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Abstract

We consider the scheduling problem of minimizing the average weighted completion time
of n jobs with release dates on a single machine. We first study two linear programming relax-
ations of the problem, one based on a time-indexed formulation, the other on a completion-
time formulation. We show their equivalence by proving that a O(n log n) greedy algorithm
leads to optimal solutions to both relaxations. The proof relies on the notion of mean busy
times of jobs, a concept which enhances our understanding of these LP relaxations. Based
on the greedy solution, we describe two simple randomized approximation algorithms, which
are guaranteed to deliver feasible schedules with expected objective value within factors of
1.7451 and 1.6853, respectively, of the optimum. They are based on the concept of com-
mon and independent a-points, respectively. The analysis implies in particular that the
worst-case relative error of the LP relaxations is at most 1.6853, and we provide instances
showing that it is at least e/(e - 1) 1.5819. Both algorithms may be derandomized, their
deterministic versions running in O(n2 ) time. The randomized algorithms also apply to the
on-line setting, in which jobs arrive dynamically over time and one must decide which job
to process without knowledge of jobs that will be released afterwards.

Keywords: approximation algorithm, LP relaxation, scheduling, online algorithm

AMS subject classification: 90C27, 68Q25, 90B35, 68M20

1 Introduction

We study the single-machine scheduling problem with release dates and in which the objective is

to minimize a weighted sum of completion times. It is defined as follows. A set N = {1, 2,... , n}

of n jobs has to be scheduled on a single disjunctive machine. Job j has a processing time pj > 0

and is released at time rj > 0. We assume that release dates and processing times are integral.

The completion time of job j in a schedule is denoted by Cj. The goal is to find a nonpreemptive

schedule that minimizes EjeN WjCj, where the wj's are given positive weights. In the classical
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scheduling notation [11], this problem is denoted by 11 rj j wjCj. It is strongly NP-hard, even
if wj = 1 for all jobs j [16].

One of the key ingredients in the design and analysis of approximation algorithms as well as
in the design of implicit enumeration methods is the choice of a bound on the optimum value.
Several linear programming based as well as combinatorial lower bounds have been proposed
for this well studied scheduling problem, see for example, Dyer and Wolsey [7], Queyranne [23],
and Queyranne and Schulz [24], as well as Belouadah, Posner and Potts [3]. The LP relaxations
involve a variety of different types of variables which, e. g., either express whether job j is com-
pleted at time t (nonpreemptive time-indexed relaxation), or whether it is being processed at
time t (preemptive time-indexed relaxation), or when job j is completed (completion time relax-
ation). Dyer and Wolsey show that the nonpreemptive time-indexed relaxation is stronger than
the preemptive time-indexed relaxation. We will show that the latter relaxation is equivalent to
the completion time relaxation that makes use of the so-called shifted parallel inequalities. In
fact, it turns out that the polyhedron defined by these inequalities is supermodular and hence
one can optimize over it by using the greedy algorithm. A very similar situation arises in [25].
The greedy solution may actually be interpreted in terms of the following preemptive schedule,
which we call the LP schedule: at any point in time it schedules among the available jobs one
with the largest ratio of weight to processing time. Uma and Wein [38] point out that the value
of this LP solution coincides with one of the combinatorial bounds of Belouadah, Posner and
Potts based on the idea of allowing jobs to be split into smaller pieces that can be scheduled
individually.

We show that the optimum value of rj I E wjCj is at most 1.6853 times the lower bound
given by any of these three equivalent relaxations-the preemptive time-indexed relaxation, the
completion time relaxation or the combinatorial relaxation in [3]. We prove this result on the
quality of these relaxations by converting the (preemptive) LP schedule into a nonpreemptive
schedule. This technique leads to approximation algorithms for I rj E wjCj. Recall that a
p-approximation algorithm is a polynomial-time algorithm guaranteed to deliver a solution of
cost at most p times the optimum value.

The technique of converting preemptive schedules to nonpreemptive schedules in the design
of approximation algorithms was introduced by Phillips, Stein and Wein [20]. More specifically,
for 11 rj E wjCj they showed that list scheduling in order of the completion times of a given
preemptive schedule produces a nonpreemptive schedule while increasing the total weighted
completion time by at most a factor of 2. In the same paper they also introduced a concept
of a-points. This notion was also used by Hall, Shmoys and Wein [12], in connection with the
nonpreemptive time-indexed relaxation of Dyer and Wolsey to design approximation algorithms
in various scheduling environments. For our purposes, the a-point of job j in a given preemptive
schedule is the first point in time at which an a-fraction of j has been completed. When
one chooses different values of a, sequencing in order of nondecreasing a-points in a same
preemptive schedule may lead to different nonpreemptive schedules. This increased flexibility
led to improved approximation algorithms when Chekuri, Motwani, Natarajan and Stein [5] for
I1 rj I E Cj and Goemans [10] for II rj E wjCj chose a at random and analyzed the expected

performance of the resulting randomized algorithms. We will show that, using a common value
of a for all jobs and an appropriate probability distribution, sequencing in order of a-points of
the LP schedule has expected performance no worse than 1.7451 times the optimal preemptive
time-indexed LP value. We also prove that by using an individual j for every job j, one can
improve this bound to a factor of 1.6853. Our algorithms are inspired by and partly resemble
the algorithms of Hall et al. [12] and Chekuri et al. [5]. In contrast to Hall et al. we exploit the
preemptive time-indexed LP relaxation which on the one hand provides us with highly structured
optimal solutions and on the other hand enables us to work with mean busy times. We also use
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Reference and/or Off-line On-line
type of schedule deterministic randomized deterministic

Phillips et al. [20] 16 + e

Hall et al. [12] 4 4 + e

Hall et al. [13] 3 3 + e
Chakrabarti et al. [4] 2.8854 2.8854

a-schedule
fo [a= 10] 2.4143 2.4143

for a l /V [10]

BEST a-schedule [10] 2
1.7451

(random) (aj)-schedule 1.6853 1.6853

Table 1: Summary of approximation bounds for II rj I Ej wjCj. The results discussed in this paper are
below the second double line. An a-schedule is obtained by sequencing the jobs in order of nondecreasing
a-points of the LP schedule. The use of job-dependent aj's yields an (aj)-schedule. For the unit-weight
problem 11 rj I Ej Cj, the first constant-factor approximation algorithm is due to Phillips, Stein and
Wein [20]. It has performance ratio 2, and it also works on-line and is optimal for deterministic on-line
algorithms. Chekuri, Motwani, Natarajan and Stein [5] then gave a randomized e/(e - 1)-approximation
algorithm, which is optimal for randomized on-line algorithms.

random a-points. The algorithm of Chekuri et al. starts from an arbitrary preemptive schedule
and makes use of random a-points. However, they relate the value of the resulting a-schedule
to that of the given preemptive schedule, and not to that of an underlying LP relaxation. While
their approach gives better approximations for 1 rj I E Cj and structural insights on limits of the
power of preemption, the link of the LP schedule to the preemptive time-indexed LP relaxation
helps us to obtain good approximations for the total weighted completion time.

Variants of our algorithms also work on-line when jobs arrive dynamically over time and, at
each point in time, one has to decide which job to process without knowledge of jobs that will be
released afterwards. Even in this on-line setting, we compare the value of the computed schedule
to the optimal (off-line) schedule and derive the same bounds (competitive ratios) as in the off-
line setting. See Table 1 for an account of the evolution of off-line and on-line approximation
results for the single machine problem under consideration.

