
XVII. MICROWAVE THEORY

E. F. Bolinder

A. USE OF 4 x 4 REAL MATRICES IN MICROWAVE THEORY

In the Quarterly Progress Report of April 15, 1956, page 123, it was pointed out

that impedance transformations through bilateral two terminal-pair networks can be

performed by using 4 X 4 real matrices that belong to the G+ subgroup of the proper

Lorentz group. The 4 x 4 matrix corresponding to a given network can be obtained by

two different methods, which will be briefly outlined. A more extensive treatment will

be given in reference 1.

Using the notations of Fig. XVII-1, we can write

v' a b v

'i c d /i ( 1)

If we let v'/i' = Z', v/i = Z, then we obtain

, aZ + b
Z'cZ + dcZ + d

where, for bilateral networks, ad - bc = 1.

The simplest way of deriving a 4 x 4 real matrix from the 2 x 2 complex matrix

in Eq. 1 is to map the complex impedance plane (Z-plane) stereographically on the

Riemann unit sphere. A point (R, X) in the Z-plane will correspond to a point (x, y, z)

on the surface of the sphere, where

2R
R2 + X2 + 1

ZX

=R2 + X2 + 1

R 2 + X2 - 1

R 2 + X2 +1

After some simple calculations have been made, it can be shown that the linear

: b

Fig. XVII-1. Two terminal-pair network notations.
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fractional transformation, Eq. 2, on the surface of the sphere corresponds to

x al a a a4\

S b b2 b 3 b4  1

P= (4)

1 c 2 c 3 c 4  1

' dl d2 d 3 d4 w1

where (x, y, z, w) is the point (x, y, z) expressed in projective coordinates, e. g.

x = x 1/wl', y = 1/wl, and z = zl/W1 . The 16 elements of the 4 X 4 real matrix (Eq. 4)
are all expressed in the real and imaginary parts of the complex coefficients a, b, c, d.
Because the points (x, y, z) and (x', y', z') always lie on the surface of the sphere, there

are 10 relations between the elements of the 4 x 4 matrix, which fact, together with
the fact that the determinant is +1, makes it belong to the G+ subgroup of the proper

Lorentz group.

Instead of using a relation between the output and the input of the network in the form
of Eq. 2, an impedance equation, we can use a power relation. This can be done by
using the associated vector P of a spinor - a vector in three-dimensional Euclidean
space. The spinor is assumed to consist of the complex voltage v and the complex
current i (2, 3). Then, we obtain

Pl = Re(vi )

P? = Im(vi )
(5)

3 2 2

P3  =-2 (Iv1 l i l 2 )
0 2

where P1I P2, and P3 are the components of the vector P. If no noise is present, P
is the magnitude of the vector P:

P2 2 2+ 22 = P P2 P (6)
o 1 2 3

The four quantities of Eq. 5 can be used to form a 4-vector that is analogous to the

Stokes vector used in optics. After some algebraic operations (4) the 4-vector at the
input can be expressed in the output vector by means of a 4 x 4 real matrix, which is
analogous to the 4 x 4 matrix that is used in optics by Perrin, Soleillet, and Mueller.
For the simple case of bilateral networks, the point (x, y, z) on the Riemann unit sphere
can be written
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x = P 1 /Po, y P/Po, z = P3/Po

so that the 4 x 4 real matrix is the same as the one in Eq. 4.

Of the two methods described, the impedance method and the power method, the

second is more general, because it allows the treatment of noisy active networks.
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B. CASCADING TWO TERMINAL-PAIR NETWORKS BY THE

ISOMETRIC CIRCLE METHOD

It was shown in the Quarterly Progress Report of April 15, 1956, page 123, that the

isometric circles of a linear fractional transformation can be used for a graphical

method of impedance transformation. Let us assume that we know the complex constants

a, b, c, d in the expression

Z' aZ + b ad - bc = 1 (1)
cZ + d'

for two given networks. Then we know the isometric circles C d and C i (centers at

Od = -d/c and O i = a/c; radii Rc = 1/Ic) and the rotation angle -2 arg (a+d) for the two

transformations of the two networks. We now want to find what the corresponding quan-

tities are for the resultant network when the two networks are cascaded. The simplest

way of finding these quantities is by using analytical formulas that have been partly

worked out in the theory of automorphic functions (1).

