Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2010-005 February 9,2010

The Cost of Global Broadcast Using
Abstract MAC Layers

Majid Khabbazian, Dariusz Kowalski, Fabian
Kuhn, and Nancy Lynch

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

The Cost of Global Broadcast Using Abstract MAC Layers

Majid Khabbazian Dariusz Kowalski Fabian Kuhn
Massachusetts Institute of Technology University of Liverpool University of Lugano
United States United Kingdom Switzerland
majidk@mit.edu d.kowalski@liverpool.ac.uk fabian.kuhn@usi.ch

Nancy Lynch
Massachusetts Institute of Technology
United States
lynch@csail.mit.edu

February 9, 2010

Abstract

We analyze greedy algorithms for broadcasting messages throughout a multi-hop wireless
network, using a slot-based model that includes message collisions without collision detection.
Our algorithms are split formally into two pieces: a high-level piece for broadcast and a low-level
piece for contention management. We accomplish the split using abstract versions of the MAC
layer to encapsulate the contention management. We use two different abstract MAC layers: a
basic non-probabilistic one, which our contention management algorithm implements with high
probability, and a probabilistic one, which our contention management algorithm implements
precisely.

Using this approach, we obtain the following complexity bounds: Single-message broadcast,
using the basic abstract MAC layer, takes time O(D log(%)log(A)) to deliver the message ev-
erywhere with probability 1 — €, where D is the network diameter, n is the number of nodes,
and A is the maximum node degree. Single-message broadcast, using the probabilistic abstract
MAC layer, takes time only O((D + log(%))log(A)). For multi-message broadcast, the bounds
are O((D + k'A)log(2)log(A)) using the basic layer and O((D + k’Alog(%))log(A)) using the
probabilistic layer, for the time to deliver a single message everywhere in the presence of at most
k' concurrent messages.

1 Introduction

The last few years have seen an immense amount of research on algorithms for wireless ad hoc
and sensor networks. Although results based on simulations have dominated the literature, there
has also been a rapid growth in the amount of analytical work. Most of the theoretical work has
followed one of two approaches. The first, represented, for example, by [22], analyzes wireless
network algorithms using standard message-passing models, and ignores interference and other
lower layer issues, assuming that they are handled by a separate Medium Access Control (MAC)
layer. The second approach, represented by [3], uses models that are close to the actual physical
network and requires all algorithms to handle basic communication issues.

Ignoring MAC layer issues and working with high-level communication models makes it possible to
design and analyze complex algorithms for high-level problems. The analysis of simple information-
dissemination protocols for tasks like single-message and multi-message message broadcast become

almost trivial. However, such analysis may not be entirely realistic. In wireless networks, all
nodes share the same wireless medium, which means that, in reality, only a limited amount of
information can be transmitted per time unit in a local region. Consequently, analyzing algorithms
using classical message-passing models often yields time bounds that are far too optimistic.
Devising algorithms directly for the physical network, on the other hand, avoids these problems,
but it requires the algorithm designer to cope with physical layer issues such as message loss due
to interference and collisions. This results in complex algorithms and analyses even for very simple
tasks. Studying algorithms for more complex high-level problems becomes almost prohibitively
hard. Moreover, there are a variety of wireless communication models [21, 11, 20], requiring algo-
rithms to be rewritten and reanalyzed for each new model. This complexity is an impediment to
the development of a theory for wireless network algorithms.

In [16, 17], we proposed a new approach with the goal of combining the advantages of both ap-
proaches described above while avoiding their major problems. Namely, we defined an abstract
MAC layer service that expresses the key guarantees of real MAC layers. Our service accepts mes-
sage transmission requests from nodes and guarantees delivery to nearby nodes within time that
depends on the amount of current local contention. The abstract MAC layer is intended to subdi-
vide the effort of designing and analyzing wireless network algorithms into two manageable pieces:
a piece that implements the abstract MAC layer over a physical network, and a piece that uses
the abstract layer to solve higher-level problems. To illustrate our approach, we analyzed a greedy
multi-message global broadcast protocol over our abstract MAC layer. This work demonstrated
how one might build a theory for high-level wireless network algorithms that does not ignore issues
of contention, but makes analysis of high-level algorithms tractable.

In [16, 17], we focused on the higher-level issues of designing and analyzing algorithms over the
abstract MAC layer. However, to build a complete theory for wireless network algorithms, one
must combine such results with design and analysis of lower-level algorithms that implement the
abstract MAC layer over a physical network. The combination should yield realistic algorithms
and analyses for high-level problems over the physical network.

Another issue that we did not address in [16, 17] is the probabilistic nature of many MAC-layer
algorithms. Typical MAC-layer algorithms use techniques such as random backoff, which introduce
a small probability that abstract MAC assumptions will be violated. To obtain completely realistic
results for higher-level algorithms, one should also take such probabilities into account.

This paper: In this paper, we demonstrate that one can combine results about high-level algo-
rithms based on an abstract MAC layer with algorithms that implement an abstract MAC layer
over a physical network, and thereby obtain good overall results for high-level algorithms over a
physical network. Specifically, we develop and analyze greedy algorithms for broadcasting single
messages and multiple messages throughout a wireless network, using a physical network model
that is slot-based and includes collisions without collision detection. Each of our algorithms is split
formally into a high-level piece for broadcast and a low-level piece for contention management. We
use abstract MAC layers to encapsulate the contention management.

We give a probabilistic contention management algorithm similar to those in [3, 2, 14], which uses
a strategy of adjusting transmission probabilities. We use two different MAC layers: the basic non-
probabilistic one from [16, 17], which our contention management algorithm implements with high
probability, and a new probabilistic one, which the contention management implements exactly.
Using this approach, we obtain the following complexity bounds: Single-message broadcast, using
the basic abstract MAC layer, takes time O(D log(%)log(A)) to deliver the message everywhere with
probability 1—e¢, where D is the network diameter, n is the number of nodes, and A is the maximum

node degree. Single-message broadcast, using the probabilistic abstract MAC layer, takes time only
O((D +1log(2))log(A)). For multi-message broadcast, the bounds are O((D 4 k'A) log(£) log(A))
using the basic layer and O((D + k' A log(%)) log(A)) using the probabilistic layer, for the time to
deliver a single message everywhere in the presence of at most k’ concurrent messages, with at most k
messages overall. If k is polynomial in n, these bounds reduce to simply O((D+k A)log(2)log(A))
and O((D + k'Alog(%))log(A)). Thus, for this problem, our bounds based on the probabilistic
MAC layer are significantly better than those using the basic MAC layer of [16, 17].

The single-message bounds based on the probabilistic MAC layer are the same as bounds previously
obtained without such a split [3]; however, our split subdivides the analysis, thus making it clearer
and simpler. The multi-message bounds are new. Indeed, our results for multi-message broadcast
are sufficiently complex that they would be difficult to obtain without such a split. Thus, we believe
that our approach enables the study of more difficult algorithms than would be possible otherwise.
In this way, this work is an important step in developing a theory for wireless network algorithms.

Related work: The problem of broadcasting one message throughout an ad hoc radio network
was first studied in [3]. That paper contains a randomized algorithm based on procedure Decay
(cf. Section 5) that accomplishes the task in O((D +log(n/e€))log A) steps with probability > 1 —e.
We obtain the same bound, showing that in this case, the analysis can be completely split into two
parts without significant loss. The papers [15, 10] obtain a bound of O((D + log(n/€))log(n/D)),
which represents an improvement over [3] for dense networks with large diameters. Combined, the
results in [3, 10, 15] match the lower bounds of Q(Dlogmin{n/D,A}) [18] and Q(log®n) [1], for
€ < 1/2 and A polynomial in n.

A multi-message broadcast algorithm was given in [4]; it relies on a BF'S tree built in a setup phase
prior to the broadcast requests. The setup time is O((n + Dlog(n/e))log A), and the broadcast
time is O((k 4+ D) log(n/e€)log A), both with probability > 1 — €. Thus, the overall cost is O((n +
klog(n/e) + Dlog(n/e))log A), with probability 1 —e. Weaknesses of this approach are the need
to precompute the BFS tree and the fact that all communication is relayed through a single node,
the root of the tree. Our algorithm is faster than the one in [4] for kA log(n/€) < n. Moreover, our
algorithm does not require any precomputation and is much simpler (the algorithm over the MAC
layer is a trivial greedy algorithm) and more robust (the algorithm is symmetric and does not have
a single point of failure). The paper [10] also contains a randomized algorithm for n simultaneous
broadcasts (also known as the gossip problem) working in time O(nlog(n/e)logn) with probability
> 1 — €. The multi-message broadcast model in [10] differs significantly from the model used here
and in [4] in that it allows intermediate nodes to combine an arbitrary amount of information into
a single message, thus reducing high-level contention and leading to faster algorithms. In all of this
related work, the analysis of broadcast is intertwined with that of contention management.

In addition to these results for randomized protocols, there has also been considerable work on
deterministic radio network broadcast algorithms. It turns out that deterministic contention reso-
lution is significantly harder. We mention only the strongest current bounds. For one message, it is
shown in [15] that deterministic broadcast requires time Q(nlog(n)/log(n/D)). Hence, even in net-
works with constant diameter, 2(n) time is required to deterministically broadcast one message.
The bound is almost matched by the best known algorithm, which allows broadcasting in time
O(nmin{log? D,logn}) [10, 15]. There has also been some work on deterministic multi-message
broadcast (e.g. [7, 8, 12, 6]). In particular, it was shown in [12] that all-to-all broadcast can be
done in O(n*/?log*n) time; as in [10], this assumes that an arbitrary amount of information can be
packed into a single message. Deterministic gossip without combined messages was studied in [6],
where an O(n3/2 polylog(n)) algorithm was presented.

The rest of the paper is organized as follows. Section 2 describes mathematical preliminaries.
Section 3 presents our physical network assumptions. Section 4 presents our two abstract MAC
layers. Section 5 presents a probabilistic algorithm that implements both of our abstract MAC
layers over the physical network. Section 6 presents our results for single-message broadcast, and
Section 7 our results for multi-message broadcast. Section 8 concludes.

2 Mathematical Preliminaries

We collect here some necessary mathematical background related to graph theory, probability
distributions, and probabilistic timed I/O automata.

2.1 Graph Theory

Throughout this paper, we fix a (static) connected undirected network graph G = (V, E). Let
n = |V| be the number of nodes in G, and let A > 1 be the maximum node degree. Let dist(i,)
denote the distance (the length, in hops, of a shortest path) between nodes i and j. Let D be the
diameter of G, that is, the maximum distance between any two nodes in G.

If i € V, then we define I'(7) to be the set of nodes consisting of i and all of its neighbors in G. If
I CV, then we define I'(1) = [J;c; T'(9).

Definition 2.1 (Consistent shortest paths). For everyi,j € V', we fix a shortest path P ; from i to
jin G. We assume that these shortest paths are consistent in the sense that, for everyi,j,i',j € V,
if nodes i' and j' appear, in that order, on path P, j, then path Py j is a subpath of P ;.

One way to obtain a consistent set of shortest paths is to define a total order on the nodes in V,
regard a path as a sequence of nodes, and define P; ; to be the lexicographically smallest shortest
path from i to j.

2.2 Probability Distributions

Lemma 2.2. For every positive integer q, let X, and Yy be {0, 1}-valued random variables. Suppose
that the Y, are a collection of independent random variables. Suppose further that:

1. Pr(X;=1)> Pr(Y1 =1).

2. For every q > 2 and x1,%2,...,xq-1 € {0,1}, Pr(X, = 1|1 X1 = z1,..., X¢-1 = 2g-1) >
Pr(Y,=1).

Then for every r > 1 and every nonnegative integer d,
T T
Pr() Xy >d) > Pr(>_ Y, >d).
q=1 q=1

Proof. By induction on r. The base case, for 7 = 1, follows from the first enumerated assumption.

For the inductive step, suppose the result holds for » > 1 and show it for » + 1. We have that

r+1 r r r
Pr(d Xy>d)=Pr(X,1=1) X,=d-1)-Pr(d_X,=d-1)+Pr()_X,>d)
g=1 g=1 g=1 g=1

> Pr(Yrn=1)-Pr(d_ Xy=d—1)+Pr()_ X, > d)
q=1 g=1

= Pr(Y, 1 =1)- (Pr(i X, >d—1)— Pr(i X, >d))+ Pr(i X, >d)

q=1 q=1 q=1

=Pr(Yoy1=1)-Pr(}_X,>d—1)+ Pr(Y, 1 =0) - Pr(d_ X, > d).
q=1 q=1

By the inductive hypothesis on r, for both d — 1 and d, we get that this last expression is greater
than or equal to

Pr(Yop=1)-Pr(} Y, >d—1)+ Pr(Yo1 =0)- Pr(>_ Y, > d)

q=1 q=1
' T
=Pr(Yop1=1)-Pr()_ Yy =d— 1)+ Pr(d_Y,; > d)
q=1 q=1
r4+1
=Pr()_ Y, >d).
q=1
Combining all the inequalities, we get
r+1 r+1
Pr(d X,>d) > Pr(> Y, >d),
q=1 q=1
as needed to complete the inductive step.]

The following lemma encapsulates a Chernoff bound analysis that is used twice later in the paper.