The main ingredient to obtain the results presented in this paper is the exploitation of the
structure of the LP schedule. Not surprisingly, the LP schedule does not solve the strongly NP-
hard [15] preemptive version of the problem, 1 rj, pmtn I E wjCj. However, we show that the LP
schedule solves optimally the preemptive problem with the related objective function Ej wjMj,
where Mj is the mean busy time of job j, i. e., the average point in time at which the machine
is busy processing j. Observe that, although 11 rj, pmtn I Z wjCj and 11 rj, pmtn I E wjMj are
equivalent in the non-preemptive case (since Cj = Mj + 2), they are not when considering
preemptive schedules.

The approximation techniques presented in this paper have also proved useful for more
general scheduling problems. For the problem with precedence constraints 1I rj, prec I Z wjCj,
sequencing jobs in order of random a-points based on an optimum solution to a time-indexed
LP relaxation leads to a 2.7183-approximation algorithm [27]. A 2-approximation algorithm for
identical parallel machine scheduling P I rj I E wjCj is given in [28]; the result is based on a time-
indexed LP relaxation whose optimum solution can be interpreted as a preemptive schedule on
a fast single machine; jobs are then assigned randomly to the machines and sequenced in order



of random aj-points of this preemptive schedule. For the corresponding scheduling problem
on unrelated parallel machines RI rj I E wjCj, a performance guarantee of 2 can be obtained
by randomized rounding based on a convex quadratic programming relaxation [33], which is
inspired by time-indexed LP relaxations like the one discussed herein [28]. We refer to [32] for
a detailed discussion of the use of a-points for machine scheduling problems.

Significant progress has recently been made in understanding the approximability of schedul-
ing problems with average weighted completion time objective. Skutella and Woeginger [34]
develop a polynomial-time approximation scheme for scheduling identical parallel machines in
the absence of release dates PI I wjCj. Subsequently, several research groups have found
polynomial-time approximation schemes for problems with release dates such as l rj E Cj and

P rj I wjCj, see the resulting joint conference proceedings publication [1] for details.
We now briefly discuss some practical consequences of our work. Savelsbergh, Uma and

Wein [26] and Uma and Wein [38] performed experimental studies to evaluate, in part, the
quality of the LP relaxation and approximation algorithms studied herein, for 11 rj E jCj
and related scheduling problems. The first authors report that, except for instances that were
deliberately constructed to be hard for this approach, the present formulation and algorithms
"deliver surprisingly strong experimental performance. " They also note that "the ideas that led
to improved approximation algorithms also lead to heuristics that are quite effective in empirical
experiments; furthermore [... ] they can be extended to give improved heuristics for more complex
problems that arise in practice." While the authors of the follow-up study [38] report that a
simple greedy heuristic often outperforms the LP-based heuristics, they also find that when
coupled with local improvement the latter generally produce the best solutions. In contrast,
the practical value of the approximation schemes mentioned in the preceding paragraph remains
unclear.

The contents of this paper are as follows. Section 2 is concerned with the LP relaxations and
their relationship. We begin with a presentation and discussion of the LP schedule. In Section 2.1
we then review a time indexed formulation introduced by Dyer and Wolsey [7] and show that it is
solved to optimality by the LP schedule. In Section 2.2 we present the mean busy time relaxation
(or completion time relaxation) and prove, among other properties, its equivalence to the time
indexed formulation. Section 2.3 explores some polyhedral consequences, in particular the fact
that the mean busy time relaxation is (up to scaling by the job processing time) a supermodular
linear program and that the "job-based" method for constructing the LP schedule is equivalent
to the corresponding greedy algorithm. Section 3 then deals with approximation algorithms
derived from these LP relaxations. In Section 3.1 we present a method for constructing (aj)-
schedules, which allows us to analyze and bound the job completion times in the resulting
schedules. In Section 3.2 we derive simple bounds for a-schedules and (aj)-schedules, using a
deterministic common a or uniformly distributed random aj's. Using appropriate probability
distributions, we improve the approximation bound to the best known values of 1.7451 for a-
schedules in Section 3.3 and of 1.6853 for (aj)-schedules in Section 3.4. We also indicate how
these algorithms can be derandomized in O(n 2) time for constructing deterministic schedules
with these performance guarantees. In Section 3.5 we show that our randomized approximations
also apply in an on-line setting and, in Section 3.6 we present a class of "bad" instances for which
the ratio of the optimum objective value and our LP bound is arbitrarily close to e 1.5819.
This constant defines a lower bound on the approximation results that can be obtained by the
present approach. We conclude in Section 4 by discussing some related problems and open
questions.



2 Relaxations

In this section, we present two linear programming relaxations for 1 rj wjCj. We show their
equivalence and discuss some polyhedral consequences.

For both relaxations, the following preemptive schedule plays a crucial role: at any point in
time, schedule (preemptively) the available job with highest wjIpj ratio. We assume (throughout
the paper) that the jobs are indexed in order of nonincreasing ratios w > W2 > ... > and ties

PI - P2 - - pn
are broken according to this order. Therefore, whenever a job is released, the job being processed
(if any) is preempted if the released job has a smaller index. We refer to this preemptive schedule
as the LP schedule. See Figure 1 for an example of an LP schedule.

r4 r3 r 2 rl

Figure 1: An LP schedule for a 4-job instance given by rl = 11, P1 = 1, r2 = 7, P2 = 5, r3 = 2, P3 = 3,
r4 = 0, p4 = 5. Higher rectangles represent jobs with larger weight to processing time ratio. Time is
shown on the horizontal axis.

Notice that this LP schedule does not in general minimize Ej wjCj over all preemptive
schedules. This should not be surprising since the preemptive problem 11 rj, pmtn I E wjCj is
(strongly) NP-hard [15]. It can be shown, however, that the total weighted completion time of
the LP schedule is always within a factor of 2 of the optimum value for 11 rj, pmtn I E wjCj and
this bound is tight, see [29].

The LP schedule can be constructed in O(nlogn) time. To see this, we now describe an
implementation, which may be seen as "dynamic" (event-oriented) or, using the terminology
of [18], "machine-based" and can even be constructed on-line while the jobs dynamically arrive
over time. The algorithm keeps a priority queue [6] of the currently available jobs that have not
yet been completely processed, with the ratio wj/pj as key and with another field indicating the
remaining processing time. A scheduling decision is made at only two types of events: when a
job is released, and when a job completes its processing. In the former case, the released job is
added to the priority queue. In the latter case, the completed job is removed from the priority
queue. Then, in either case, the top element of the priority queue (the one with highest wj/pj
ratio) is processed; if the queue is empty, then move on to the next job release; if there is none,
then all jobs have been processed and the LP schedule is complete. This implementation results
in a total of O(n) priority queue operations. Since each such operation can be implemented in
O(log n) time [6], the algorithm runs in O(n log n) time.

The LP schedule can also be defined in a somewhat different manner, which may be seen
as "static" or "job-based". Consider the jobs one at a time in order of nonincreasing wj/pj.
Schedule each job j as early as possible starting at rj and preempting it whenever the machine
is busy processing another job (that thus came earlier in the wj/pj ordering). This point-of-view
leads to an alternate 0 (n log n) construction of the LP schedule.



2.1 Time-Indexed Relaxation

Dyer and Wolsey [7] investigate several types of relaxations of It rj E wjCj, the strongest ones
being time-indexed. We consider the weaker of their two time-indexed formulations, which
they call formulation (D). It uses two types of variables: yjr = 1 if job j is being processed
during time interval [, r + 1), and zero otherwise; and tj represents the start time of job j. For
simplicity, we add pj to tj and replace the resulting expression by Cj; this gives an equivalent
relaxation.

