software package in
ESMAP which accesses the explicity analytically averaged VOP
equations in Appendix C to compute the element rates due to
GPS resonant tesserals. The package would be key in evaluating
the accuracy and numerical efficiency of these new expressions.

This would be similar to a module already incorporated for

the long-term prediction of orbits perturbed by a third body.
For orbit prediction programs designed to model a wider

range of orbital conditions, different explicit averaging

theories would be required for each commensurability. This
presents a non-trivial problem in analysis and software

development. More desirably, one would like to construct a
recursive theory which allows for the prediction of a general

orbit without the need for extensive reprogramming.

Accordingly, the explicit theory, developed for the GPS orbit,
has very restricted applications in a general program.

However, the results of Section II, notably Table 6, provide



several excellent test cases for verifying a recursive

scheme.

Additional work is also possible in the area of passive

stationkeeping for the GPS constellation. As demonstrated in

Section III, the drift in the geographic node crossing is

dependent on the constancy of the semi-major axis. After having

nulled the semi-major axis rate due to the dominant harmonic

(3,2), the controlling harmonic becomes (4,4). Study of

(da/dt)4,4 in Appendix C suggests that added stability may be

induced, by selecting mean longitudes at epoch for which the

semi-major axis rate is zero. Investigaton of this method of

extending passive stationkeeping is warranted. It may be

possible to design other satellite constellation orbits in

which the choice of inclination and longitude combine to null

the orbital drift induced by tesseral resonance. Extension

of the ESMAP gravity potential from 4X4 to 8X8 would

facilitate such studies.

The results of this thesis also have several potential

applications in the data support for GPS. One application

might be a back-up cabability in which polynomial approximation

of mean elements and analytical formulations for the short

periodic corrections (which can be developed using the methods

of this thesis) provide a nearly precise navigation ephemeris

without frequent communication from the Master Control Station.



Variation of Parameters: Orbital Elements

Classical Formulation

Variation of Parameters is a well known technique for
solving differential equations of the form

d + p(x) dy + q(x) y = f(x) (A-l)
dy

It can be implemented if a set of linearly independent

solutions is known to the homogeneous case such that

y = Ay 1 (x) + By 2 (x) (A-2)

where A and B are integration constants that uniquely determine
the particular solution.

Variation of parameters contends that a particular

solution to the inhomogeneous case can be found by assuming

that A and B are actually functions of the independent

variable. A knowledge of the exact functional dependence of
A and B on x then uniquely defines y for all x when the system
is forced by f(x).

As an example consider the forced spring mass problem
with no damping

dx k2+ x = F sin wt (A-3)
dt2  m

The homogeneous solution is given by

x = A sin w t (A-4)

where

= /kn m

Appendix A



Now assuming that A and B are actually functions of time

and differentiating

S= A(t) sin w t + B cos w tn n

(A-5)

+ Aw cos w t - B sin w t
n n n n

Part2) is set to zero so that the expression for the actual

velocity matches that of the unforced case.

Differentiating again and substituting into the original

equation one gets

A cos w t - iB sin w tn n n n
(A-6)

-A2 sin wt - Bw cos w t + An sin o t + Bw cos w ntn n n  n n n n

= F sin wt

The part in brackets solves the homogeneous case and is there-

fore zero. Thus one is left with the two relations

A sin w t + B cos w t = 0n n
(A-7)

A cos w t - B w sin w t = F sin wt
n n n n

Simultaneous solution for A and B yields

*FA- sin wt cos w t2w n
n

(A-8)
F

- F sin ct sin n t2w nn

Integration of these "constants" now serves to define the

forced solution uniquely for all time. Notice that this



method has obviated the need to actually integrate the

forced differential equation itself. The position and

velocity of the mass are immediately derivable from the

instantaneous knowledge of A and B and a knowledge of how

x and k depend on the integration constants in the homogeneous

case.

Variation of parameters offers an extremely powerful means

of predicting the position and velocity of an orbiting

satellite. The general vector equation of motion is

d2r
+ - Q (A-9)

2 3dt r

where,

r = position vector of satellite in some

coordinate system

= Gravitational constant = G(m + m )s e

m = mass of satellites

m = mass of earthe

G = Universal gravitation constant

Q = an acceleration vector consisting of all

perturbing effects exclusive of the inverse

square gravitational acceleration. This

includes solar radiation pressure, zonal and

tesseral harmonics in the earth's geopotential,

third body forces and atmospheric drag

Direct integration of the equation (called a Cowell procedure)

is in general difficult and time consuming. However, if the

perturbing acceleration is much smaller than the central force

term, then variation of parameters can be utilized with great

computational advantage.



Proceding as before we notice that the homogeneous two

body problem

d2r
- + - r = 0 (A-10)2 3dt r

has six integration constants which serve to define a

particular solution (orbit). One set of these could be the

six components of initial position and velocity. A more

commonly used set are the so-called classical orbital elements:

a = semi-major axis of orbit

e = eccentricity of orbit

M = mean anomaly at epoch

i = inclination of the orbit with respect

to the reference plane (ecliptic or

equatorial)

Q = longitude of the ascending node measured

from the vernal equinox

w = argument of pericenter measured from the

la  line of nodes in orbital plane

e = /a2+2
a +b

2
a

Figure A-1 - Definition of Classical Orbital Elements



These constants of two body motion define the orientation

of the plane and the shape of the conic orbit.

In the spirit of variation of parameters the perturbed

orbit equation can be solved by assuming the integration

constants to be functions of time for which first order

differential equations can be formulated. Given an epoch
state, these equations can be integrated to yield parameters

for any time which can then be converted, using the conic

relations, to perturbed position and velocity. Essentially
this is stating that a set of osculating orbital elements can
be determined for a conic orbit that passes through a given
point on the perturbed trajectory. Accordingly the position

and velocity determined for the osculating (conic) orbit at the
point are identically equal to the same quantities on the
perturbed path.

If the disturbing acceleration is small relative to the

central force term then the variation of parameters equations

can be integrated with tremendous computational savings over

Cowell routines. This is because the osculating element rates

will be slow (with the exception of M), allowing larger time

steps in predicting the orbit. The general variation of

parameters (VOP) equations are given by (12)

6 a.
a. = - (ai, a.) DR + i Q (A-11)

j=1 a. -

where,

a. = osculating elements i = 1,...6

(ai,a.) = Poisson brackets of the elements

R = all perturbations for which a potential

can be written (conservative forces)

Q = perturbing acceleration due to non-

conservative forces (solar radiation

pressure, drag)



The VOP equations in classical elements written for concer-

vative forces only are:(4)

da 2 DR
dt na 3M

2 2 1/2de _ 1-e 2  DR (1-e2) 1/2
dt 2 W-M 2na e na e

(A-12)

(A-13)

d _ cos i
dt 2 21/2

na (l-e ) sin i

di cos i
t 2 2 1/2

na (1-e ) sin i

d_ 1

2 2 1/2
na (1-e)

2 1/2
DR (1-e ) DR
Di 2 Denna e

2 2 1/2
na (1-e 2 ) sin i

sin i

dM 1-e 2  DR 2
dt n _ 2 De nana e

(A-14)

(A-15)

(A-16)

(A-17)



Equinoctial Formulation

Inspection of the classical VOP equations reveals that

they are singular for i = 0 or 1800 and may become so for

e = 0. The result is that the equations are numerically and

analytically intractable in a region about these singularities

causing rather wild behavior in the elements. Since this

condition is not really a physical manifestation of the orbit

it can be eliminated by a more judicious choice of orbital

elements. One such set is the equinoctial elements defined
a(12)

10 = mean longitude = M0 + w +

a = a

h = e sin (w + 0)
(A-18)

k = e cos (W + )

p = tan (i/2) sin 0

q = tan (i/2) cos Q

In the orbital frame h and k are the components of the

eccentricity vector. Similarly p and q represent the compo-

nents of a vector pointing in the direction of the ascending

node crossing having a magnitude of tan(i/2). VOP equations

can be constructed from these elements which are defined every-

where except i = 1800*. Even when the classical elements

exhibit non-physical oscillations the non-singular elements

will be well behaved. Because of the low eccentricity of the

proposed GPS orbit, a change to this new set is in order.

* A retrograde set of elements can be used for i = 1800

cases



Derivation of Repeating Groundtrack Equation

The following is the derivation of a repeating ground-
track equation. The solution of this equation yields a semi-
major axis which has been corrected for nodal drift due to J2.
The expression will be presented in general form with the
Global Positioning System orbit treated as a specific example.

From Gedeon (1 7 he defining equation for a repeating

groundtrack is

s(w e - ) = M + w (B-l)

where, we = Earth's rotational rate

s = an integer ratio which specifies the

satellite-Earth commensurability

Thus

M + c + s - s we = 0 (B-2)

must be satisfied.