Lemma 2.3. Let Y,,q = 1,... be a collection of independent {0,1}-valued random variables, each
equal to 1 with probability p > 0. Let d and T be nonnegative reals, d > 1. Let r = L%(?)d +27)].
Then

PT(ZYZI <d)<e .
q=1

Proof. Let p = rp. Using Chernoff, we get:

- 1(p—d)?
Pr(z Y, <d) <exp <_2N . (1)
q=1
Note that the function f(x) = exp(—%) is non-increasing in x for d < x. Also, since d > 1, we

have
1 1
d<3d+21—p=(-3Bd+27)—1)p < |-(Bd+27)|p=1rp=p.
p p

Therefore,

(n— d)? 1(3d + 27 —p — d)?
_Z < _Z
exp< 7 =GP 7T 3d+21 —p
1(2d + 27 — p)?
=exp|—=
2 3d+21—p
<exp(—T)

2.3 Probabilistic Timed I/O Automata (PTIOA)

Our results are expressed in terms of probabilistic timed 1/0 automata, as defined by Mitra [19].
PTIOAs include mechanisms (local schedulers and task schedulers) to resolve nondeterminism.
Here, we modify Mitra’s model slightly: We assume that the task scheduler is a mapping that takes
each finite set of tasks of size > 2 to an infinite sequence of individual tasks in the set. This task
schedule is used to resolve nondeterministic choices whenever a set of two or more tasks (which are
sets of locally-controlled actions) contain actions that are enabled at the same real time.
Throughout the paper, we consider probabilistic executions of systems modeled as PTIOAs. We
analyze the probabilities of events, which are sets of time-unbounded executions. These proba-
bilities are taken with respect to the probability distribution that arises by considering the entire
probabilistic execution, starting from the initial system state. In addition, we often consider prob-
abilities with respect to a “cone” in the full probabilistic execution following a particular finite
execution 3. More precisely, we consider the conditional probability distribution on the set Ag of
time-unbounded executions that extend $. We denote this probability distribution by Prg.

3 The Physical Model

We assume a collection of n probabilistic processes. We use probabilistic processes rather than
deterministic because the MAC-layer algorithms we will consider are randomized, although the
higher-level network-wide broadcast algorithms are deterministic. Using a deterministic model for
MAC-layer algorithms would be problematic because of some inherent limitations of that model. For
example, in the radio network model without collision detection, deterministic contention resolution
(i.e., selection of a single contender) requires Q(klog %) slots for k contenders, while non-adaptive
deterministic full contention resolution solutions (i.e., each contender will transmit eventually)
require 2(min(n, k2 logy, n)) slots; both bounds hold even on a single-hop network [8].

We assume that time is divided into slots, each of real-time duration tg.;. Processes have synchro-
nized clocks, and so can detect when each slot begins and ends. Processes communicate only on
slot boundaries. We assume all processes awaken at the same time 0, which is the beginning of slot
1. We assume that each node has both transmitter and receiver hardware. The receiver operates
at every slot, whereas the nodes decide when to transmit.

We assume that the n processes reside at the nodes of communication graph G = (V, E). This is
a special case of the model considered in [16, 17], with only a single, static, undirected graph G.
Processes have no knowledge of the graph; in particular, they do not know their neighbors in G.
We assume a physical network, Net with collisions, and with receiver-side collision detection. When
a process transmits in some slot, its message reaches itself and all G-neighboring processes, and
no other processes. Thus, each process j, in each slot, is reached by some collection of messages
(from itself and its transmitting neighbors). What j actually receives is defined as follows: If j is

reached by its own message, then it receives its own message, regardless of whether it is reached
by any other messages. Thus, a process always receives its own message, regardless of what else
is happening. (a) If j is not reached by its own message, but is reached by exactly one message
from another process, then it receives that message. (b) If j is reached by no messages, it receives
silence, represented as L. (c) If j is not reached by its own message, but is reached by two or
more messages from other processes, then it receives silence, 1. Thus, processes cannot distinguish
collisions from silence; that is, there is no collision-detection.

4 Abstract MAC Layers

4.1 The Basic MAC Layer

The Basic Abstract MAC layer is defined in [16, 17]. This layer provides an interface with bcast and
abort inputs and rcv and ack outputs. It gives worst-case bounds for three kinds of delay, which
we call receive delay, acknowledgement delay, and progress delay, expressed in terms of functions
frevs facks and fprog, respectively. It also has a parameter ¢4, representing an upper bound on
the possible time lag between an abort and a corresponding later rcv. For precise guarantees, we
refer the reader to [16, 17].

In this paper, we use a special case of the general definitions in [16, 17]. Namely, as noted above
for the Physical Network, we consider only a single, static undirected graph G. Also, since our
bounds do not depend on the actual contention, but only on the maximum node degree, we use
constant-valued functions for frcy, fack, and fprog, and treat these as real numbers rather than
functions.

4.2 The Probabilistic MAC Layer

In this section, we present a new Probabilistic Abstract MAC Layer, which specifies probability
bounds for the three kinds of delays. The layer is implicitly parameterized by three positive real
constants fprog, frevs and fqor as before. In addition, it has three other parameters, €prog, €rcv,
and €4k, representing error probabilities for attaining the three delay bounds. Finally, it has a
parameter tqp0+ representing the possible time lag between an abort and a corresponding later rcv.
We model a MAC layer formally as a PTIOA Mac. To satisfy our parameterized specification, Mac
must satisfy several requirements. In each case, the requirement must hold for Mac in combination
with any probabilistic environment Env and the physical network Net (also modeled as PTIOAs).
The composition Mac||Env||Net is a closed probabilistic system (again a PTIOA), which yields a
unique probabilistic execution.

In defining these properties, we use the following terminology. Consider a closed execution § and
a bcast event m occurring in 3. Then we say that 7 is active at the end of (3 provided that 7 is not
terminated with an ack or abort in .

1. Non-probabilistic guarantees: In every execution, the Proximity, No duplicate receives, No
receives after acknowledgements, No duplicate acknowledgements, and No acknowledgements
after aborts conditions from [16, 17] are satisfied.! Also, no rcv happens more than tqpo
time after a corresponding abort.

2. Probabilistic guarantees: We have three delay bound requirements. Assume i,j € V', and ¢ is
a nonnegative real.

'Because we are considering a single static graph only, the Proximity condition is simpler than the general one
in [16, 17]. Here it says that only neighbors j of i in G can receive messages sent by process .

(a) Receive delay bound: Let j be a neighbor of i. Let 3 be a closed execution that ends
with a bcast(m); at time t. Define the following sets of time-unbounded executions that
extend [3:

e A, the executions in which no abort(m); occurs.
e B, the executions in which rcv(m); occurs by time ¢ + fr.cy.
If Prg(A) > 0, then Prg(BJ|A) > 1 — €rco.
(b) Acknowledgement delay bound: Let 3 be a closed execution that ends with a beast(m);
at time ¢t. Define the following sets of time-unbounded executions that extend (:
e A, the executions in which no abort(m); occurs.
e B, the executions in which ack(m); occurs by time t + foc, and is preceded by
rcv(m); for every neighbor j of i.
If Prg(A) > 0, then Prg(B|A) > 1 — €qek-

(¢) Progress delay bound: Let (3 be a closed execution that ends at time ¢. Let I be the set
of neighbors of j that have active becasts at the end of (3, where bcast(m;); is the beast
at i. Suppose that I is nonempty. Suppose that no rcv(m;); occurs in 3, for any i € 1.
Define the following sets of time-unbounded executions that extend (:

o A, the executions in which no abort(m;); occurs for any ¢ € I.
e B, the executions in which, by time ¢ 4 fj04, at least one of the following occurs:
i. An ack(m;); for every i € I,
ii. A rcv(m;); for some i € I, or
iii. A rcv; for some message whose bcast occurs after 3.

If Prg(A) > 0, then Prg(B|A) > 1 — €prog-

5 Implementing the Abstract MAC Layer over the Physical Layer

We implement the abstract MAC layers using an algorithm DM AC' based on a version of the
Decay strategy from [3]; it is also similar to the Probability-Increase algorithm in [14]. We prove
two results about DM AC: Theorem 5.7, which says that it implements the probabilistic abstract
MAC layer (exactly), and Theorem 5.13, which says that it implements the basic abstract MAC
layer with high probability.

5.1 Modified Decay

Here we describe a probabilistic contention resolution algorithm similar to the Decay strategy in [3].
Our algorithm differs slightly from the one in [3], in that the processes successively increase their
transmission probabilities in a Decay phase rather than decrease them.? Also, in our algorithm the
processes choose randomly whether to transmit in each individual slot, whereas in [3], they choose
whether to drop out of an entire Decay phase. We give a lower bound on the success probability
for our algorithm. The algorithm uses A, the maximum degree in G.

Decay:
This algorithm runs for exactly o = [log(A + 1)] slots.

2Thus, our strategy might be better called “Growth” rather than “Decay”, but we stick with the earlier terminol-
ogy.

A set I of processes, |I| < A, plus another distinguished process j, participate. We
assume that there is at least one process in I that participates in all slots. Other
processes in I, and also j, may participate in only some slots, but once they stop
participating, they do not participate in later slots.

At each slot s = 1,...,0, each participating process transmits with probability ps,
1

where p, = %729071 = 2%) <3 Po—s = 25%7 coyP1 = 55
Lemma 5.1. In Decay, with probability at least L, at some slot, some process in I transmits alone
(that is, without j or any other process in I transmitting).

Proof. This depends on the following claim:

Claim 1: At some slot s, the number of participants c, satisfies % <ps < CL

Proof of Claim 1: We must have p; < %, because if not, then p; > é, which means that 2f10g(++1ﬂ >
% > ﬁ. This implies that ﬁ > ﬁ, a contradiction. If also % < p1, then we are done. So
assume that p; < i Then it must be that py < é, because py = 2p; and ¢y < ¢1. Again, if also
ﬁ < ps9, we are done, so assume that py < ﬁ We continue in this way through all the slots. If
we never reach one where we are done, it must be that p, < % However, p, = % and ¢, > 1, so
this is impossible.

Given Claim 1, we consider what happens at the indicated slot s. If j participates in slot s, then
the probability that some process in I transmits alone is exactly (cs — 1)ps(1 — ps)°~1. This is at
least (cs — 1)(%)(1 - é)cfl = %(%)(1 - é)cfl =1i1- é)CS We have that ¢s > 2, because at
least one process in I participates in slot s, in addition to j. So %(1 — é)CS > % . i = %. Thus, if j
participates in slot s, the probability that some process in I transmits alone is at least %.

On the other hand, if j does not participate in slot s, then the probability that some process in I

transmits alone is exactly csps(1 — ps)¢~L. If ¢s = 1, then this is equal to ps, which is > i = %
i

If ¢ > 1, then the value of the expression is at least cs(i)(l - é)cfl =1(1- é)cfl, which is
> %(1 — é)CS > % . i = %. Thus, if j does not participate in slot s, then the probability that some
process in I transmits alone is at least %. O

From now on in the paper, we fix constants:
o 0 = [log(A+1)], and

L4 tphase =0 lsot = (HOg(A + I)W)tslot-

5.2 The DMAC Algorithm

Here we describe a MAC algorithm based on our Decay algorithm from Section 5.1. We call our
algorithm DM AC(¢), where ¢ is a positive integer parameter indicating the number of Decay
phases that are executed.

DMAC(¢), ¢ a positive integer:
We group slots into Decay phases, each consisting of o slots.

Each MAC layer process i that receives a message from its environment, via a bcast(m);
event, starts executing Decay with message m (and a unique message identifier) at the
beginning of the next Decay phase. Process ¢ executes exactly ¢ Decay phases, and

then outputs ack(m); at the end of the final phase. However, if process i receives
an abort(m); from the environment before it performs ack(m);, it performs no further
transmission on behalf of message m and does not perform ack(m);.

Meanwhile, process i tries to receive, in every slot. When it receives any message m’
from a neighbor (not from itself) for the first time on the physical network, it delivers
that to its environment with a rcv(m'); event, at a real time slightly before the ending
time of the slot.

Note that, in DM AC(¢), no process starts participating in a Decay phase part-way through the
phase, but it may stop participating at any time as a result of an abort. Define DM AC(¢) to be
the composition of DM AC(¢); processes for all i.

5.3 Properties of DM AC

We prove five lemmas giving properties of DM AC(¢). Throughout this subsection, we let ¢ be
a positive integer, Env be any probabilistic environment, and consider the unique probabilistic
execution of DM AC(¢)||Env||Net. We begin with a result that holds for every time-unbounded
execution, without any mention of probabilities.

Lemma 5.2. In every time-unbounded execution, the Proximity, No duplicate receives, No receives
after acknowledgements, No duplicate acknowledgements, and No acknowledgements after aborts
conditions are satisfied. Moreover, no rcv happens more than tgy time after a corresponding abort.

Proof. Straightforward. For the last property, note that when a message is aborted, its transmitting
process ¢ participates in no further slots for that message. That implies that the time is at most
Lsiot- O

The next lemma gives an absolute bound on acknowledgement time.