ZD = min EwjCj

subject to

(D) Y < T = 0,1,... ,T
j:rj <r

T

y YjT=Pj jEN
r=rj

Cj = Pj +- E T + -) Yjr j E N (1)
Pj r=r 2

o < Yjr j E N,T = rj,rj + l,... ,T

where T is an upper bound on the makespan of an optimal schedule (for example, T -

maxjeN rj + EjENP)' We refer to this relaxation as the preemptive time-indexed relaxation.
The expression for Cj given in (1) corresponds to the correct value of the completion time if
job j is not preempted; an interpretation in terms of mean busy times is given in the next
section for the case of preemptions. Observe that the number of variables of this formulation
is only pseudo-polynomial. If we eliminate Cj from the relaxation by using (1), we obtain a
transportation problem [7] and, as a result, yjT can be assumed to be integral:

Lemma 2.1. There exists an optimal solution to (D) for which yjT C {0, 1} for all j and 7.

As indicated in [7], it follows from the work of Posner [21] that (D) can be solved in O(n log n)
time. Actually, one can derive a feasible solution to (D) from the LP schedule by letting LP

be equal to 1 if job j is being processed in [, T + 1), and 0 otherwise.

Theorem 2.2. The solution yLP derived from the LP schedule is an optimum solution to (D).

Proof. The proof is based on an interchange argument. Consider any optimum 0/1-solution y*
to (D). If there exist j < k and a > T > rj such that y = yk = 1, then by replacing y*and Yk~ by 0, aon y and *
and y*k by 0, and Yj* and yk., by 1, we obtain another feasible solution with an increase in

the objective function of (a - T) k -W < 0. The resulting solution must therefore also

be optimum. By repeating this interchange argument, we derive that there exists an optimum
solution y* such that there do not exist j < k and a > T > rj such that yj*, = yk = 1. This

implies that the solution y* must correspond to the LP schedule. E

In particular, despite the immense number of variables in the LP relaxation (D) an optimum
solution can be obtained efficiently. We will make use of this fact as well as of the special structure
of the LP schedule in the design and analysis of the approximation algorithms, see Section 3.
We note again that in spite of its nice properties the preemptive time-indexed LP relaxation



(D) solves in general neither II rj IEwjCj nor lrj, pmtn I wjCj. In the former case, the
processing of a job in the LP solution may fail to be consecutive; in the latter case equation (1)
does not necessarily define the completion time of a job in the preemptive LP schedule, as will
be shown in the next lemma.

2.2 Mean Busy Time Relaxation

Given any preemptive schedule, let Ij be the indicator function of the processing of job j at
time t, i.e., Ij(t) is 1 if the machine is processing j at time t and 0 otherwise. To avoid
pathological situations, we require that, in any preemptive schedule, when the machine starts
processing a job, it does so for a positive amount of time. Given any preemptive schedule, we
define the mean busy time Mj of job j to be the average time at which the machine is processing
j, i.e.,

Mi =± Ij(t) t dt
Mj P

For instance, in the example given in Figure 1, which will be used throughout the text the mean
busy time of job 4 is 5.5.

We first establish some important properties of Mj in the next two lemmas.

Lemma 2.3. For any preemptive schedule, let Cj and Mj denote the completion and mean busy
time, respectively, of job j. Then for any job j, we have Mj + pj < Cj, with equality if and
only if job j is not preempted.

Proof. If job j is processed without preemption, then Ij(t) = 1 if Cj - pj < t < Cj and 0
otherwise; therefore Mj + 2pj = Cj. Otherwise job j is not processed during some interval(s) of
total length L > 0 between times Cj -pj and Cj. Since fT Ij (t) dt = pj, job j must be processed
during some time interval(s) of the same total length L before Cj - pj. Therefore,

1 1i I C3M = -C Ij (t) t dt < - tdt C 1
Pi t Pj -pdtC p

and the proof is complete. O

Let S C N denote a set of jobs and define

p(S) := EPj and rmin(S) :mimnrj
jjs

Let Is(t) = j s Ij(t). Since, by the machine capacity constraint, Is(t) E {0, 1} for all t, we
may view Is as the indicator function for job set S. We can thus define the mean busy time of
set S as Ms := p-( foT Is(t) t dt. Note that we have

p(S)MS= (Ij(t)) tdt= f Ij(t)tdt= pjMj . (2)
jES jS

So, and unlike its start and completion time, the mean busy time of a job set is a simple
nonnegative combination of the mean busy times of its elements. One consequence of this
observation is the validity of the shifted parallel inequalities (3) below, first established in [22]
(using completion times instead of mean busy times and, accordingly, with right-hand side
increased by 2 SjesP2)



Lemma 2.4. For any set S of jobs and any preemptive schedule with mean busy time vector
M, we have

pjMj > p(S) (rmin(S) (+ P(S)) (3)
jES

and equality holds if and only if all the jobs in S are scheduled without interruption from rmin(S)

to rmin (S) +p(S).

Proof. Note that Is(t)M = (S)Mt dt that 0 for t < rmin(S)

and Is(t) < 1 for t > rmin(S); and that frin(S) Is(t) dt = p(S). Under these constraints, Ms
is minimized when Is(t) = 1 for rmin(S) t < rmin(S) + p(S) and 0 otherwise. Therefore
Ms is uniquely minimized among all feasible preemptive schedules when all the jobs in S are
continuously processed from rmin(S) to rmin(S) + p(S). This minimum value is p(S)(rmin(S) +
2p(S)) and is a lower bound for EjcspjMj in any feasible preemptive schedule. L

As a result of Lemma 2.4, the following linear program provides a lower bound on the
optimum value of 11 rj, pmtn I Z wjCj, and hence on that of i1 rj E wjC j .

ZR = min wj (Mj + Pj)
jEN

subject to

(R) _(pjM; > p(S) rmin(S) + p(S)) SC N.
jES

The proof of the following theorem and later developments use the notion of canonical
decompositions [9]. For a set S of jobs, consider the schedule which processes jobs in S as
early as possible, say, in order of their release dates. This schedule induces a partition of S
into {S1,... ,Sk} such that the machine is busy processing jobs in S exactly in the disjoint
intervals [rmin(Se), rmin(S) + p(Sf)] for = 1,... , k. We refer to this partition as the canonical
decomposition of S. A set is canonical if it is identical to its canonical decomposition, i. e., if its
canonical decomposition is {S}. Thus a set S is canonical if and only if it is feasible to schedule
all its jobs in the time interval [rmin(S), rmin(S) +p(S)). Note that the set N = {1, 2, 3, 4} in our
example is canonical whereas the subset {1, 2, 3} is not; it has the decomposition {{3}, {1, 2}}.
Let

k

h(S) := Zp(S) (rmin(St) + P() (4)
£=12

where {S1,... , Sk} is the canonical decomposition of S C N. Then Lemma 2.4 implies that
EjGspjMj h(S) is a valid inequality for the mean busy time vector of any preemptive
schedule. In other words, relaxation (R) may be written as:

min { wj (Mj + pj) pjM > h(S) for all S C N}
jCN jES

Theorem 2.5. Let M LP be the mean busy time of job j in the LP schedule. Then MLP is an
optimum solution to (R).



