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Abstract

We study a specialized version of network design problems that arise in
telecommunication, transportation and other industries. The problem, a generalization of
the shortest path problem, is defined on an undirected network consisting of a set of arcs
on which we can install (load), at a cost, a choice of up to three types of capacitated
facilities. Our objective is to determine the configuration of facilities to load on each arc
that will satisfy the demand of a single commodity at the lowest possible cost.

Our results (i) demonstrate that the single-facility loading problem and certain
"common breakeven point" versions of the two-facility and three-facility loading problems
are polynomially solvable as a shortest path problem; (ii) show that versions of the two-
facility loading problem are strongly NP-hard, but that a shortest path solution provides an
asymptotically "good" heuristic; and (iii) characterize the optimal solution (that is, specify a
linear programming formulation with integer solutions) of the common breakeven point
versions of the two-facility and three-facility loading problems. In this development, we
introduce two new families of facets, give geometric interpretations of our results, and
demonstrate the usefulness of partitioning the space of the problem parameters to establish
polyhedral integrality properties. Generalizations of our results apply to (i)
multicommodity applications and (ii) situations with more than three facilities.

Keywords: Shortest paths, multiple capacitated facilities, polyhedral structure,
convex hull.

SHORTEST PATHS AND NETWORK DESIGN.Abbreviated title:
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1. INTRODUCTION

Although we don't typically think of it this way, the shortest path problem is a

special case of a more general fixed charge network design problem. Consider a network

flow problem with a single commodity, single source, and single destination. Suppose we

wish to design a network to send a unit of flow of this commodity from the source to the

destination nodes. Moreover, suppose we can install (load) integer multiples of a unit
capacity facility on each arc {i,j} of the network, incurring a per unit cost aij for each unit

of the facility. We wish to design a network at minimal cost that has the capacity to meet

the flow requirements for the given commodity. This design problem is easy to solve: we

solve a shortest path problem from the commodity's source node to its destination node
with respect to the arc costs aij and load one unit of the facility on each arc of the shortest

path.

Now suppose that we need to send d (an integer) units of the commodity from its

source to its destination and that we can load multiple types of facilities on each arc; that is,

arc capacities are now available in several base capacities and we can install integer

multiples of any base capacity, at a per unit cost, on each arc. We refer to this

generalization of the shortest path problem as the single commodity network loading

problem since we are loading the network with facilities, at a cost, to carry the required

flow. The transition from the original shortest path problem to this more general setting

raises several questions. Is the problem still easily solvable? Can we solve it as a shortest

path problem? Can we formulate a linear programming model whose extreme point

solutions satisfy the integrality restrictions of the problem? In this paper we consider these

issues. In particular, we consider three versions of the problem: (i) one with a single base

level of capacity equal to C units, (ii) one with two base levels of capacity, a low level (LC)

equal to one unit and a medium level (MC) equal to C units, and (ii) one with three base

levels of capacity, low (LC), medium (MC) and high (HC) equal to one unit, C units and

XC units. We assume that both C and X are integers greater than one, and refer to these

three versions of the problem as the one-facility (IF), two-facility (2F), and three-facility

(3F) loading problems, respectively. As we will see, certain versions the two-facility and

three-facility problems are strongly NP-hard, and other versions can be solved efficiently.

Moreover, for these efficiently solved versions of the problem we are able to offer

affirmative answers to the questions we have posed.
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This study is motivated by a set of network design problems we have encountered

in the telecommunications industry (see Magnanti, Mirchandani, and Vachani [12]) and

related problems that arise in transportation freight flow planning (for example, see Leung,

Magnanti, and Singhal [11]). In the telecommunications industry, data transmission lines

are available in several service types, for example, digital service type zero, or DSO, lines

and digital service type one, or DS 1, lines whose capacity is 24 times that of a DSO line. In

freight flow applications, trucks on any transportation link might be available in multiple

capacities: for example, 24 foot trailers or 48 foot trailers. These applications typically

have many commodities, so the problem we are considering in this paper arises as a

subproblem.

More general fixed charge network design problems arise in many application

contexts, notably telecommunications, computer networking, facility location, production

planning, and transportation. (For examples and for a discussion of the underlying

methodology, we refer the reader to surveys by Magnanti and Wong [14] and Minoux

[17].) Furthermore, some classical combinatorial optimization problems such as the

traveling salesman problem, the minimum spanning tree problem, and the Steiner tree

problem are special cases of the general network design problem. Consequently, the study

of generic network design problems could yield theoretical, algorithmic, and practical

insight that might cut across a wide variety of problem domains. Our hope is that the

results presented in this paper might not only resolve (partially) the questions we have

posed, but might also contribute to a better understanding of more general design models.

Because of its importance, the network design problem has attracted substantial

attention in recent years. In a more general form than we are considering, the problem

associates two kinds of costs with each arc: (i) variable (flow) costs that depend upon total

arc flow volume, and (ii) fixed charges that determine the level of installed capacity on the

arc. Researchers have assumed a variety of functional forms for either cost, including

models with one of the costs equal to zero. Many researchers have focused on a flow cost

function that is concave and nondecreasing. A concave functional form, which reflects

efficiencies of scale and volume discounts, arises often in the transportation and

telecommunication industries. Zangwill [23] has studied the minimum concave cost flow

problem and demonstrated how it captures the concave cost warehouse location problem,

the single and multiproduct production and inventory models and the plant location

problem. Yaged [21], Zadeh [22], and Minoux [16], among others, have studied this

problem in the context of the telecommunication industry, and Balakrishnan and Graves [2]
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have studied the problem in the context of freight flow planning. (See also Powell and

Sheffi [19].)

The fixed charge network flow problem associates both fixed costs with installing

capacity on the arcs and linear flow costs. Balinski [4] and Gray [8] have studied the

specialized fixed charge transportation version of the problem. Balakrishnan, Magnanti,

and Wong [3] have suggested a dual ascent approach that has been successful in solving

large scale uncapacitated fixed charge transshipment problems.

Our model assumes a piecewise staircase form for fixed costs and no flow costs.

This cost function is closely related to the ones considered by Goldstein and Rothfarb [7],

and Magnanti, Mirchandani, and Vachani [12]. The first set of these authors have studied

the single-source multiple-destination problem and discussed properties of the optimal

solution. The model considered by the second set of authors is more general and allows

for commodity demand between every pair of nodes. These authors have developed a

polyhedral based approach for solving this problem. Padberg, Van Roy, and Wolsey [18]

have studied the polyhedral properties of a core single node fixed charge problem. LeBlanc

and Simmons [ 10] have assumed nonzero flow costs in their model, but allowed capacity

to be available at continuous levels.

We focus on a single commodity version of the problem for situations with up to

three types of facilities. The economies of scale in the tariff structure of these facilities

implies that the cost function is neither convex nor concave; moreover, as we will see, the

optimal solution does not inherit the nice extremal flow property that characterizes models

with concave cost flows.

We assume our problem is defined over a network G = (N,A) with node set N and

undirected arc set A. Let a, b and c be real vectors of dimension IAI, whose components

equal, respectively, the cost of loading each unit of the LC, MC and HC facilities. The first

breakeven point of arc {ij}, min. = bij/aij, is the ratio of the cost of loading a MC facility to

the cost of loading a LC facility. Similarly, the second breakeven point, m 2 = cij/aij, is the

ratio of the cost of loading a HC facility to the cost of loading a LC facility. For the most
1 1 2 1part, we assume that 1 < m . < C and m.. < m. . < Xm ; otherwise, the optimal solution

need not consider any MC and/or HC facilities.
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This paper studies the one-facility, two-facility, and three-facility variations of the

single commodity loading problem in increasing order of difficulty. Section 2 introduces

our notation and model formulation and Sections 3, 4, and 5 study the three loading

problems. In Section 3, we tighten the original formulation of the IF problem by adding a

class of facets and show that this enhanced linear programming formulation describes the

convex hull of feasible solutions: in the enhanced problem formulation, the extreme points

corresponding to the arc loading variables are all integer, and in a projected lower-

dimensional space containing only these variables, the formulation completely describes

the convex hull of the integer feasible solutions. We also relate this polyhedron to the

shortest path solution to the problem. Section 4 describes a heuristic for the 2F loading

problem that generates "good" solutions in the sense that the relative error of the heuristic

solution goes to zero as the demand, d, approaches infinity. We next discuss some

variations of the 2F loading problem that are strongly NP-hard. In Section 5, we introduce

two new classes of facets for the 3F loading problem. These facets are useful for

generating a linear program that has an optimal solution with integer values for the arc

design variables x, y and z when the breakeven points m.. and m 2 are the same on all arcs
I J

ij}. In our proof, we demonstrate the use of partitioning the space of problem parameters

to identify optimal primal and dual solutions. We also show how to generalize these

classes of facets for a broader class of problems. Section 6 concludes the paper with some

possibilities for future research directions.