Lemma 5.3. In every time-unbounded execution o, the following holds. Consider any becast(m);
event in «, and suppose that « contains no abort(m);. Then an ack(m); occurs after exactly ¢
Decay phases, starting with the next phase that begins after the bcast(m);.

Proof. Immediate from the definition of DM AC(¢). O]

The rest of the section gives probabilistic properties. First, we apply the Lemma 5.1 to obtain a
version of the progress delay bound.

Lemma 5.4. Let j € V, and let g and h be positive integers. Let B be a closed execution that ends
at time t, where (9 — 1)tphase <t < g - tphase- Let I be the set of neighbors of j that have active
beasts at the end of 3, where beast(m;); is the beast at i. Suppose that I is nonempty. Suppose
that no rcv(m;); occurs in 3, for any i € I.

Define the following sets of time-unbounded executions that extend [3:

o A, the executions in which no abort(m;); occurs for any i € I.

e B, the executions in which, by the end of Decay phase g + h, at least one of the following
occurs:

1. A rcv(my)j for somei € I, or

2. A rcv; for some message whose beast occurs after 3.

10

e C, the executions in which, by the end of Decay phase g+ h, ack(m;); occurs for every i € I.
If Prg(A) >0, then

1. Prg(BUCI|A) > 1— (M.

2. Prg(AUBUC) >1— (D"
Proof. We have that

Prg(BUC|A) = Prg(BUC|C N A)Prg(C|A) + Prg(BUC|C N A)Prg(C|A)
= Prg(C|A) + Prg(B|C N A)Prs(C|A)
> Prs(B|C N A)(Prg(C|A) + Prg(C|A))
= Prg(B|C N A),

so, for the first conclusion, it suffices to show that Prg(B|C'NA) > 1 — (%)h.

So assume C'N A, that is, that within & phases, not every ¢ € I has an ack(m;);, and no abort(m;);
occurs for any ¢ € I. Then some neighbor of j participates in all phases ¢, where g+1 < g < g+ h.
Then Lemma 5.1 implies that, in each phase ¢, (regardless of what has happened in the previous
phases), the following holds: With probability > %, a rcv; for a message m;, ¢ € I, or for a
message (one whose bcast occurs after 3), occurs at phase ¢, unless such a rcvj occurs at an earlier
phase. Thus,

(neW”

_ 7\ "
Prg(B\CﬂA)21—<8> :

as needed.
The second conclusion follows from the first since

Prg(AUBUC) = Prg(AUBUC|A)Prg(A) + Prg(AUBUC|A)Prg(A)

= PT’ﬁ(B U C‘A)PTg(A) + P?‘g(A)
> Pry(BUC|A).

The next lemma gives a probabilistic bound on the receive delay.

Lemma 5.5. Let € > 0 be a positive real. Suppose that ¢, the parameter for DM AC(¢), is equal to
[8A ln(%ﬂ Let i,j € V, i a neighbor of j. Let 3 be a closed execution that ends with a beast(m);
at time t, where (g — 1)tphase < t < Gtphase- Define the following sets of time-unbounded executions
that extend (B:

e A, the executions in which no abort(m); occurs.

e B, the executions in which, by the end of Decay phase g + ¢, a rcv(m); occurs.
If Prg(A) > 0, then

1. Prg(BJA) > 1 —e.

2. Prg(AUB) >1—e.

11

Proof. For every ¢ =1,...,¢, we define 0-1 valued random variable X, by

_J1 if rcv(m); occurs by the end of phase g + g,
Y710 otherwise.

For the first conclusion, it suffices to show that

@
Prs(Z >1]4) > 1—e¢,

that is, that

¢
Pra(d X, =0]4) <e
q=1
First, we claim that
1
Prg(Xy =1|A
P =114) = . 3)

This is because, by Lemma 5.1, the conditional probability that some rcv; occurs in phase g + 1 is
at least %, and because all neighboring senders are equally likely to succeed. Similarly, for every g,
2 < q < ¢7 and L1, X2y -0y Tg—1 € {07 1}7

1
PT‘ﬁ(—1|X1—!Tla‘--an—lzxq—laA)ESZ- (4)

Then

¢
Prg(> X), = 0]A)
q=1
= P?"g(Xl = O‘A) . P’rﬁ(XQ = 0’X1 = O,A) . P’r’g(Xg = 0|X1 = X2 = O,A)
PTﬁ(X¢:O|X1 :X2::X¢:0,A)

The last inequality follows from (1 + x) < e®. The second conclusion follows from the first as in
the proof of Lemma 5.4, this time by showing that Prg(AU B) > Prg(B|A). O

Lemma 5.6. Let ¢ > 0 be a positive real. Suppose that ¢ = [8AlIn(1)]. Let i € V. Let 3
be any closed prefiz of a time-unbounded execution that ends with a bcast(m); at time t, where
(9 — Ditphase <t < g tphase- Define the following sets of time-unbounded executions that extend (3:

e A, the executions in which no abort(m); occurs.

12

e B, the executions in which, by the end of Decay phase g + ¢, ack(m); occurs and is preceded
by rcv(m); for every neighbor j of i.

If Prg(A) > 0, then
1. Prg(B|A) > 1 —€A.
2. Prg(AUB) >1—€A.

Proof. For the first conclusion, note that Lemma 5.3 implies that ack(m); is certain to occur by the
claimed time, in fact, just at the end of phase g + ¢. For the rcv(m); events, we use Lemma 5.5 to
conclude that the probability that each individual rcv(m); event occurs within ¢ phases is > 1 —e.
Then we use a union bound to conclude that the probability that all the rcv(m); events occur
within ¢ phases is > 1 — €A.

The second conclusion follows as in the two previous proofs. O

5.4 Implementing the Probabilistic Layer

In this section, we show that DM AC(¢), for a particular choice of ¢, implements the probabilistic
abstract MAC layer. This implementation claim is precise—mno new probabilities are introduced
for the implementation relationship.

For this section, we fix several constants:

e ¢, a real number, 0 < e < 1.

e h, a positive integer. This is the number of Decay phases we will consider for the progress
bound.

e ¢ = [8A In(%ﬂ This is the number of Decay phases we will consider for the receive and
acknowledgement bounds.

We define the seven parameters, as functions of €, h, and ¢ (A, tphase, and tg o, have all been fixed).
b frcv = fack = (¢ + 1) : tphzzse-

fprog == (h + 1) . tphase-

® €rcy = €.

€ack = EA.
_ (T\h

® €prog = (g) .

® taport = Lsiot-

Theorem 5.7. DM AC(¢) implements the Probabilistic Abstract MAC Layer with parameters as
defined above.

Proof. We consider a system consisting of DM AC(¢) composed with a well-formed probabilistic
environment Env and the physical network Net. We assume that (after all nondeterminism in
Net and in the scheduling is suitably resolved) that the composition DM AC(¢)||Env||Net yields
a single probabilistic execution. We must show that this probabilistic execution satisfies all of the
non-probabilistic and probabilistic guarantees that are listed in Section 4.2.

13

Lemma 5.2 implies immediately that the probabilistic execution satisfies all of the needed non-
probabilistic guarantees.
Lemma 5.5, Conclusion 1, implies that the probabilistic execution satisfies the first probabilistic
requirement, on the receive delay. In some detail, consider any closed execution that ends with
a bcast(m); at time ¢, and define A and B as in the definition of the receive delay bound, where
frev = (¢ + D)tphase and €,¢, = €. Suppose that Prg(A) > 0. Choose g so that (g — 1)tphase < t <
g - tphase- Define B’ to be the set of time-unbounded executions that extend /3, in which a rcv(m);
occurs by the end of Decay phase g + ¢. Then by Lemma 5.5, Conclusion 1, Prg(B'|A) > 1 —e.
Since Decay phase g + ¢ ends at time (g + ¢)tphase and t > (g — 1)tpnase, we have that Decay phase
g+ ¢ ends by time <t + (¢ + 1)tppase- It follows that Prg(B|A) > 1 — €, as needed for the receive
delay bound.
Similarly, Lemma 5.6, Conclusion 1, implies that probabilistic execution satisfies the second prob-
abilistic requirement, on the acknowledgement delay bound. Here, we use foer = (¢ + 1)tphase and
€ack = EA.
Finally, Lemma 5.4, Conclusion 1, implies that the probabilistic execution satisfies the progress
delay bound. Here, we use fyrog = (h + 1)tphase and €prog = (g)h.

O

Corollary 5.8. DM AC(¢) implements the probabilistic abstract MAC layer with frey = fack =
O(Alog(%) log(A)), forog = O(RlogA), €rcy = €, €ack = €A, €prog = (%)h, and tapore = O(1).

5.5 Implementing the Basic Layer

In this section, we prove a theorem saying that, with probability > 1 — e, algorithm DM AC(¢)
implements the basic abstract MAC layer, for certain values of € and ¢. Actually, our theorem
doesn’t quite say this. Our general definition of implementation for an abstract MAC layer says
that the layer’s guarantees should hold when the implementation is combined with an arbitrary
probabilistic environment Env. Here, we show only that the guarantees hold when the implemen-
tation is combined with an Env satisfying a constraint, namely, that in any execution, Env submits
at most b beasts, for some fixed positive integer b. Note that this constraint implies that the total
number of external MAC layer events (bcast, ack, abort, and rcv) is at most b(A + 2).

For this section, we fix several constants:

e ¢, a real number, where 0 < ¢ < 1.

e b, a positive integer. This bounds the number of bcast events.
e a = b(A +2). This bounds the total number of external MAC layer events.
® ¢y = 5. This is a smaller error probability, which we will use to bound errors for some

individual properties.

¢ =[8A ln(éﬂ . This is the number of Decay phases we will consider for the acknowledgement
bound.

e h =logg/;(1/e1), the real number such that (%)h = €.
We also define the parameters for the basic abstract MAC layer:
hd frcv = fack = (¢ + 1) : tphase'

® fPTOQ = (Hﬂ + 1) : tphase~

14

® taport = Lsiot-

Before stating the theorem, we define some terminology for describing violations of correctness
conditions. First, we define the set AV, which represents the executions in which the acknowledge-
ment delay bound is violated. We express AV as the union of sets AV,, each of which describes a
violation starting from the ¢'* bcast event.

Definition 5.9 (AV,, where ¢ is a positive integer, 1 < g <b). If « is a time-unbounded execution,
then we say that o € AV, provided that at least q beast events occur in a and the following holds.
Let beast(m); be the ¢*" beast event. Then ack(m); occurs in «, and for some neighbor j of i, a
rev(m); does not precede the ack(m);. We define AV =J;,, AVy.

Next, we define the set PV, which represents the executions in which the progress delay bound is
violated.

Definition 5.10 (PV). If « is a time-unbounded execution, then we say that o € PV provided
that there is a closed prefix 3 of o such that the following holds. Let t be the ending time of 3. Let
I be the set of neighbors of j that have active becasts at the end of 3, where bcast(m;); is the bcast
ati. Then I is nonempty, no abort(m;); occurs in o for any i € I, no rcv; occurs by time t+ fprog
for any m;, i € I, nor for any message whose beast occurs after 3, and, for some i € I, ack(m;);
does not occur by time t + fprog-

We can express PV as the union of sets W PV,, where W PV, describes a violation starting from
the ¢! external MAC layer event:

Definition 5.11 (W PV,, where ¢ is a positive integer, 1 < ¢ < a). If a is a time-unbounded
execution, then we say that « € WPV, provided that at least q external MAC layer events occur in
a, [is the closed prefiz of o ending with the ¢ such event, and the following holds. Let t be the
ending time of 3. Let I be the set of neighbors of j that have active bcasts at the end of 3, where
beast(m;); is the beast at i. Then I is nonempty, no abort(m;); occurs in a for any i € I, no rev;
occurs by time t + fprog for any m;, i € I, nor for any message whose bcast occurs after 3, and,
for some i € I, ack(m;); does not occur by time t + fprog. We define WPV =, <, WPV;.

Lemma 5.12. PV = WPV.

Proof. Clearly WPV C PV; we argue that PV C WPV. Suppose that a« € PV. Then by
definition of PV, « is a time-unbounded execution with a closed prefix § such that the following
holds. Let ¢ be the ending time of 3. Let I be the set of neighbors of j that have active bcasts at
the end of 3, where becast(m;); is the bcast at i. Then I is nonempty, no abort(m;); occurs in «
for any i € I, no rcv; occurs by time t + fpro4 for any m;, ¢ € I, nor for any message whose bcast
occurs after 3, and, for some i € I, ack(m;); does not occur by time ¢ + fprog-

Define 3’ to be the prefix of 3 ending with the last external MAC event in 3. We know that some
such event exists, because some neighbor of j has an active bcast at the end of 8. Let t < t be the
ending time of 3. Let I’ be the set of neighbors of j that have active bcasts at the end of 3'; since
no external MAC events occur in § after 3, we have I’ = I. Since no rcv; occurs by time t + fprog
for any m;, i@ € I, nor for any message whose bcast occurs after 3, we have that no rcv; occurs by
time t' + fprog < t 4 fprog for any m; nor for any message whose bcast occurs after 3'. Since for
some i € I, ack(m;); does not occur by time ¢ + fprog, it also does not occur by time ' + fprog-
Therefore, (' illustrates that « € WPV O

15

Theorem 5.13. Consider the system DM AC(¢)||Env||Net, where Env is a probabilistic environ-
ment that submits at most b beasts. Consider the unique probabilistic execution of DM AC(¢)||Env||Net.
Then with probability at least 1 — €, the probabilistic execution yields an execution that satisfies all

the properties of the basic abstract MAC layer, with frev, fack, fprog: and teport as defined above.