Proof. By Lemma 2.4, MLP is a feasible solution for (R).
To prove optimality of MLP, we construct a lower bound on the optimum value of (R) and

show that it is equal to the objective function value of MLP. Recall that the jobs are indexed
in nonincreasing order of the wj/pj ratios, and let [i] := {1, 2,... , i} and S,..., S(i) denote

the canonical decomposition of [i]. Observe that for any vector M = (Mj)jGN we have

5£,1 wM W i Wi+l ) pjMj= i+l E pjMj wMj p - ) )(5)

Pi Pi+l p3 Mij (5)jeN i=1 P p+1 j[i] i= 1 e=l jesj

where we let Wn+1/Pn+1 = 0. We have therefore expressed ZjEN wjMj as a nonnegative combi-
nation of expressions jesj pjMj over canonical sets. By construction of the LP schedule, the

jobs in any of these canonical sets S are continuously processed from rmin(St) to rmin(St) +p(S)
in the LP schedule. Thus, for any feasible solution M to (R) and any such canonical set Se we
have

· St)+ I i) pMLPS pjMj > h(St) = p(Sf) (rmin(S}) + P(S)) = E pMf3 
jES( jESt

where the last equation follows from Lemma 2.4. Combining this with (5), we derive a lower
bound on Ej wjMj for any feasible solution M to (R), and this lower bound is attained by the
LP schedule. E]

From Theorems 2.2 and 2.5, we derive that the values of the two relaxations (D) and (R)
are equal.

Corollary 2.6. The LP relaxations (D) and (R) of 1 1rj wjCj yield the same optimal ob-
jective value, i. e., ZD = ZR, for any weights w > O. This value can be computed in O(nlogn)
time.

Proof. For the equivalence of the lower bounds, note that the mean busy time MfL of any job
j in the LP schedule can be expressed as

MLP 1irJ ( ) 2 (6)
Pi .

where yLP is the solution to (D) derived from the LP schedule. The result then follows directly
from Theorems 2.2 and 2.5. We have shown earlier that the LP schedule can be constructed in
O(n log n) time. E

Although the LP schedule does not necessarily minimize j Cj over the preemptive sched-
ules, Theorem 2.5 states that it minimizes Ej wjMj over the preemptive schedules. Note also
that, because of Lemma 2.3, the LP schedule provides an optimum solution to both the pre-
emptive and nonpreemptive problems 11 rj, pmtn I EwjCj and 11 rj I E wjCj whenever this LP
schedule does not preempt any job. For example, this is the case if all processing times are equal
to 1 or if all jobs are released at the same time. Thus, the LP schedule provides an optimum
solution to problems 1I rj, pj = 1 1 E wjCj and to 11 1 E wjCj. This was already known. In the
latter case it coincides with Smith's ratio rule [35]; see Queyranne and Schulz [25] for the former
case.



2.3 Polyhedral Consequences

We now consider some polyhedral consequences of the preceding results. Let PD be the feasible
region defined by the constraints of relaxation (D) when T = oo, i.e.,

PD :={ y >0: E Yj < 1 for E N; E yj, = pj for all j e N}
j:rj<T T>rj

In addition, we denote by PR := {M E RIN s: ·YEPjMj > h(S) for all S C N} the polyhedron
defined by the constraints of relaxation (R).

Theorem 2.7.

(i) Polyhedron PR is the convex hull of the mean busy time vectors M of all preemptive sched-
ules. Moreover, every vertex of PR is the mean busy time vector of an LP schedule.

(ii) Polyhedron PR is also the image of PDo in the space of the M-variables under the linear
mapping M : y -4 M(y) E RN defined by

M(y)j = 1 Yjj(5+ ( ) for allj E N.

Proof. (i) Lemma 2.4 implies that the convex hull of the mean busy time vectors M of all feasible
preemptive schedules is contained in PR. To show the reverse inclusion, it suffices to show that
(a) every extreme point of PR corresponds to a preemptive schedule; and (b) every extreme ray
of PR is a direction of recession for the convex hull of mean busy time vectors. Property (a) and
the second part of statement (i) follow from Theorem 2.5 and the fact that every extreme point
of PR is the unique minimizer of EjEN wjMi for some w > 0. For (b), note that the extreme
rays of PR are the n unit vectors of R1 N . An immediate extension to preemptive schedules and
mean busy times of results in Balas [2] implies that these unit vectors of IRN are directions of
recession for the convex hull of mean busy time vectors. This completes the proof of (i).

(ii) We first show that the image M(P~D) of P~D is contained in PR. For this, let y be a
vector in PD and S C N with canonical decomposition {S1, .. .,Sk}. By definition of M(y)j,
we have

pjM(Y)J = E YJ(r+ )
jES jES r>rj

k rmin(Se)+p(Se)

e=l -=rmin(St)

k

=P(Se) (rmin(Se) + P(Se))= h(S)

The inequality follows from the constraints defining PB' and the interchange argument which
we already used in the proof of Theorem 2.2. This shows M(y) C PR and thus M(PBD) C PR.

To show the reverse inclusion, we use the observation from the proof of part (i) that PR can
be represented as the sum of the convex hull of all mean busy time vectors of LP schedules and
the nonnegative orthant. Since, by equation (6), the mean busy time vector MLP Of any LP
schedule is the projection of the corresponding 0/1-vector yLP, it remains to show that every
unit vector ej is a direction of recession for M (PD). For this, fix an LP schedule and let yLP and



MLP = M(yLP) denote the associated 0/1 y-vector and mean busy time vector, respectively.
For any job j E N and any real A > 0, we need to show that MLP + A ej E M(PD).

Let max = max{T : YkLP = 1 : k E N}. Choose 0 such that = 1, choose an integer

/ > max{Apj, max nd define y by y = , = 1, and define y by = 0, P otherwise. In the
associated preemptive schedule, the processing of job j that was done in interval [, 0 + 1) is now
postponed, by jI time units, until interval [ + -, 0 + u + 1). Therefore, its mean busy time vector
M' = M(y') satisfies Mi = M L P + p/pj and M = M L P for all k j. Let A' = /p j > A, so

M = MLP + A'ej. Then the vector MLP + A ej is a convex combination of MLP M(YLP)

and M' = M(y'). Let y be the corresponding convex combination of yLP and y'. Since PD is
convex then y E PD and, since the mapping M is linear, MLP + A ej = M(y) E M(P). The
proof is complete. [

In view of earlier results for single machine scheduling with identical release dates [23], as
well as for parallel machine scheduling with unit processing times and integer release dates [25],
it is interesting to note that the feasible set PR of the mean busy time relaxation is, up to scaling
by the job processing times, a supermodular polyhedron:

Proposition 2.8. The set function h defined in (4) is supermodular.

Proof. Consider any two elements j, k E N and any subset S C N\ {j, k}. We may construct an
LP schedule minimizing iESU{k} piMi using the job-based method by considering first the jobs

in S and then job k. By definition (4) the resulting mean busy times MLP satisfy EiES piMf P =

h(S) and ZiESU{k} iMiLP = h(SU{k}). Note that job k is scheduled, no earlier than its release
date, in the first Pk units of idle time left after the insertion of all jobs in S. Thus M4LP is the
mean of all these Pk time units. Similarly, we may construct an LP schedule, whose mean busy
time vector will be denoted by MLP, minimizing iGSU{j, k} piMi by considering first the jobs

in S, so MLP - MLP for all i E S; then job j, so Eicsuj}piMLP h(S U {]}); and then

job k, so 'ieSu{j,k}PiL P = h(S U {j, k}). Since job j has been inserted after subset S was
scheduled, job k cannot use any idle time interval that is earlier than those in the former LP
schedule MLP--and some of the previously available idle time may now be occupied by job j,
causing a delay in the mean busy time of job k; thus we have MkLP > MkLP and therefore

h(S U {j, k}) - h(S U {j}) = M _> M P = h(S U {k}) - h(S).