For J2 perturbation A = 6 = i = 0, so that the classical VOP

equations reduce to the following set:

d _ 1 @R
dt na2 V- 2 sin i -- (B-3)

l-e

2dM l-e 2 R 2 @R
dt 2 De na a(B-4)na e

dw cos i DR l-e R (B-5)R
dt 2 Di 2 Dena / 2 sin i na el-e

Appendix B



The J2 disturbing potential is(4)

2
R -3/23 e (l-e2

2 J2 3
a

1 sin2i
(3 2

Substituting (B-6) successively into (B-3) (B-4) and (B-5)

2
3 2 n e cos i

S- (B-7)
a (1 -e )

2
9 e 23/2 1 1 2=n 1+ J 2 a (1 - e ) 3 sin i (B-8)

2
_ 3 e 2 22 n 2

a 22a (l-e 2 )2

Now substituting (B-7),

1 5 2.
2 2 cos i (B-9)

(B-8), and (B-9) into (B-2) and

simplifying

SR 2 e 3( - e2  1 1 2
n 1 + 2 3( - e) sin i

f2 2 3 2

s

2 2
(l-e

11 5 2.22 2 2 cos i

(l-e

cos i -s we 0 (B-10)

Define

-3/2 1 1 2
E(s) = 3(1- e2) 1 sin i 2 5 cos2 122 2 2

s (l-e )

2 cos i (B-ll)
2)(l-e

70

(B-6)



so that (B-10) becomes

2

n 1 + 2 a - (s)f 
R2a

- = 0e

Further defining

3 2 2
Q(s) E 22/ Re (s)2 2/3 e

and making the substitutions

2 P 2/3
a -

n

X = nl/3

the final compact form can be expressed as,

3 7
× + Q(s) x - s

The appropriate root may be extracted by Newton Raphson

iteration with a bit of physical intuition.

(B-12)

(B-13)

(B-14)

(B-15)

(B-16).



Numerical Example: The GPS Orbit

The GPS orbit has the following properties:

e 0

i = 63.440

s = 2(2:1 commensurability)

Also

-4
we = .729211585 X 10 rad/sec

P = 398600.8 km 3/sec 2

R = 6378.145 kme
-6

J = 1082.6517 X 10

Using these values, the constants in (B-16) can be computed.

(2) = -1.094375268 (B-1

Q( 2 ) = -13.34870836 (B-1

2 w = 1.458431170 X 10- 4  (B-1

Substitution of (B-18) and (B-19) into (B-16) yields, after

simplification

7 3 -
X7 -.0749129746 X3 + 1.09254818 X 10

The correct root is X = .0526392092

Combining Eqs. (B-14) and (B-15) gives,

1/3
a - 2x

= 0 (B-20)

(B-21)

72

7)

8)

9)



from which the corresponding semi-major axis is found to

be

a = 26559.9 km (B-22)

with an associated period of 11.966 hours. This value is

in very close agreement with the actual GPS semi-major axis

of 26560.123 km(P = 11.9661 hours) presented in the
(3)literature . The computed value will be used for all GPS

analysis in this thesis.



Appendix C: Explicit, Analytically Averaged Expressions

for the VOP Equations in Non-Singular Elements.*

The following describes the algebra involved in the
construction of the explicit, analytically averaged equations
of motion for the GPS orbit as discussed in Section II. Final
expressions for the potential and averaged element rates will
be presented at the end of the Appendix. Parts of Section I
will now be restated for convenience.

For the 2:1 commensurable GPS orbit, the resonant
potential can be expressed as the real part of Equation (10)

* Re * m
Unm a Cnm exp j (X - 2m)

n
X s=- Vs

(m,s) -n- ,s
2n (P) Y

2

Vm (n - s)' P (0)ns (n - m). n,s

m -(n + s) P (0)n,-s (n - m) n,-s

A directory for the algebraic results of this appendix

is given on page 99 .

where

(k,h)



75

P (0)- P (v)
n,s s ndv S v = 0

P (0) = (-1) s (n - s) p (0)np-s (n + s)! n,s

(l+p 2+q 2) s (p-jq) -S (--m-) (y) s < - mn+s

2 n( m ,s) (p,)=(n+m)(n-m) + 2 +q2) -m(pjq)m-s (m-s,s+m) ( )

2n (n+s).(n-s). n-m

-m < s < + m

m-s 2 2)-s s-
(-1) (l+p +q 2) (p+jq) s-r(s-m,s+m) (Y)n-s

s > m

2  2
1-p -q cos

l+p 2+q 2

- --- A



The functions Xn,,-m
c+m-t , a are constants called Newcomb operators

and are computed according to the following rules (12)

n,m
X0, 0

n,m n
X1, 0 = m -

n,m  n,m+14p X = 2(2m - n) Xn

pO p-1,0

4a Xn,m = -2(2m + n) Xn m-p,G p,a-l

+ (m - n) Xn m+2p- 2 ,0

- (m + n) Xn,m-2
p,o-2

- (p - 50 + 4 + 4m + n) Xn ' m

p-1, -1

+2(p - a + m) (-) T  3/2) xn,m
>2 T )P-, F-T

(C-1)

(C-2)

(C-3)

(C-4)



As an example of how the potential needed for computing

the averaged element rates was constructed, the algebra for

the harmonic (4,4) will be presented. The complex potential

for (4,4) is given by

U 44
a1
a

/e 
4

a C44 exp Ij2(A - 20) (C-5)

4 S(4,s) (p q) Y (k h)
X V4,s 8 ' 2

s=0,2,4

Computation of the potential requires knowledge of the following

functions as can be verified by reference to Section I

4 (4,0)
4, 0  8

4 (4,2)
V 4 ,2 , S 8

4 (4,4)
V4,, S

4,4 8

-5,0Y2

-5,2, Y 2

2

- 5 , 4
Y2

(C-6)

(C-7)

(C-8)

Using the definition of the V functions and recognizing that

1 4 2P4() = (35 - 30v + 3)43\ 8

4  4! d
4 _ P4 (v)4,0 0! 0 4 (V)dv 0

4 2' d2
4,2 01 d2 P4(V)

4 0' d
4,4 01 4 4( )' "dv 0

one gets

= 9

= -15

= 105

77



The S functions are

4,0 _ 8!0! (p - j q ) 4 P(4,4) (Y)
8 4!41 (1+p 2 2 4 0

(l+p + q )

But since all 0 th degree Jacobi polynomials are equal to 1

this becomes

4,0 = 70(p - jq)4

8 (1 + p2 + q2)4

Continuing,

2 2
(4,2) 80! (p-jq) P (2 ,6 ) () = 2 8(p - jq)

8 6!2! + 2 2+ 4 0 ( + 2 2 4
(1± p + q ) (l+p +q)

(0, 8 )
P0

0 (Y)

(1 + p2 + q )
+ p + q 1

(1 + p +q)

Last of all, the Y functions are expressible in terms of the

Newcomb operators. For (4,4) one has

Y5,0 X-5,0
2 2,0

-5,2 -5,-2
2 0,0

-5,4 X -5j-4
2 2,0

(k - jh)2

-5,-2 2 2+ X (h +k )
1,1

(k + jh)2

78

(4,4)
8



The Newcomb operators are computed according to eqns.

(C-1) - (C-4).

-5,-2X1
0,0

= 1

-5,0 -5, -5,28X 2(5) X 5  + 5 X = 10(1 + 5/2) + 5 = 40
2,0 1,0 0,0

= 2(-8+5) -5,-3 -5 -2X1,0 + (-4+5) X,0 = -6(-3+5/2) + 1 = 4
1,0 0,0

S -5,-4 1

2, 0 2

4X 2 = -2 (-4-5)
1,1

-51-3 -5-2X 5f- (1-5+4-8-5) X 5
1,0 0,0

5
= 18(-3 + -) + 13 = 42

= 1

Thus the final form of the Y functions for (4,4) is

-5,0 = 5(k - jh)2

-5,2 2 2Y 1+h +k

-5, 4  1 (kjh)2
2 2

8- 5 -4
2,0

. -5,0
2,0

x -5,-2. "Xiil



The construction of the (4,4) potential from these blocks

is not an algebraicly trivial matter. The terms must be

multiplied out and the real part extracted. Computing by

hand is extremely tedious and invites the near certainty of

error. To avoid this, the algebra was performed using

MACSYMA 1 . This is a symbolic manipulation program currently

resident on several computers at MIT's Laboratory for the

Computer Sciences. Its purpose is to manipulate strings of

symbols, not necessarily numeric, according to the rules of

algebra. What follows is a description of the MACSYMA steps

required to produce the (4,4) potential and the related VOP

equations, where MACSYMA uses the nomenclature

% E j /-

%E H exp

L r A = mean longitude

T E 6H Greenwich hour angle

^ E exponential

* r multiplication

The lines preceded by identifiers of the form (Ca), a

an integer, are the command lines, typed in by the user.

If a command line is ended with a semi-colon (;) the line

immediately following has an identifier of the form (Da). This

is the display line returned by MACSYMA after having performed

the indicated operation. If the C line has been terminated

with a dollar sign ($), then the command will be executed and

the result stored internally, the printout having

been suppressed. This avoids the print of intermediate results,

80



if desired. In this case, the next line following will be

just a consecutively numbered C line.