Proof. We must show that, with probability at least 1 — €, the execution satisfies all the properties
that define the basic abstract MAC layer, including all correctness guarantees and delay bounds.
Theorem 5.7 implies that the algorithm satisfies all the non-probabilistic properties. Also, by
Lemma 5.3, for every bcast; event that is not terminated with an abort, a corresponding ack; occurs
within ¢ Decay phases, and hence by time fucr = (¢ + 1) - tphase. Thus, if the implementation fails
for an execution «, it must be because a € AV U PV. We show that Pr(AV U PV) <e.

Claim 1: Pr(AV) < §.
Proof of Claim 1: Consider any particular ¢, 1 < g < b. We apply Lemma 5.6, Conclusion 2, with

€ in that lemma instantiated as . We use the total probability theorem (see, e.g., [5]) to combine
the resulting bounds for different branches of the probabilistic execution, to obtain:

Pr(A%)ﬁ%-A:q:

Then, using a union bound for all values of ¢, we obtain that
€ €
Pr(AV)< — - b= —.
rAV) < 55 b =3
Claim 2: Pr(PV) < 3.
Proof of Claim 2: Consider any particular ¢, 1 < g < a. We apply Lemma 5.4, Conclusion 2, with

h in that lemma instantiated as our [h], and use the total probability theorem to combine the
bounds for different branches of the probabilistic execution, to obtain:

7 h
Pr(WPV,) < <8> =6 <

2a
Then, using a union bound for all values of ¢, we obtain that
€ €
P PV)< —-a==
r(WPV) < 5. 0= 3
In view of Lemma 5.12, we have:
Pr(PV) < %
By Claims 1 and 2, Pr(AV U PV) < ¢, as needed. O

Corollary 5.14. Consider the system DM AC(¢)||Env|| Net, where Env is a probabilistic environ-
ment that submits at most b bcasts. Consider the unique probabilistic execution of DM AC(¢)|| Env||Net.

Then with probability at least 1 — €, the probabilistic erecution yields an execution that satis-
fies all the properties of the basic abstract MAC layer, with frey = fock = O(A]og(%)log(A)),

Forog = O(log(£2)log(A)), and tapert = O(1).

16

6 Single-Message Broadcast Algorithms

In this section, we present a single-message global broadcast algorithm that uses either a basic
or probabilistic abstract MAC layer. We analyze the algorithm in both cases, combining bounds
in Section 5 for our MAC layer implementation with higher-level analysis of the global broadcast
algorithm. The bounds, in Theorems 6.3 and 6.11, take the form of assertions that, with probability
at least 1 — ¢, for an arbitrary €, 0 < ¢ < 1, the message is delivered everywhere within some time
t. The goal is to minimize ¢, as a function of € and various graph parameters.

For the single-message broadcast problem, we assume that a single message begins at some distin-
guished node 7.

6.1 Basic Definitions and Results

Definition 6.1 (Nice broadcast events and nice executions). Suppose a bcast(m); event ™ occurs
at time to in execution a. Then we say that 7 is nice if ack(m); occurs by time to + facr and is
preceded by a rcv(m); for every neighbor j of i. We say that execution « is nice if all beast events
in « are nice. Let N be the set of all nice executions.

Lemma 6.2. Consider a system of the form Mac||Env||Net, where Mac implements the proba-
bilistic abstract MAC layer with acknowledgement parameters fucp and €qcr, Env is a well-formed
probabilistic environment for the MAC layer that submits at most b becasts in any exrecution and
never submits an abort, and Net is our physical layer. Then in this system:

PT(N) < b €ack-
Proof. For any integer ', define:

e M to be the set of time-unbounded executions that contain at least b’ bcast events, and in
which it is not the case that, by time f, after the (') bcast event, a corresponding ack
occurs that is preceded by a corresponding rcv for every neighbor of the broadcasting node.

e (Cy to be the set of time-unbounded executions that contain strictly fewer than b’ bcast events.

e By to be the set of finite executions 3 such that (3 is a prefix of a time-unbounded execution
that contains at least b’ beast events and 3 ends with the (¥')"" bcast event.

Then N = Uy 1<p<p Hy'; the bound b suffices because each execution contains at most b beast
events. Also, Cy C Hy. Also, the sets {Ag}se B, and Cy constitute a partition of the set of all
time-unbounded executions. (The notation Ag is defined in Section 2.3.)

For each 8 € By, the definition of f,. implies that

P?“g(Hb/) < €qck-
Then we obtain:
Pr(Hy) = Ygep,, (Prg(Hy) - Pr(Ag)) + Pr(Hy|Cy) - Pr(Cy)

= Ygep, (Prg(Hy) - Pr(Ag))

< YpeB, (€ack - Pr(Ap))

< €qck-
Then, using a union bound, we obtain:

Pr(N) = Pr(U Hy) <b-€qek,
b 1< <b

as needed. O

17

6.2 Algorithm Using Decay

Our broadcast algorithm is a simple flooding algorithm. It is essentially the Basic Multi-Message
Broadcast algorithm of [16, 17], specialized to one message, and combined with our Decay imple-
mentation of the MAC layer. The combination is similar to the global broadcast algorithm in [3].
We parameterize the algorithm with the number ¢ of Decay phases.

BSM B-Decay(¢):

We define the Basic Single-Message Broadcast (BSM B) algorithm to be the same as
the Basic Multi-Message Broadcast (BM M B) algorithm from [16, 17], but specialized
to the case of a single message, and modified so that the message starts in the state
of a designated initial node iy, rather than arriving from an external environment.
BSM B-Decay(¢) consists of the BSM B algorithm composed with DM AC(¢), our
implementation of the abstract MAC layers.

In the following subsections, we analyze this algorithm, using abstract MAC layers. In Section 6.3,
we consider the basic abstract MAC layer, and in Section 6.4, the probabilistic abstract MAC layer.
We use different values of ¢ in these two subsections.

From now on in this section, when we talk about “executions”, we mean executions of BSM B-
Decay(¢) together with our physical network and environment.

6.3 Analysis Using Basic Abstract MAC

In this section, we fix constants:

e b =n. This is a bound on the number of bcast events. In this algorithm, the single message
gets becast at most once by each node.
e a =n(A+2). This is a bound on the total number of external MAC layer events.

€
061:%.

e ¢=[8AIn(2)].

Using the basic abstract MAC layer, with precise bounds from Section 5.5, we obtain an upper
bound for the time to deliver the message everywhere with probability at least 1 — e.

Theorem 6.3. The BSM B-Decay(¢) algorithm guarantees that, with probability at least 1 — e,
rcv events occur at all nodes # ig by time

n
O(Dlog(™) log(4)).
Proof. Theorem 3.2 of [16, 17] implies that the message is always received everywhere within

time O(D fprog). Based on the constants defined in Section 5.5, and using the assumption that
tphase = ([10g(A + 1)])tsior, We substitute

1
forog = O(hlog(A), h = Ollog(=)),e1 = -, and a = O(nA),
1

to obtain a bound of the form

O(Dlog(~) log(A)).

18

Thus, if the algorithm ran with a basic abstract MAC layer with f,,.o4 as above, it would, in every
execution, deliver the message everywhere by the indicated bound.

However, instead of the basic abstract MAC layer, we have an algorithm that implements the ab-
stract MAC with probability at least 1 — €, whenever it is placed in an environment that submits
at most n becasts. Since this is true for the environment consisting of the BSM B protocol, The-
orem 5.13 implies that the MAC layer achieves the progress bound f,,.., with probability at least
1 —e. That in turn means that the entire system achieves the required message delivery bound
with probability at least 1 — e. O

6.4 Analysis Using Probabilistic Abstract MAC

In this section, we prove another upper bound on the message delivery time for the BSM B-
Decay(¢) protocol, where ¢ = [8A ln(%ﬂ This time, we use our probabilistic MAC layer. Now we
improve the upper bound of the previous section to O((D + log(%))log(A)). This yields the same
bound as in [3], and our analysis uses similar ideas; however, we have split the analysis into two
parts using an abstract MAC layer.

In our analysis, we first assume a probabilistic abstract MAC layer with parameters fprog, fack,
€prog, and €qc; and analyze the complexity of BSM B in terms of these parameters. Then, in
Section 7.4.4, we replace the abstract layer with a Decay-based implementation and combine bounds
for that implementation with the bounds for BSM B to obtain our final result, Theorem 6.11.

In Sections 6.4.1-6.4.2, our probabilistic statements are with respect to the system BSM B|| M ac||Env||Net,
where Mac is an arbitrary implementation of the abstract probabilistic MAC layer with parameters
fprogs facks €prog, and €qcr, and Env is some probabilistic environment. In Section 6.4.3, we con-
sider the system BSM B-Decay(¢)| Env||Net, where ¢ = [8AIn(2)], and Env is some probabilistic
environment.

6.4.1 Basic Definitions

We define
3 2
vy =——"— and 7y = .
1 —€prog 1 — €prog

(5)

Definition 6.4 (Progress condition PC}(7), where j € V — {ip} and 7 is a nonnegative real). We
say that o € PCj(T) if a getj event occurs in o by time

(’Y1di8t(i07j) + '727—)fp7”og-
We define the set of executions PC(T) as

Pcuqupquy

Because of some issues involving race conditions, it is useful to define a generalization of the PC
definition that allows a small amount of slack:

Definition 6.5 (PC](-S(T), where j € V — {ip} and ¢ and 7 are nonnegative reals). We say that
o€ PC]('S(T) if a get;j event occurs in o by time
(m1dist(io, j) + v27)(fprog + 0)-

Also, we define:
PC(7) = [\ PCS(7).
J

19

6.4.2 Probabilistic Upper Bound on Message Delivery Time

In this section, we prove a lower bound on the probability that the message is delivered everywhere,
within a certain time bound that depends on the diameter of the network and on fpqg.
Most of the real work is done in the following lemma, which bounds the probability of PC’](-S (7).

Lemma 6.6. Let 7 be a nonnegative real number, j € V. — {ip}. Let 6 be a positive real. Then
PT(PC;-S(T) UN)>1—e".

Proof. Write Py, ; as ig,11,12,...,iq = j. Define t; = q(fprog + 6) for every nonnegative integer q.
Let the random variable Dist, be the maximum [/, 1 <[< d, such that a get;, event occurs by time
tq; if no such event occurs then define Dist, = 0. Then Dist, is well-defined for each execution

and we have
Vg > 0, Disty > 0. (6)
Also, by definition of Dist,,
Vg>0: Distgrq > Disty. (7)
Define a 0-1 random variable X,, ¢ > 0, by

1 if the execution is in N
Xy=141 if Disty = d; (8)

min(1, Dist,y1 — Dist,;) otherwise.

Claim 1: For every time-unbounded execution « and for every r > 1, if « satisfies Z;;é X, >d
then either « satisfies Dist, = d or o € N.

Proof of Claim 1: By contradiction. Suppose that « satisfies E;;é Xy > d, a does not satisfy
Dist, = d and o € N. Then (7) implies that it is not the case that « satisfies Dist, = d for any ¢,
0 < ¢ <r—1. Consequently, all X,, 0 < g <r — 1, are determined using Case 3 of (8). Then «
satisfies:

r—1 r—1
Dist, — Disty = Z(Distq+1 — Disty) > ZX >d
q=0 =0

Thus, « satisfies Dist, > Distg + d, so by (6) and the fact that Dist, < d, we get that « satisfies
Dist, = d, a contradiction.

Claim 1 implies that

Vr >1: Pr((Dist, = d) UN) > Pr(Z (9)
q=0

Claim 2: Let «a be a time-unbounded execution and ¢ > 0. Let § be any finite prefix of « that
ends at time t; + 9 < tgq1. Then Prg(Xy =1) > 1 — €prog-

Proof of Claim 2: Note that the values of random variables Disty, ..., Dist, and X1,...,X,_1 for
all & € Ag are determined solely by the prefix 8. (The notation Ag is defined in Section 2.3.) So
we will sometimes refer to the values of these variables in (.

If B contains any ack events without all corresponding rcv events, then Ag C N. Then by Case 1
of (8), we get Xy =11in 3, so Prg(X, = 1) = 1, which suffices. So from now on, assume that every
ack event in (is preceded by all corresponding rcv events.

20

If Disty = d in 3, then by Case 2 of (8), we get X, = 1in (3, so again Prg(X, = 1) = 1. So assume
that Disty = e in 3, where 0 < e < d.

If e = 0, then a beast;, occurs at time ¢y = 0, so bcast;, occurs in 3. If e > 0, then by the definition
of Disty, a get;, event occurs by time ¢,, which implies that a bcast;, occurs in 3. In either case, a
bcast;, occurs in 3.

If ack;, occurs in 3, then, by assumption, it must be preceded by a rcv;,,,. Then by Case 3 of (8),
we again have Prg(X, = 1) = 1. So assume that ack;, does not occur in f.