2. NOTATION AND MODEL FORMULATIONS

This section introduces our notation and describes the basic ingredients of our

model. Let i (fji) denote the flow of the commodity from i to j (j to i) on arc {ij and let

xij, Yij and zij denote the number of LC, MC and HC facilities loaded on arc {i,j}. In

principle, the design variables xij, ij and zij could be unbounded; however, in practice we

can bound the feasible set of design vectors by a sufficiently large integer, say L, without

altering the problem in any essential way.

We define an (undirected) cutset { S,T} by a partitioning of the node set N into two
nonempty disjoint sets S C N and T = N\S. An arc {ij} belongs to cutset {S,T} if nodes i

and j belong to different sets S and T. If the origin node O and the destination node D

belong to different sets S and T, we refer to {S,T} as an O-D cutset . We also define
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aggregate design variables for each cutset {S,T}: XS,T equals the total number of LC
facilities loaded on the cutset arcs, i.e., XS,T ={ij} E{S,T} xij, and YS,T and ZS,T equal the

total number of MC and HC facilities loaded on this cutset. DS,T denotes the total demand

from the set S to the set T; note that Ds,Tequals either d or 0 depending on whether {S,T}
is an O-D cutset or not. We let rS,T = DS,T mod(C) and suppress the subscripts when

doing so would not seem to cause any confusion. We adopt the convention that rS,T equals

C when DS,T is a multiple of C.

Lastly, for E R1 , we define + = max (p,O) and p- = min (p,0).

Using this notation we can formulate the 3F loading problem as the following

mixed-integer program.

[Problem P(IP3)]:

minimize , (aijxij + bjyij + cijzj )

{i,f) EA

subject to:

J -difi= 0
iEN JN \j=I difi =D

jEN jEN 0O otherwise

fj + fji xij + Cyi + A Czij for all ij} E A

xij L}

Yj <L forall{iJ} A
4j< L

Xij, Yj, zij E Z+, f, fi E +1 for all i} cEA.

In this formulation, the objective is to minimize the total cost incurred in loading the

LC, MC and HC facilities on all the arcs. The first set of constraints are the usual flow
conservation constraints: they ensure that the flow conforms to the mass balance

requirements of each node. The second set of constraints guarantee that the total flow on

an arc does not exceed the total installed capacity on that arc. We call these constraints the
capacityconstraints. Finally, in addition to the upper bounding constraints, we require that

the design variables, xij, Yij and zij are nonnegative integers, and the flow variables fij are
nonnegative.
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In the F specialization of this problem, the formulation does not contain either of

the xij and zij variables, and in the 2F specialization, it does not contain the zij variables.

(We refer to these formulations as P(IP1) and P(IP2) respectively.)

The max flow-min cut theorem permits us to recast the formulation P(IP3) by

projecting it into the subspace of design variables. Given values for the vectors, x, y and

z, the problem has a feasible flow of d units from O to D if and only if the capacity of

every O-D cutset is at least d. In other words, the problem has a feasible flow if and only if

the design variables satisfy the aggregate-capacity demand inequalityXS,T + CYS,T +

XCZS,T > d for all O-D cutsets { S,T}. In this alternate formulation, the model becomes

[Problem P(CUT3)]:

minimize , (aijij + bjyijj + cjz )
{i,j) EA

subject to:

XS,T + CYS,T + ACZS,T > d for all O-D cusets { S,T }

Jyi L t forall ij} EA

xij, yj, E Z+l for all[ ij) EA.

We refer to the one-facility version of this formulation without the variables x and z as

P(CUT1) and the two-facility version without the variables z as P(CUT2).

For the IF loading problem, the aggregate-capacity demand inequality reduces to

YS,T > DS,T/C = d/C if {S,T} is an O-D cutset. But since the left hand side of this
inequality is an integer, the inequality remains valid if we round the right hand side up to

the next nearest integer as well. This integrality argument implies that the cutsetinequality

YS,T 2 rDs,T/C1 is valid for P(IP1). A special case of a more general result of Magnanti,

Mirchandani, and Vachani [12] shows that this inequality in fact defines a facet of

formulation P(IP1) whenever DS,T > 0 and the subgraphs defined by S and T are

connected. Note that if d mod(C) equals C, then YS,T 2 FDS,T/C1 is redundant since it is

implied by the flow conservation and the capacity constraints. In Section 3 we show that

we can use this inequality to define the convex hull of the formulation P(CUT1) in the
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subspace of the design variables. A generalization of the cutset inequalities applies to the

2F and the 3F cases, and define facets of the underlying polyhedra (see Magnanti,

Mirchandani, and Vachani [12]). Sections 4 and 5 study these inequalities and show how

they tighten the formulations P(IP2) and P(IP3).

To this point we have formulated the network loading problem in two ways: one

model contains both the flow variables f and arc design variables x,y and z, and one

model contains only the design variables. It is also instructive to model the problem with

only the flow variables as well.

[Problem P(f)]:

minimize A, Plij + fi)
{i,j EA

subject to:

/ -difi= 0
4i- EI= difi=D

jEN jEN 0 otherwise

fij, i E R+ for al{ ij} E A.

In this formulation j() denotes the cost function on arc {ij} as a function of the total

flow on that arc. For the network loading problem, this cost function is neither convex or

concave. Figures l(i) and l(ii) show the structure of this cost function for the one-facility

and two-facility versions of the problem (with C=3).
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Notice from Figure 1 that for the one-facility loading problem and any nonnegative

integer k, the cost function is constant on the interval kC<f<(k+ )C. For the two-facility

problem, the cost structure over the interval O<fsC is a step function of unit width for the

small facility and a single step of the cost function of the medium facility. The optimal cost

on this interval is the lower envelop of these two cost functions. At the end of the interval

O<f<C, we can again begin to use the small capacity facility, but now together with a single

unit of the medium facility. Therefore, the cost function on the interval C<f<2C replicates

the cost function on the interval 0<fsC, except that it has the added cost of a single medium

capacity facility. Similarly, the cost function self-replicates itself on each subsequent

interval of size C.

Observe that this flow formulation of the problem places all the model complexities

in the objective function; the constraints are very simple: they define a shortest path

polytope whose extreme points correspond to spanning trees in the underlying network

with a flow of d units on the unique path in the tree joining the source and destination

nodes

3. THE ONE-FACILITY LOADING PROBLEM

We next consider the polyhedral structure of the 1F model obtained by appending
the cutset inequalities YS,T rFDs,T/C1 to the formulation P(IP 1). As we will see, the one-

facility version of the problem is easy to analyze since it essentially is a shortest path

problem. To solve the problem we simply solve a shortest path problem from the source to

destination nodes with respect to the arc costs b+. Let len(b+ ) denote the shortest path

length. We next load Fd/C1 MC facilities on all arcs of this path with bij > 0 and L MC

facilities on all arcs of the network with bij < 0. We also send a flow of d units on the

facilities loaded on the shortest path. We refer to this solution as the loaded shortest path

solution The cost of this solution is Fd/C]*len(b+) + L{ij 1} Abij.

We will argue for the validity of this approach in two ways: a direct approach based

upon redirecting flow onto a shortest path and then an indirect approach via linear
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programming duality. The indirect approach will set the stage for our subsequent analysis
of the two-facility and three-facility versions of the problem.

We first might make a preliminary observation. Consider the problem P(IP1)
assuming that C=1, that is, the formulation P(IP3) without the y or z variables. Notice that
it is easy to remove the x variables from the linear programming relaxation of this
formulation: if aij < O, we set xij = L, and if aij 0 we set xij = fij + fji By making these
associations, we can eliminate the x variables and if d = 1 the resulting formulation in the f
variables becomes the standard formulation of the shortest path problem. Therefore, for
any choice of the cost vector a, the problem has a solution with a O-d flow vector f.
Setting xij = L or xij = fij + fi, depending upon the sign of aij, we see that if d and L are
integral, then the linear programming relaxation of the problem always has an integral
solution in the x variables. Consequently, the values of the x variables are integral in every
extreme point to the polyhedron defined by relaxing the integrality constraints of the
problem. This same argument applies to the formulation P(IP1) in the y variables
whenever d is a multiple of C and both are positive integers since in this case Yij = (fi +

fi)/C and fij + fi = 0 or d in the solution to the shortest path problem that arises after we
eliminate the y variables. Since the y components of every extreme point in this
polyhedron are integer, its projection into the space of the y variables has integer extreme
points. Let us record this result formally for later reference.