In the example,(Cl) is the complex potential U4 4.
FUNC represents the as yet unspecified summation

V4,s S ( 4 s ) (p,q) Y 5,s (k, h)
s=0,2,4

(C-9)

The result is seen in (Dl).

(Cl) MU/A* (RE/A) ^4* (C [4,4]3 -%I S [4,4]) sEXP (2% I* (L-2*T) ) *FUNC;

4, 4
(01)

4 2 %1 (L - 2 T)
- %I S ) FUNC MU RE %E

4, 4

Lines (C2), (C3) and (C4) along with their corresponding display

lines represent the three terms of (C-9) constructed by

multiplying together the individually computed V, S, and Y

functions in (C-6), (C-7) and (C-8).

(C2) 9* (708 (P-%l *Q) ̂ 4/ (1+P^2+Q2)A4) * (K -%1H)A^2

3158 (K - %1 H) (P - %1 Q)
(02)

2 2 4
(Q + P + 1)

(C3) -15*(28*(P-%I*Q)^2/ (1+P^2+Q2)^4)*(1+HA2+KA2);

2 2
428 (K + H + 1) (P - %1 Q)

(03)
2 2

(Q +P + 1)

--~----~~- II~ -- ~ - I I II I- I II I IIIL



(C4) 185*(1/(1+P2+Q^2)^ 4)*(1/2)(K+%IH) "2;

(04)
1805 (K + %1I H)
---------------

2 2
2 (Q +P + 1)

The three terms are then added to form FUNC in (C-5).

(CS) FUNC 02+03+04;

3158 (K - %1 H) (P - %1 Q)
(05DS) FUNC a ---------------------------

2 2 4
(Q +P + 1)

2 2
428 (K + H + 1) (P - %1 Q) 185 (K + %1 H)

- ----------------------------- + ----------------

2 2 4
(Q +P + 1)

2 2
2 (Q +P + 1)

FUNC is then rationally substituted (all products expanded)

into (Dl) (in line (C6)) to yield the result, (D6).

(C6) RATSUBST(RHS(DS),FUNC,D1);

(D;) - MU (S
4, 4

2 4
(%1 (6388 K 0 + 58488 H K P Q

2 2 2 4 24 2 3
+ 37888 H P Q ) + 12688 H K 0 - 6388 %1 H - 25288 K P Q

2 3 2 2 . 2 2 2
+ 25288 H P 0 - %1 ((37888 K P - 848 K - 848 H - 848) 0

3 2 4 2 2 2
+ 58488 H K P + 6388 H P + 15 H ) - 756800 H K P Q

I'"; -"~ I ~ In ~nrr ...... ~ ,~__3r I I r - -- I-- ---------- 1= -



2 2 2 3 2 3
- ((1688 K + 1688 H + 1688) P - 25288 K P ) Q - 25288 H P Q

2 4 2 2 2 2
+ %I (6388 K P + (- 848 K - 848 H - 848) P + 185 K )

4
+ 12688 H K P - 218 H K) + C

4, 4

4 2 3 2 4 2 4
(%1 (12688 H IK Q + 25288 H P 0 ) - 638800 K Q + 6380 H

2 3 2 2 2 3
- %I (25288 K P Q + 75688 H K P 0 + 25288 H P Q)

3 2 2 2 2 2
- 58488 H K P Q - (- 37888 K P + 848 K + 848 H + 848) 0

2 2 2 2 3
- 37888 H P Q + %1 ((252880 K P

2 2 4
+ (- 1688 K - 1688 H - 1688) P) Q + 12688 H K P - 218 H K)

3 2 4 2 4
+ 58488 H K P 0 - 6388 K P + 6300 H P

2 2 2 2 2 4
+ (848 K + 848 H + 848) P - 185 K + 185 H )) RE

2 (% L - 2 %1 T) 5 8 2 6
%E ./(A (2 0 + (8 P + 8) 0

4 2 4 6 4 2 2 8
+ (12 P + 24 P + 12) Q + (8 P + 24 P + 24 P + 8) Q + 2 P

6 4 2
+ 8 P + 12 P + 8 P + 2))

To get the (4,4) potential, the real part must be extracted.

Invoking the REALPART command in MACSYMA, (C7), produces

the desired expression, (D7).
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(C7) REALPART(06);

4 2 4 2 4 3
(07) - MU RE ((C (- 6308 K 0 + 6300 H Q - 58488 H K P

4, 4

2 2 2 2 2 2 2 2
- (- 37888 K P + 848 K + 840 H + 848) 0 - 37888 H P 0

3 2 4 2 4
+ 58488 H K P Q - 6388 K P + 6300 H P

2 2 2 2 2
+ (848 K + 848 H + 848) P - 185 K + 185 H )

4 2 3 2 3
+ S (12608 H K 0 - 25288 K P 0 + 25288 H P Q

4, 4

2 2 2 2 2 3
- 75600 H K P Q - ((1688 K + 1688 H + 1688) P - 25288 K P )

2 3 4
O - 25200 H P 0 + 12688 H K P - 210 H K)) COS(2 (L - 2 T))

2 4 2 4 3
- (S (6388 K 0 - 6308 H 0 + 58486 H K P 0

4, 4

2 2 2 2 2 2 2 2
- (37888 K P - 848 K - 848 H - 840) Q + 37888 H P Q

3 24 24
- 548800 H K P 0 + 6388 K P - 6388 H P

2 2 2 2 2
+ (- 848 K - 840 H - 840) P + 185 K - 185 H )

4 2 3 2 3
+ C (12688 HK Q - 25288 K P Q0 + 25288 H P Q

4, 4

2 2 2 3
- 75688 H K P Q + (25288 K P

2 2 2 3
+ (- 16880 K - 1688 H - 1688) P) Q - 25288 H P Q

I '' = - -_ -PP -Lx~---s~----- --- -r I I---~X--- _~~ _ _I_



+ 12688 H K P - 210 H K)) SIN(2 (L - 2 T)))

5 8 2 6 4 2 4
/(A (2 Q + (8 P + 8) 0 + (12 P + 24 P + 12) Q

6 4 2 2 8 6 4 2
+ (8P +24P +24P +8) 0 +2P +8P +12P +8P

+ 2))

To aid in visualization and in order to produce a more

compact model, a factorization of (D7) is called for. The

command FACTORSUM (line(C8)) had the effect of pulling out some

common factors and factoring the denominator, while leaving

each term multiplying a trigonometric function

(C8) FACTORSUM (07)

4
(08) - 185 MU RE (68 S

4, 4

4
+ 120 C H K Q SIN(2 (;

4, 4

2 4
K 0 SIN(2 (2 T - L))

2 T - L))

(this space purposely left blank. Expression

continued on next page)
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- 68 S
4, 4

- 240 C
4, 4

2 4
H 0 SIN(2 (2 T - L))

2 3
K P Q SIN(2 (2 T - L))

3
+ 488 S H K P Q SIN(2 (2 T - L))

4, 4

+ 240 C
4,

- 368 S
4,

- 728 C
4,

+ 368 S
4,

+8S
4, 4

+8S
4, 4

2 3
H P 0 SIN(2 (2 T - L))

222
K P Q SIN(2 (2 T - L))

22
H K P Q SIN(2 (2 T - L))

222
H P Q SIN(2 (2 T - L))

2 2
K Q SIN(2 (2 T - L))

2 2
H 0 SIN(2 (2 T - L)) + 8 S

4, 4

2
0 SIN(2 (2 T - L))

2 3
+ 248 C K P Q SIN(2 (2

- 480 S

4, 4

4, 4

- 248 C
4, 4

- 16 C
4, 4

3
H K P Q SIN(2 (2 T - L))

2 3
H P Q SIN(2 (2 T - L))

2
K P Q SIN(2 (2 T - L))

T - L))



- 16 C
4, 4

4, 4

+ 68 S
4, 4

+ 128 C
4, 4

-68 S
4, 4

2
H P 0 SIN(2 (2 T - L))

P 0 SIN(2 (2 T - L))

2 4
K P SIN(2 (2 T - L))

H K P SIN(2 (2 T - L))

2 .4
H P SIN(2 (2 T - L))

2 2
K P SIN(2

2 2
H P SIN(2

(2 T - L))

(2 T - L)) - 8 S
4, 4

2
P SIN(2 (2 T - L))

+ S . K SIN(2 (2 T - L)) - 2 C
4, 4 4, 4

- S H SIN(2 (2 T - L)) - 68 C
4, 4 4, 4

H K SIN(2 (2 T - L))

2 4
K Q COS(2 (2 T - L))

+ 128 S
4, 4

4
H K 0 COS(2 (2 T - L))

2 4
+ 68 C H 0 COS(2 (2 T

4, 4

- 248 S
4, 4

- 488 C
4, 4

2 3
K P Q COS(2 (2 T - L))

3
H K P 0 COS(2 (2 T - L))

-8S
4,

-8S
4,

- L))



+ 240 S
4, 4

+ 368 C
4,

- 728 S
4,

- 368 C

-8C
4,

4, 4

2 3
H P 0 COS(2 (2 T - L))