This suffices to establish that h is supermodular. C1

An alternate proof of the supermodularity of h can be derived, as in [9], from the fact, ob-
served by Dyer and Wolsey and already mentioned above, that relaxation (D) becomes a trans-
portation problem after elimination of the Cj's. Indeed, from an interpretation of Nemhauser,
Wolsey and Fisher [19] of a result of Shapley [31], it then follows that the value of this transporta-
tion problem as a function of S is supermodular. One of the consequences of Proposition 2.8
is that the job-based method to construct an LP schedule is just a manifestation of the greedy
algorithm for minimizing EjeN wjMj over the supermodular polyhedron PR.

We finally note that the separation problem for the polyhedron PR can be solved combi-
natorially. One can separate over jESPpjMj > p(S)(rmin(S) + p(S)) by trying all, at most n
possible values for rmin(S) and then applying a O(n log n) separation routine of Queyranne [23]
for the problem without release dates. The overall separation routine can be implemented in
O(n2 ) time by observing that the bottleneck step in Queyranne's algorithm - sorting the mean
busy times of the jobs - needs to be done only once for the whole job set.



3 Provably Good Schedules and LP Relaxations

In this section, we derive approximation algorithms for rj I wjCj that are based on con-
verting the preemptive LP schedule into a feasible nonpreemptive schedule whose value can be
bounded in terms of the optimum LP value ZD = ZR. This yields results on the quality of
both the computed schedule and the LP relaxations under consideration since the value of the
computed schedule is an upper bound and the optimum LP value is a lower bound on the value
of an optimal schedule.

In Section 3.6 below, we describe a family of instances for which the ratio between the
optimum value of the 1 rj I E wjCj problem and the lower bounds ZR and ZD is arbitrarily
close to e > 1.5819. This lower bound of eel sets a target for the design of approximation
algorithms based on these LP relaxations.

In order to convert the preemptive LP schedule into a nonpreemptive schedule we make use
of so-called a-points of jobs. For 0 < a < 1 the a-point tj(a) of job j is the first point in
time when an a-fraction of job j has been completed in the LP schedule, i. e., when j has been
processed for a pj time units. In particular, tj(1) is equal to the completion time and we define
tj(0+) to be the start time of job j. Notice that, by definition, the mean busy time MLP of job
j in the LP schedule is the average over all its a-points

MLP = tj (a) da . (7)

We will also use the following notation: For a fixed job j and 0 < a < 1 we denote the fraction
of job k that is completed in the LP schedule by time tj(a) by 7k(a); in particular, r/j(a) = a.
The amount of idle time that occurs between time 0 and the start of job j in the LP schedule is
denoted by ridle. Note that r/k and idle implicitly depend on the fixed job j. By construction,
there is no idle time between the start and completion of job j in the LP schedule; therefore we
can express j's a-point as

tj((a) = Tidle + 7rlk(a) Pk (8)
kEN

For a given 0 < a < 1, we define the a-schedule as the schedule in which jobs are processed
nonpreemptively as early as possible and in the order of nondecreasing a-points. We denote the
completion time of job j in this schedule by C. The idea of scheduling non-preemptively in the
order of a-points in a preemptive schedule was introduced by Phillips, Stein and Wein [20], and
used in many of the subsequent results in the area.

This idea can be further extended to individual, i.e., job-dependent aj-points tj(aj), for
j C N and 0 < aj < 1. We denote the vector consisting of all aj's by a := (aj) := (a, ... , an).
Then, the (aj)-schedule is constructed by processing the jobs as early as possible and in nonde-
creasing order of their aj-points; the completion time of job j in the (aj)-schedule is denoted
by Cj. Figure 2 compares an a-schedule to an (aj)-schedule.

In the sequel we present several results on the quality of (aj)-schedules. These results also
imply bounds on the quality of the LP relaxations of the previous section. The main result is
the existence of a random (aj)-schedule whose expected value is at most a factor 1.6853 of the
optimum LP value ZD. Therefore the LP relaxations (D) and (R) deliver a lower bound which is
at least 0.5933 ( 1.6853- 1) times the optimum value. The corresponding randomized algorithm
can be implemented on-line; it has competitive ratio 1.6853 and running time O(n log n); it can
also be derandomized to run off-line in O(n 2 ) time. We also investigate the case of a single
common a and show that the best a-schedule is always within a factor of 1.7451 of the optimum.



Figure 2: A nonpreemptive a-schedule (for a = 1/2) and an (aj)-schedule shown above and below the
LP schedule, respectively. Notice that there is no common a value that would lead to the latter schedule.

3.1 Bounding the completion times in (aj)-schedules

To analyze the completion times of jobs in (aj)-schedules, we consider nonpreemptive schedules
of similar structure that are, however, constructed by a slightly different conversion routine
which we call (aj)-CONVERSION:

Consider the jobs j E N in order of nonincreasing aj-points tj(aj) and iteratively
change the preemptive LP schedule to a nonpreemptive schedule by applying the
following steps:

i) remove the aj pj units of job j that are processed before tj(aj) from the
machine and leave it idle within the corresponding time intervals; we say that
this idle time is caused by job j;

ii) delay the whole processing that is done later than tj (aj) by pj;

iii) remove the remaining (1 - j)-fraction of job j from the machine and shrink
the corresponding time intervals; shrinking a time interval means to discard the
interval and move earlier, by the corresponding amount, any processing that
occurs later;

iv) process job j in the released time interval [tj(aj), tj(aj) +Pj).

Figure 3 contains an example illustrating the action of (aj)-CONVERSION. Observe that in
the resulting schedule jobs are processed in nondecreasing order of aj-points and no job j is
started before time tj(aj) > rj. The latter property will be useful in the analysis of on-line
(aj)-schedules.



t4 (1/5)

Figure 3: Illustration of the individual iterations of (j)-CONVERSION.

Lemma 3.1. The completion time of job j in the schedule constructed by (oj)-CONVERSION is
equal to

tj (aj) + E (1 + ak - k()) Pk
k

Qk <77k (j)

Proof. Consider the schedule constructed by (aj)-CONVERSION. The completion time of job j
is equal to the idle time before its start plus the sum of processing times of jobs that start no
later than j. Since the jobs are processed in nondecreasing order of their aj-points, the amount
of processing before the completion of job j is

E Pk* (9)
k

ak <lk (a j)

The idle time before the start of job j can be written as the sum of the idle time idle that
already existed in the LP schedule before j's start plus the idle time before the start of job j



that is caused in steps (i) of (aj)-CONVERSION. Each job k that is started no later than j, i. e.,
such that Tk((j) > ak, contributes ack Pk units of idle time, all other jobs k only contribute
rlk(aj)pk units of idle time. As a result, the total idle time before the start of job j can be
written as

Tidle + d Ok Pk + rlk(aj) Pk . (10)
k k

ak<vk (aj) ak>qk (aj)

The completion time of job j in the schedule constructed by (aj)-CONVERSION is equal to the
sum of the expressions in (9) and (10); the result then follows from equation (8). [

Since the schedule constructed by (aj)-CONVERSION processes the jobs in order of nonde-
creasing aj-points, we obtain the following corollary.

Corollary 3.2. The completion time of job j in an (aj)-schedule can be bounded by

C < tj(aj) + A, (1 + ak-r1k(a(j)) Pk
k

a k < k (aj)

3.2 Bounds for a-schedules and (aj)-schedules

We start with a result on the quality of the a-schedule for a fixed value of a.