Lemma 3.1. If d is a multiple of C and both C and d are integers, then the linear
programming relaxation of the cutset formulation P(CUTI) has integer extreme points and
the values of the variables y are integer in every extreme point to the polyhedron defined by
the linear programming relaxation of P(IPI).

Direct Approach for Establishing Optimality of the Loaded Shortest Path
Solution

We wish to show that for any possible arc cost vector b, the one-facility problem
has a loaded shortest path solution.

First, note that for any feasible solution f to the flow balance equations of P(IP 1), it
always is cost effective to set ij = L on every arc {ij} with bij < 0, and ij = (fij + fji)/C]
for every arc {i,j} with arc cost bij > 0. By always choosing the arc design variables y in
this way, we can consider the problem as formulated solely in terms of the flow variables
f.
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Recall that the flow decomposition property of network flows (e.g., see Ahuja,

Magnanti, and Orlin [1]) implies that it is possible to express the flow variables f in any

feasible solution to the flow formulation P(f) as the sum of flows on paths from the source

to the destination nodes plus flows on cycles. We claim that, without loss of generality,

we can assume that

(i) no two paths in this flow decomposition carry C or more units of flow; and

(ii) the subgraph G' of G corresponding to those arcs whose flow value is not a

multiple of C contains at most one path joining the source and the destination

nodes.

To establish property (i), suppose that the flow decomposition contained two paths

carrying flow of C or more units. By reassigning C units flow from the more costly to the

less costly of any two such paths (or between any two paths that tie in cost) with respect to

the cost vector b + (and by redefining the design variables as described in the last

paragraph), we obtain a solution whose cost is at least as small as that of the given

solution. Therefore, we can assume that only one path has a flow of C or more units. This

path must be a shortest path with respect to the arc costs b +, otherwise we could define a

more cost effective solution.

To establish property (ii), suppose that for a given solution f, the network G'

contains two paths P1 and P2 which we will view as directed from O to D. Suppose that

the length of path P1 with respect to the cost vector b+ is less than or equal to the length of

path P2. Let a = min {fj: (ij)EP\P2} and let 3 = min {C-fjj mod(C): (i,j)EP 2\P1}, and

y= min{a,B}. If we redefine the flow on the paths P1 and P 2 as gij = fij - y for all

(i,j)EP1 \P2 and gij = fij + for all (ij)EP2\P 1, then the resulting solution has a cost no

more than the cost of the original solution f. With respect to the new solution g, the

network G' contains at least one fewer arc. Therefore, by repeating this argument we can

find a solution whose cost is no more than that of the original solution f and for which the

network G' contains at most one path joining the source and destination nodes.

Next note that properties (i) and (ii) imply that we can assume that any candidate
optimal flow decomposes into at most two paths, one P1 whose flow is a multiple of C and

one P 2 whose flow is not a multiple of C. We can however reassign the flow of both paths

onto the path P1 or P2 which has the lower cost with respect to the arc cost vector b+ .
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This conclusion shows that the loaded shortest path solution is optimal. This

result, in turn, provides us with a complete polyhedral description of the convex hull of the

integer solutions of cutset formulation P(CUT 1).

Proposition 3.2. The convex hull of the solutions to P(CUT1) is defined by the

inequalities Y,T rd/C7 for all O-D cutsets S, T}, and, the upper bounding and the

nonnegativity constraints on the arc design variables. For all cost vectors b 'I/A/, the

linear programming model

[Problem P(FACET 1)]:

minimize bijyj
{iJ) EA

subject to:

-difi= 0
Xfi - f i=Dfii i - Ci d ifi = D

jEN jEN 0 otherwise

fi+ fji Cyj for all { ij} E A

YS,T > [ dCl forall O-D cutsets {S,T}

yj < L forall{ij} EA

yij, fi, fi + forall {ij} E A.

has an optimal solution with integer values for all they variables.

Proof Since the loaded shortest path solution is optimal, in terms of the design variables y

and optimal value of the objective function, the problem remains unchanged if we replace

the demand d by C rd/C]. But then d is a multiple of C and the result is a consequence of

Lemma 3.1. 

An Indirect Approach

Recall from the theory of blocking polyhedra (Fulkerson [6]) that the length of the

shortest O-D path using the vector u E 1 AI as arc lengths equals the maximum number of
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O-D cuts that can be packed into the vector u. In other words, the length of the shortest O-

D path equals

maximize {1t :OtD su, 0 E IR2 (INI 2) 

In this expression, each component of the column vector 0 corresponds to an O-D cutset,

D is a matrix whose rows are the arc incidence vectors of O-D cuts, and 1 is a column

vector of ones of the appropriate dimension. Notice that the dual to this linear program is

the weighted minimum cut problem:

minimize {uy: Dy > 1, y E }.

Nemhauser and Wolsey [20] show how to use Dijkstra's algorithm to assign

optimal values to the components of 0. Although 0 is exponential in size, the algorithm

assigns values so that at most INI-1 of its components are strictly positive. We will use this

procedure to give an alternate proof of Proposition 3.2 and present this algorithm here, as

algorithm SPP, for the sake of completeness. Balakrishnan, Magnanti, and Wong [3] start

from the "flow" formulation of the shortest path problem as a network design problem (that

is, P(IP1) with C= 1) and develop a similar dual ascent method for assigning node

potentials that equal the shortest path lengths from some source node. We might view

these two procedures as alternate interpretations of Dijkstra's algorithm for different

formulations of the shortest path problem.

Algorithm SPP operates as follows. It initializes all variables OS,T to 0 and starts

with a set Q equaling the origin node O. It then finds the minimum cost arc, on say arc

{i*,j*}, across the cutset {Q, N\Q} with node i* EQ. Next, it increases the variable

corresponding to this cutset by the cost of {i*,j*} and reduces the costs of all arcs across

the cutset by the same quantity. Next, the algorithm transfers node j* to the set Q and

repeats this process until it has assigned the destination node D to the set Q. At this stage,

the sum of all Os,Tvariables equals the shortest path length from O to D.
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Algorithm SPP

Given a graph G=(N,A) and a nonnegative cost vector u associated with the arcs.

Step 0:

Initialize Q = 0)}.
Set OS,T = 0 for all cutsets I S,T}.

For any Q C N, j E N\Q; define uq = min{(ij}E{QNQ}) uij.

Step 1:

Until D E Q

do
(la) determine j* = argminj UQj;

(lb) If uQ. = o , then print "no path from O to D"; stop;

(Ic) uij = uij - UQ*; for all {i,j E {Q, N\Q};

(Id) OQ, N\Q = UQj;

(le) Q=Q U {j*};

end.

Step 2:

The shortest path length from O to D with components of u as the arc lengths =

S 0S,T.
{S,T}

We will use this algorithm and a primal-dual linear programming argument to provide an

alternate proof of Proposition 3.2.

Alternate Proof ofProposition 3.2. Let (y*, f*) be a loaded shortest path solution to the

integer problem P(IP 1). We will show that (y*, f*) is an optimal solution to the linear

program P(FACET1) by constructing a feasible solution to its dual D(FACET 1) that has the

same objective function value as P(FACET1). Let us denote the optimal value of the

problems P(IP1), P(FACET1) and D(FACET1) by v I P', vFACET1 and vDFACET1

respectively. Furthermore, let Conv(.) denote the convex hull of feasible solutions to

problem P(.). Since Conv(IPl) £ P(FACET1), vIP1 z vFACET1. By construction, we will

show that vI P1 VDFACET1, and by duality, we know that VDFACET < VFACET1. These

inequalities will imply that vIP1 = vFACET1.



-15-

We first construct a dual solution having this same objective value as the loaded

shortest path solution. The dual to problem P(FACET1) is given by

[Problem P(DFACET 1)]:

maximize dvD + - [dC1 PS,T - L rij
O-D cutsets {S,T) (i,j E A

subject to:

Vi - Vji Wi

Vj- Vi Wj

Cwij + .IS,T - 7ij bij for all {ij} EA (3.2)E
O-D cutsets {S,7},

{iJJ E S,})

vi u.i.s. forall i EN

rij, wij 2 O forall iJ }EA

/S,T2 0 forall -D cutsets{S,T}.

In this formulation, the dual variable vi corresponds to the flow conservation

constraint for node i, and wij corresponds to the capacity constraint for arc {ij}. Since one

of the flow conservation constraints is redundant, we have assigned a value of 0 to vo.

