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A. MEASUREMENT OF FIRST- AND SECOND-ORDER PROBABILITY DENSITIES

Recently, a digital probability density analyzer was constructed for operation in con-

junction with the M.I.T. digital correlator (1). The description and construction details

of the analyzer are given elsewhere (Z, 3) together with a few experimental results. Some

more experimental results are given here; in particular, a measurement of the second-

order probability density of a random process generated by passing the noise output of a

gas triode through a narrow-band filter.

The measured first-order probability density for a triangular wave is shown in

Fig. XI-1, and for the noise output of a 6D4 gas triode in Fig. XI-2. The use of a 6D4

gas triode as a noise generator has been described by Cobine (4) and he noted that the

output has a probability density that is not quite Gaussian, as can be seen from Fig. XI-2.

The effect is more noticeable on an oscilloscope on which the noise appears slightly

asymmetric for the extreme peaks. The noise may be made more nearly Gaussian by

passing it through a narrow-band filter. Figure XI-3 shows the probability density of

the noise, after it has been passed through a filter of center frequency 80 kc and band-

width 5 kc.

In Fig. XI-3 a comparison is made between the recorded experimental points and a

curve labeled "theoretical." This curve is not theoretical in the usual sense of the word,

since the mean and variance of the curve are not known a priori. The system of meas-

urement introduces a gain and a dc level, neither of which can be ascertained exactly.

The theoretical curve is then a best-fit curve. The ideal method for finding the best-fit

curve would be to define a measure D of the deviation (say, mean-square error) of the

experimental points from a theoretical curve and choose that Gaussian curve with such

mean and variance that D is minimized. Then a test of "goodness-of-fit" (5) could be

applied for justification of the hypothesis that the process has a first-order Gaussian

probability density. A graphical method that utilizes the same principle was employed

here. It consists of assuming a mean (an accurate guess would be the mean for the

measured distribution) and plotting the logarithm of the probability density against the

square of the deviation from the mean. A true Gaussian curve with such a mean would

be a straight line with slope

logl 0 e
S =-

2e2

as can be seen by taking the Gaussian density



THEORETICAL

0 0 0 EXPERIMENTAL POINTS

1~ 1 I i I 1

4 8 12 16 20 24 28 32 36 40 44

x (AMPLITUDE)

Fig. XI-1.

05

- 04

z

- 03

m

o 0.2

0.I

Probability density of triangular wave.

6D4 OUTPUT

(NORMALIZED)

GAUSSIAN CURVE

WITH m -005
0= 1.0I

-40 -30 -20 -1.0 0 1.0 20 30 40

NORMALIZED AMPLITUDE

Fig. XI-2.

7000

> 30005000

2000 -©

m

2 1000

0
2

Fig. XI-3.

Probability density of Sylvania 6D4 gas triode output.

T = 4250 EXP -THj THEORETICAL (T)

O 0 0 EXPERIMENTAL
POINTS

6 10 14 18 22 26 30 34 38 42

x (AMPLITUDE)

First-order probability density of Gaussian noise.

(n8
_j

1500

S1000

o

S500

m
z



(XI. STATISTICAL COMMUNICATION THEORY)

1 Vx
p(x) exp -

p FZx) 2C2

and taking the logarithm of both sides. Then

1 log 1 0 e

logl 0 p(x) = log 1 0 l 2o x

If the wrong mean has been chosen, the line for x > 0 will be slightly displaced from the

line for x < 0. A straight line is then drawn through the points for a best fit.

In Fig. XI-4 a plot of the experimental points of a second-order probability density

of two samples of the noise 4 i.sec apart is shown. It is slightly more complicated to

find a best-fit curve for such a density. As seen from the joint probability density of

two random variables (6),

1 K (x 1 - 1-m ) - 2IJZp(x1 - ml)(x2 - m2 ) +a l (x - m )

P(xl, xz) exp
1/2 Z -

2rr 1 T(1 - p 1

(1)

there are five parameters, which are the variances, al and 2; the means, ml and m 2 ;

and the correlation coefficient, p. The parameters ol, ml are not necessarily equal to

a2' m2 because the two samples are sent through independent channels in the correlator.
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Fig. XI-4. Second-order probability density of Gaussian noise.
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In the measurement of this density, one randorm variable, say x 2 , is held at a certain

value while a slice of the surface is taken for this value. This creates a family of curves

plotted against xl, with x2 as a parameter. A form of Eq. 1 that is more useful for this

representation is

x ip m - x + in
1 (x -2 l22 x - ml ¢ x2 m2

p (x P x) =  exp- exp
(X 2;m o- 2  2 CrF

2 '1/2 2 (1 - p )
2Tr 1 2 (1-p ) 22

The individual curves of the family have the maximum values

1 x (x 2 - m(
Px(xl)/ exp z - (2)

max 2rr1 -2 2-2

at

S- x + m  
- m (3)