Theorem 3.3. For fixed a, (i) the value of the a-schedule is within a factor max 1 + , 1 + 2a}

of the optimum LP value; in particular, for a = 1/\/2 the bound is 1 + v/1 . Simultaneously, (ii)
the length of the a-schedule is within a factor of 1 + a of the optimum makespan.

The proof of (i) can be found in [10]; the proof of (ii) follows from Corollary 3.2. In the sequel
we will compare the completion time Cja of every job j with its "completion time" MIj P + pj
in the LP schedule. However, for any fixed value of a, there exist instances which show that
this type of job-by-job analysis can give a bound no better than 1 + / > 2.4142. One can even
show that, for any given value of a, there exist instances for which the objective value of the
a-schedule can be as bad as twice the LP lower bound.

In view of these results, it is advantageous to use several values of a as it appears that no
instance can be simultaneously bad for all choices of a. In fact, the a-points develop their full
power in combination with randomization, i. e., when a or even job-dependent caj are chosen
randomly from (0, 1] according to an appropriate density function. This is also motivated by
equation (7) which relates the expected a-point of a job under a uniform distribution of a to
the LP variable MjLP. For random values aoj, we analyze the expected value of the resulting
(aj)-schedule and compare it to the optimum LP value. Notice that a bound on the expected
value proves the existence of a vector (j) such that the corresponding (aj)-schedule meets this
bound. Moreover, for our results we can always compute such an (j) in polynomial time by
derandomizing our algorithms with standard methods, see Propositions 3.7 and 3.12.

Although the currently best known bounds can only be achieved for (aj)-schedules with
job-dependent aj, we investigate a-schedules with a single a as well. On the one hand, this
helps to better understand the potential advantages of (aj)-schedules; on the other hand, the
randomized algorithm that relies on a single a admits a natural derandomization. In fact, we
can easily compute an a-schedule of least objective value over all a between 0 and 1; we refer
to this schedule as the BEST-a-schedule. In the Proposition 3.7 below, we will show that there
are at most n different a-schedules. The BEST-a-schedule can be constructed in O(n 2) time by
evaluating all these different schedules.



As a warm-up exercise for the kind of analysis we use, we start by proving a bound of 2 on
the expected worst-case performance ratio of uniformly generated (aj)-schedules in the following
theorem. This result will then be improved by using more intricate probability distributions and
by taking advantage of additional insights into the structure of the LP schedule.

Theorem 3.4. Let the random variables aj be pairwise independently and uniformly drawn
from (0,1]. Then, the expected value of the resulting (aj)-schedule is within a factor 2 of the
optimum LP value ZD. The same result holds for the a-schedule if a is drawn uniformly at
random from (0, 1].

We only give the proof for the case of job-dependent aj since it is somewhat simpler. The
proof of the result for the a-schedule follows from a more general analysis in Subsection 3.3.

Proof. Remember that the optimum LP value is given by Ej wj(MLP + 2P;) To get the claimed

result, we prove that Eu[Cff] < 2(MfP + P) for all jobs j E N, where Eu[F(a)] denotes the
expectation of a function F of the random variable a when the latter is uniformly distributed.
The overall performance follows from this job-by-job bound by linearity of expectations.

Consider an arbitrary, but fixed job j E N. To analyze the expected completion time of j,
we first keep aj fixed, and consider the conditional expectation Eu[Cf I aj]. Since the random
variables aj and ak are independent for each k j, Corollary 3.2 and equation (8) yield

Eu[CIa1 j] < tj(aj) + EPk (1 + ak - rk(aj)) dak + pj
k/j

= tj(a)+ (j) Z 2) *k)- 2 Pk + Pj

kij

< tj(aj) + ,k(aj) Pk + pj < 2 (tj(aj)+ 2pj)
kAj

To obtain the unconditional expectation Eu[Cj'] we integrate over all possible choices of aj:

Eu[C] = Eu[Cj I a] daj < 2 ( tj(j) daj + j) = 2. (MP + 2Pj)

the last equation follows from (7). [

We turn now to deriving improved results. We start with an analysis of the structure of the
LP schedule. Consider any job j, and assume that, in the LP schedule, j is preempted at time s
and its processing resumes at time t > s. Then all the jobs which are processed between s and t
have a smaller index; as a result, these jobs will be completely processed between times s and
t. Thus, in the LP schedule, between the start time and the completion time of any job j, the
machine is constantly busy, alternating between the processing of portions of j and the complete
processing of groups of jobs with smaller index. Conversely, any job preempted at the start time
tj (0+ ) of job j will have to wait at least until job j is complete before its processing can be
resumed.

We capture this structure by partitioning, for a fixed job j, the set of jobs N \ {j} into
two subsets N1 and N 2: Let N 2 denote the set of all jobs that are processed between the start
and completion of job j. All remaining jobs are put into subset N1. Notice that the function
77k is constant for jobs k E N1 ; to simplify notation we write 77k := ??k(aj) for those jobs. For



k E N 2, let 0 < Ik < 1 denote the fraction of job j that is processed before the start of job k;
the function rik is then given by

'k(aj) = 0 if j < k, for k E N2.
1 if aj > k,

We can now rewrite equation (8) as

tj(oaj) = Tidle + E ?k Pk + E Pk + aj pj = tj(0+ ) + E Pk + aj 'pj. (11)
kEN 1 kEN2 kEN 2

acj >k Qj >k

Plugging (11) into equation (7) yields

ML P = t(0 + ) + E (1- k) Pk + Pj , (12)
kEN2

and Corollary 3.2 can be rewritten as

Cj < tj(0+ ) + Z (1 + k-rk) .pk + j (1+ ak).pk + ( + a j ) p , (13)
keN 1 kEN2

ak <k j>Ak

where, for k C N 2, we have used the fact that ak _< k(aj) is equivalent to aj > k. The
expressions (11), (12), and (13) reflect the structural insights that we need for proving stronger
bounds for (aj)-schedules and a-schedules in the sequel.

As mentioned above, the second ingredient for an improvement on the bound of 2 is a more
sophisticated probability distribution of the random variables aj and a, respectively. In view
of the bound on Cja given in (13), we have to cope with two contrary phenomena: On the one
hand, small values of ak keep the terms of the form (1 + ak - k) and (1 + ak) on the right-hand
side of (13) small; on the other hand, choosing larger values decreases the number of terms in
the first sum on the right-hand side of (13). The balancing of these two effects contributes to
reducing the bound on the expected value of C'.

3.3 Improved bounds for a-schedules

In this subsection we prove the following theorem.

Theorem 3.5. Let y 0.4675 be the unique solution to the equation

.72
1-y = +ln(1+y)

satisfying 0 < y < 1. Define c:= 1+- < 1.7451 and 6 := ln( c) ' 0.8511. If c is chosen1+Y-e-y "'~
according to the density function

f(a) = (c-1)-ea ifa<6,
0ta) O otherwise,

then the expected value of the resulting random a-schedule is bounded by c times the optimum
LP value ZD.

Before we prove Theorem 3.5 we state two properties of the density function f that are
crucial for the analysis of the corresponding random a-schedule. Since the proof of the following
lemma is purely technical, we omit it.



Lemma 3.6. The function f given in Theorem 3.5 is a density function with the following
properties:

(i) f(a) ( +a-7) da < (c-1)7 for all E [0,1],

(ii) f f(a).(1+a) da < c (1 -/) for all I E [0, 1].