Let J be the set of neighbors of i, that have an active bcast at the end of 3. Then J is nonempty
because ack;, does not occur in § and the BSM B protocol does not use abort events. If any of
these active beast(m”) events causes a rcv;,_,, in 3, then by Case 3 of (8), we have Prg(X, =1) = 1.
So assume that none of these active bcast events causes a rcv;, ., in 3.

Then by the definition of fp..4, applied to 8 and node %41, with probability at least 1 — €prog
(according to Prg), either a rcv;, ., occurs by time (t;+6) + fprog = tg+1, OF else an ack;, occurs by
time t,41 with no preceding rcv;_,,. In either case, we claim that X, = 1 in the probabilistically-
chosen execution: If a rcv;, ., occurs by time 41, then this follows from Case 3 of (8). On the
other hand, if an ack;, occurs by time t,1 with no preceding rcv;_, ,, then the execution is in N,
so this follows from Case 1 of (8). Thus, we have Prg(Xq =1) > 1 — €proq-

Claim 3: For every ¢ > 1 and every xg, 1, ...,zq—1 € {0,1},
PT‘(Xq = 1|X0 = .’E(),Xl = L1y ,Xq,1 = :qul) Z 1— €prog-

Proof of Claim 3: Fix q, xo,...,z4—1. Let B be the set of finite prefixes [of time-unbounded
executions « such that 8 ends at time ¢, + J, and in which

Vi,0<i1<qg—1: X;=ux.

Let C be the set of minimal elements of B, that is, C = {8 € B| A’ € B such that ' is a proper prefix of §}.
Note that every time-unbounded execution « in which

Vi,0<i<qg—1: X;=uy,

is in exactly one set of the form Ag for 3 € C.
Using Claim 2, we get

P?“(Xq = 1|X0 = ZL’(),Xl = T1,.. .,Xq,1 = $q,1)

= ZPT(Xq = l‘Ag NXo=m0,...,Xq-1= xq_1> . PT(Ag’XO =T0,...,Xq-1= xq_l)
BecC

= Pr(X,=1|Ag) Pr(As|Xo=mo,..., Xg 1 =z4-1)
BecC

—ZPT’ﬁ Pr(Ango—xo,...,Xq_l :.CL‘q_l)
Bec

> Z — €prog PT’(A[;‘XO —xo,...,Xq_l :xq_l)
BeC

= (1 - epmg) ZPT(A[;‘X() =0, --- ,Xq_l = qu_l)
BecC

= (1 — €prog)-

21

Claim 4:
PT(XQ = 1) > 1-— €prog-

Proof of Claim 4: The proof is similar to that for Claim 3, but simpler. Let B be the set of finite
prefixes (0 of time-unbounded executions such that § ends at time 6. Let C be the set of minimal
elements of B, Note that every time-unbounded execution « is in exactly one set of the form Ag
for g eC.

Using Claim 2, we get

Pr(Xo=1)= > Pr(Xo=1|Ag)Pr(Ap)

BeC

= Prs(Xo=1)Pr(Ag)
BeC

> Z — €prog) P1(Ap)
BeC

= (1= eprog) Y Pr(Ap)

peC
= (1 — €prog)-

We now return to the main proof. Let Yy, 0 < ¢, be a collection of independent 0-1 random variables
such that
Pr(Y,=1) =1 — €prog-

By Claim 3, we have that for every ¢ > 1, and for every zg, z1,...,24—1 € {0, 1},
P’I“(Xq = 1|X0 = :L‘(),Xl =T1y.-- ,Xq,1 = {L‘qfl) 2 P’I”(qu = 1)

By Claim 4, we have that
Pr(Xo=1) > Pr(Yy =1).

It follows from Lemma 2.2 that, for any r > 1,

Therefore, by (9), we get

(10)

Now we set r = |y1d + 727|. By the definition of PC}S7 we have that, for any time-unbounded
execution «, if Dist, = d in «, then o € PC?(T). Hence, by (10), we have

r—1
Pr(PCY(r)UN) = 1-Pr()_ Y, <d). (11)
q=0

22

Now we apply Lemma 2.3, with p = 1 — €4, to obtain an upper bound for the probability of the
sum on the right-hand side of (11):

r—1
PT(ZYQ <d)<e . (12)
q=0
Then by (11) and (12), we get)
Pr(PCJ(r)UN)>1—¢",
which completes the proof. O
Lemma 6.7. Let 7 be a nonnegative real number, and let j € V — {ig}. Then
Pr(PCj(t)UN)>1—¢e".

Proof. Follows since Lemma 6.6 holds for every 6 > 0. In a bit more detail, Lemma 6.6 says t}_lat,
for every 6 > 0. PT(PC};(T) UN) >1—e 7. Note that, for 0 < d; < 2, we have PC’](-S1 (T)UN C

PC’;52 (1) U N. Therefore,

Pr((YPCI(r)UN)>1—¢. (13)
6>0
We claim that
() PCS(r)UN = PCj(r)UN. (14)
6>0

One direction is obvious; we argue the other, that
() PCS(r)UN C PCi(r)UN.
6>0

So, let o € Nssg PC;-S(T) UN. If @« € N then o € PCj(r) UN and we are done. On the
other hand, if a € (s, PC?(T), then for every § > 0, a contains a get; event at a time that is
< (71d+727)(fprog+0). Since o cannot contain an infinite sequence of discrete events at successively
decreasing times (a basic property of timed executions for PTIOAs), the only possibility is that o
contains a get; event at a time that is < (y1d + ¥27) fprog. Thus, a € PC;(7), which suffices.
Then by (13) and (14), we get that

Pr(PCj(t)UN)>1—¢",
as needed. O
Lemma 6.8. Let 7 be a nonnegative real number. Then

Pr(PC(t)UN) >1—ne ".
Proof. By definition of PC, we have:

PC(r) = () PCj(7).
J#io
Using a union bound and Lemma 6.7, we obtain:

Pr(PC(r)UN) =Pr([)(PCi(r)UN)) > 1—ne .
J#io0

23

Lemma 6.9. Let 7 be a positive real number. Then

Pr(PC(t)NN)>1—ne " — Pr(N).
Proof. Using Lemma 6.8, we obtain:

Pr(PC(t)NN) > Pr((PC(t)NN)UN) — Pr(N)
= Pr(PC(t)UN) — Pr(N)

>1—ne " — Pr(N).

Now we combine the previous result with an upper bound on the probability of N.

Theorem 6.10. Let € be a real number, 0 < € < 1. The BSMB protocol guarantees that, with
probability at least
1 —€—negek,

get events occur at all nodes # ig by time
n
(1D +921n(2)) fyrog-
Proof. By Lemmas 6.9 and 6.2, with probability at least
1—ne ™ — negek,

get events occur at all nodes # iy by time

(leD + ’YQT)fp'rog-

The conclusion follows by replacing 7 with In(2). O

6.4.3 Analysis of the Complete Algorithm

Now we combine the bound for the BSM B protocol in terms of the probabilistic abstract MAC
layer with our bound for DM AC' to obtain a bound for the combined BSM B-Decay algorithm.

Theorem 6.11. Let € be a real number, 0 < e < 1. Let ¢ = [8AIn(L)]. The BSM B-Decay(¢)
algorithm guarantees that, with probability at least 1 — €, get events occur at all nodes # ig by time

O((D +log(~)) log(A)).

Proof. Choose €4, = 5. Theorem 6.10, applied with € in that theorem instantiated as our
implies that, with probability at least

€
2

€
1— o —néwer =21 —¢,
2
rcv events occur at all nodes # ig by time

(11D +v2In(=)) fprog-

n
€

24

Using the definitions of parameters for the implementation of the probabilistic layer, in Section 5.4,
we may assume that €proq < %, so this expression is
n
O((D + log(z))fpmg)-

Again using those parameter definitions, we substitute fyrog = O(log(A)) into the expression, to
get a bound of

O((D +log(™)) log(A).

7 Multi-Message Broadcast Algorithms

Now we present a multi-message global broadcast algorithm that uses either a basic or probabilistic
abstract MAC layer. We prove probabilistic upper bounds on the time for delivering any particular
message to all nodes in the network, in the presence of a limited number of concurrent messages;
these appear in Theorems 7.4 and 7.21, Our results assume a bound k on the number of messages
that arrive from the environment during the entire execution.

7.1 Algorithm Using Decay

We consider the Basic Multi-Message Broadcast algorithm combined with a Decay implementation.
We parameterize the combined algorithm with the number ¢ of Decay phases.

BMM B-Decay(¢):
The algorithm consists of the Basic Multi-Message Broadcast (BMMB) algorithm from [16,
17], composed with DM AC(¢).

In the following subsections, we analyze this algorithm, using abstract MAC layers. In Section 7.3,
we consider the basic abstract MAC layer, and in Section 7.4, the probabilistic abstract MAC layer.
We use different values of ¢ in these two subsections.

From now on in this section, when we talk about “executions”, we mean executions of BM M B-
Decay(¢) together with our physical network and an environment.

7.2 Basic definitions

Definition 7.1 (Clear events). Let « be an execution in N and m € M be a message for which an
arrive(m) event occurs in a. The event clear(m) is defined to be the final ack(m) event in c.

Definition 7.2 (The Set K(m)). Let a be an execution in N and m € M be a message such that
arrive(m) occurs in a. We define K(m) to be the set of messages m' € M such that an arrive(m'’)
event precedes the clear(m) event and the clear(m') event follows the arrive(m) event. That is,
K(m) is the set of messages whose processing overlaps the interval between the arrive(m) and
clear(m) events.

25

7.3 Analysis Using Basic Abstract MAC

In this section, we fix constants:

e b = kn. This is a bound on the number of bcast events. In this algorithm, each of the k
messages gets bcast at most once by each node.

e a = kn(A +2). This is a bound on the total number of external MAC layer events.

€
0612%.

o ¢=[8AIn(2)].

Using the basic abstract MAC layer, with precise bounds from Theorem 5.13, we obtain an upper
bound for the time to deliver any particular message everywhere with probability at least 1 — e.

Definition 7.3 (get events). A get(m); event is defined to be the first event by which node j
receives message m; this may be either an arrive event by which m arrives from the environment,
or a rcv event by which m is received from the MAC layer.

Theorem 7.4. Let m € M. The BM M B-Decay(¢) algorithm guarantees that, with probability at
least 1 — €, the following property holds of the generated execution c.

Suppose an arrive(m) event occurs in a. Let k' be a positive integer such that |K(m)| < k'. Then
get(m) events occur at all processes in « within time

O((D +K'A) 10g(n?k) log(A))

of the time of the arrive(m) event.
Note that if & is polynomial in n, the bound reduces to O((D + k'A)log(2)log(A)).

Proof. Theorem 3.2 of [17] implies that the message is always received everywhere within time
(D + 2k/ - 1)fprog + (k/ - 1)fack7

which is O((D+Kk')) fprog + (k' —1) fack- Based on the constants defined in Section 5.5, we substitute

forog = O(log(!)10g(A)), fack = O(A log(A) log(A)),e1 = 2i, and a = O(knA),

2 = a
to obtain a bound of the form

O(D + K)los("™) log(8)) + (K ~ 1)O(Alog(") log(4)) = O((D + K'A) log (") log(2)).

Thus, if the algorithm ran with a basic abstract MAC layer with fj.oq and fu.. as above, it would,
in every execution, deliver each message m everywhere by the indicated bound.

However, instead of the basic abstract MAC layer, we have an algorithm that implements it with
probability at least 1 — ¢, whenver it is placed in an environment that submits at most kn bcasts.
Since this is true for the environment consisting of the BM M B protocol (plus its own environment),
Theorem 5.13 implies that the MAC layer achieves the progress bound f,,o, and the acknowledg-
ment bound f,. with probability at least 1 —e. That in turn means that the entire system achieves
the required message delivery bounds with probability at least 1 — . O

26

7.4 Analysis Using Probabilistic Abstract MAC

In this section, we prove another upper bound on the message delivery time for the BM M B-
Decay(¢) protocol, where ¢ = [8AIn(2)]. This time, we use our probabilistic MAC layer. Now
we improve the upper bound of the previous section to O((D + k’'A log(”%“)) log(A)).

In our analysis, we first assume a probabilistic abstract MAC layer with parameters fpro9, frev, fack,
€prog, €rcvs aNd €40, and analyze the complexity of BM M B in terms of these parameters. Then, in
Section 7.4.4, we replace the abstract layer with a Decay-based implementation and combine bounds
for that implementation with the bounds for BM M B to obtain our final result, Theorem 7.21.
We divide up our analysis of BM M B over the abstract layer in an interesting way. First, in
Section 7.4.1, we define a new progress condition PC. Then, in Section 7.4.2, we prove a non-
probabilistic bound on the message delivery time in executions that are “well-behaved”, in the sense
that they satisfy this progress condition, and also are “nice” as defined in Section 6.4. Finally, in
Section 7.4.3, we bound the probability that an execution is well-behaved and use this to infer our
overall probabilistic bound on message delivery time.