222
K P 0 COS(2 (2 T - L))

2 2
H K P 0 COS(2 (2 T - L))

222
H P 0 COS(2

2 2
K Q

(2 T - L))

COS(2 (2 T - L))

2 2
H Q COS(2 (2 T - L)) - 8 C

4, 4

2
Q COS(2 (2 T - L))

+ 240 S
4, 4

+ 480 C
4, 4

- 248 S
4, 4

-16 S
4, 4

-16S 1
4, 4

2 3
K P 0 COS(2 (2 T - L))

3
H K P Q COS(2 (2 T - L))

2 3
HP 0 COS(2 (2 T - L))

P 0 COS(2 (2 T - L))

P Q COS(2 (2 T - L))

- 16 S P Q COS(2 (2 T - L))
4, 4

- 60 C
4,' 4

2 4
K P COS(2 (2 T - L))

-8C
4, 4



4, 4
H K P COS(2 (2 T - L))

2 4
H P COS(2 (2 T - L))

,4

2 2
K P COS(2 (2 T - L))

+8C
4,

-C
4, 4

2 2
H P COS(2 (2 T - L)) + 8 C

4 4, 4

2
K COS(2 (2 T - L)) - 2 S H K

4, 4

P COS(2 (2 T - L))

COS(2 (2 T - L))

2 5 2 2 4
H COS(2 (2 T - L)))/(2 A (Q + P + 1) )

4, 4

To solve this problem, sin(2(2T-L)) and cos(2(2T-L)) were

declared the main factorization variables in (D8) via

RATVARS, (C10). The resulting factorization, using RAT,

yielded the full potential, (U4,4) FULL (the potential truncated

to the third power of h and k), (Dll).

(C9) RATFAC:TRUE;

(09) TRUE

(C18) RATVARS (SIN(2(2*T-L)) ,COS (2*(2T-L)));

[SIN(2 (2 T - L)), COS(2 (2 T - L))]

(C11) U[4,4] [FULL] - RAT(D8);

+ 120 S

4,

+8C
4, 4

(010)

i-~I- ;...-7---I- -=~3P=~5~FEii i ---3 ~_ _~__~ II I I -- - - r~i~-~----- _ ~~
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(011)/R/ (U

- 68 S4
4, 4

I ) - - 185 (((68 S
4, 4 FULL

2 4
H ) Q + (- 248 C

4, 4

4, 4

2
K + 128 C

4, 4

2
K + 488 S

4, 4
HK

+ 248 C
4, 4

2 3
H )PQ + ((- 368 S

4, 4

(This space purposely left blank. Expression

continued on next page)
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+ 368 S
4, 4

+ ((240 C
4, 4

+ (- 16 C
4, 4

2 2
H ) P +8S

4, 4

2
K - 488 S

4, 4

2
K - 16 C

4, 4

2 2 2
K +8S H +8S )Q

4, 4

H K - 240 C
4, 4

2
H - 16 C

4, 4

2 3
H ) P

) P) Q
4, 4

+ (68 S
4, 4

+ (- 8 S
4, 4

K + 128 C
4, 4

2
K -8S

4, 4

H K - 68 S
4, 4

2 2
H -8S )P

4, 4

HK -S
4, 4

H ) SIN(2 T - L))

+ ((- s8 C
4, 4

+ (- 248 S
4, 4

K + 128 S
4, 4

2
K - 488 C

4, 4

H K + 6B C
4, 4

H K + 248 S
4, 4

2 4
H) 0

2 3
H) PQ

+ ((368 C
4, 4

K - 728 S
4, 4

H K - 368 C
4, 4

2 2
H)P -8C

4, 4

-8C
4, 4

2 2
H - 8 C ) Q + ((248 S

4, 4 4, 4

2 3
- 248 S H ) P + (- 16 S

4,4 4, 4

2
K + 488 C

4, 4

2
K - 16 S

4, 4

2
H - 16 S

Q + (- 68 C
4, 4

2
K + 128 S H K + 68 C

2 4
H) P

4, 4 4, 4

2 4
H) P

4, 4

-2C
4, 4

) P)
4, 4



2
K +8C

4,

HK+C
4, 4

H +8C )P -C I
4 4,4 4,4

2
H ) COS(2 (2 T - L))) MU RE

2 2 4 5
/(2 (Q + P + 1) A)

The potential further truncated to the first power of h

and k was constructed via (C12) - (C14) by substituting 0,

wherever h 2 , k 2 , and hk appeared. Employing a factoring

procedure similar to that above, (U4,4)TRUNC resulted, (D16).

(C12) RATSUBST(8,H^2,07)S

(C13) RATSUBST(8,K^2,012)$

(C14) RATSUBST (,H*K,013) S

(CIS) FACTORSUM(D14);

4
(015) - 428 MU RE (S

4, 4

-2C
4, 4

-C
4, 4

Q SIN(2 (2 T - L))

P 0 SIN(2 (2 T - L)) - S

2
0 COS(2 (2 T - L)) - 2 S

4, 4

4, 4

P SIN(2 (2 T - L))

P Q COS(2 (2 T - L))

2 5 2 2 4
P COS(2 (2 T - L)))/(A (Q + P + 1) )

4, 4

92

+ (8 C

-2S
4

, 4

, 4



(C16) U[4,41 [TRUNC] - RAT(D1S);

2
(016)/R/ (U ) - 428 ((S Q - 2 C P Q

4, 4 TRUNC 4, 4 4, 4

2 2
- S P ) SIN(2 (2 T - L)) + (- C 0 - 2 S P Q

4, 4 4, 4 4, 4

2 4 2 2 45
+ C P ) COS(2 (2 T - L))) MU RE /((Q + P + 1) A )

4, 4

What follows is an example of how the VOP equations were

formed from the resulting potential. The file (SKC614, 1,

DSK, SKC), loaded in statement (C17) contained a set of VOP

equations truncated to the first power of h and k. (D18) is

the expression for the semi--major axis rate, where N is the mean

motion and RL represents the derivative of the potential with

respect to the mean longitude L.

(C17) LOADFILE(SKC614,1,SK, SKC);

(017) DONE

(C18) DA/DT[4,4] = RHS(DIFFA);

2R
DA L

(018) (--) -
DT 4, 4 AN

(D20) results after substituting the definition of the mean

motion, (D19)

~1---~-9P~i~e"z--- I 3_.~ 1 II



(C19) N - SORT(MU/A^3);

(019)
SQRT (MU)

N I --------
3/2

(C20) SUBST( [0D19] ,018);

2 SQRT(A) R

(028) (--)DT 4, 4 ---- RT(MU)--------

OT 4, 4 SQRT(MU)

MACSYMA possesses the capability to take partial derivatives

of an expression with respect to a specified argument. Using

DIFF, with L as the argument in (C23), RL can be formed from

the potential, (D16). Note that it was more convenient to

differentiate (D15) rather than (D16).

(C23) RIL] - DIFF(O1S,L,1);

4
(023) R . - 420 MU RE (- 2 C

2
Q

4, 4

P 0 SIN(2 (2 T - L)) + 2 C

2
Q COS(2 (2 T - L)) + 4 C

4, 4

SIN(2 (2 T - L))

2
P SIN(2 (2 T - L))

4, 4

P Q COS(2 (2 T - L))

2 5 2 2 4
P COS(2 (2 T - L)))/(A (Q + P + 1) )

-4S
4,

-2S
4,

+2S
4,

~3 , .. ,....__ --r~.l_. :.~~ - I_~_ -~_ I ~P~ -~L~--I^C- _ 1 I



After substitution and factorization, a rate truncated

to the first powers of h and k is seen in (D26).

(C24) SUBST (D231,028);

DA
(024) (--)

DT 4, 4

4
- 848 SQRT(MU) RE

(- 2 C
4, 4

+2C
4, 4

+4C
4, 4

2
O SIN(2 (2 T - L)) - 4 S

4, 4

2
P SIN(2 (2 T - L)) - 2 S

4, 4

P a COS(2 (2 T - L)) + 2 S
4, 4

P 0 SIN(2 (2 T - L))

0 COS(2 (2 T - L))

2
P COS(2 (2 T - L)))

9/2 2 2 4
/(A (Q + P + 1) )

(C26) DA/DT4,41 - RAT(RHS(024));

DA
(026)/R/ (--)

DT 4, 4
- 1688 ((C

4, 4

SIN(2 (2 T - L)) + (S
4, 4

0 +2S
4, 4

a -2C
4, 4

P -

P Q - C
4, 4

2
S P)
4, 4

4 2 2 4 9
COS(2 (2 T - L))) SQRT(MU) RE /((Q + P + 1) SQRT(A) )

If the rate (D18) had contained derivatives with respect to h

and k, the potential (U4,4)FULL would be used since (U4,4)TRUNC

could not contribute any first power terms. All other rat3s

follow in similar fashion.

One thing that was not done, was to mechanize, on

MACSYMA, the recursions governing the computation of the V, S

95
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and Y functions. If this were implemented, construction of

potential and rates would be greatly facilitated.