Property (i) is used to bound the delay to job j caused by jobs in N 1 which corresponds to
the first summation on the right-hand side of (13). The second summation reflects the delay to
job j caused by jobs in N2 and will be bounded by property (ii). Observe that both (i) for r7 = 1
and (ii) for Su = 0 yield Ef[a] < c- 1. In fact, we have that Ef [a] = (c- 1)(1 - e + e) < 0.4852
where Ef [a] denotes the expected value of a random variable a that is distributed according to
the density f given in Theorem 3.5.

Proof of Theorem 3.5. Using inequality (13) and Lemma 3.6 we derive that

Ef [Cj] < tj(0+) + (c - 1) E rPk + c E (1 - k) Pk + C- pi
keN 1 kEN2

< c .t(0 + ) + c (1-Ik) .pk + C pj = c.(M P 2pj) ;
kEN2

the last inequality follows from the definition of N1 and Ork and the last equality follows from
(12). E

Notice that any density function satisfying properties (i) and (ii) of Lemma 3.6 for some
value c' directly leads to the job-by-job bound Ef[Cj-] < c' (MfL P + p;) for the corresponding- 22 J
random a-schedule. It is easy to see that the unit function satisfies Lemma 3.6 with c' = 2 and
establishes the last statement in Theorem 3.4.

The use of an exponential density function is motivated by the first property in Lemma 3.6;
notice that the function a -+ (c - 1) e verifies it with equality. On the other hand, the

exponential function is truncated in order to reduce the term 1f f(a). (1 + a) da in the second
property. In fact, the truncated exponential function f in Theorem 3.5 can be shown to minimize
c'; it is therefore optimal for our analysis. In addition, there exists a class of instances for which
the ratio of the expected cost of an a-schedule determined using this density function, to the
cost of the optimum LP value is arbitrarily close to 1.745; this shows that the preceding analysis
is essentially tight in conjunction with truncated exponential functions.

As a corollary to Theorem 3.5 we derive that the BEST-a-schedule has a value of at most
1.7451 ZR. The following proposition shows that the randomized algorithm that yields the
a-schedule can be easily derandomized because the sample space is small.

Proposition 3.7. There are at most n different a-schedules; they can be computed in O(n2)
time.

Proof. As a goes from 0+ to 1, the a-schedule changes only whenever an a-point, say for job j,
reaches a time at which job j is preempted. Thus, the total number of changes in the a-schedule
is bounded above by the total number of preemptions. Since a preemption can occur in the LP
schedule only whenever a job is released, the total number of preemptions is at most n - 1, and
the number of a-schedules is at most n. Since each of these a-schedules can be computed in
O(n) time, the result on the running time follows. F[



3.4 Improved bounds for (aj)-schedules

In this subsection, we prove the following theorem.

Theorem 3.8. Let the aj 's be chosen pairwise independently from a probability distribution
over (0, 1] with the density function

(c- 1) .ea ifa < y + ln(2-y),
{(c) o otherwise,

where y 0.4835 is a solution to the equation

e - Y + 2y +1 ln(2 - y) = 2

and c = 1 + 1/((2 - y) e - 1) < 1.6853. Then, the expected value of the resulting random
(a(j)-schedule is bounded by c times the optimum LP value ZD.

The bound in Theorem 3.8 yields also a bound on the quality of the LP relaxations:

Corollary 3.9. The LP relaxations (D) and (R) deliver in O(n log n) time a lower bound which
is at least 0.5933 (x 1.6853-1) times the optimum value.

Following the lines of the last subsection, we state two properties of the density function g
that are crucial for the analysis of the corresponding random (j)-schedule. The proof of the
following lemma is again purely technical and is therefore omitted.

Lemma 3.10. The function g given in Theorem 3.8 is a density function with the following
properties:

(i) (a).- (1 + - ) d < (c - 1) r for all rl E [0, 1],

(ii) (1 + Eg[a]) g() ds < c (1- p1) for all p E [0,1],

where Eg[a] denotes the expected value of a random variable a that is distributed according to g.

Notice the similarity of Lemma 3.10 and Lemma 3.6 of the last subsection. Again, proper-
ties (i) and (ii) are used to bound the delay to job j caused by jobs in N1 and N 2, respectively,
in the right-hand side of inequality (13). Property (i) for r7 = 1 or Property (ii) for p = 0 again
yield Eg[a] < c - 1.

Proof of Theorem 3.8. Our analysis of the expected completion time of job j in the random (aj)-
schedule follows the line developed in the proof of Theorem 3.4. First we consider a fixed choice
of aj and try to bound the corresponding conditional expectation Eg[Cjf I aj]. In a second step
we bound the unconditional expectation Eg[Cjf] by integrating the product g(aj) Eg[Cjf I aj]
over the interval (0, 1].

For a fixed job j and a fixed value aj, the bound in (13) and property (i) from Lemma 3.10
yield

Eg[Cl I aj] < tj(0+) + (c-1) rE 7k - Pk + E ( l+ Eg[k])pk + (1 + aj) .p
keN 1 kEN 2

aj > Ak

< c t j(0 +) + (1 + Eg[cl]) S Pk + (1 + C3 j) p j .
kEN 2

a j >Ak



The last inequality follows from (11) and Eg[ak] = Eg[al] for all k E N. Using property (ii) and
equation (12) yields

Eg[Cj'] < c tj(O+ ) + (1 + Eg[ol]) E Pk g((aj) dj + (1 + Eg[cj]) pj
kEN2 k

< c'tj(O + ) + cZ(1- I k) k + C pj = C- (MP+p 2j)
kEN2

The result follows from linearity of expectations. []

While the total number of possible orderings of jobs is n! = 2 (n logn), we show in the
following lemma that the maximum number of (aj)-schedules is at most 2n-1. We will use the
following observation. Let qj denote the number of different pieces of job j in the LP schedule;
thus qj represents the number of times job j is preempted plus 1. Since there are at most n - 1
preemptions, we have that j=l qj < 2n - 1.

Lemma 3.11. The maximum number of (aj)-schedules is at most 2 n-1 and this bound can be
attained.

Proof. The number of (aj)-schedules is given by s = fIjnl qj . Note that ql = 1 since this job
is not preempted in the LP schedule. Thus, s jn2 qj, while jn 2 qj • 2(n-1). By the
arithmetic-geometric mean inequality, we have that

- n-1j-2 En 2 n- 1

j=2

Furthermore, this bound is attained if qj = 2 for j = 2,... , n and this is achieved for example
for the instance with pj = 2 and rj = n -j for all j. [1

Therefore, and in contrast to the case of random a-schedules, we cannot afford to deran-
domize our randomized 1.6853-approximation algorithm by enumerating all (aj)-schedules. We
instead use the method of conditional probabilities [17].