Moreover, PS,T is the dual variable corresponding to the cutset constraint for cutset {S,T},

and irij is the dual variable corresponding to the upper bounding constraints Yij < L on the

design variables.

Apply Algorithm SPP with b+ as the arc lengths to obtain the nonnegative variables

OS,T for all O-D cutsets { S,T}. To construct the dual solution, set vi=O for all i EN, wij=O

for all {i,j} E A, S,T = 0 S,T and 7rij = -bj. This solution satisfies the nonnegativity

constraints and constraints (3.1). Since

AS,T =
O-D cutsets {S, T}),

{i,J) E{S,T)

O-D cutsets {S, T},

{i,j} E{S,7)

OS,T < b+ = bij - b = bij + rij,

(3.1)
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the solution also satisfies constraints (3.2). It is easy to see that the objective function

value of this dual solution equals the objective function value of the loaded shortest path
solution. 

As shown by simple examples, Proposition 3.2 is valid only for the special form of

the objective function we have considered with the zero cost coefficients for the flow

variables. That is, if the flow costs are nonzero, the problem can have an extreme point

solution with nonintegral values for the y variables. Barany, Van Roy, and Wolsey [5]

have also considered special objective function structures in their study of the convex hull

of solutions to uncapacitated lot-sizing problems.

The proofs of Proposition 3.2 show that we can determine the optimal solution to

the F loading problem by solving a single shortest path problem and that all the demand

flows over a single path in the optimum solution. Thus, even though our cost function has

a staircase form, and is not convex or concave, the optimum solution occurs at an extreme

point of the shortest path polytope in formulation P(f) just as it does for concave cost single

commodity flow problems (Zangwill [23]). This result implies that we can scale the

demand and cost figures to obtain an equivalent loading problem that has a unit demand.

Observe that in the proof we have just given, the optimal dual variables for the flow

conservation and capacity constraints in the flow model P(IP1) are zero: thus these

constraints are not "critical" at the optimal primal solution. Indeed, the cutset inequalities,

along with the upper bounding and the nonnegativity constraints, are sufficient for

describing the convex hull of the projection of P(IP 1) into the subspace of y variables and

so we have an alternate proof for the first statement in Proposition 3.2 as well.

4. THE TWO-FACILITY LOADING PROBLEM

For situations with two instead of one facility, the network loading problem

becomes more difficult and the results of Section 3 no longer apply. The problem is more

complex for several reasons:

(i) Adding a generalized version of the cutset inequalities YS,T 2 FDS,T/C1 to the

linear programming relaxation of the formulation P(IP2) of two-facility case is

not sufficient for generating integer optimal x and y solutions.
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(ii) A heuristic that is a natural generalization of the shortest path algorithm for the

IF case, while generating "good" solutions, does not necessarily generate an

optimal solution.

(iii) The optimum flow need not be an extreme flow in the shortest path polyhedron

defined by the formulation P(f). Thus, 2F loading problem does not inherit the

nice characterization of the optimal solution to the IF loading problem.

(iv) Variations of the 2F loading problem are strongly NP-hard.

In this section and the next subsection, we consider these four features of the two-facility

problem.

Property (i). The generalized cutset inequality for any cutset { S,T} is XS,T +rS,T YS,T 

rS,T rDs,T/C. Note that if XS,T = 0, then this inequality reduces to the cutset inequality

YS,T 2 rDs,T/C1 for the one-facility problem. Moreover if YS,T = Ds,T/C1 -1, then the

inequality states that the unit capacity facility must provide at least XS,T > rs,T units of

capacity so that the total capacity across the cutset {S,T} is at least DST = C (FDs,T/C1 -

1) + rS,T. Magnanti, Mirchandani, and Vachani [12] establish the validity of this

generalized cutset inequality and show that it typically is a facet of the integer polyhedron

defined by the formulations P(IP2) and P(CUT2). The example in Figure 2 shows,

however, that the linear program consisting of the flow conservation constraints, the

capacity constraints, and the generalized cutset inequalities does not necessarily have

integral x and y solutions. In this example, we can lease LC and MC (with capacity C

equal to 10 units) facilities on the five network arcs. The numbers next to the arcs in

Figure 2(i) represent the costs for leasing these facilities; the first number indicates the LC

cost and the second number the MC cost. A flow of 12 units must be sent from node 1 to

node 4. The optimal solution to the problem shown in Figure 2(ii) satisfies all these

constraints and has fractional values for some of the x and y variables.



Optimal solution

Demand= 12

5,10

" x2x2,8.66

, 3=1.331)
% I 

Y,3=2 %3 I0Y 3 ,.33
3

(ii)

Numbers on arcs in figure (i) indicate the cost of installing LC and

MC facilities. The fractional optimal solution shown in figure (ii)

satisfies the flow conservation, capacity and cutset inequalities.

Property (ii) and (iii). The following heuristic is a natural generalization of the shortest

path algorithm for the IF problem, and even though it generates "good" solutions, it does

not necessarily generate an optimal solution to the problem. For reasons that will become

apparent, we refer to this heuristic as the two-path heuristic

The two-path heuristic

Step 0O: Let r = d mod(C) and d = qC + r.

Step 1: Find the shortest path form node O to node D using b.+ as the arc lengths.1J

Load q MC facilities on this path and send a flow of qC on this path.

Step 2: For each arc {ij}, if a = 0, set eij = 0; otherwise, calculate the (adjusted for

sign) breakeven point mi. = b +. If r 2 m+, set eij = bijr. Otherwise, set

eij = a.j.

- 18-

Problem

5,1 1,10

Supply= 12

1,1l

(i)

Figure 2.
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Step 3: Find the shortest path length using eij as the arc lengths. Load 1 MC facility

on all arcs of this path satisfying r mij and r LC facilities on those arcs that

satisfy r < m. Send a flow of r on this path.
IJ

Step 4: Load the required number of MC facilities on each arc with bij < 0 so that

these arcs have a total of L MC facilities. Similarly, load the appropriate

number of LC facilities on arcs with aij < 0 to obtain a total of L LC facilities

on these arcs.

This solution costs len(b+)*q + len(e)*r + L(a- + bi).

The two-path heuristic need not generate the optimal solution to the problem. The

example in Figure 3 illustrates this fact. The two-path heuristic finds the shortest MC path

- that is, the shortest path using MC facilities as the arc lengths - from node 1 to node 4

and loads L12/10o =1 MC facility on all the arcs of this path. We can send a flow of 10

units on path 1-2-4 at a cost of 55. To send the remaining flow of 2 units, we find the

shortest LC path, making appropriate adjustments for those arcs that have a breakeven

point of 2 or less (that is, arcs 2,3) and (3,4)). The corresponding shortest path is 1-3-

2-4, and the cost of sending the remaining 2 units is 28; thus the total cost of this heuristic

solution is 83. However, the optimal solution places 1 MC facility on each of the arcs

{ 1,2},{2,3) and {3,4}, and 2 LC facilities on arcs { 1,3) and 12,4) at a total cost of 78.
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Problem

4,25

Optimal solution

1

Demand= 12

10,20

(i)

,K 2

1

(ii)

Numbers next to the arcs in figure (i) indicate LC, MC costs for

problem definition, and those in figure (ii) specify the number of LC

or MC facilities used in the optimal design. Dashed lines in the

optimal design indicate LC facilities and solid lines indicate MC

facilities.

This example also shows that the optimum solution need not necessarily be an

extreme flow in the flow formulation P(f) of the 2F loading problem.

We might note that the error introduced by the solution generated by the two-path

heuristic is bounded. To consider the most interesting cases, assume that a, b > 0 and let

E = (v(H)-v*)/v* denote the relative error measuring the difference between the optimal

value v* of the 2F loading problem and the value v(H) of the solution generated by the
two-path heuristic. Then e tends to 0 as d approaches infinity.

Proposition 4.1. Let v* denote the optimal solution to the 2F loading problem and v(H)

denote the value of the heuristic solution provided by the two-path heuristic. Then

v(H)-v* =
l V* 0.

Proof: v(H) = len(b+)*q + len(e)*r

< len(b+)*q + len(b +)

= len(b+)*(q + 1).

10,31

Supply= 12

Figure 3.
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Since the LP relaxation of P(IP2) will use only MC facilities, v* > len(b+)*d/C.

Therefore, since q+ = d/C1 - d/C, v(H) - v* < len(b+ ) which implies the result. 

In a special case, the addition of the cutset inequalities to P(IP2) is sufficient to

guarantee integer x and y optimal solutions. This situation arises when the breakeven

points of all the arcs are equal.

