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While our work on the general problem of noise in linear networks was declared
closed in Quarterly Progress Report No. 52 and a Research Monograph is in the proc-
ess of being published, related special problems continue to emerge. These are con-
veniently handled by the general methods developed in the monograph, and we shall
continue to present applications of the general theory to cases of current interest.

A. GENERAL NOISE ANALYSIS OF PARAMETRIC AMPLIFIERS

In three-frequency parametric amplifiers that use one or more solid-state diodes

for the nonlinear energy-storage element, the major contribution to the noise seems to

be the thermal noise associated with the linear dissipative parts of the equivalent circuit
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Fig. XXII- 1. Small-signal schematic diagram of parametric amplifier.

and the noise contributed by the idler termination. Under such conditions the amplifier

noise performance can be analyzed by using a scattering matrix representation similar

to the one that was successful in the noise analysis of electron beam amplifiers (1, 2).

From this approach, information for the necessary steps leading to noise optimization

can be obtained with little effort. The representation is easily extended to the analysis

of parametric amplifiers with more than one idler frequency, frequency-up-or-down

converters, and parametric amplifiers under double-sideband operation.

A system under a large-signal pumping excitation at frequency w and a small-

signal excitation at frequency ws leads to excitations at frequencies mwp + ws, where
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m may range over all positive and negative integers. We shall follow usual analyses

by assuming that the loss of the system can be separated from the pumped nonlinear

part of the system and can be represented by linear circuit elements. The lossless

nonlinear part of the system is assumed to satisfy the Manley-Rowe relations. The

linear operation of a three- (signal, idler, pump) frequency, negative-resistance para-

metric amplifier with the idler circuit coupled to the antenna and with a parasitic exci-

tation at the upper sideband wp + os can then be represented by the circuit of Fig. XXII-1.

Terminal pair (1) is the input, (2) the output, the 1-ohm resistors at terminal pairs (3),

(4), and (6) represent the losses at signal, idler, and parasitic upper-sideband frequen-

cies at room temperature To , terminal pair (5) represents the idler coupling to the

antenna with a noise at the idler frequency represented by the temperature Ta. The

normalized incident waves a (al,a a,... a 6 ) and reflected waves b(b l , b2 ,... b ), normal-

ized to transmission lines of 1-ohm characteristic impedance, are related by

b = Sa (1)

Here, the lower sideband o - w is characterized by the complex amplitudes at the neg-
p s

ative frequencies (- co + w ). The network has to satisfy the Manley-Rowe relation, and

therefore

btPb = atPa (2)

where (f) indicates a Hermitian conjugate and

P = diag 1 1 1 1 p1 (3)
P = da , ,' , (3' +

( s s p s p s p s

Combining Eqs. 1 and 2 and noting that a may be chosen arbitrarily, we obtain

SPS = p (4)

Equation 4 multiplied by SP - 1 from the left and S-1p - 1 from the right gives

SP-1St = p- 1  (5)

where

P- 1 =diag (,ws ,s , s - +  , - +  , + )

The 22 element of the matrix equation, Eq. 5 is

W(S Z I 2 S 2 + IS2 3 1) -(W p s) (IS24 22+ S251Z2

+ (wp + s) IS2 6 2 =s (6)

The noise figure of the parametric amplifier is
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lbz i
F-l-=

lb 2 2

where

iS 2 3 a 3 + S 2 4 a 4
+ S2 5 a 5 + S2 6 a 6 12

Ib 2 t= 2112 kT 0 of

Noting that all crosscorrelations of the a's are zero and

j3 3 2 = a4
2 =

a 5 
2 = kTaAf

and using Eq. 6, we have
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Equation 12 shows the harmful effects of the parasitic upper sideband (S26), the loss at the

signal frequency (S23), and the loss at the idler frequency (S24). The best noise figure is

achieved if none of these noise contributions enter into Eq. 12. Furthermore, noting that

Is2112
=G

1 - IS2 2 2  e

which is the exchangeable gain (3), we have for the optimum noise figure

F - 1 = s a 1 (13)S-wT G (13)p so e

The optimum noise measure under any input termination (3) is

w T
M S a(14)

e - T (14)
p s o
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and therefore (see ref. 3) the excess noise figure at high gain of any over-all two

terminal-pair amplifier employing the parametric amplifier in conjunction with other

"noisier" amplifiers cannot be better than Eq. 14.

H. A. Haus
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