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A. STABLE, RELIABLE, AND FLEXIBLE NETS OF UNRELIABLE FORMAL

NEURONS (A revised and expandedt version of "Three of von Neumann's

Biological Questions," Quarterly Progress Report, Oct. 15, 1957).

Neurophysiologists are indebted to John von Neumann for his studies of compon

and connections in accounting for the steadiness and the flexibility of behavior. In

speaking to the American Psychiatric Association (1) he stressed the utility and the

inadequacy of known mechanisms for stabilizing nervous activity, namely, (a) the i

old of nonlinear components, (b) the negative feedback of reflexive mechanisms, (c

internal switching to counteract changes - "ultrastability" - (2), and (d) the redund

of code and of channel. He suggested that the flexibility might depend upon local s

of thresholds or incoming signals to components that are more appropriate to com

than any yet invented. His Theory of Games (3) has initiated studies that may disclose

several kinds of stability and has indicated where to look for logical stability under

common shift of threshold. His "Toward a Probabilistic Logic" (4) states the problem

of securing reliable performance from unreliable components, but his solution requires

better relays than he could expect in brains. These, his interests, put the questions

we propose to answer. His satisfaction with our mechanisms for realizing existential

and universal quantification in nets of relays (5, 6) limits our task to the finite calculus

of propositions. Its performance has been facilitated by avoiding the opacity of the

familiar symbols of logic and the misleading suggestions of multiplication and addition

modulo two of the facile boolean notation for an algebra that is really substitutive

(7, 8, 9). Our symbols have proved useful in teaching symbolic logic in psychological and

neurological contexts (10). Familiarity with them undoubtedly contributed to the inven-

tion of the circuits whose redundancy permits solution of our problems.

The finite calculus of propositions can be written at great length by repetitions of
a stroke signifying the incompatibility of its two arguments. The traditional five sym-

bols, '~' for 'not'; '.' for 'both'; 'v' for 'or'; 'D' for 'implies'; and '-' for 'if and only if',
shorten the text but require conventions and rearrangements in order to avoid ambigu-

ities. Economy requires one symbol for each of the sixteen logical functions of two
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propositions. The only necessary convention is then one of position or punctuation.

Since the logical probability and the truth value of a propositional function are deter-

mined by its truth table, each symbol should picture its table. When the place in the

table is given, any jot serves for "true" and a blank for "false." When the four places

in the binary table are indicated by 'X' it is convenient to let the place to the left show

that the first proposition alone is the case; to the right, the second; above, both; and

below, neither. Every function is then pictured by jots for all of those cases in which

the function is true. Thus we write A X B for contradiction; A -X B for A - ~B; A X B

for A - B; A X- B for B - ~A; A X B for ~A ' ~B; A .X B for A • (By~B); A ;k' B for

(Av~A) -B; A (' B for -A - (Bv~B); A -X B for (Av~A) -~B; A X- B for

(A -B) v (~A • B); A X B for A - B; A '. B for B D A; A -"- B for A v B; A )- B for

A D B; A "X- B for ~(A • B); and A -'- B for tautology. The X may be regarded as part

of the familiar Venn symbols for two classes of events of which A and B are true,

respectively. Similar symbols can therefore be made, from Venn symbols, for func-

tions of more than two arguments. Each additional line must divide every pre-existing

area into two parts. Hence, for the number of arguments 6 there are 26 spaces for
28

jots and 22 symbols for functions. (See Fig. XV-1.)

8=2 6=3 64 6=5
------ ---------------

BOTH ALL ALL ALL
AA 3 A 4 5

IIBI I II I

NEITHER NONE NONE NONE

S : 4 8 16 32

F : 16 256 65,536 4,294,967, 296

Fig. XV-1. Venn figures with spaces for all intersections of 6 classes.
S is the number of spaces; F, the number of functions.

Formulas composed of our chiastan symbols are transparent when the first proposi-

tion is represented by a letter to the left of the X and the second to the right. When these

spaces are occupied by expressions for logical variables, the formula is that of a propo-

sitional function; when they are occupied by expressions for propositions, of a proposi-

tion; consequently the formula can occupy the position of an argument in another formula.