Proposition 4.2. Suppose that the value of the breakeven pointmi = bjj/aij is the same

for every arc {ij] of the network G. Then

(i) every solution to P(CUT2) is an extreme point solution to the linear program

defined by the cutset inequalities XST + rS, T YST 2 rS, TrDS, T/C7 for all O-D

cutsets S, T, the aggregate-capacity demand constraints, and, the upper

bounding and the nonnegativity conditions xij Ž 0 and yij 0 for all arcs {i,j}, and

(ii) if we append the cutset inequalities to the formulation P(IP2), then the values of

the variables x and y are integer in every extreme point solution to the linear

programming relaxation of the problem formulation.

Rather than proving this result at this point, we will prove a more general result for

the 3F loading problem in Section 5. A modification of same proof technique will prove

the result for the 2F case. The proof will also imply that the version of the 2F loading

problem with the same breakeven point on each arc is polynomially solvable. In the next

section, we describe a variation of the problem and discuss its complexity.

4.1 A STRONGLY NP-HARD VARIATION

Suppose we are given an existing network with specified capacities on some of the

arcs that can be used to satisfy the demand requirements. We want to load additional

capacity on the arcs in order to send a flow of d from node O to D. An equivalent way of

viewing this problem is to assume we can obtain the first unit of capacity at zero cost on
some arcs. We wish to study the computational complexity of this variation of the 2F
loading problem.
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Recall that a recognition problem is said to be strongly NP-complete if the existence

of a pseudopolynomial algorithm for it implies that P = NP. Furthermore, an optimization

problem is said to be strongly NP-hard if some strongly NP-complete recognition problem

can be polynomially reduced to it.

We shall use the three exact cover problem (3XC) - which is strongly NP-complete

- to prove that the 2F loading problem problem with existing arc capacities is strongly NP-

hard. The 3XC can be described as follows (Garey and Johnson [9]): Given a set P with

cardinality equal to p, and a collection S of 3 element subsets of P, does there exist a

subcollection S' C S with the property that every element of P occurs in exactly one

member of S'?

Proposition 4.3. The 2F loading problem with existing arc capacities is strongly NP-

hard.

Proof: See Appendix I.

Corollaries 4.4 and 4.5 are immediate consequences of Proposition 4.3.

Corollary 4.4. The 2F loading problem with upper bounds on arcs flows is strongly

NP-hard.

Proof: Refer to Figure I. 1. Impose upper bounds on the flow variables as follows: (i) on

arcs { 1,aci}, the upper bound is 3, and (ii) on arcs { 7rj,n}, this bound is 1. 

Corollary 4.5. The 2F loading problem with upper bounds on the design variables is

stronglyNP-hard.

5.0 THE THREE-FACILITY LOADING PROBLEM

We now consider the 3F loading problem. A straightforward generalization of the

two-path heuristic for the 3F loading problem generates "good" (i.e., asymptotically
optimal) solutions which, again, are not necessarily optimal. Furthermore, since X of the

MC facilities are equivalent to an HC facility, the two-facility cutset inequality also

generalizes to the 3F case to give the inequality
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XS,T + rS,TYS,T + XrSTZS,T 2 rS,T -C (5.1)

for all cutsets S,T}. Magnanti, Mirchandani, and Vachani [12] show that these

inequalities are valid, and that they are facet defining under fairly mild restrictions.

However unlike the 2F case, the linear program obtained by adding the 3F cutset

inequalities to P(IP3) does not guarantee integer x, y and z optimal extreme point solutions

to its linear programming relaxation even if m = m 1 and m 2. = m 2 for all arcs {ij}. We

require two additional classes of facets for this result to be true.

To describe these facets, we introduce some further notation. Let d = p XC + q C +

r with r = d mod(C) and q C + r = d mod(XC). By appending subscripts S,T to p, q and r,

we can write a similar expression to represent any cutset demand DS,T, even for problems

with multiple commodities. For notational convenience, in the expressions to follow we

will not state these subscripts explicitly.

Note that we could view the inequality (5.1) as a "lifting" of its two-facility analog

without the variables z (that is, the inequality obtained by setting z = 0). (See Figure 4 for

an example.) Similarly, suppose that we started with two-facility problems containing only

the variables x and z, or y and z. The resulting two-facility cutset inequalities are

XS,T + (qC+)Zs,T2 (qC+i) D s T

and

YS,T + (q+ 1)ZS,T >(q + IDsT

Figure 4 shows an example. We can interpret the last inequality as follows. In the space

of the y and z variables, the aggregate-capacity demand constraint is YS,T + X ZS,T 2

DS,T/C. But since the left hand side of this expression is an integer, for any O-D cutset

{S,T}, we can replace the right hand side by rd/C] = r(p XC + q C + r)/C] = p X + (q +1).

So now if we view X as the capacity of the higher capacity facility, the remainder on

dividing the demand by X is (q+ 1) and so the given inequality is just a version of the usual

two-facility cutset inequality.

If we "lift" these inequalities to the full space of x, y, and z variables, they become
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and

(5.2)XS,T+ min(qC+r, C)YS, T+ (qC+r)ZS, T (qC+r) I

XS,T+ rYST+ qYs, + Il)ZS,T i(q 1 (5.3)

Proposition 5.1 shows that the inequalities (5.2) and (5.3) are valid and Proposition

5.2 discusses necessary and sufficient conditions for ensuring that these inequalities are

facet defining.

Example 1: Suppose d = 74, C = 10,

and r = 4. The the three inequalities (5.

subscripts {S,T}).

X=3sothatd=(2)C +(1)C+4,p=2,q= 1,

1), (5.2), and (5.3) become (we will subsume the

X+ 4Y+12Z 32

X+1OY+14Z >42

and

X+ 4Y+ 8Z 24.

Figure 4 shows the polyhedron defined by these inequalities and the nonnegative orthant.

Note that the extreme points of this polyhedron have integer values for all the variables.

Proposition 5.3 shows that (under certain circumstances) this integrality result applies more

generally, not only for the aggregate variables across any cutset, but also in the space of

full variables for the entire network. ®
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Figure 4. Facets corresponding to a cutset

We might note that the inequalities (5.1)-(5.3) are related for the boundary values of
parameters r and q. First, if q = X-1, then inequality (5.1) is equivalent to inequality

(5.3) and therefore for a fixed value of X, the faces defined by these two inequalities

alternately coalesce and dissociate as we increase the value of d. Second, when q = 0, or

when r = C, then inequality (5.2) is equivalent to inequality (5.3). In particular, when
X = 2 then q = - 1 or 0 and one of the inequalities (5.1) or (5.2) subsumes (5.3).

Moreover, when = 1 (and so only two types of facilities are available), then q always

equals zero and inequalities (5.1), (5.2) and (5.3) are equivalent.

X= 4, Y =

X= 14, Y=

X + 14 Z 4

=0

2, Y=

\1A
X= O, 

2 32, Z=0

= 0

O/
z

0= 8, Z =

= 5,Z= 1
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Finally, all three inequalities are equivalent when q = X- 1 (for an arbitrary value of

X) and r = C (i.e., when DS,T is a multiple of XC). In fact, in this case, these inequalities

are equivalent to the aggregate-capacity demand inequality, XS,T + CYS,T + XCZS,T >

DS,T-

The validity proof of inequality (5.1) given by Magnanti, Mirchandani, and Vachani

[12] is based on the Chvital-Gomory (C-G) procedure. This procedure repeatedly

considers nonnegative combinations of already known valid inequalities and uses

integrality arguments to generate new stronger valid inequalities. Similarly, we use the C-

G procedure on the aggregate-capacity demand inequality to establish the validity of the

new inequality (5.2). For showing the validity of the other new inequality (5.3), we use an

algebraic argument.

Proposition 5.1. For all nonempty sets S C Nand T = N\S, the inequalities (5.2) and

(5.3) are valid for the convex hull of feasible solutions to the formulations P(IP3) and

P(CUT3).

Proof:

(a) Since the inequality (5.2) is redundant if Ds,T = 0, assume DS,T = d. We start with

the aggregate-capacity demand inequality:

XS,T + CYS,T + ACZS,T 2 DS,T = pAC + qC + r (5.4)

and use an induction argument to establish (5.2). Consider the inequality

XS,T + CYS,T + (AC-k)Zs,T p(AC-k) + qC+ r (5.5)

for integer values of k between 0 and XC - max[ C, qC+r}. For k = 0, this inequality is

the aggregate-capacity demand inequality (5.4); if q 2 1, then max[C, qC+r} = qC+r and

for k = XC - (qC+r) the inequality (5.5) becomes the inequality (5.2) since rDs,TAC =

p+ 1. Although the inequality is not yet of the form of (5.2) if q = 0 and k = XC - C, by

further arguments we will later show how this inequality with k = XC - C implies (5.2).