In Sections 7.4.1-7.4.2, our probabilistic statements are with respect to the system BM M B|| M ac||Env|| Net,
where Mac is an arbitrary implementation of the abstract probabilistic MAC layer with parameters
fprogs facks €prog, and €qcx, and Env is some probabilistic environment that submits at most k£ mes-
sages. In Section 7.4.3, we consider the system BSM B-Decay(¢)| Env||Net, where ¢ = [8AIn(2)],
and Env is some probabilistic environment that submits at most £ messages.

7.4.1 Well-Behaved Executions

We begin with basic definitions. The first identifies the messages whose processing is completed at
a particular node by a designated time:

Definition 7.5. For any i € V, nonnegative real number t and execution «, define C{*(t) to be the
set of messages m such that ack(m); occurs by time t in «.

For any I CV, nonnegative real number t and execution «, define C¢(t) to be the set of messages
Nicr Ci*(t), that is, the set of messages m such that ack(m); occurs by time t for every i € I.

The second defines PC.

Definition 7.6 (Progress Condition PCj;(7), where i,j € V,i # j, and 7 is a nonnegative real).
Write P, as i = ig,i1,...,iq = j, and let I = {i1,...,iq} (note that I does not include node
i =19). We say that the progress condition, PC; ;j(7), holds for an execution o (i.e., « € PC; (1))
if for every nonnegative real t, the following holds:

If a get(m); event for some message m ¢ C’IQ‘(I) (t) occurs in o by time t, then a get(m'); event for
some message m' ¢ Crn (t) occurs by time

t+ (Vld + ’727_)pr09-
We define the set of executions PC(T) as
PC(r)= () PCi(7).
1,517
Now we define an alternative progress condition W PC; ;. W PC; ; differs from PCj; in that it is
stated in terms of intervals that begin with get and ack events, rather than intervals that begin at

arbitrary times. We prove that W PCj; ; is in fact equivalent to PC; ;. W PC; ; is more convenient
to use in a union bound analysis in Section 7.4.3.

27

Definition 7.7 (The set of executions WPC; (1), where 4,j € V, i # j, and 7 is a nonnegative
real). Write P;; as i = ig,i1,...,iq = j, and let I = {i1,...,iq}. An ezecution o is in WPC;; if
for every nonnegative real t, the following holds:

If a get or ack event occurs anywhere at time t and a get(m); event for some message m ¢ CF‘(I) (t)

occurs by time t then a get(m'); event for some message m’ ¢ Cro (t) occurs by time

i+ (’Vld + VQT)fprog-

We define the set of executions WPC(T) as

WPC(r)= (| WPCi;(r).
1,J 7]
Lemma 7.8. For everyi,j € V, i # j, and nonnegative real T:

PCM(T) = WPCZ’J(T)

Proof. Fix i, j, and 7. Assume that P ; : i = ig,i1,...,iq = j and I = {i1,...,iq}. We show that
PCZ'J‘(T) g WPCZ‘,J'(T) and WPCZ‘,]‘(T) g PCZ'J‘(T).

1. PCL]'(T) - WPCi,j(T)'

Let a be any execution in PC; ;(7); we show that a € WPC; (7). Fix a nonnegative real
t, and suppose that a get or ack happens at time ¢. Further, suppose that a get(m); event
occurs for some message m ¢ Crn (t) by time t. By the definition of PC;;(7), a get(m');
event for some message m’ ¢ CE I)(t) occurs in a by time ¢ + (y1d +727) fprog- It follows that
o€ WPC@j(T).

2. WPCZ‘,]‘(T) g PCLJ‘(T).
Let a be any execution in WPC; ;(7); we show that a € PC; (7). Fix ¢, and suppose that
a get(m); event occurs for some message m ¢ Crn (t) by time t. We show that a get(m');
event occurs for some message m’ ¢ Crn (t) by time t + (y1d 4+ ¥27) fprog- Fix m to be any
message such that m ¢ Crn (t) and a get(m); event occurs by time t. Let ¢/, ¢/ < t, be

the largest real number such that either a get or an ack event occurs at time ¢'. We have
019‘(1 (t) C CIQ‘(D (t'), because, by definition of #, no ack event occurs after ¢ and by time ¢.

Since C7 () C C’I?‘(I)(t), we get CF) (t) = Crn ().

Also, by choice of ', the get(m); event occurs by time t', and either a get or an ack occurs
at time ¢. Then by the definition of WPC; ;(7), a get(m’); event, m’ ¢ Crn (t') occurs by
time ¢’ + (y1d 4+ 72T) fprog < t + (71d + 72T) fprog- It follows that o € PC; j(7), as needed.

The following lemma follows immediately from Lemma 7.8.

Lemma 7.9. For every nonnegative real 7:

PC(1) = WPC(T).

28

7.4.2 Message Delivery Guarantee for Well-Behaved Executions

In this subsection, we prove a non-probabilistic upper bound on message delivery time in well-
behaved executions. In addition to assuming that executions are in PC(7), we also assume that
they are “nice”, that is, in N as defined in Section 7.2.

Lemma 7.10. Let 7 be a positive integer. For integers | > 1, define

tag =to+ (1 +72)d+ (71 + 272)7 + 71 + 72)1) forog + (L= 1) fack-

Let o be an execution in PC(T7) N N. Assume that arrive(m); occurs at time ty in o. Let M C M
be the set of messages m' for which arrive(m); precedes clear(m’) in a.

Let j € V, dist(i,j) = d. Then for every integer | > 1, at least one of the following two statements
18 true:

1. A get(m); event occurs by time tq; and ack(m); occurs by time tq; + fock-

2. There ezists a set M" C M', |M"| =1, such that for every m’ € M", get(m'); occurs by time
ta; and ack(m'); occurs by time tq; + fack-

Proof. We prove the lemma by induction on [.

e Base case: [= 1.

If d = 0, then j = i. Let m/ be the first message in i’s queue immediately after the arrive(m);
event. Then m’ € M, get(m'); occurs by time tg < ¢ 1, and ack(m'); occurs by time to 1+ fack,
so Statement 2 is true using M” = {m/'}.

If d > 0 then write P;; as i = ig,i1,...,iq = j and let I = {i1,...,i4}. If m € Cf(tp) then
Statement 1 is true. If not, then m ¢ Crn (to). Then since o € PC;;(T), a get(m’); event
for some m’ ¢ Crn (to) occurs by time

to + (’Yld + VQT)fprog < td,l-

If m’ reaches the front of j’s queue by time tq 1, then ack(m’); occurs by time tg1 + fack-
Also, note that m’ € M’, because m’ ¢ Crn (to). So Statement 2 is true using M" = {m’}.
Otherwise, that is, if m’ does not reach the front of j’s queue by time ¢4, then in the last
state of « at time t4 1, some other message m” is first on j’s queue. This implies that get(m”);
occurs by time t4; and ack(m”); occurs by time tq 1 + fock. Also, note that m” € M’ because
m' is still in j’s queue at time tg1 > to. So again, Statement 2 is true for j and [, in this case
using M" = {m"}.

e Inductive step: [> 1, assume the lemma for [— 1 and all values of d.

Now we proceed by induction on d.

— Base case: d = 0.

Then j = ¢. Suppose there are exactly [p messages in ¢’s queue immediately after the
arrive(m); occurs at time tg. Note that the arrive(m); event is also the get(m); event.
All of these lp messages are in M’, and all of their get; events occur by time to < to;. If
[> lp then we have that ack(m); occurs by time tg + lo fack < to + Ufack < tog + facks
which implies that Statement 1 is true. On the other hand, if I < Iy, then ack(m’);
events occur for the first [messages on the queue by time to + I foer < to1 + fack, O
Statement 2 is true.

29

— Inductive step: d > 1, assume the lemma for [and all smaller values of d.
Write P, ; as i = ig,1,...,9q = j and let 1 = {i1,...,4q}.
Assume that Statement 1 is false for j and [, that is, that it is not the case that get(m);
occurs by time t4; and ack(m); occurs by time tq; + fock. We show that Statement 2
must be true for j and [.
Since Statement 1 is false for j and [, it is also false for j and [— 1. Then by inductive
hypothesis, Statement 2 must be true for j and [— 1. That is, there exists M" C M’,
|M"| =1—1, such that, for every m’ € M", get(m'); occurs by time t4;—1 and ack(m’);
occurs by time tg;—1 + faer < tq;. Since Statement 1 is false for j and [— 1, we have
m ¢ M". Fix this set M” for the rest of the proof.

Claim 1: If get(m'); occurs by time tq; for some m’ € M’ — M”, then Statement 2 is
true for j and [.

Proof of Claim 1: Suppose that get(m'); occurs by time t4; for some particular m’
M'— M". If m/ reaches the front of j’s queue by time ¢4;, then ack(m'); occurs by time
tai + fack, S0 Statement 2 is true for j and [using the size [set M” U {m'}. Otherwise,
that is, if m’ does not reach the front of j’s queue by time ¢4, then in the last state of
a at time t4;, some other message m” is first on j’s queue. This implies that get(m”);
occurs by time ¢4; and ack(m”); occurs by time t4; + fack. Note that m” € M’ because
m/ is still in j’s queue at time t4; > to. Also, m” ¢ M", because m” is still in j’s queue
at time t4; whereas ack; events occur for all messages in M " before that time. Then
Statement 2 is true for j and [, using the size [set M” U {m"}.

Claim 2: Let ji and j» be neighbors. If M" & C% (taist(i jy),1—1 + fack) then for some
m' € M"— M", get(m');, occurs by time tg;5(; 1), 1—1 + fack-

Proof of Claim 2: By inductive hypothesis for j; and [— 1, either Statement 1 or
Statement 2 is true for j; and [— 1. If Statement 1 is true then m € C7| (taist(ir)i—1 +
fack). Since a € N, this implies that get(m);, occurs by time #gis(; j,)1—1 + fack, as
needed. On the other hand, if Statement 2 is true, then there are at least [— 1 elements
of M" in C%(taist(iji)i—1 + fack). Since M" & C%(taist(ijy)i—1 + fack), this set must
contain some message m’ € M’ — M". Since o € N, this implies that get(m');, occurs
by time tgisi(i jy),—1 + fack, as needed.

We return to the main proof. If for some neighbor j’ of j, M" ¢ C5 (taist(i gy -1+ Jack)s
then Claim 2 implies that for some m’ € M’ — M", a get(m'); event occurs by time
taist(ij)i—1 T fack < tay11-1 + fack < tag. Then Claim 1 implies that Statement 2 is
true for j and [, as needed.

The remaining case is where, for every neighbor j' of j, M" C C%(taist(i,jry—1 + fack)-
Then for any integer e, 0 < e < d — 1, let I, = {icy1,...,iq}. Let € be the smallest
integer, 0 < ¢/ < d — 1, such that

M C m Cﬁ (tdist(i,j’),l—l + fack’)' (15)
j/EF(Ie/)

We know that e’ exists because (15) holds for ¢/ = d — 1. For this €/, we have the
following property:

Claim 3: There exists m' € M’ — M" such that get(m'); , occurs by time tor417-1 4 fack-

30

Proof of Claim 3: If ¢ = 0, then m’ = m satisfies the claim. So assume that ¢’ > 0.
By the way ¢ was chosen, there must be some neighbor j’ of i, such that M" &
C5 (taist(ij)1—1 + fack). Then by Claim 2, for some m’ € M’ — M", a get(m'); , event
occurs by time ¢gis(; j1y1—1 + fack < tert11-1 + fack, as needed.

Once more, we return to the main proof. Let d — ¢ = g7 + r, where ¢ and r are
nonnegative integers and 0 < r < 7.

First suppose that ¢ > 0. By (15), we have
M - CI‘OC(J) (te’+7'+1,l71 + fack)>

where J = {i¢/11, ... 1 }. This is because, for every j' € I'(J), dist(i,j') < e’ + 7+ 1.
Claim 3 says that there exists m’ € M’ — M" such that get(m'); , occurs by time

te’-l—l,l—l + fack < te’+7-+1,l—1 + fzzck-

Fix m'. If m" € CF jy (tertr41,-1 + fack), then get(m');,
fack). Otherwise, m’ ¢ CI(}(J) (teryri10-1+ fack). In this case, we apply the PC;, delpn (1)
condition, with m = m' and t = teyr41,-1 + fack- This implies that there exists
my ¢ C?(J)(te/JrTJrLl_l + fack) such that get(mﬂia” occurs by time

occurs by time teryrq1-1 +

te’+7-+1,l—1 + fack + (717’ + VQT)fprog < te’+27-+1,l—1 + fack-

Note that m; € M’, because m; ¢ C?(J)(te'+7+1,l—1 + fack). Also, m; ¢ M", because
my1 & Cfjy(terrt11-1 + fack) and M" C CF p (teryrt10-1 + fack). Somi € M'— M.
Thus, in either case, there exists mi € M’ — M" such that get(m);,,, occurs by time
teryors1,—1 + fack-

We can repeat the same argument using the progress conditions

PC; (r),PCy, . i, (1),...PC;

e’+7’7ie’+27 e/ +27:%/ +37 Z€/+<(I71)T7iel+q7 (T)’
to show that there exists my, € M’ — M" such that get(myg);, , occurs by time
td—r+7’+1,l—1 + fack~

Then, by applying the progress condition PC;, , ;(7), we show that there exists m” €
M’ — M" such that get(m”); occurs by time

td—T+T+1,l—1 + fack + (’er + ’YQT)fprog < td,l-

Now suppose that ¢ = 0, that is, d—¢’ < 7. Then using the progress condition PC’ie/’j(T),
we can show that there exists m” € M’ — M" such that get(m”); occurs by time

tas1i—1 + fack + (117 +72T) forog < tai-

Thus, in any case, a get(m”); event occurs for some m"” € M’ — M" by time tq;. Then
Claim 1 implies that Statement 2 is true for j and [, as needed.