The remaining harmonics were computed with the following

blocks

(2,2) Harmonic

2V2  = 3
2,-2

2

2 ,2

- 3 , - 2 _ 1 (k 3jh)
1 48

(2,-2)_ (p-jq)4

4 - 2 22
(l+p +q )

S (2,0) = 6(p-jq)2
4 2 2 2(l+p2+q2)2

(2,2) _ 1
4 2 +q2 2

(l+p +q )

= (k - jh)

= (k + jh)

3 27 2 21S+ (h +k )

S1 (h2 2+

2
2 ,0

= -1

-3,0
1

-3,2
1



(3,2) Harmonic

2
V 3

3,-1 3

2
V3 , 1 = -3

2
3,3

2 2
(2,-l) 5(2-p -q ) ( p  3 j q )

(l+p +q )

(2,1) 5(1-2p -2q 2 jq)

S(2, 3 )  p + jq
6 +p2 +q2 3

(l+p +q )
= 15

-4,-1 = 11
1 8 (k - jh)2

-4,1
Y 11

= 1 + 2(h 2

-4,3 _ 1 2Y 3 1 (k + jh)
1 8

+ k2 )



(4,2) Harmonic

2 15

4 ,-2 2

2 9
4 , 0 2

2 15
V4 ,2 2

2
V4 , 4

(2,-2) (p-jq) (72 + 7y + 1)
8  (l+p2+q2 2(1+p +q )

(2,0) _ 5 (p-jq) (7272 1)
8 2 (l+p2+2 2 2

(l+p +q)

(2,2) = 7y - 7y + 1
8 2 2
8 (1+p +q) 2

(2,4) - (p + jq)
8 (l+p 2+q 2 )

105
2

2 2
l-p -q

S= 2 2
1+p +q

-5 , - 2 _ 49 (k-jh3- (k-jh)
1 6

-5,0 _ 5
Y (k - jh)

-5,2 _ 1Y (k + jh)

-5,4 _ 1 (
1 48

27 2  2 ]1 + 27 (h + k )

1 + 3 (h2 + k )

jh)

98



MACSYMA allocates only so much list space for each user upon

which expansions, factorizations, etc. may be performed.

When this is exceeded the function cannot be performed. In

the case of (4,2) which had many more terms than the other

harmonics, factorizations of P, 4 and A could not be performed
for lack of list space. As a consequence they are not as

compact as desired. The following table gives the page numbers

within the Appendix where the potential and rates for each

harmonic may be found.

UFULL UTRUNC

(2,2) 100

(3,2) 110

(4,2) 121

(4,4) 146

a h k P

103 104 105 106 107 108 109

112 113 114 116 118 119 120

126 128 130 131 132 138 142

148 149 150 151 152 153 154



(U
2, 2 FULL

2
= - MU RE (((S

2, 2

3
K +3C

2, 2

2
H K-C

2, 2

3 4
H ) Q + (- 4C

2, 2

+12 C
2, 2

2
H K-4S

2, 2

+ ((-6 S
2, 2

K - 18 C H K + 18 S
2, 2 2, 2

2
H K+6C

2, 2

+ 162 S
2, 2

3
K + 162 C

2, 2

+ (162 S
2, 2

+ ((4C I
2, 2

+ (- 324 C
2, 2

+ (- 324 C
2, 2

H + 144 S ) K + 162 C
2, 2 2, 2

- 12 S
2, 2

3
K + 324 S

2, 2

2
H - 288 C

2, 2

2
HK - 12 C

2, 2

3
H + 144 C

2, 2

2
H K+4S

2, 2

H) Q

3 3
H) P

2
HK

) K + 324 S
2, 2

3
H + 288 S -

2, 2

P) Q + (S
2, 2

K +3C HK -3S H
2,2 2, 2

+ (- 162 S
2, 2

+ (- 162 S
2, 2

2
P +3S

2, 2

3
K - 162 C

2,

2
H - 144 S

2,

3
K -3C

2, 2

2
HK

) K - 162 C
2 2, 2.

2
HK + (3 S

2, 2

3
H - 144 C

2, 2

2
H - 24 S

2, 2

100

-3S
2, 2

HK

3
K + 12

2
HKS

2, 2

3
H)PQ

3
H)

HK

K-C
2, 2

3 4
H) P



-3C
2, 2

+ ((- C
2, 2

3
H +24 C

2, 2

3
K +3S

2, 2

H) SIN(2 T - L)

2
HK +3C

2, 2

+ (-4 S
2, 2

3
Q +

2
P -

((6 C
2, 2

162 C
2, 2

+ (- 162 C
2, 2

2
Q +

3
P' +

3
K -12 C

2, 2

- 18 S
2,

+ 162 S
2, 2

- 144 C
2, 2

+12 C
2, 2

3
K - 324 C

2, 2

((4 S
2, 2

(- 324 S
2, 2

2
H K + 12 S

2, 2

2
HK - 18 C

2 2,

2
H K+4C

2, 2

2
H K + 6 S

2 2,

2
HK

) K + 162 S
2,

2
H K - 12 S

2,

H + 144 S
2, 2

2
H K-4C

2, 2

2
HK

+ (- 324 S
2, 2.

P) Q + (- C
2, 2

+ (162 C
2, 2

- 162 S
2, 2

2
H - 288 S

2, 2

K +3S
2, 2

3
K - 162 S

3
H - 144 S

2, 2

2, 2

) K - 324 C
2,

2
HK +3C

2, 2

H K + (162 C
2,

2
H) P -3 C

2, 2

3
H - 288 C

2, 2

2
H K-S

2, 2

3 4
H) P

H + 144 C
2 2, 2

3 2
K -3S HK

2, 2

101

K-S
2, 2

3 4
H) Q

3
H)P

3
H)

3
H)



+ (24 C - 3 C
2, 2 2, 2

H)K-3S
2, 2

H +24S
2, 2

3 2 2 2
COS(2 T - L))/(16 A (Q + P + 1) )

102



(U ) - 3 M
2, 2 TRUNC

+ (12 S H - 12 C
2, 2 2, 2

U RE (((G S
2, 2

K) P Q + (-6 S
2, 2

K+6C
2, 2

H) Q

K - C
2, 2

H) SIN(2 T - L)

+ ((6 S
2, 2

+ (6 C
2, 2

H -2, 2
2, 2

K -6S
2, 2

2
K) Q + (- 12 S

2, 2-

2
H) P +C K+S

2, 2 ,2, 2

K - 12 C
2, 2

H) COS(2 T - L))

3 2 2 2
/(2 A (Q + P + 1) )

103

-S
2, 2

K +C
2, 2

H) P

H) P 0



- 3 (((6 C
2, 2

K - 6 S
2, 2

+ (12 S K + 12 C H) P Q + (- 6 C
2, 2 2, 2 2, 2

K + 6 S
2, 2

- C K - S - H) SI
2, 2 2, 2

+ ((6 S K + 6 C
2, 2 2, 2

N(2 T - L)

2
H) Q + (- 12 C

2, 2
K + 12 S

2, 2

+(-6S K-6C
2, 2 2, 2

2
H) P -S

2, 2

2 2 2 2 5
COS(2 T - L)) SQRT(MU) RE /((Q + P + 1) SQRT(A) )

104

DA
(--)

DT 2, 2
H) 0

H) P

H) P Q

K+C
2, 2



S-3 ((6 S
2, 2

2
Q - 12 C

2, 2
PQ- S

2, 2

- S ) SIN(2 T - L) + (- 6 C
2, 2

+ 6 C P + C
2, 2 2, 2

2, 2

2
0 - 12 S

2, 2

) COS(2 T - L)) SQRT(MU) RE

2 2 2 7
/(2 (Q + P + 1) SQRT(A) )

105

(--T 2 2
DT 2, 2

PQ



(--) 2
DT 2, 2

-3 ((6 C
2, 2

+ C ) SIN(2 T - L) + (6 S
2,2 2,2

0 + 12 S
2, 2

2
Q - 12 C

2, 2

PQ-6C
2, 2

PQ-GS
2, 2

2 2 2 2 7
+ S ) COS(2 T - L)) SQRT(MU) RE / (2 (Q + P + 1) SQRT(A) )

2, 2

106



- 3 (((12 S
2, 2

K + 12 C
2, 2

K + 24 S
2, 2 2, 2

K - 86 C
2, 2 2, 2

C K + 24 S
2, 2 2, 2

H) P 0

2
H) Q

H) P

+ (188 C
2, 2

K - 188 S
2, 2

+ (- 12 S
2, 2

+ 13 S
2, 2

K - 12 C
2, 2

K - 13 C
2, 2

4
H) P + (86 S K + 94 C

2, 2 2, 2

H) SIN(2 T - L)

+ ((- 12 C
2, 2

K + 12 S
2, 2

+ (- 24 S
2,

+ (94 C
2, 2

+ (188 S
2, 2

2
K - 24 C

2 2,

K - 86 S
2, 2

K + 188 C
2, 2

H) P Q

2
H) 0 + ((- 24 S

2, 2
K - 24 C

2, 2

H) P) 0

+ (12 C K - 12 S
2, 2 2, 2

- 13 C K - 13 S
2, 2 2, 2

H) P + (- 86 C
2, 2

K + 94 S
2, 2

H) COS(2 T - L)) SQRT(MU) RE

2 2 2 7
/(4 (Q + P + 1) SQRT(A) )