Two distinct propositions, A and B, are independent when the truth value of either

does not logically affect the truth value of the other. A formula with only one X whose

spaces are occupied by expressions for two independent propositions can never have an

X with no jots or four jots. The truth value of any other proposition is contingent upon

the truth values of its arguments. Let us call such a proposition "a significant proposi-

tion of the first rank."
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A formula of the second rank is made by inserting into the spaces for the arguments

of its X two formulas of the first rank; for example, (A .X B) >K (A X- B). When the

two propositions of the first rank are composed of the same pair of propositions in the

same order, the resulting formula of the second rank can always be equated to a formula

of the first rank by putting jots into the X for the corresponding formula of the first

rank according to the following rules of reduction:

Write the equation in the form (...xl...) x 2 (...x 3 ... ) = (. .x 4... ); wherein the xj

are chiastan symbols:

1) If x2 has a jot on its left, put a jot into x4 in every space where there is a jot in

x1 and no corresponding jot in x 3 . Thus, (A <- B) -X (A ,< B) = (A X- B)

2) If x2 has a jot on its right, put a jot into x4 in every space where there is a jot in

x 3 and no corresponding jot in x1. Thus, (A X, B) X, (A .X B) = (A -X B)

3) If x 2 has a jot above, put a jot into x4 in every space where there is a jot in both

x 1 and x3 . Thus, (A X- B) < (A -X B) = (A X B)

4) If x2 has a jot below, put a jot into x 4 in every space that is empty in both x 1 and

x3 . Thus, (A X- B) X (A 'X B) = (A < B)

If there is more than one jot in x2 apply the foregoing rules seriatim until all jots on

x 2 have been used. Put no other jots into x 4.

By repetition of the construction we can produce formulas for functions of the third

and higher ranks and reduce them step by step to the first rank, thus discovering their

truth values.

Since no other formulas are used in this article, the letters A and B are omitted,

and positions, left and right, replace parentheses.

In formulas of the first rank the chance addition or omission of a jot produces an

erroneous formula and will cause an error only in that case for which the jot is added or

omitted, which is one out of the four logically equiprobable cases. With the symbols

proposed for functions of three arguments, the error will occur in only one of the eight

cases, and, in general, for functions of 6 arguments, in one of 26 cases. If p is the

probability of the erroneous jot and P the probability of error produced, P = 2Z6 p. In

empirical examples the relative frequency of the case in question as a matter of fact

replaces the logical probability.

In formulas for the second rank there are three X's. If we relax the require-

ment of independence of the arguments, A and B, there are then 163 possible

formulas each of which reduces to a formula of the first rank. Thus the redundancy,

R, of these formulas of the second rank is 163/16 = 162. For functions of 6 arguments,

R = 226 6

To exploit this redundancy so as to increase the reliability of inferences from unre-

liable symbols, let us realize the formulas in nets of what von Neumann called

neurons (3). Each formal neuron is a relay which on receipt of all-or-none signals
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either emits an all-or-none signal or else does not emit one which it would otherwise

have emitted. Signals approaching a neuron from two sources either do not interact, or,

as we have shown (11, 12), those from one source prevent some or all of those from the

other source from reaching the recipient neuron. The diagrams of the nets of Fig. XV-2

are merely suggested by the anatomy of the nervous system. They are to be interpreted

as follows.

A line terminating upon a neuron shows that it excites it with a value +1 for each

termination. A line forming a loop at the top of the neuron shows that it inhibits it with

a value of excitation of -1 for each loop. A line forming a loop around a line

approaching a neuron shows that it prevents excitation or inhibition from reaching the

neuron through that line.

Each neuron has on any occasion a threshold, 0, measured in steps of excitation,

and it emits a signal when the excitation it receives is equal to or greater than 0. The

output of the neuron is thus some function of its input, and which function it is depends

upon both its local connections and the threshold of the neuron. These functions can be

symbolized by X's and jots beginning with none and adding one at a time as 0 decreases

until all four have appeared in the sequence noted in the legend for its diagram in

Fig. XV-2. These are the simplest diagrams fulfilling the requirement. All simpler

diagrams are degenerate, since they either fail to add one jot or else add more than

one jot for some step in 0. Because all 24 sequences (of which only 12 left-handed

are drawn) are thus realized, we can interpret the accidental gain or loss of a jot or

jots in an intended X as a change on the threshold of an appropriate neuron.