O

31

7.4.3 Probabilistic Upper Bound on Message Delivery Time

In this section, we prove a lower bound on the probability of the event N N PC(7). We then tie all
the results together in Theorem 7.20.

We first prove a lemma bounding the probability of short message propagation time between two
particular nodes ¢ and j. Specifically, after any finite execution § in which i gets a new message,
the lemma gives a lower bound on the probability that either some new message is delivered to j
within a short time, or else the execution is not nice, in the sense defined in Section 7.2.

In this lemma, we consider probabilities with respect to the conditional distribution on time-
unbounded executions of BM M B that extend a particular finite execution 3. The notation Ag
used in the lemma statement is defined in Section 2.3.

Lemma 7.11. Let 7 be a nonnegative real number. Consider i,j € V, i # j, write P;; as
1= io,il,iz,...,id :j, and let I = {il,.. .,id}.
Let (8 be a finite execution of the BM M B protocol that ends at time ty. Assume that there exists
m ¢ Cgm(to) such that a get(m); event occurs in [3.
Let & be a positive real. Let F? be the subset of Ag in which there evists m' ¢ C?(I) (to) for which a
get(m'); event occurs by time

to + (v1d +727)(fprog +).

Then B
Prg(FPUN)>1—¢".

Proof. Define t; = to + q(fprog +9) for every nonnegative integer ¢. Let the random variable Dist,
be the maximum [, 0 < [< d, such that there exists m’ ¢ C?(I) (to) for which a get(m’);, event

occurs by time t,. Since in 3, and hence in all executions in Ag, a get(m);, event occurs by time
to and m ¢ Clg(1 (to), Disty is well-defined for each execution and we have

Vq > 0, Disty > 0. (16)

Also, by definition of Dist,,
Vg>0: Distgyq > Disty. (17)

Define a 0-1 random variable X,, ¢ > 0, by

1 if the execution is in N;
Xy=11 if Dist, = d; (18)

min(1, Distgy1 — Disty) otherwise.

Claim 1: For every o € Ag and for every r > 1, if « satisfies ZZ;(l) Xy > d then either « satisfies
Dist, =dor a € N.

Proof of Claim 1: By contradiction. Suppose that « satisfies Z;;é Xy > d, a does not satisfy
Dist, = d and o € N. Then (7) implies that it is not the case that « satisfies Dist, = d for any ¢,
0 < ¢ <r—1. Consequently, all X,, 0 < g <r —1, are determined using Case 3 of (18). Then «
satisfies:

r—1 r—1
Dist, — Disto = Y _(Distg1 — Distg) > Y _ X, > d.
q=0 q=0

32

Thus, « satisfies Dist, > Distg + d, so by (6) and the fact that Dist, < d, we get that « satisfies
Dist, = d, a contradiction.

Claim 1 implies that

r—1
Vr > 1: Prg((Dist, = d)UN) > Pr(>_ X, >d). (19)
q=0

Claim 2: Let a € Ag and g > 0. Let 3’ be any finite prefix of o that ends at time ¢, + 9 < t411.
Then Prg(Xy=1) > 1 — €prog4-

Proof of Claim 2: Note that the values of random variables Disty, ..., Dist, and X1,..., X, for
all @ € Ag are determined solely by the prefix 3'. So we will sometimes refer to the values of these
variables in 3.

If B’ contains any ack events without all corresponding rcv events, then Az C N. Then by Case 1
of (18), we get X, = 1in ', so Prg/ (X4, = 1) = 1, which suffices. So from now on, assume that
every ack event in (3’ is preceded by all corresponding rcv events.

If Disty = d in ', then by Case 2 of (18), we get X, = 1 in [, so again Prg (X, = 1) = 1. So
assume that Dist, = e in ', where 0 < e < d.

By the definition of Dist,, there exists m; ¢ Clg(l) (to) for which a get(mq);, event occurs in 3. If
my reaches the front of i.’s queue by time ¢4, then beast(my);, occurs in . If not, then some other
message my is at the front of i.’s queue in the last state of 5’ at time ¢4, in which case beast(ma);,
occurs in 3. Note that mqy ¢ Cléj(])
a a bcast(m');, event occurs in 3. Fix such m/.

If ack(m');, occurs in [, then, by assumption, it must be preceded by a rcv(m');_,,. Then by
Case 3 of (18), we again have Prg (X, = 1) = 1. So assume that ack(m');, does not occur in .
Let J be the set of neighbors of 7.1 that have an active beast(m') for some message m” at the end
of #'. Then J is nonempty because ack(m’);, does not occur in 5" and the BM M B protocol does

(tg). Thus, in either case, there exists m’' ¢ C’lg(1 (tg) for which

not use abort events. Note that for any such active beast(m”) event, we have m” ¢ Clé)(1 (to). This

is because J C I'(), and so all nodes in J have cleared all the messages in CI@(D (to) by the end of

B, If any of these active beast(m”) events causes a rcv(m’);, ., in §', then by Case 3 of (18), we
have Prg (X, =1) = 1. So assume that none of these active bcast(m') events causes a rcv(m');,
in A

Then by the definition of fyrog, applied to 4’ and node i1, with probability at least 1 — €prog
(according to Prg), either a rcv(m”);, ., occurs for some m” ¢ C?(]) (to) by time (tq +6) + fprog =
tq+1, or else an ack(m’);, occurs by time t,41 with no preceding rcv(m’);,,. (For the first case,
according to the definition of fyrog, m” may be either a message that is active at a neighbor in

7f'e+1

J after ', or else a message whose beast occurs after (3'; either way, we have m” ¢ C’lg(l) (to) as
claimed.) In either case, we claim that X, = 1 in the probabilistically-chosen execution: If a
rcv(m”);,,, occurs for some m” ¢ C’?(I) (to) by time 441, then this follows from Case 3 of (18).

On the other hand, if an ack(m’);, occurs by time t;+1 with no preceding rcv(m');,,,, then the
execution is in IV, so this follows from Case 1 of (18). Thus, we have: Prg(X,=1) > 1 — €prog-

Claim 3: For every ¢ > 1 and every xo, 1, ..., zq—1 € {0,1},

P’I”Ig(Xq = 1|X0 = ZL‘o,Xl =T1,.. 'an—l = $q_1) Z 1-— €prog-

33

Proof of Claim 3: Fix q, xo,...,xq—1. Let B be the set of finite prefixes 3’ of executions o € Ag
such that 3" ends at time ¢, + 0, and in which

Vi,OSz’Sq—l: Xz:.ilfz

Let C be the set of minimal elements of B, that is, C = {3’ € B| AB” € B such that 3" is a proper prefix of 3'}.
Note that every a € Ag in which

Vi,0<i1<qg—1: X;=uz,

is in exactly one set of the form Ag for 5’ € C.
Using Claim 2, we get
PT‘g(Xq = 1|X0 = :L'(),Xl =T1y.-- ,Xq,1 = LL‘qfl)
= Z PTﬁ(Xq = HA/@J/ NXo=mg,...,Xq-1= xq—l) . PT’Q(A[;/’XO =20,...,Xq-1= $q_1)

g'eC

= Z PTg(Xq = HA/g/) . PTB(AB/|X0 = ZQy.-- ,Xq_l = :Bq_l)
pgec

= Z PT‘ﬂ/(Xq = 1) . PT‘/g(Aﬁ/‘XO =Ty - ,Xq,1 == Cqul)
gec

> Z (1 — €pmg)P’l“ﬁ(Ag/|X0 =Ty -- ,Xq_l = xq_l)
B'eC

= (1 — eprog) Z PT[;(A/@N’XO = ZQy.-- 7Xq—1 = .%'q_l)

pB'eC
= (1= €prog)-
Claim 4:

PTg(XQ = 1) Z 1-— €prog-

Proof of Claim 4: The proof is similar to that for Claim 3, but simpler. Let B be the set of finite
prefixes 3’ of executions o € Ag such that ' ends at time tp + 0. Let C be the set of minimal
elements of B. Note that every o € Ag is in exactly one set of the form Ag for 5’ € C.

Using Claim 2, we get

Prg(Xo=1) =Y Prg(Xo=1|Ag)Prs(Ag)

p'eC

=Y Prg(Xo=1)Prg(Ag)
pB'eC

> Y (1= €prog) Prs(Ag)
p'eC

= (1= eprog) Y, Pra(Ag)

p'eC
= (1 = €prog)-

We now return to the main proof. Let Yy, 0 < ¢, be a collection of independent 0-1 random variables

such that
Pr(Yy=1) =1 — €prog-

34

By Claim 3, we have that for every ¢ > 1, and for every zg, z1, ..., z4—1 € {0, 1},
P?“ﬁ(Xq = HXO = .%'Q,Xl =T1y.-- 7Xq—1 = xq_l) Z PT(Yq = 1)

By Claim 4, we have that
Prg(Xo=1) > Pr(Yp =1).

It follows from Lemma 2.2 that, for an

<
S
Vv
\:—‘

Therefore, by (19), we get

Now we set r = |[y1d + v27]. By the definition of F 9 we have that, for any time-unbounded
execution «, if Dist, = d in «, then o € F°. Hence, by (20), we have

r—1
Prg(FPUN)>1-Pr() Y, <d). (21)
q=0
Now we apply Lemma 2.3, with p = 1 — €4, to obtain an upper bound for the probability of the
sum on the right-hand side of (21):

r—1
Prd Yy<d)<e . (22)
q=0

Then by (21) and (22), we get
Pr(FPUN)>1—e",

which completes the proof. O

Lemma 7.12. Let 7 be a nonnegative real number. Consider two processes i and j, write P; ; as
i:io,il,ig,...,id :j, and let I = {il,...,id}.

Let 3 be a finite execution of the BM M B protocol that ends at time tg. Assume that there exists
m ¢ C’I@(I)(to) such that a bcast(m); event occurs in [3.

Let F be the subset of Ag in which there exists m' ¢ C?(I) (to) for which a get(m'); event occurs by
time
to + (71d + 727) fprog-
Then
Prg(FUN)>1—¢e".

35

Proof. Follows since Lemma 7.11 holds for every 6 > 0. In a bit more detail, Lemma 7.11 says tha_t,
for every § > 0. PTg(Fé UN) >1—e77. Note that, for 0 < §; < d2, we have FOUUN C F2UN.
Therefore,

Prg((JFPUN)>=1—¢ . (23)
6>0
We claim that
(JF°UN=FUN. (24)
6>0

One direction is obvious; we argue the other, that

(JFPUNCFUN.

>0
So, let a € (5w FOUN. If « € N then @« € FUN and we are done. On the other hand, if
o € Nsoo F°, then for every § > 0, a contains a get(m’); event for some m’ ¢ C’I@(I) (to) at a time
that is < to+ (v1d+27)(fprog+0). Since a cannot contain an infinite sequence of discrete events at
successively decreasing times (a basic property of timed executions for TIOA), the only possibility
is that o contains a get(m’); event for some m’ ¢ 019(1) (to) at a time that is < tg+ (vid+727) fprog-
Thus, a € F', which suffices.
Then by (23) and (24), we get that

Prg(FUN)>1—¢e,
as needed. O

We use Lemma 7.12 to prove a lower bound on the probability for PC, in Lemma 7.19. In doing
this, we use the equivalent W PC' definition. We decompose the analysis in terms of the number of
get or ack events that have occurred so far. This requires an auxiliary definition, a version of the
W PC; ; definition that depends on the number of get or ack events.

Definition 7.13 (W PC; j.(7), where i,j € V', i # j, ¢ is a positive integer, and 7 is a nonnegative
real). Write P;j as i = ig,i1,...,iq = j, and let I = {iy,...,iq}. We say that « € WPC; j.(7) if
for every nonnegative real t, the following holds:

If o contains at least ¢ get or ack events, and the ¢ such event occurs at time t, and a get(m);
event for some message m ¢ Cﬁ(I) (t) occurs by time t, then a get(m'); event for some message

m' ¢ Crn (t) occurs by time
t+ (71d + 72T)fprog-
Lemma 7.14. Suppose i,j € V, i # j, and T is a nonnegative real. Then
WPCij(r)= () WPCij(r).
1<c<2nk
Proof. The definitions immediate imply one direction, that
WPCZ'J‘ (T) - n WPCi7j7c(T).
1<c<2nk
For the other direction, that

(| WPCijo(r) CWPC, (),
1<e<2nk

36

we use the fact that the total number of get and ack events is bounded by 2nk: one get and one
ack event for each of the n processes for each of the < k messages. O

For use in handling race conditions, it will also be helpful to define a slight extension of the previous
definition:
Definition 7.15 (WPng,C(T), where i,j € V, i # j, cis a positive integer, § and 7 are nonnegative
reals). Write P;j as i =1ig,i1,...,iq =7, and let I = {i1,...,iq}. We say that o« € WPC; j.(T) if
for every nonnegative real t, the following holds:
If a contains at least ¢ get or ack events, and the ¢ such event occurs at time t, and a get(m);
event for some message m ¢ C?(]) (t) occurs by time t, then a get(m'); event for some message
m' ¢ Crn (t) occurs by time

1+ (’71d + VZT)fprog + J.