107

DL
(--)
DT 2, 2

H) Q

+ (- 24 C

+ (- 94 S

+ ((- 24

H) P) Q

H) P

H) Q

H) P

H) P



(--)DT 2, 2
DT 2, 2

- 3 (((3 S
2, 2

K+3C
2, 2

+(- C K+9 S H)PQ
2, 2 2, 2

+ ((- 9 S K - 9 C H) P -4S
2, 2 2, 2 2, 2

3
+ (3 C K - 3 S H) P + (4 C

2, 2 2, 2 2, 2

K -2C
2, 2

K -2S
2, 2

H) Q

H) P)

SIN(2 T - L) + ((- 3 C
2, 2

K +3S
2, 2

+ (- S
2, 2

+ ((9 C
2, 2

+ (3 S
2, 2

K-C
2, 2

H) PQ

K - 9 S H) P +4C
2, 2 2, 2

K+3C
2, 2

3
H) P + (4 S

2, 2

K -2S
2,

K +2C
2,

2 2 2
COS(2 T - L)) SQRT(MU) RE /(2 (Q + P +

7
1) SQRT(A) )

108 -

3
H) 0

3
H) Q

H) Q

H) P)



- - 3 (((3 C
2, 2

K -3S
2, 2

+ (9 S
2, 2

K+9C
2, 2

2
H) P Q + ((-9 C

2, 2
K+9S

2, 2

K-4S
2, 2

H) Q + (- 3 S
2, 2

K-3C
2, 2

+ (2 S
2, 2

+ ((3 S
2, 2

K +4 C
2, 2

K+3C
2, 2

H) P) SIN(2 T - L)

3
H) Q + (-9C K +9 S H) P Q

2, 2 2, 2

+ ((-9 S
2, 2

K -9C
2, 2

2
H)P +2S

2, 2
K+4C

2, 2

3
+ (3 C K - 3 S H) P + (- 2 C K + 4 S H) P)

2, 2 2, 2 2, 2 2, 2

2 2 2 7
COS (2 T - L)) SQRT(MU) RE /(2 (Q + P + 1) SQRT(A) )

109

DQ
(--T 2
DT 2, 2

3
H) Q

+2C
2, 2

2
H) P

H) P

H) Q



(U
3, 2 FULL

3
- 15 MU RE (((11 C

3, 2

2
K - 22 S

3, 2

- 11 C2
3, 2

2 5
H ) Q + (33 S

3, 2
K + 66 C

3, 2
H K - 33 S

3, 2

4
Q + ((- 22 C

3, 2

2
K + 44 S

3, 2
H K + 22 C

3, 2

2
+ 18C K + 44 S

3, 2 3, 2
H K + 54 C

3, 2

+ ((22 S
3, 2

2
K + 44 C

3, 2
H K - 22 S

3, 2

+ (- 34 S
3, 2

+ ((- 33 C
3, 2

K - 132 C H K + 98 S H + 16 S ) P) Q
3, 2 3, 2 3, 2

K + 66 S H K + 33 C
3, 2 3, 2

2 4
H) P

+ (98 C
3, 2

2
K - 132 S

3, 2
H K - 34 C

2
H + 16 C

3, 2 3, 2

- 15 C
3, 2

K + 2 S HK - 17 C H - 8 C ) Q
3, 2 3, 2 3, 2

+ (- 11 S
3, 2

2
K - 22 C

3, 2
HK + 11 S

3, 2

2
+ (54 S K + 44 C H K + 18 S

3, 2 3, 2 3, 2

2 3
H + 1 S ) P

3, 2

+ (- 17 S
3, 2

2
K +2C

3, 2
H K - 15 S

3, 2

2
H -8S )P)

3, 2

SIN(2 T - L) + ((11 S
3, 2

K + 22 C
3, 2

HK - 11 S
3, 2

110

HK

H) P

2 2
H) P

2
H + 16 C

3
)Q

3, 2

2 3
H ) P

2
) P

2 5
H) P

2 5
H) Q



+ (- 33 C
3, 2

2
K + B6 S

3, 2
H K + 33 C

3, 2

+ ((- 22 S
3, 2

- 44C
3, 2

+'((- 22 C
3, 2

2
K -44 C

3, 2

H K + 54 S
3, 2

K +.44 S
3, 2

H K + 22 S
3, 2

2 2
H ) P + 18 S

3, 2

H + 16 S ) Q
3, 2

H K + 22 C
3, 2

2 3
H) P

+ (34 C
3, 2

- 132 S
3, 2

H K - 98 C
3, 2

2 2
H - 16 C ) P) Q

3, 2

+ ((- 33 S
3, 2

2
K - S6 C

3, 2
H K + 33 S

3, 2

+ (98 S
3, 2

- 15 S.
3, 2

2
K + 132 C

3, 2

K -2C
3, 2

H K - 34 S
3, 2

H K - 17 S
3, 2

2
H + 16 S

2
) P

3, 2

H -8S )Q
3, 2

+ (11 C K - 22 S
3, 2 3, 2

HK - 11 C
3, 2

+ (- 54 C
3, 2

2
K + 44 S

3, 2
H K - 10 C

3, 2

2 3
H - 16C )P

3, 2

+ (17 C
3, 2

K +2S
3, 2

4 2 2
COS(2 T - L))/(8 A (Q + P

+ 15 C H + 8 C ) P)
3, 2 3, 2

3
+ 1) )

111

2 4
H) P

2 4
H) P

2 5
H) P



2 2 3
(U =- 15 MU (2 (Q + P ) - 1) RE

3, 2 TRUNC

3, 2

S-C
3, 2

P) SIN(2 T - L)

4 2 2 3
P) COS (2 T - L))/(A (Q + P + 1) )

,112

((C
3, 2

+ (S
3, 2



- - 38 ((S
3, 2

Q-C
3, 2

P) SIN(2 T - L)

+ (- C
3, 2

3-S
3, 2

2 2
P) COS(2 T - L)) (2 0 + 2 P - 1) SQRT(MU)

3 2 2 3 7
RE /((Q + P + 1) SQRT(A) )

113

DA
(--)
OT 3, 2



(--DT 3 2
DT 3, 2

- 15 (((C
3, 2

K + 11 S
3, 2

+(- 21 S K - 33 C H) P Q
3, 2 3, 2

+ ((46 C K - 22 S
3, 2 3, 2

2
H) P - 32 C

3,

3
+ ((2 S K - 22 C H) P + (12 S

3, 2 3, 2 3,

K - 18 S
3, 2

K + 62 C
3, 2

+ ((45. C
3, 2

K - 33 S
3, 2

+ (- 128 C
3, 2

+ (23 S
3, 2

+ (19 S
3, 2

K + 78 S
3,

K + 11 C
3, 2

K +C
3, 2

H) P + 17 C
2

5
H) P + (- 76 S

3, 2

3, 2

K-3S I
3, 2

K - 26 C
3, 2

H) Q

H) P

H) P) SIN(2 T - L)

+ ((S
3, 2

5
K - 11 C H) Q + (21 C

3, 2 3, 2
K - 33 S

3, 2

+ ((46 S K + 22 C H) P - 32 S K + 18 C
3, 2 3, 2 3, 2 3, 2

+ ((- 2 C
3, 2

+ (- 12 C
3, 2

+ ((45 S
3, 2

K - 22 S
3,

K + 62 S
3,

K + 33 C
3, 2

H) Q

H) Q

H) P) 0

4
H) P

H) P Q

H) Q

H) P

H) P) 0

H) P

114



+ (- 128 S
3, 2

+ (-23 C
3, 2

+ (- 19 C
3, 2

K - 78 C
3, 2

K+11 S
3, 2

K +S
3, 2

2
H) P + 17 S

3, 2

5
H) P + (76 C

3, 2

K +3C
3, 2

K - 26 S
3, 2

H) Q

H) P

3
H) P) COS(2 T - L)) SQRT(MU) RE

2, 2 3 9
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K P 0 COS(2 T - L)

5
K P Q COS(2 T - L)

5
H P Q COS(2 T - L)

K P Q COS(2 T - L)

3
H.P Q COS(2 T - L) + 2078 S

4, 2
K P 0 COS(2 T - L)

+ 2878 C H P Q COS(2 T - L) + 90 C
4, 2

- 98 S
4, 2

+ 1635 S
4, 2

H P COS(2 T - L) - 1755 C

4, 2

4, 2

H P COS(2 T - L) + 3717 C
4, 2

8
K P COS(2 T - L)

6
K P COS(2 T - L)

K P COS(2 T - L)
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- 2823 S
4, 2

+ 751 S
4, 2

+ 21 S
4, 2

H P COS(2 T - L) - 1319 C
4, 2

2
H P COS(2 T - L) + 21 C

4, 2

H COS(2 T - L))/(8 A

2
K P COS(2 T - L)

K COS(2 T - L)