Suppose (5.5) is valid for k =1, 0 s I AXC - max{C, qC+r} -1. We wish to

show that it is also valid for k = I + 1.
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The nonnegativity of XS,T and YS,T implies that 1 XS,T 0 and
[XC - (+1)1

C YS,T > 0. Adding these two inequalities and (5.5) with k =1, we obtain
[XC - ( 1)]

(XC- J) (c- ( )(C XSYS,T + (XC -)Zs,T +p (C - ) + qC + r.
[XC - (+1)] [XC - (1+1)

[XC- (/+l)l
Multiplying this inequality by gives

(XC - )

XS,T + C YS,T + [XC - ( 1)ZsT > p [C - (+ 1)] + (qC + r) [XC - (+ 1)
(XC - )

= p [ - (+1)1 + (qC + r) (qC+r)
(AC - )

Now, since qC+r < XC-land the left hand side is necessarily integer, integrality

arguments permit us to round up the right hand side to obtain inequality (5.5) with k = 1+

1. So by induction, we have established (5.5) with k = XC - max{C, qC+r}. If q > 0, or

if q = 0 and r = C, this inequality is (5.2) and we are done. Otherwise, q = 0, r < C and

we obtain the inequality

XS,T + (C-W) YS,T + (C-w)ZS,T > P(C-W) + r

with w = 0. We now use the previous argument, inducting on the value of w between 0

and C-r. (We use the fact that r < C in the integer rounding argument.). At the value w =

C-r, the inequality becomes (5.2), completing the proof of the first part of the

proposition. 

(b) Consider inequality (5.3). If ZS,T > FDs,TACl, then inequality (5.3) is clearly

valid. Otherwise, let ZS,T equal FDs,TAC - u, for some u z 1. Using these facilities, we

can send a maximum flow of QDs,T/AC - u)XC from the set S to the set T. Therefore,

we need to load additional MC and LC facilities to send the remaining flow of DS,T -

(FDs,T/AC - u)XC = C(uX-X+q) + r. To establish the validity of the inequality (5.3), we

have to show that
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XST + rYs,T> r(q+l)u. (5.6)

If YS,T 2 (u-l)X + (q+l), then the left hand side of inequality (5.6) is at least r(q+l)u

since X > (q+ 1). So assume that YS,T = (u-1)X + (q+1) - v for some v 2 1. In addition to

the (FDs,TACl - u) HC and the [(u-l)X + (q+l) - v] MC facilities so loaded, we must

load at least C(uX-X+q) + r - C[(u-1)X + (q+l) - v] LC facilities, i.e., we must load at

least C(v- 1) + r > vr LC facilities in order to satisfy the remaining demand.

However, in order to prove the validity of inequality (5.3), we need to show that

XS,T 2 r(q+l)u - r[(u-1)A + (q+l) - v] = r[(u-l)(q+l-X) + v] which is no larger than vr

since X > q+1. Hence, the inequality (5.3) is valid. 

Proposition 5.2 describes necessary and sufficient conditions for inequalities (5.2)

and (5.3) to define facets of the underlying polyhedron. These conditions are similar to the

conditions required for inequality (5.1) to be facet defining (see Magnanti, Mirchandani,

and Vachani [12]).

Proposition 5.2. The following conditions are necessary and sufficient for the

inequalities (5.2) and (5.3) to be facet defining forP(IP3):

1. DS,T> O. (This condition implies that {S,T} isan O-D cutset.)

2. The subgraphs defined by Sand Tare connected.

Proof of necessity of the conditions. The necessity part of the proposition is easy to

establish. If DS,T = 0, then both the inequalities are simply aggregations of the

nonnegativity constraints. If S is not connected and consists of two components S1 and S 2

with 0 ES1, it is easy to see that the inequalities corresponding to Si are stronger than the

inequalities corresponding to S; therefore, S must be connected for (5.2) and (5.3) to be

facet defining. Analogously, T must also be connected. 0

Remarks.

(i) Recall that if d is a multiple of XC, then both the inequalities (5.2) and (5.3) are

equivalent to the aggregate-capacity demand inequality. Thus, although they still define

facets, they do not add to the formulation P(IP3).
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(ii) The sufficiency part of the proof is lengthy and technical, but essentially follows

the argument of the cutset inequality proof given by Magnanti, Mirchandani, and Vachani

[12]. We will not provide the proof here.

Some natural generalization of these facet inequalities apply to (i) multicommodity

situations, as well as (ii) situations with more than three facilities. The extension for

multicommodity situations is straightforward. We just let DS,T denote the total demand

between nodes in S and nodes in T for all commodities. To illustrate the multiple-facility

extensions, let us generalize inequality (5.3). We first need to define additional notation for

the new facilities. Suppose facilities LC, HC(O), HC(1), HC(2),..., and HC(p) are

available with capacities, respectively, of 1, C and XkC units for k = 1 to p. Define Xo = 1

and reindex the facilities if necessary so that Xk < Xk+l for i = 0, 1, ... , (p-l). Let the

number of facilities of each type on arc {ij be xij, z k with the obvious aggregation over

any {S,T} cutset. Let d = PtXtC + t-_lXt-lC + ... + poC + r with r = d mod(C) and let

Pk = d - (Y PiXiC+r /kCJ for k = 0, ,...,t.

The following inequality isa generalization of(5.3) (with II (pi+l) = 1):
i=O

t k-1 t-1

XST + r H (Pi+ 1) >ST rH (Pi+ 1)d-l
k=O i=O i=O

Therefore, although we have discussed inequalities (5.1), (5.2) and (5.3) only for

the single-commodity three-facility case, they are applicable in more general settings. We

will not explore these generalizations in this paper; our objective here is to show that the

addition of these inequalities to formulation P(IP3) produces a linear program that has

integer optimal x, y, and z solutions whenever the breakeven points m. equal ml and m 2

equal m 2 for all arcs {ij}. In fact, we can obtain the optimal solution to the single

commodity problem with equal breakeven points on all the arcs by solving a single shortest

path problem.
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Theorem 5.3 For all a cE /A/, the following optimization problem P(FACET3) has an

optimal solution with integer values for the x, y and z variables.

[Problem P(FACET3)]:

minimize E (a1ix+maijyJ+ m2ajzij)
(iJ E A

subject to:
-d ifi= 0

fi- Ef= (d fi=D
jE N jEN O otherwise

f + x + i s x + A + j for all { ij} E A

XS,T+ r YS,T+ ArZs,j- r [d/Cl forall O-D cutsets(S,7)

XS,T+ min (qC+r, C)YS,T+ (qC+r)ZS,T2 (qC+r) [dAC] forallLD cutsets(S,1)

XS,T+ r YS,T+ r(q+l)ZS,T> r(q+l)FdAC1 forall ODcutsets(S,7)
xijgr L

j < L I forall{iJ} EA

Xij, Y#i, Zij, fij,0 O forall {ij} E A.

Proof: We first assume that 1 < ml < C, and ml < m2 < )ml so that HC facilities are more

cost effective per unit than either LC or MC facilities, and MC facilities are more cost

effective per unit than LC facilities. We present the proof only for r < C. As in the proof

of Proposition 3.2, we will construct a primal feasible solution that is integer and construct

a dual feasible solution whose objective function value equals that of the primal solution.

We will consider the four cases for developing the primal and dual feasible

solutions. These cases exhaust all possible values for the parameters of the problem. For

Case 1, the optimal primal solution will use only HC facilities; for Cases 2, 3, or 4, the

optimal primal solution will use a combination of HC and MC, or HC and LC, or HC,
MC, and LC facilities respectively. Note that if we scale the cost on each arc by aj and aj

2 0, and the arc carries the d units of demand, then given our cost assumptions, it is cost
effective to load the arc with p = Ld/CJ HC facilities, incurring a cost of p m 2, together

with a combination of LC, MC, and HC facilities. The additional cost beyond p m 2 is



-31-

(q+l)ml if we install only MC additional facilities

qml+r if we install MC and LC additional facilities

m 2 if we install only a single HC additional facility.

The following cases define outcomes for distinguishing between these solutions.

Case 1. min[(q+l)ml, qml+r] 2 m 2 .

Subcase l(a). m 2C < ml(qC+r).

Subcase l(b). m 2C 2 ml(qC+r).