If we indicate the quantities of the two given networks by index numbers 1 and 2 and

leave the quantities of the resultant network without indices, a simple calculation reveals

that the resultant isometric circles are characterized by

1 c d c I 1

O. O. - r2 /(O. -dO )(2)1 c 1 2cl dl

r 1 (r r )/(Oi - Odc c (rcl c d1 i
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Fig. XVII-2. Cascading of two equal lossless networks.

where rc = 1/c = Rc exp (-jqc); so that Rc = I r c . The constants a, b, c, d are easily

obtained from Eq. 2, and the relation ad - bc = 1 is found.

Example. For a simple example, let us transform the reflection coefficient F = 0
through two equal lossless networks corresponding to

SvF2j e j 6 0 0 + e-j30 o

'
r ej30° + e-j 6 0

We have

Od1 = Od

O. = O. = e j 3 0 °
1 2

r = r = e - j 3 0

c1 c 2

R =R
c I c2

=1

The graphical transformations, performed in Fig. XVII-2, give the resultant reflection
coefficient F' =[(6)1/2/3] exp (j60 0 ). From Eq. 2, for the resultant network, we

obtain

61/2 j60 0
d 2 1

R =1c 2

The transformation of F = 0 yields F' = (6)1/2/3 exp (j60), as is seen from
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Gd= 
G

i

F- PLANE

Fig. XVII-3. Transformation through the resultant network.

Fig. XVII-3. In this special case the two isometric circles are coincident.

The fixed points are the same in Figs. XVII-2 and 3. This is understandable because

the transformation is elliptic (a + d = /2 is real and <2), so that, if the F-plane is

mapped on the sphere, the transformations through equal lossless networks correspond

to non-Euclidean rotations around an axis through the fixed points.
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C. IMPEDANCE TRANSFORMATIONS OF THE NONLOXODROMIC TYPE

Impedance transformations through bilateral two terminal-pair networks can be

classified as loxodromic and nonloxodromic (1). In order to study the nonloxodromic

transformations let us select the simple network in Fig. XVII-4. We have

I) = (+ ZY 
(1)

i' Y2 1 i

The trace of the matrix in Eq. 1 is real for nonloxodromic transformations, so that

Z IY is real. Therefore, Z1 = Z 1 1 exp (j), and Y 2 = I Y2 exp(-j). For simplicity,

let us assume that = 0, so that Z 1 = R 1, Y2 = G 2 
= 1/R 2 If we vary R2 , then

- oc< R 2 < o0; the fixed points of the network move along two perpendicular straight lines

in the complex impedance plane (Z-plane), as shown in Fig. XVII-5.
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Fig. XVII-4. Simple two terminal-
pair network.

Fig. XVII-5.

Z - PLANE

Positions of the fixed
points in the Z-plane.

Fig. XVII-6. Positions of the fixed points on the Riemann sphere.

We now map the Z-plane stereographically on the Riemann unit sphere and pro-

ject the sphere orthographically on the xz-plane. See Fig. XVII-6. The straight

line R = -R 1/4 in the Z-plane corresponds to a circle through the top of the sphere

and to a straight line L0 in the xz-plane. The fixed points are obtained as the points

where a straight line L 1 through the polar P of L cuts the unit circle. If we vary

R 2 , the line L 1 rotates around P. If R 2 > -R /4, then L 1 cuts the unit circle in two

real points, and the hyperbolic case is obtained (trace of the matrix in Eq. 1 > 2).

The polar of L 1 , P2, is situated on L . If R = -R1/4, then L 1 is tangent to the

unit circle so that the two fixed points coincide and the parabolic case is obtained

(trace = -2). If R 2 < -R 1 /4, then L1 is exterior to the unit circle; the fixed points

are obtained as the points where the polar of L 1 (perpendicular to the xz-plane)

through PZ cuts the sphere, and the elliptic case (trace < 2) is obtained. Finally,

if R 2 = 0, another parabolic case (trace = 2) is obtained, with the coinciding fixed

points at (0, 1) in the xz-plane. Obviously, when L 1 rotates, a nonloxodromic cycle

(hyperbolic - parabolic - elliptic - parabolic - hyperbolic) is described.
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If the angle t is varied, the constructions in Fig. XVII-6 are rotated an angle 4
around the z-axis. If = 90, Z 1 and Z 2 are both reactances and the constructions

are performed in the yz-plane.
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