11/2 2 2 4
(Q +P + 1))

137



= - 15 SQRT(MU) RE

7
K Q SIN(2 T - L) + 45 C

4, 2

7
H Q SIN(2 T - L)

- 135 C
4, 2

6
K P Q SIN(2 T - L) + 135 S

4, 2
H P Q SIN(2 T - L)

- 45 S
4, 2

2 5
K P Q SIN(2 T - L) - 45 C

4, 2

2 5
HP Q SIN(2

- 345 S
4, 2

- 225 C
4, 2

+ 225 S
4, 2

- 855 S
4, 2

- 225 C
4, 2

+ 218 S
4, 2

+ 389 S
4, 2

- 45 C
4, 2

K Q SIN(2 T - L) - 405 C
4, 2

H Q SIN(2 T - L)

3 4
K P Q SIN(2 T - L)

3 4
H P Q SIN(2 T - L) + 795 C

4, 2

H P Q SIN(2 T - L) - 225 S
4, 2

4
K P Q SIN(2 T - L)

4 3
K P Q SIN(2 T - L)

4 3
H P 0 SIN(2 T - L)

2 3
K P Q SIN(2 T - L) + 98 C

4, 2

K 0 SIN(2 T - L) + 441 C
4, 2

5 2
K P Q SIN(2 T - L) + 45 S

4, 2

2 3
H P Q SIN(2 T - L)

3
H Q SIN(2 T - L)

5 2
H P 0 SIN(2 T - L)

+ 698 C
4, 2

3 2
K P 0 SIN(2 T

(--) 4
DT 4, 2

(45 S
4, 2

T - L)

- L)
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- 810 S
4, 2

+ 699 S
4, 2

- 135 C
4, 2

+ 495 C
4, 2

-. 159 C
4, 2

- 61 C
4, 2

- 45 S
4, 2

+ 45 S
4, 2

+ 99 S
4,

- 47 S
4,

+ 45 S
4,

- 135 C
4, 2

3 2
H P Q SIN(2 T - L) - 651 C

4, 2

2
H P Q SIN(2 T - L)

6
H P Q SIN(2 T - L)

- 135 S
4, 2

+ 555 S
4, 2

4
H P 0 SIN(2 T - L) - 291 S

2
H P Q SIN(2 T - L) - 29 S

4, 2

H Q SIN(2 T - L) + 45 C
4, 2

H P SIN(2 T - L) - 105 C
4, 2

5
H P SIN(2 T - L) - 51 C

4, 2

3
H P SIN(2 T - L) + 43 C

4

H P SIN(2 T - L) - 45 C
4,

7
H Q COS(2 T - L) - 135 S

4, 2

6
H P Q COS(2 T - L) + 45 C

4, 2

2

2
K P 0 SIN(2 T - L)

6
K P Q SIN(2 T - L)

4
K P Q SIN(2 T - L)

2
K P Q SIN(2 T - L)

K Q SIN(2 T - L)

K P SIN(2 T - L)

K P SIN(2 T - L)

K P SIN(2 T - L)

K P SIN(2 T - L)

K 0 COS(2 T - L)

K P Q COS(2 T - L)

2 5
K P Q COS(2 T - L)
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- 45 S
4, 2

- 45S S
4, 2

- 225 C
4,

+ 855 C
4,

- 225 S
4,

- 218 C
4,

- 389 C
4,

- 45 S
4, 2

+ 698 S
4,

2 5
H P Q COS(2 T - L) + 345 C

4,

H 0 COS(2 T - L) - 225 S
4, 2

3 4
H P Q COS(2 T - L) + 795 S

4
H P Q COS(2 T - L) + 225 C

5
K Q COS(2 T - L)

2

3 4
K P 0 COS(2 T - L)

4, 2

, 2

K P Q COS(2 T - L)

4 3
KP 0 COS(2 T - L)

4

4 3
H P 0 COS(2 T - L)

2 3
K P 0 COS(2 T - L) + 98 S

4, 2

K Q COS(2 T - L) + 441 S
4, 2

5 2
K P 0 COS(2 T - L) - 45 C

4, 2

2 3
H P 0 COS(2 T - L)

H 0 COS(2 T - L)

5 2
H P 0 COS(2 T - L)

3 2
K P Q COS(2 T - L)

+ 818 C
4, 2

- 699 C
4, 2

- 135 S
4, 2

+ 495 S
4,

3 2
H P Q COS(2 T - L) - 651 S

4, 2

2
H P 0 COS(2 T - L) + 135 C

4, 2

6
H P 0 COS(2 T - L) - 555 C

4, 2

4
H P Q COS(2 T - L) + 291 C

4, 2

2
K P Q COS(2 T - L)

6
K P 0 COS(2 T - L)

K P Q COS(2 T - L)

K P O COS(2 T - L)
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- 159 S
4, 2

H P Q COS(2 T - L) + 29 C
4, 2

K Q COS(2 T - L)

- 81 S
4,

+ 45 C
4,

- 45 C
4, 2

- 99 C
4, 2

H Q COS(2 T - L) + 45 S
4, 2

H P COS(2 T - L) - 105 S
4, 2

H P COS(2 T - L) - 51 S
4, 2

3
H P COS(2 T - L) + 43 S

4, 2

K P COS(2 T - L)

K P COS(2 T - L)

3
K P COS(2 T - L)

K P COS(2 T - L)

11/2 2 2 3
+ 47 C H P COS(2 T - L))/(8 A (Q + P + 1) )

4, 2
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4 7
- 15 MU RE (45 C

4, 2
K 0 SIN(2 T - L)

- 45 S
4, 2

+ 135 C
4, 2

7
H Q SIN(2 T - L) + 135 S

4, 2

H P 0 SIN(2 T - L) - 45 C
4, 2

K P Q SIN(2 T - L)

2 5
K P 0 SIN(2 T - L)

+ 45 S
4, 2

2 5
H P 0 SIN(2 T - L) - 45 C

4, 2
K 0 SIN(2 T - L)

+ 185 S
4, 2

+ 225 C
4, 2

- 555 C
4, 2

+ 225 S
4, 2

+ 818 C
4, 2

- 698 S
4, 2

H O SIN(2 T - L) + 225 S
4, 2

3 4
H P 0 SIN(2 T - L) - 495 S

4, 2

4
H P 0 SIN(2 T - L) - 225 C

4, 2

4 3
H P Q SIN(2 T

2 3
K P Q SIN(2 T

2 3
H P 0 SIN(2 T

3 4
K P 0 SIN(2 T - L)

4
K P Q SIN(2 T - L)

4 3
K P Q SIN(2 T - L)

- L)

- L)

- L) - 99 C
4, 2

3
K Q SIN(2 T - L)

+ 51 S
4, 2

+ 45 C
4, 2

- 218 C
4, 2

3
H Q SIN(2 T - L) + 45 S

4, 2

5 2
H P 0 SIN(2 T - L) - 98 S

5 2
K P 0 SIN(2 T - L)

3 2
K P Q SIN(2 T - L)

4, 2

3 2
H P Q SIN(2 T - L) + 159 S

4, 2

2
K P Q SIN(2 T - L)
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+ 291 C
4, 2

+ 135 S
4, 2

- 795 S
4, 2

2
H P Q SIN(2 T - L) - 135 C

4, 2

6
H P Q SIN(2 T - L) + 855 C

4, 2

4
H P Q SIN(2 T - L) - 699 C

4, 2

6
K P Q SIN(2 T - L)

4
K P Q SIN(2 T - L)

2
K P 0 SIN(2 T - L)

+ 651 S H P Q SIN(2 T - L) + 47 C
4, 2 4, 2

K Q SIN(2 T - L)

- 43 S
4, 2

- 45 C
4, 2

+ 345 C
4, 2

- 389 C
4, 2

H Q SIN(2 T - L) - 45 S
4, 2

7
H P SIN(2 T - L) + 485 S

4, 2

5
H P SIN(2 T - L) - 441 S

4, 2

3
H P SIN(2 T - L) + 61 S

4, 2

K P SIN(2 T - L)

K P SIN(2 T - L)

3
K P SIN(2 T - L)

K P SIN(2 T - L)

+ 29 C
4, 2

+ 45 C
4, 2

H P SIN(2 T - L) + 45 S
4, 2

H 0 COS(2 T - L) - 135 C
4, 2

K 0 COS(2 T - L)

K P a COS(2 T - L)

6
H P a COS(2 T -

2 5
H P 0 COS(2 T -

L) - 45 S
4, 2

L) - 45 S
4, 2

2 5
K P Q COS(2 T - L)

K Q COS(2 T - L)
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+ 135 S

- 45 C
4, 2

4, 2



- 185 C
4, 2

+ 225 S
4, 2

- 555 S
4, 2

- 225 C
4, 2

H 0 COS(2 T - L) - 225 C
4, 2

3 4
H P Q COS(2 T - L) + 495 C

4, 2.