Case 2. (q+l)ml < m 2 and r ml.

Case 3. q = O, r < ml.

Subcase 3(a). Xr < m 2 .

Subcase 3(b). Xr t m 2 .

Case 4. q 1, r<ml, mlq+r< m 2 .

Let 0 = (C-r)[m2-(mlq+r)] + r(ml-C)[X-(q+1)].

Subcase 4(a). < 0.

Subcase 4(b). 0.

Some comments about this classification are in order. First, for Case 1 to be true,

the value of q must be at least 1 since ml < m 2. Second, Case 2 can occur both when q = 0

or when q 2 1. Finally, O consists of two terms: (i) (C-r)[m2 -(mlq+r)] and (ii) r(ml-

C)[A-(q+ 1)]. The first term is nonnegative and the second term is nonpositive. Their sum

can be either positive or negative, differentiating cases 4(a) and 4(b).
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Construction of a feasible solution to P(IP3)

Step 1: Calculate r = d mod(C) and q = [(d - r) mod(XC)/C.

Step 2: Find a shortest path, POD from the origin O to the destination D using ai as the arc

lengths. Denote this path length by len(a+).

Step 3: Construct a feasible primal solution by

(i) loading the configuration of facilities as shown in Table I on each arc of path

POD and

(ii) sending a flow of d on these facilities.

Table I. Configuration of facilities for the primal solution

Number of facilities loaded

Condition HC MC LC

Case I rd/AClO O

Case 2 Ld/Acl q+l 0

Case 3 Ld/CJ o0 r

Case 4 Ld/ACJ q r

Step 4: Augment the solution obtained in Step 3 so that each arc {ij} satisfying aj < 0 has

L of each of the LC, MC and HC facilities.
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Before showing how to generate a feasible solution to the dual, D(FACET3), of

problem P(FACET3), let us formulate the dual problem.

[Problem D(FACET3)]:

maximized vD+ r [-C1
O-D cutsets (S,7)

I DA C aD cutset (S,T)

subject to:

Vj- -wo< 0
Vi- Vj-Wij< Ovi - vj -w 1 0i 

PS,T+
:utsets {S,7), O-D

lJE{S,r {.

r P]S,T
O-D cutsets {S,T),

{iJj E {S,T}

+r ,
O-D cutsets {S,T},

{iJ) E (S,T)

-D cuAr ets , T
O-Dcutsets {S,T),

{i,j) E {S, T}

r(q+ 1) ,
O-D cutsets {S,.

(ij) E {S,T)

vi u.i.s. forall i N

wij, rij, rijy, eAj > ft

JS,T, aS,T, S,T 0 fc

cutsets {S, T},

i)E {S, T)

+

aS,T + E OS,T
O-D cutsets (S,T},

{iJ E {S,T}

- j < aj forall{ij)EA

min (qC+r, C) s, a,T
O-D cutsets {S,T),

{iJ E {S,7}

OS,T - ij m aij forall {ij} EA

PS,T + (qC+r) U rS,T+
O-D cutsets {S,7},

{ij)} E {S,T}

O, T - ij < m 2aij forall {ij} EA
r)},

r all {iJ} E A

oral O-D cutsets { S,T} .

Notice that this formulation contains only the dual variables corresponding to O-D cutsets.

We will not explicitly specify this restriction in the expressions below.

PS,T + (qC+r) CA CO D cutsets {S,7)

OS,T - L (r + T i + i)
(i,j EA

aS,T

(5.7a)

I forall{ij} A (5.7b)

wij +
O-D c

lid

Cwi + r

ACw +

(5.7c)

(5.7d)

(5.7e)

(5.7f)
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We first note that the first four terms of the objective function equal

d (ACVD + Ar uST + (qC+ S ,T + r(q 1) S sT) +
AC s,} {s, {(S, S
q(CvD + r E S,T + min(qC+r, S,T + r ST)+

{S,7} {S, {S,7}

r(vD+ /S,T& + rST {s OST).
(ST} (S, {S,4

(5.8)

We will find it more convenient to work with the objective function in this form. If the

primal solution uses all three types of facilities (i.e., Case 4 applies), then this

representation of the objective function is more intuitive since, as we will see, we can

assign dual variables so that on some subset {ij} of the arcs

(i) ACw +r A ,
{S,T},

wij) (S,T)

(ii) (Cwij + r E
{S,T)},

j{i,) { S, T}

PS,T+ (qC+ E
{S,} 

{ij) E({S,

JS, T + min (qC+r, C) E
{S,T},

{ij)} E {S, T)

aS,T + r(q+ 1)
{S,T),

{iJ) E {S,T)

OS,T+ r I
{S,7 T

(iJ) E {S, T}

S,T)= m2a+.

OS,T) = mlaIaii,

(iii) (w + E
{S,T},

{i,J E {(S, T}

6PS, T+ 

{iJ] E {S,7T

US,T + E
{S,T},

(iJ { S, T}

(iv) 4j = -m 2 a:j, rij = -mlaj and rij = -, and

(v) vD equals the shortest path length from O to D using wij as the arc lengths.

Os, T) = a,ii



- 35 -

If the dual variables were to satisfy these conditions, then the objective function

value of this dual solution equals the objective function of the integer primal solution and

the proof would be complete for this case. The representation (5.8) of the objective

function is useful in other cases as well.

Construction of a feasible solution to D(FACET3)

Step 1: Calculate r = d mod(C) and s = [(d - r) mod(XC)/C.

Step 2: Set ij = -and ij = -m2

Step 3: Set tcu, iu, Yu and bu as described in the Table II.

Step 4: Using any shortest path algorithm, find the shortest path from node O to every
other node with aoij as the arc costs. Let vi equal the shortest path to node i. Set wij = ij.

Step 5: Use Algorithm SPP with 3ij, Yij, and ij as the arc lengths. (Note that these costs

are nonnegative, so we can apply the algorithm.) This computation gives us values for the

IS,T', S,T' and 0S,T variables respectively.
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Table II. Arc costs used for calculating the dual variables

We now show that the dual solution obtained in Steps 2, 4 and 5 is feasible and has

a solution value equal to that to that of the primal solution we have found.

(i) Constraints (5.7b): The dual solution satisfies constraints (5.7b) as a result of the

shortest path optimality conditions.

(ii) Constraints (5.7c): The dual solution satisfies constraints (5.7c) if

wi + E
aOD cutsets (S,T),

(iJ E {S,7)

IPS,T+ I

O-D cutsets (S, T),

{i) ({S, T)

OS,T+ Y
aD cutsets (S,7),

{iJ E {S,T)

< aij + rij = a.

Since wij = aij,
O-D cutsets

IS,T ; ij,
{S,T),

{i,j} E{ S,T}

(S,T < Yij andE
O-D cutsets {S,T),

{i,j) E {S,T)

Condition aij Uj r1 1j

m
2

+
Subcase l(a) 0 0 r aij 0

[ml(q+ I)-m2 + [nC-ml(qC+r)] +
Subcase (b) 0 0 (C-r) aij r(C-r) aij

Case 2 0 r[l-(q+ l)m 1] a+ (km-m 2 )

rlx-(q+ 1)l ij r X-(q+ a ij

(n2 -r) + C-m 2 ) +
Subcase 3(a) A(C-r) 

a i i 0 -r
A(C-) 1 °l r-I)i |(C-r) 

a
+

(2-r + (Xr-m2 )

Subcase 3(b) 0 i,-) a + 0
r(;- 1) r(

a
X ) 

i

[m
2
-(mlq+r)] + (ml-r) + - 0 +Subcase 4(a) 0 a.j .C- _ _ a..

rubsasq4) rlr[A-(q+l) aij (-r) 

Subcase 4(b) + (C-m) a+ (A -m2) a+
[XC-(qC+r)l(C-r) (C [C-(qC+r)] J

OS,T
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OS,T 5 ij, dual feasibility will follow if we can show
O-D cutsets {S,T},

i,j} E{S,T}

ai+jiij+iYj+oij aj+. (5.9a)

Similarly, the variables w u, PST' GS,T and OS,T will satisfy constraints (5.7d) and (5.7e),

if we can show that

Ca+rgij+min (qC+r, C)yj+r6ii5 m aij

ACaij+rAfIj+(qC+r)yij+r(q+ l)5y < m 2ai

respectively.

The solutions given in Table II satisfy these inequalities and the nonnegativity

restrictions. As an illustration, we consider Subcase 4(a). Notice in this case that 8u = - fu

- [(ml-C)/(ml-r)] yu . Therefore,

+ i + [ 1 (ml-C)] Y (mC-r) 

and so the solution satisfies (5.9a).