Any formula of the second rank is realized by a net of three neurons each of whose

thresholds is specified; for example, see Fig. XV-3. The formula can be reduced to

one of the first rank whose X pictures the relation of the output of the net to the input

of the net.

When all thresholds shift up or down together, so that each neuron is represented by

one more, or one less, jot in its X but the reduced formula is unaltered, the net is

called "logically stable."

The redundancy of formulas of the second rank provides us with many examples of

pairs of formulas and even triples of formulas that reduce to the same formula of the

first rank and that can be made from one another by common addition or omission of

one jot in each X, and the diagrams of Fig. XV-2 enable us to realize them all in sev-

eral ways: For example, there are 32 triples of formulas and 64 logically stable nets

for every reduced formula with a single jot. Even nets of degenerate diagrams enjoy

some logical stability; for example > X.X = X ( goes to .X, .)X. . = X<.

If such nets are embodied in our brains they answer von Neumann's repeated ques-

tion of how it is possible to think and to speak correctly after taking enough absinthe or

alcohol to alter the threshold of every neuron. The limits are clearly convulsion and
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coma, for no formula is significant or its net stable with a shift of 0 that compels the

output neuron to compute tautology or contradiction. The net of Fig. XV-3 is logically

stable over the whole range between these limits. Let the causes and probabilities of

such shifts be what they may, those that occur simultaneously throughout these nets

create no errors.

Logically stable nets differ greatly from one another in the number of errors they

produce when thresholds shift independently in their neurons and the most reliable make

some errors; for example, the net of Fig. XV-4.

To include independent shifts, let our chiastan symbols be modified by replacing a

jot with 1 when the jot is never omitted and with p when that jot occurs with a proba-

bility p, and examine the errors extensively as in Fig. XV-4. Here we see that the

frequency of the erroneous formulas is p(l-p), and the actual error is a deficit of a jot

at the left in the reduced formula in each faulty state of the net, i. e., in one case each.
-2

Hence we may write for the best of stable nets P 2 = 2 p(l-p). The factors p and

(l-p) are to be expected in the errors produced by any net which is logically stable, for

the errors are zero when p = 0 or p = 1. No stable net is more reliable.

No designer of a computing machine would specify a neuron that was wrong more

than half of the time; for he would regard it as some other neuron wrong less than half

of the time; but in these most useful of logically stable circuits, it makes no difference

which way he regards it, for they are symmetrical in p and 1 - p. At p = 1/2, the

frequency of error is maximal and is P2 = - 2 1/2(1 - 1/2) = 1/16, which is twice as
-2

reliable as its component neurons for which P1 = 2 1/2 = 1/8.

Among logically unstable circuits the most reliable can be constructed to secure

fewer errors than the stable whenever p < 1/2. The best are like that of Fig. XV-5.

The errors here are concentrated in the two least frequent states and in only one of the
-2 2

four cases. Hence P2 = 2 p

Further improvement requires the construction of nets to repeat the improvement

of the first net and, for economy, the number of neurons should be a minimum. For

functions of 6 arguments each neuron has inputs from 6 neurons. Hence the width of

any rank is 5, except the last, or output, neuron. If n be the number of ranks, then

the number of neurons, N, is 6(n-1) + 1.

Figure XV-6 shows how to construct one of the best possible nets for the unstable

ways of securing improvement with two output neurons as inputs for the next rank. The

formulas are selected to exclude common errors in the output neurons on any occasion.
-6 n

In these, the best of unstable nets, the errors of the output neurons are P = 2 p .n
[Whether we are interested in shifts of threshold or in noisy signals, it is proper to

ask what improvement is to be expected when two or three extra jots appear in the sym-

bols. With our nondegenerate diagrams for neurons a second extra jot appears only if

the first has appeared, and a third only if the second. If the probability p of an extra
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Fig. XV-5. A bestunstable net for )<. Fig. XV-6. Unstable improve-
ment net for X.
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A B jot is kept constant, the probability of two
2 3extra jots is p and of three is p3. Examina-

tion of the net in Fig. XV-6 shows that
p) UNSTABLE 2kP z 3
8=3 P-p L e3 P 2 < P1 ' if p +p + p < 0.15 or p < 0.13. To

match Gaussian noise the log of successive p's

should decrease as (AO) , or 1, p, p , p9
STABLE

pX STABLE I x p giving P < P for p < 0. 25. The remaning
P =28 p2-p)=-, -. -I errors are always so scattered as to preclude

further improvement in any subsequent rank.]