H P 0 COS(2 T - L) - 225 S
4, 2

3 4
K P Q COS(2 T - L)

4
KPQ

4 3
KP Q

COS(2 T - L)

COS(2 T - L)

4 3
H P Q COS(2 T - L)

2 3
+ 810 S K P 0 COS(2 T - L)

4, 2

+ 698 C
4, 2

- 51 C
4, 2

+ 45 S
4, 2

- 218 S
4,

+ 291 S
4,

- 135 C
4, 2

+ 795 C
4, 2

2 3
H P 0 COS(2 T - L) - 99 S

4, 2

H Q COS(2 T - L) - 45 C
4, 2

5 2
H P 0 COS(2 T - L) + 98 C

3 2
H P Q COS(2 T - L)

2
H P Q COS(2 T - L)

6
H P Q COS(2 T - L)

4
H P Q COS(2 T - L)

3
K Q COS(2 T - L)

5 2
K P Q COS(2 T - L)

3 2
K P 0 COS(2 T - L)

4, 2

- 159 C
4, 2

- 135 S
4, 2

+ 855 S
4, 2

- 699 S
4, 2

K P 0 COS(2 T - L)

6
K P 0 COS(2 T - L)

4
K P Q COS(2 T - L)

2
K P 0 COS(2 T - L)

2
H P .COS(2 T - L) + 47 S

4, 2
K 0 COS(2 T - L)
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4,



+ 43 C
4, 2

- 45 S
4, 2

+ 345 S
4, 2

- 389 S

+ 29 S
4

4, 2

,2

H 0 COS(2 T - L) + 45 C
4, 2

7
H P COS(2 T - L) - 485 C

4, 2

H P COS(2 T - L) + 441 C
4, 2

H P COS(2 T - L) - 61 C
4, 2

K P COS(2 T - L)

5
K P COS(2 T - L)

K P COS(2 T - L)

K P COS(2 T - L)

7 2 2 3
H P COS(2 T - L))/(8 A N (Q + P + 1)
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(U
4, 4 FULL

= - 185 MU
4

RE (((68 S
4, 4

K + 128 C
4, 4

- 68 S
4, 4

+ 248 C
4, 4

+ 368 S
4, 4

+ ((248 C
4, 4

+ (- 16 C
4, 4

+ (68 S
4, 4

+ (- 8 S
4, 4

2 4
H ) Q + (- 248 C

4, 4

2 3
H ) P Q + ((- 368 S

4, 4

2 2
H) P +8S

4, 4

2
K - 488 S

4, 4

2
K -16C I

4, 4

2
K + 128 C

4, 4

K -8S
4, 4

K + 480 S
4, 4

K - 720 C
4, 4

2
K +8S

4, 4

H K - 248 C
4, 4

- 16 C

H K - 68 S

2
H - 8S

4, 4

2
H +8S

2 3
H) P

) P) Q

2 4
H) P

4, 4

2
P

4, 4
+ S

4, 4

HK -S
4, 4

H ) SIN(2 (2 T - L))

+ ((- O8 C
4, 4

+ (- 248 S
4, 4

2
K + 128 S

4, 4

2
K - 488 C

4, 4

H K + 68 C
4, 4

H K + 248 S
4, 4

+ ((360 C
4, 4

2
K - 728 S

4, 4
H K - 368 C

4, 4

2 2
H)P -8C

4, 4

H - 8 C ) Q + ((248 S
4,4 4,4

2
K + 488 C

4, 4
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HK

HK

HK

2
)Q

4, 4

- 2C
4, 4

2 4
H) Q

2 3
H) P

-8C
4, 4

HK



- 248 S
4, 4

Q + (- 68 C
4, 4

2 3
H ) P + (- 16 S

4, 4

2
K + 128S

4, 4

2
K -16 S

4, 4

H K + 68 C
4, 4

2
K +8C

4, 4

HK +C
4, 4

2 2
H +8C )P -C

4, 4

H ) COS(2 (2 T - L)))

5 2 2 4
/(2 A (Q + P + 1) )
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H - 16 S ) P)
4, 4

2 4
H)P

+ (8 C

-2S
4

4, 4

,4

4, 4



(U
4, 4 TRUNC

2
((S Q -2C

4, 4

- - 428 MU RE

4, 4
PQ-S

4, 4
P ) SIN(2 (2 T - L))

+ (- C
4, 4

Q -2S
4, 4

P 0 + C P ) COS(2 (2 T - L)))
4, 4

5 2 2 4
/(A (0 + P + 1) )

148



- 1688 ((C
4, 4

2
0 + 2 S

4, 4
P -C

4, 4

SIN(2 (2 T - L)) +'(S
4, 4

2
0 -2C P Q-S

4, 4 4, 4

4 2 2 4 9
COS(2 (2 T - L))) SQRT(MU) RE /((Q + P + 1) SQRT(A) )
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(--T 4 4
OT 4, 4

2
P)

P )



OST

A(V)IHS (I + d + W))/
TT 7 z z

38 (fW)uDS ((Ml -I Z) Z)S03 (H
17 '17

S3-

t '1
61 t -

t '7
3 Z ) + d (H

t

D (d (H

S 89 + I

17 I'17

1 '1
d (H 3 8tZ + N

E

7 '1717 '17
3 ZT -d (H

D d (H

17t7,
S 89 -

3 831 ->

17 '17
3 L -) +

S 7z -) +

17 '17
S 179)) +

17 '17
3 89E)) +

s '17
S 9IZ -) +

S 89 + AI
17 '17

3 817 -)) + ((1 -I 2) Z)NIS

17 '17
(H 3 -

17 '17
3 89 + NI

t7 17
S + d (H

17'It
S ZL) + 0 (d (H

d (H

31t+ NtS ZT + d (H

17 '17

17 '17
S 8+ )I

17 '17
S 817Z ->

3 895 -A

17 '17
S ZT -) +

17 '17
3 t1Z -) +

17 '17
3 1792)) +

S 895 -)) +

3 9T1 -) +

17 '17
3 89 + >I

17 '17
S 81~))) 98 --

d (H
z

0 (H

0 -(H

d (H

0 (H

0 d (HS 8Z + )I

1 (H
1 '17 10



OK
(--)

DT 4,

+ (248 S
4, 4

+ ((- 360 C

- 185 (((6B C
4

K + 264 C H)
4, 4

K +368 S
4, 4

+ ((- 240 S

+ (- 8 S
4, 4

4, 4

4, 4

K - 216 C
4, 4

K - 24 C
4, 4

4, 4

PQ

2
H) P

3
H) P

K - 72 S
4, 4

-4C
4, 4

H) P) Q + (6O C
4, 4

H) 0

K + 12 S
4, 4

K - 48 S
4, 4

+ (4 C
4, 4

K - 12 S
4, 4

2
H) P -C

4, 4

SIN(2 (2 T - L)) + ((68 S
4, 4

K + 72 C
4, 4

+ (- 248 C
4, 4

K + 264 S
4, 4

+ ((- 368 S
4, 4

+ ((248 C
4, 4

0 + (68 S
4, 4

K - 368 C
4, 4

K - 216 S
4, 4

K + 48 C
4, 4

H) P -4 S
4, 4

H) P + (8 C
4, 4

H) P + (4 S
4, 4

K - 12 C
4, 4

K - 24 S
4, 4

K + 12 C
4, 4

H) 0

H) P)

H) P

-S K+C
4, 4 4, 4

H) COS(2 (2 T - L))) SQRT(MU) RE

2 2 4 11
/((Q + P + 1) SQRT(A)
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2
H) Q

H) P

K-S
4, 4

H) Q.

H) P 0



(--T 4 4
OT 4, 4

- 428 ((S
4, 4

SIN(2 (2 T - L)) + (- C
4, 4

O -2C
4,

O -2S
4, 4

2 2
COS(2 (2 T - L))) (3 0 + 3 P - 11) SORT (MU) RE

2 2 4 11
/((Q + P + 1) SQRT(A)
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PQ-S
4

P Q +C

P)

2
P )

4, 4

4, 4



DP
(--DT

DT 4, 4

+ (- 9 S
4, 4

= 218 ((3 S
4, 4

2
P -S ) Q+3C

4, 4

SIN(2 (2 T - L)) + (- 3 C
4, 4

+ (9 C
4, 4

2
P +C )Q+3S

4, 4

4, 4

a -9

4, 4

Q -9C
4, 4

3
P +C

S
4, 4

4, 4

2
PQ

P +S
4, 4

4 2 2 3 11
COS(2 (2 T - L))) SQRT(MU) RE /((Q + P + 1) SQRT(A) )
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PQ

P)



- - 210 ((3 C
4, 4

o +9S
4, 4

+ (- 9 C
4, 4

P +C ) 0-3S P +S
4, 4

SIN(2 (2 T - L)) + (3 S
4, 4

4, 4

0 -9C
4, 4

+ (- 9 S
4, 4

COS(2 (2 T -

2
P +S )Q+3C

4, 4 4, 4
P -C

4, 4

4 2 2 3 11
L))) SQRT(MU) RE /((Q + P + 1) SQRT(A) )
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(--)OT 4
OT 4, 4

2
PQ

4, 4

2
P
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