Substituting in (5.9b) gives

Cau+ ru + CYu + ruYu [ m C] = m(C-r) mla.ij
(ml-r) (ml-r) 1J

and substituting in (5.9c) gives

XCau + Xrilu + (qC+r)yu + r(q+l)6 u = [Xr - r(q+l)]fu +

Y C [(q+r) _ r(q)(m C)] ={[m2 - (mlq+r)] + (mlq+r)} a- = m2 .

and

(5.9b)

(5.9c)
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The nonnegativity of the dual variables follows from the conditions of Subcase 4a.

Finally, expression (5.8), or a complementary slackness argument, shows that the

objective function value of this dual solution equals the objective value of the primal

solution described in Table I.

Similar algebraic computations complete the proof for the other cases.

This proof works with minor modifications for situations with X= 1 (and so the

inequalities (5.1), (5.2), and (5.3) are equivalent); in this case the problem has an integer x

and y optimal solution whenever the (first) breakeven points for all the arcs are equal. The

proof also applies with minor modifications to situations when the data do not satisfy the

conditions 1 < m < C, and ml < m 2 < Aml. ®

Remarks.

(i) The primal solution to P(FACET3) and the solution of its dual depends on the

objective function coefficients and the commodity demand value, i.e., on the problem

instance. Our proof partitions the space of the problem parameters into seven regions, and

identifies region specific primal and dual solutions. This approach of segmenting the

parameter space is potentially useful for establishing convex hull proofs as well (see

Magnanti, Mirchandani, and Vachani [13]).

(ii) For the special case when the network contains only a single arc (and when q

>1), the convex hull of the feasible region has the form shown in Figure 4. In this case,

the values of the dual variables cu, Piu, yu and bu given in Table II specify the multiples of

the constraints (5.4), (5.1), (5.2), and (5.3), respectively, needed to represent the objective

function as a nonnegative weighted combination of these constraints. That is, these

variables specify the values of the optimal dual variables in the linear program defined over

the polyhedron shown in the figure.

(iii) Note from Figure 4, that when the optimal design uses only HC facilities (the

solution X = 0, Y = 0, and Z = 3), or when it uses a combination of all three facilities (the

solution X = 4, Y = 1, and Z = 2), then the polyhedron is degenerate since four of the

defining inequalities meet at the optimal solution (in the case of only HC facilities, two of

the four inequalities are the nonnegativity conditions X > 0 and Y 2 0). As reflected by

Cases 1 and 4, in these instances the choice of which dual variables belong to the optimal
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basis of the linear programming dual problem (and hence which primal constraints have

positive weights) depends upon the coefficients of the objective function.

(iv) The choices of the values of in Table II might appear to be ad hoc. One way to

see how to generate these values is to work backwards. Assuming we know which of the

variables are positive in any case or subcase, we solve for the values of the variables by

solving the appropriate system of equations obtained by setting a subset of (5.9a), (5.9b),

and (5.9c) as equalities. That is, in Case 1 we formulate only (5.9c) as an equality; in Case

2, we formulate (5.9b) and (5.9c) as equalities; in Case 3, we formulate (5.9a) and (5.9c)

as equalities; and in Case 4, we formulate all three of the inequalities as equalities.

To conclude this section, we note that projecting variables would permit us to use

Theorem 5.3 to establish the following results.

Theorem 5.4. Foralla E A/, if the breakeven pointsml and m2 . are the same for all

arcs ij], then with the addition of the inequalities (5. I) - (5.3), the cutset formulation

P(CUT3) always has an optimal solution with integer values for the x, y andz variables.

Theorem 5.5. Foralla E A/, if the breakeven points mare the same for all

arcs i,j], then the flow formulation P(f) always has an optimal extreme point solution,

that is, a solution in which all d units of demand flow on the same OD path.

6.0 CONCLUSIONS

We have discussed several variations of a network design problem that we refer to

as the single commodity network loading problem, showing that one variation is strongly

NP-hard while others are polynomially solvable. In particular, we identified several

families of facets for the problem and have shown that

(i) when the economic breakeven points between the LC and MC facilities and

between the LC and HC facilities are the same on all the arcs (the common breakeven point

problem), then (assuming all costs are nonnegative) it is always optimal to load facilities

and send all the flow on a shortest path;
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(ii) for the common breakeven point version of the problem, when augmented by
the addition of the new facets, the linear programming relaxation of a problem formulation

in the space of flow and design variables and of a cutset formulation in the space of the

design variables always has an integer solution in the facility design variables;

(iii) for the common breakeven point version of the problem, the formulation of the

problem in the space of the flow variables has an extreme point solution;

(iv) the general (with economic breakeven points that vary by arc) version of the

problem need not have an extreme point solution in the flow space and the set of facets we

have identified do not assure that the linear programming relaxation has an integer solution

in the design variables; and

(v) a version of the general problem with existing arc capacities is strongly NP-

hard.

This research raises several theoretical and algorithmic issues. In our model, we have

assumed that the flow costs are zero. If the flow costs are not zero, then the results of this
paper are no longer valid. A result similar to Proposition 4.2 with nonzero flow costs

would provide us with the convex hull of feasible solutions to the problem. Moreover, it

would be useful to investigate further the polyhedral structure and the computational

complexity of the general 2F design problem. This investigation might yield additional

families of facets. Finally, we could study situations with a larger number of available

facilities and attempt to identify formulations of these problems that would yield integer

design variables.

We might view this paper as a study of a single commodity specialization of a

broader multicommodity network loading problem that arises in the telecommunication and

transportation industries. While our study of the single commodity problem was not

motivated by any direct practical applications, the investigation of this problem can help in

determining the polyhedral properties of the multicommodity case. Another possible

specialization would be to retain the multicommodity nature of the problem, but consider

specialized network topologies. In a companion paper (Magnanti, Mirchandani, and

Vachani [ 13]), we have identified the convex hull of solutions to a single arc (with both
flow costs and design costs) and three node versions of the problem. These results, in

turn, provide a set of inequalities that are valid across a generic cut and across a three

partition of the general problem and, together with the results of this paper, furnish the
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essential ingredients for a cutting plane approach to the general multicommodity flow

problem (see Magnanti, Mirchandani, and Vachani [12]). The resulting computational

results are promising and show that the solution of large-scale applications, if not yet a

reality, may be within reach.
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APPENDIX I

Proposition 4.2. The 2F loading problem with existing arc capacities is strongly NP-

hard.

Proof: Let P = {7r 1, 7r2,...,7rp} and S = {ol, o2,...,os} in the definition of the 3XC

problem given in Section 4.1. We can assume that Gl, o2,--..., are unique. We wish to

define a network loading problem with existing arc capacities, which we denote as ecij, on

some of the arcs {ij} whose solution will correspond to a solution to the 3XC problem.

Construct a network G = (N, A) as follows.

N = {1 U I 1, 9 2,...,7rp U S = , 02,..,Us U rlr,...,rp} U S= {s} U {n}.

A = { { l,oi}: i=l,2,...,s} U { {oi, rj}, i,j: 7rj E Ji} U { {7rj,n}: j=l,2,...,p}.

origin = 1, destination = n, demand = p, C = 3.

Assign the costs and existing capacities on the arcs as follows (see Figure I. 1).

Level 1.

blai
ecul

=1 

= 3- 1
=0

i = 1, 2, 3,..., s; > 0 and sufficiently small.

Level 2.

ba

ec,7

= X
=3

=1 

Level 3.

bIrp

ecirjn

=1

=1 I

ij: rj E i.

j= 1, 2, ... , p.
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Claim I. 1. The data P and S is a Yes instance of the 3XC problem if and only if the 2F

loading problem we have defined has a solution that costs p3*(3-5).

Proof: If we have a Yes instance of the 3XC problem, then it is trivial to obtain a feasible

solution to the loading problem that costs p/3*(3-8). So assume that we have a Yes

instance of the loading problem. Then, a solution that costs p/3*(3-6) satisfies the

following properties.

1. It uses exactly p/3 MC facilities loaded on p/3 different { 1,Ui} edges.

2. The flows on arcs {qi,irj} are either 0 or 1.

3. The flows on the arcs {rj,n} are exactly one.

It is then easy to derive an exact cover for the 3XC problem. 



- 44 -

supply = p

Level 1 arcs - W

Level 2 arcs

Leve

demand = p

Legend: aij, bij, eqj
Arcs at the same level have the same
parameters.

Figure I. 1 Transformation of 3XC into the single commodity loading problem
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