Now we can prove a lower bound for WPC; ;.(7). Note that the probabilities in Lemma 7.16 are
with respect to the entire probabilistic execution of BM M B, starting from an initial state.

Lemma 7.16. For any i,j7 € V, i # j, positive integer c, positive real 6 and nonnegative real T,
we have:
Pr(WPC?, (T)UN)>1—e",

7’7]70

Proof. Fix i, j, ¢, , and 7. Define the usual notation for P; ; and I.

Define B? to be the set of finite prefixes 3 of executions a containing at least ¢ get or ack events,
such that the ¢ such event occurs at time ¢t and 3 ends at time ¢ + 8. Let C° be the set of minimal
elements of BY. Note that every time-unbounded execution a containing at least ¢ get or ack events
is in at most one set of the form Ag for 3 € .

Let D be the set of time-unbounded executions that contain fewer than ¢ get or ack events. Notice
that D C WPC? . (1)

,L?]?c

Claim 1: For every € C9,
Pra(WPC?, (T)UN)>1—e 7.

17]76

Proof of Claim 1: Let t be the time of the ¢! get or ack event in 8. If 3 contains no get(m); event
for a message m ¢ C’lg(l) (t) by time ¢, then by definition, A3 C WPC? . (1), so

/L?]?C

Prg(WPCY, () UN) = 1.
So from now on assume that 3 contains a get(m); event for a message m ¢ C’fj(N (t) by time ¢. Fix
such an m.

If me C’?m (t +9), then in particular, m € C’f(t +), which implies that get(m); occurs in 3, so
again Ag C WPCi(S,j,c(T)7 S0

Prg(WPC?. (T)UN) = 1.

17.]7m

So from now on assume that m ¢ C’lg(l) (t+9).

Now we apply Lemma 7.12 to 3, with tg = t + ¢, to conclude that, with probability > 1 —e™7",
either there exists m’ ¢ C?(1 (t + ¢6) such that get(m’); occurs by time

t+0+ (’Yld + ’YQT)fprom

37

or the execution is in N. For each such m/', we have that m’ ¢ C’lg(N (t), so we get:

Prg(WPC?. (T)UN)>1—e".

Z7]7c

Then we use Claim 1 to obtain:

Pr(WPC}; (r)UN) =Y Prg(WPC.; .(r)UN) - Pr(Ag) + Pr(WPC}; (r) UN|D) - Pr(D)
Bec’d
= Y Prg(WPC?; (t)UN) - Pr(Ag) + Pr(D)
Becs
(1—e 7). Pr(D) + Pr(D)
(1 - 6_7)’

AVANLY]

as needed.

Lemma 7.17. For anyi,j € V, i # j, positive integer ¢, and positive real T, we have:
Pr(WPC;j(r)UN)>1—¢"",

Proof. By an argument like the one used to prove Lemma 7.12. O

Lemma 7.18. Let 7 be a nonnegative real number. Then
Pr(WPC(t)UN) >1—2n3ke™".

Proof. By definition of W PC' and Lemma 7.14, we obtain that

WPC(r)= [\ WPCi,(r)= N W PC; (7).
1,jEVi#] 1,jEVi#£j,1<c<2nk

Using a union bound and Lemma 7.17, we obtain:

Pr(WPC(t)UN) = Pr(N (WPCjo(r)UN)) > 1 —2n3ke™".
1,J€V,i#£j,1<c<2nk

We now use Lemmas 7.18 and 7.9 to obtain a lower bound on the probability of PC(7).
Lemma 7.19. Let 7 be a positive real number. Then

Pr(PC(t)NN) >1—2n%ke™™ — Pr(N).
Proof. Using Lemma 7.18, we obtain:

Pr(WPC(t)NN) > Pr(WPC(r)NN)UN) — Pr(N)
= Pr(WPC(t)UN) — Pr(N)
>1—2kn%e™" — Pr(N).

By Lemma 7.9, WPC(r) = PC(7), which completes the proof.

38

We combine Lemma 7.10 with Lemma 7.19 and the bound for Pr(/N) in Lemma 6.2, and instantiate
7 as [In(@)], to obtain our result for BM M B over the probabilistic MAC layer:

Theorem 7.20. Let m € M and let € be a real number, 0 < ¢ < 1. The BMMB protocol
guarantees that, with probability at least

1 —€— nkeger,

the following property holds of the generated execution o:
Suppose an arrive(m); event m occurs in «, and let to be the time of occurrence of w. Let k' be a
positive integer such that |K(m)| < k'. Then get(m) events occur at all nodes in o by time

3

to + (m D+ (1 + 29) (N 4y 4 w)k:’) Furog + (K — 1) fack.

Proof. Let 7 = [In(@ﬂ The theorem follows immediately from two claims:

Claim 1: Suppose o € PC(7) N N. Suppose an arrive(m); event m occurs at time tg in «. Let £/

be a positive integer such that |K(m)| < k’. Consider any process j. Then a get(m); occurs by

time

2n3k
€

tr=to + <(71 +72)D + (71 + 292) [In(——)] +n + w)k") forog + (K = 1) fack-

Proof of Claim 1: Let M' C M be the set of messages m’ for which arrive(m); precedes clear(m’)
in a. Therefore, we have K(m) C M.

Based on Lemma 7.10, and using the fact that dist(i,j) < D, by time ¢, either a get(m); event
occurs or there exists a set M” C M’ with |[M"| = k' such that get(m’); events occur for all
messages m’, m’ € M”. In the first case, the claim holds.

So suppose that the first case does not hold and the second case does hold, that is, a get(m); event
does not occur by time ¢;, but there is a set M” C M’ with |[M"| = k' such that get(m’); events
occur for all messages m’ € M" by time ¢;. Since get(m); does not occur by time 1, clear(m)
does not occur by time ¢;. Therefore, the arrive(m’) events for all m’ € M"” precede clear(m). It
follows that M” C K(m). Then because |M"| = k' and |K(m)| < k', we get M” = K(m). Since
m € K(m), it follows that there is a get(m); event by time t;, a contradiction.

Claim 2: The probability of the event PC(7) N N is at least 1 — € — nkegep.

Proof of Claim 2: By Lemma 7.19, the probability of the event PC(7) NN is at least 1 —2n3ke™" —
Pr(N). Since 7 > ln(@), this yields that

Pr(PC(T)NN)>1—¢€— Pr(N) > 1— € — nkegek.
The last inequality follows from Lemma 6.2. 0

7.4.4 Analysis of the Complete Algorithm

Finally, we combine the bound for the BM M B protocol in terms of the probabilistic abstract MAC
layer with the bound for DM AC to obtain a bound for the combined BM M B-Decay algorithm.

39

Theorem 7.21. Let m € M and € be a real number, 0 < e < 1. Let ¢ = [8A ln(%)] The BM M B-
Decay(¢) algorithm guarantees that, with probability at least 1 — €, the following property holds of
the generated execution o

Suppose an arrive(m); event ™ occurs in «. Let k' be a positive integer such that |K(m)| < k.
Then get(m) events occur at all nodes in o within time

O((D+ KA log(n?k)) log(A))

of the time of occurrence of .
Note that if & is polynomial in n, the bound reduces to O((D + k'Alog(%))log(A)).

Proof. Choose €qc, = 5.7- Theorem 7.20 implies that, with probability at least
€
1—§—nk6ack2 1—c¢,

get(m) events occur everywhere within time

An3k

((’71 +92)D + ((71 + 272)[In(M +7+ ’Yz)k/> fprog + (K" = 1) fack-

Using the definitions of parameters for the implementation of the probabilistic layer, in Section 5.4,

we may assume that €proq < %, so this expression is

nk
O((D + log(?)kl)fln"og) + (k/ - 1)fack'
Again using those parameter definitions, we substitute fp.oq = O(log(A)) and foer = O(A log(%k) log(A))
into the expression, to get a bound of

k k k
O((D + log(“=)K') log (A)) + (K = 1)O(Alog(~) log(A)) = O((D + K'Alog(~=)) log(A)).
The reason why we can use fuor = O(Alog("?k) log(A)) here is as follows. We instantiate € in the
parameter definitions with 5-7=, for the € in the statement of this theorem. Then the parameter

definitions say that
€ €

Cack = onkA T T onk
This yields, from the parameter definitions, that
2nkA
fack = O(A log(T) lOg(A)),
which is
nk
O(Alog(~—)log(A)),
as needed.]

40

8 Conclusions

It remains to determine whether it is possible to remove the dependence on k, the total number of
messages ever sent, in the bound for multi-message broadcast in Theorem 7.21.

In related work with Vigar and Welch [9], we are developing Neighbor Discovery algorithms over
the basic MAC layer of [16, 17]. This enables the construction of high-level dynamic graph models
like those used in [22] over an abstract MAC layer, and so supports the analysis of pre-existing
algorithms based on dynamic graphs, in terms of abstract MAC layers and thus in terms of physical
network models. We are also studying alternative implementations of abstract MAC layers, based
on Zig-Zag Decoding techniques [13].

It remains to study many more algorithms over abstract MAC layers, including algorithms for basic
tasks like Neighbor Discovery and Unicast with Acknowledgement, and algorithms for more complex
communication, data-management and coordination tasks. It also remains to consider alternative
techniques for implementing abstract MAC layers, including algorithms that try to avoid contention
and those that use coding techniques to make progress in the face of contention. Finally, we are
interested in learning how the theoretical results change in the face of communication uncertainty.

References

[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast. Journal of
Computer and System Sciences, 43(2):290-298, 1991.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient emulation of single-hop radio network
with collision detection on multi-hop radio network with no collision detection. Distributed
Computing, 5:67-71, 1991.

[3] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in multi-
hop radio networks: An exponential gap between determinism and randomization. Journal of
Computer and System Sciences, 45(1):104-126, 1992.

[4] R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple communication in multi-hop radio networks.
SIAM Journal on Computing, 22(4):875-887, 1993.

[5] D.P. Bertsekas and J. N. Tsitsiklis. Introduction to Probability. Athena Scientific, 2008.

[6] M. Christersson, L. Gasieniec, and A. Lingas. Gossiping with bounded size messages in ad hoc
radio networks. In The Proceedings of the International Colloquium on Automata, Languages
and Programming, pages 377-389, 2002.

[7] M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio networks.
Journal of Algorithms, 43(2):177-189, 2002.

8] A.E.F. Clementi, A. Monti, and R. Silvestri. Selective families, superimposed codes, and
broadcasting on unknown radio networks. In The Proceedings of ACM-SIAM Symposium on
Discrete Algorithms, pages 709-718, 2001.

9] A. Cornejo, N. Lynch, S. Vigar, and J. Welch. A neighbor discovery service using an ab-
stract MAC layer. In The Proceedings of Allerton Conference on Communication, Control and
Computing, 2009.

41

[10]

[18]

[19]

[20]

[21]

[22]

A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with unknown topology.
In The Proceedings of the Symposium on Foundations of Computer Science, pages 492-501,
2003.

L. Gasieniec. On efficient gossiping in radio networks. In The Proceedings of The International
Colloguium on Structural Information and Communication Complexity, pages 2—14, 2009.

L. Gasieniec, T. Radzik, and Q. Xin. Faster deterministic gossiping in directed ad hoc radio
networks. In The Proceedings of the Scandinavian Workshop on Algorithm Theory, pages
397-407, 2004.

S. Gollakota and D. Katabi. ZigZag decoding: Combating hidden terminals in wireless net-
works. In The Proceedings of the ACM SIGCOMM Conference, volume 38, pages 159-170,
2008.

T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem in single-hop
radio networks. In The Proceedings of International Symposium on Algorithms and Computa-
tion, pages 139-150, 2002.

D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. In The Proceedings
of the International Symposium on Principles of Distributed Computing, pages 73-82, 2003.

F. Kuhn, N. Lynch, and C. Newport. The abstract MAC layer. In The Proceedings of the
International Symposium on Distributed Computing, pages 48—62, 2009.

F. Kuhn, N. Lynch, and C. Newport. The abstract MAC layer. MIT Technical Report (MIT-
CSAIL-TR-2009-021), May 20009.

E. Kushilevitz and Y. Mansour. An (D log(N/D)) lower bound for broadcast in radio net-
works. SIAM Journal on Computing, 27(3):702-712, 1998.

Sayan Mitra. A Verification Framework for Hybrid Systems. PhD thesis, Massachusetts Insti-
tute of Technology, 2007.

A. Pelc. Algorithmic aspects of radio communication. In The Proceedings of The International
Workshop on Foundations of Mobile Computing, pages 1-2, 2008.

D. Peleg. Time-efficient broadcasting in radio networks: A review. In The Proceedings of The
International Conference on Distributed Computing and Internet Technologies, pages 1-18,
2007.

J. Walter, J. Welch, and N. Vaidya. A mutual exclusion algorithm for ad hoc mobile networks.
Wireless Networks, 7(6):585-600, 2001.

42