From inequality (13) we obtain for every vector ea = (aj) an upper bound on the objective
value of the corresponding (aj)-schedule, >j wjCj? < UB(a), where UB(a) = Ej wj RHSj(a)
and RHSj(a) denotes the right-hand side of inequality (13). Taking expectations and using
Theorem 3.8, we have already shown that

Eg [I wjCj < Eg[UB(a)] < cZD
JEN

where c < 1.6853. For each job j E N let Qj = {Qjl,... , Qjqj} denote the set of the intervals
for acj corresponding to the qj pieces of job j in the LP schedule. We consider the jobs one by
one in arbitrary order, say, j = 1,..., n. Assume that, at step j of the derandomized algorithm,
we have identified intervals Qd E Q1, QdE Q- such that

Eg[UB(a) ai E Qid for i = 1,...,j - 1] < c ZD

Using conditional expectations, the left-hand side of this inequality is

Eg[UB(a) Iai E Qid for i = 1,...,j -1]
qj

= E Probjaj Qj}. Eg [UB((a) ai E Qd for i = 1,.. .,j -1 and j E Qje]
-=1



Since Ej=l Prob{cj E Qje} = 1, there exists at least one interval Qje E Qj such that

Eg[UB(a)I ai E Qi for i = 1,...,j -1 and oj E Qje]
(14)

< Eg[UB(a) ai E Q for i = 1,..., j - 1]

Therefore, it suffices to identify such an interval Q = Qjt satisfying (14) and we may conclude
that

Eg[EWhC I ai E Qfor = 1,...,j] Eg[UB(a) lai E Q for i = 1,...,j] CZD.
hEN

Having determined in this way an interval Qj for every job j = 1,..., n, we then note that the

(oaj)-schedule is the same for all a e Qd x Q x ... x Qd. The (now deterministic) objective
value of this (j )-schedule is

wjCj < Eg[UB(a) I ai E Q1 for i = 1,..., n] < Eg[UB(a)] c Z D < 1.6853 ZD ,
jEN

as desired. For every j = 1,...,n, checking whether an interval Q satisfies inequality (14)
amounts to evaluating O(n) terms, each of which may be computed in constant time. Since, as
observed just before Lemma 3.11, we have a total of n= qj < 2 n- 1 candidate intervals, it

follows that the derandomized algorithm runs in O(n 2) time.

Proposition 3.12. The randomized 1.6853-approximation algorithm can be derandomized; the
resulting deterministic algorithm runs in O(n2 ) time and has performance guarantee 1.6853 as
well.

3.5 Constructing provably good schedules on-line

In this subsection we show that our randomized approximation results also apply in an on-
line setting. There are several different on-line paradigms that have been studied in the area
of scheduling; we refer to [30] for a survey. We consider the setting where jobs continually
arrive over time and, for each time t, we must construct the schedule until time t without any
knowledge of the jobs that will arrive afterwards. In particular, the characteristics of a job, i. e.,
its processing time and its weight become only known at its release date.

It has already been shown in Section 2 that the LP schedule can be constructed on-line.
Unfortunately, for a given vector (aj), the corresponding (aj)-schedule cannot be constructed
on-line. We only learn about the position of a job k in the sequence defined by nondecreasing
aj-points at time tk(ak); therefore we cannot start job k at an earlier point in time in the on-line
setting. On the other hand, however, the start time of k in the (aj)-schedule can be earlier than
its aok-point tk(Cek).

Although an (aj)-schedule cannot be constructed on-line, the above discussion reveals that
the following variant, which we call on-line-(aj)-schedule, can be constructed on-line: For a
given vector (j), process the jobs as early as possible in the order of their acj-points, with the
additional constraint that no job k may start before time tk(ack). See Figure 4 for an example.
We note that this idea of delaying the start of jobs until sufficient information for a good decision
is available was in this setting introduced by Phillips, Stein and Wein [20].

Notice that the nonpreemptive schedule constructed by (aj)-CONVERSION fulfills these con-
straints; its value is therefore an upper bound on the value of the on-line-(caj)-schedule. Our
analysis in the last subsections relies on the bound given in Corollary 3.2 which also holds for
the schedule constructed by (j)-CONVERSION by Lemma 3.1. This yields the following results.



Figure 4: The on-line schedule for the previously considered instance and aj-points. The LP schedule
is shown above for comparison.

Theorem 3.13. For any instance of the scheduling problem 11 rj Z wjCj,

a) choosing a = 1/v and constructing the on-line-a-schedule yields a deterministic on-line
algorithm with competitive ratio 1 + X/ < 2.4143 and running time O(nlogn);

b) choosing the caj's randomly and pairwise independently from (0, 1] according to the density
function g of Theorem 3.8 and constructing the on-line-(aj)-schedule yields a randomized
on-line algorithm with competitive ratio 1.6853 and running time O(n log n).

The competitive ratio 1.6853 in Theorem 3.13 beats the deterministic on-line lower bound
2 for the unit-weight problem 11 rj Cj [14, 36]. For the same problem, Stougie and Vestjens
proved the lower bound eel > 1.5819 for randomized on-line algorithms [37, 39].

3.6 Bad instances for the LP relaxations

In this subsection, we describe a family of instances for which the ratio between the optimum
value of the 1I rj[ wjCj problem and the lower bounds ZR and ZD is arbitrarily close to
e-1 > 1.5819.

These instances In have n > 2 jobs as follows: one large job, denoted job n, and n - 1
small jobs denoted j = 1,..., n - 1. The large job has processing time pn = n, weight Wn = 

and release date rn = 0. Each of the n - 1 small jobs j has zero processing time, weight
1 1 n 

w = n(n1 + 1 )n-i, and release date rj = j.
Throughout the paper, we have assumed that processing times are non-zero. In order to

satisfy this assumption, we could impose a processing time of 1/k for all small jobs, multiply
all processing times and release dates by k to make the data integral, and then let k tend to
infinity. For simplicity, however, we just let the processing time of all small jobs be 0.

The LP solution has job n start at time 0, preempted by each of the small jobs; hence its
mean busy times are: MLP = rj for j = 1, ... ,n- 1 and M L P n Its objective value is
ZR = (1 + 1 )n _ (1 + n-li) Notice that the completion time of each job j is in fact equal to

ML P + pj such that the actual value of the preemptive schedule is equal to ZR.
Now consider an optimum nonpreemptive schedule C* and let k = LCJ - n > 0, so k is

the number of small jobs that can be processed before job n. It is optimal to process all these



small jobs 1,..., k at their release dates, and then to start processing job n at time rk = k just
after job k. It is then optimal to process all remaining jobs k + 1, ... , n - 1 at time k + n just
after job n. Let C k denote the resulting schedule, that is, Ck = j for all j < k, and C = k + n
otherwise. Its objective value is (1 + -)nn-n k ). Therefore the optimum schedulen-i n-i n(n-)-

is Cn-l with objective value (1 + 1 )n - n 1-. As n grows large, the LP objective value
approaches e - 1 while the optimum nonpreemptive cost approaches e.

4 Conclusion

Even though polynomial approximation schemes [1] have now been discovered for 1I rj I E wjCj,
the algorithms we have developed, or variants of them, are likely to be superior in practice. The
experimental studies of Savelsbergh et al. [26] and Uma and Wein [38] indicate that LP-based
relaxations and scheduling in order of aj-points are powerful tools for a variety of scheduling
problems.

Several intriguing questions remain open. Regarding the quality of linear programming
relaxations, it would be interesting to close the gap between the upper (1.6853) and lower
(1.5819) bound on the quality of the relaxations considered in this paper. We should point out
that the situation for the strongly NP-hard [15] 11 rj, pmtn I E wjCj is similar. It is shown in
[29] that the completion time relaxation is in the worst case at least a factor of 8/7 and at most
a factor of 4/3 off the optimum; the latter bound is achieved by scheduling preemptively by
LP-based random a-points. Chekuri et al. [5] prove that the optimum nonpreemptive value is
at most e/(e - 1) times the optimum preemptive value; our example in Section 3.6 shows that
this bound is tight.

Dyer and Wolsey [7] propose also a (non-preemptive) time-indexed relaxation which is
stronger than the preemptive version studied here. This relaxation involves variables for each job
and each time representing whether this job is being completed (rather than simply processed)
at that time. This relaxation is at least as strong as the preemptive version, but its worst-case
ratio is not known to be strictly better.

For on-line algorithms, both in the deterministic and randomized settings, there is also a
gap between the known upper and lower bound on the competitive ratios that are given at the
end of Section 3.5.
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