UNSTABLE P When common shifts of 0 are to be

e3 p %=2p21 _p) 9=3 expected, or all we know is 0 < p < 1, a greater

improvement is obtained by alternating stable

and unstable nets as in Fig. XV-7, selected to

exclude common errors in its output neurons.
PXI STABLE

P 2 8
p,( p2 0 For n even

p= -6 pn/2 (lp)n/
n

P ~ UNSTABLE P and the expected error is
8=3 P= 

8
p3( Ip)2 0 3

n EVEN, Pn= n2 ( n/2 pn/ )n/
2 ( 1-p) dp = 2 -+)(n+ l)!

Fig. XV-7. Alternating improve-
ment net for X.

which is less than with any other compositions

of 6 = 2 nondegenerate diagrams.

When 6 = 3, the redundancy, R = 22 , provides so many more best stable and best

unstable nets that the numbers become unwieldy. There are (226)6+1 nets for functions

of the second rank each made of 4 neurons to be selected from 8 diagrams with 9

thresholds apiece. Formerly I said it was clear that the best stable and unstable nets
-6

for 6 > 2 are better than those for 6 = 2 only in the factor 2-6 for error in a single case.

That is only true if the nets are composed of nondegenerate diagrams alone. With neurons

6 = 3, a single degenerate diagram for the output neuron permits the construction of a

logically stable net with P 2 
= 0, even with independent shifts of 0 sufficient to alter the

logical function computed by every neuron, as seen in Fig. XV-8. The same degenerate

diagram for the 6 = 3 output neuron receiving inputs from three nondegenerate 6 = 2

neurons, selected to make but one error in each case, is likewise stable and has an

error-free output despite independent shifts of 0, as is seen in Fig. XV-9.

None of these nets increases reliability in successive ranks under von Neumann's

condition that neurons fire or fail with probability p regardless of input; but they are

more interesting neurons. They are also more realistic. In the best controlled
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P =
2 - 8

p

Fig. XV-9. Input 6 = 2, output degenerate 6 = 3 neuron for >k.
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experiments the record of a single unit, be it cell body or axon, always indicates firing
and failing to fire at near threshold values of constant excitation, whether it is excited
transsynaptically or by current locally applied. At present, we do not know how much
of the observed flutter of threshold is due to activity of other afferent impulses and how
much is intrinsic fluctuation at the trigger point. We have not yet a reasonable guess
as to its magnitude in neurons in situ, and for excised nerve we have only two estimates
of the range: one, about 2 per cent; and the other, 7 per cent (13, 14). Our own
measurements on a single node of Ranvier would indicate a range of 10 per cent. To
discover regularities of nervous activity we have naturally avoided stimulation near
threshold. Now we must measure the intrinsic jitter, for this determines both the
necessity of improving circuits and the maximum number of afferent terminals that can
be discriminated. Eventually we will have to take into account the temporal course of
excitation and previous response, for every impulse leaves a wake of changing threshold
along its course.

Despite the increase in reliability of a net for a function of the second rank some of
these nets can be compelled to compute as many as 14 of the 16 reduced formulas by
altering the thresholds of the neurons by means of signals from other parts of the net,
as in Fig. XV-10, and even some logically stable nets for triples of formulas can be
made to compute 9 of the 16, as in Fig. XV-11. Even this does not exhaust the redun-
dancy of these nets, for both of them can be compelled to compute many of these func-
tions in several ways.

The diagrams of Fig. XV-2 were drawn to insure a change in function for every
step in 0. Actual neurons have more redundant connections. We are examining how to
use this redundancy to design reliable nets the details of whose connections are subject
to statistical constraints alone. This is important because our genes cannot carry
enough information to specify synapsis precisely.

For the moment, it is enough that these appropriate, formal neurons have demon-
strated logical stability under common shift of threshold and have secured reliable per-
formance by nets of unreliable components without loss of flexibility.

W. S. McCulloch
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