S 2 1 2 2

and variance, o-
1 ( 1 - p). The positions of the maxima lie on a straight line on the x2 , x1

plane with slope c 2 /o- l p. The plot of the experimental maxima of the data shown in

Fig. XI-4 is given in Fig. XI-5. All the pertinent parameters can be obtained in a man-

ner similar to that described for the first-order case from the plots of Eqs. 2 and 3,

and from the individual curves of Fig. XI-4.
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Fig. XI-5. Plot of maxima of slices.
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1. The Measurement System

The system of measurement used here consists, ideally, of creating a movable

"window" or "aperture" within the amplitude range of the process. The process is then

sampled a finite number of times, and those samples that appear within the aperture are

counted. The ratio of the number counted to the total number taken is an approximation

to the probability density at the center of the aperture.

2. Error Analysis

Before any form of "goodness-of-fit" test can be applied, an investigation of errors

introduced by the measurement must be made. There are two kinds of error involved

here, those caused by aperture width (a form of quantization error) and those caused by

finite sample size. The first is a consistent error, the second is statistical.

The effect of aperture width on the measurement of a probability density p(x) is the

approximation of the value of p(x) at the center of the aperture by the integral of p(x)

over the aperture, divided by the aperture width; that is,

x+E/1

1 EP(X x -E/2(4)

1

where Pi is the probability of the event [xi - E/2 - x < xi + E/2], and E is the aperture

width. Applying Taylor's theorem to p(x), we have

P'(x.) P'"(x ) 2
p(x) = P(xi) + (x - x.) + (x - x.) + R(x) (5)

where

p'" ( )
R(x) =- (x - xi)

3!

and lies between x and x.. Applying the integral (Eq. 4), we obtain
1

x.+E/2
1 E
- p(x) dx = p(x.) + p"(x) -E + i(x) (6)
E 1 124

x.-E/2

Thus the quantization error can be expressed as

e(xi) = p"(xi ) + 'f (xi) (7)
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where P(xi) is a remainder term.
1

(x ) = 1
x.+E/2

- /9

(x.) x.+E/2

E 3!
xi-E/2

A bound on J'I(xi) I can be found.

1 i

R(x) dx -

x.E/2
1'~'

3 (x ) 3
x - xil dx= - E

192

therefore

I(x I< (x )gz

where p"'(x)l (xi), xi - E/2 < x < x. + E/2; that is, O(xi)
within the aperture.

is an upper bound for p,'(x)l

The effects of a finite sample size can be found by application of certain results in

sampling theory (7). Here the sampled function is considered, in effect, as a function

epi(t), defined as follows.

Ex. - < x(t) < x. + E
1 2 1 2

elsewhere

The samples of Wi(t) are

(1) (2) (j) _(N)
i i

(j)where i= i(t), and N is the total number of samples.

each of which has a probability distribution

The pi are random variables,

P j)= 1]= P.

P[J = 0] 1-P

The sample mean,

N

j=1

(j)Qi

I R(x) I dx

i(t) = 0
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is the frequency ratio of the event [x i - E/2 < x(tj) < x i + C/2], and it can be shown that

its variance is

P.(1 -P.)
1 1Z [MI = (8)

A reasonable measure of this error is Z([mi], since the error, if Gaussian, is less than

this 95 per cent of the time.

Errors were computed for the measurement of Fig. XI-3 at the point x = 0, where

both kinds of error are maximum. For E = 1, the estimate of total error, from Eqs. 7

and 8,

Et = Zo[Mi] + e(x i )

was found to be 4.2 per cent of p(O); for E = 2, 3. 3 per cent; and for E = 4, 4. 3 per cent.

An aperture width of two was chosen for the measurement. An estimate of 7 per cent

was computed for the measurement of Fig. XI-4. The points are seen to lie well within

this measure of error; the error estimates are pessimistic, however, since they were

computed for the worst possible case.

Increasing the aperture width decreases the statistical error and increases the quan-

tization error. If interest lies only in measurement of the moments of the distribution,

the aperture width may be increased even more than we have indicated, and thereby the

statistical irregularity may be reduced. The quantization error may then be reduced

under certain conditions by application of Sheppard's corrections (8). If the character-

istic function satisfies certain restrictions, the original p(x) can be retrieved from the

experimental points P. by methods similar to those of the sampling theorem (9). Iterative

procedures with the use of the formula,

2 4
E E

P.i = p(xi) + P"(xi) - + pt'(x.i
1 24 1920

should also be successful in some cases.

K. L. Jordan, Jr.
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