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RESEARCH OBJECTIVES

The Analog Computer group is engaged in a number of basic investigations of analog
and special-purpose computers. The emphasis is on underlying concepts rather than
on the design and operation of a large computing facility.

An analog computer can be viewed as an active, nonlinear network. At the present
time our research includes both general active networks, and general nonlinear net-
works. In active network synthesis our effort is directed toward general theorems
that can be used in analyzing present computer configurations and in designing new ones.
The work in nonlinear network synthesis is directed toward piecewise linear and piece-
wise planar devices. The end in view is the construction of multiple variable function
generators. These devices are useful as elements of computers and in many instances
they can be used to replace conventional computers.

A third area which is being considered is the use of distributed parameter elements
in analog computers and the converse problem of solving partial differential equations
by analog computers.

R. E. Scott

A. ACTIVE NETWORK SYNTHESIS

1. A General Theorem on the Transfer Functions of Three-Pair Terminal

Networks

Consider a linear network N with three-pair terminals, 1-1', 2-2', and 3-3'

(Fig. XIX-I). The only restriction we shall impose upon N is that it shall contain

lumped parameter linear elements; that is, one can write the following set of equations

ei = lzij ( s) iij = 1,2, 3 (1)

Of course, there exists another set of equations on the basis of admittance functions.

The constraints upon Q are expressed in the fact that the functions z. (s) are all

rational functions in s. We are interested in the response at the terminals 2-2' from a

signal at the terminals 1-1', as affected by the behavior of terminals 3-3'. Let

= 2 (2)

e 3  3z 3

Thus the matrix [zij] becomes

Zll zl2 Zl3

[Z] = zZI zZ2 + z 2  z23 (3)

z31 z32 z33 + z3
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Fig. XIX-1

General three-pair terminal network.

The transfer impedance from terminals 1-1' to 2-2', then, is (1)

e 2  A

12 i A 122 12

(4)
A' + (z 3 3 + z 3 ) 3 3  + z 3

12 o
2 + (z33 + z3) 33 12 z

12

where A is the determinant of [Z], i.. is

z3 = 0 . However
z3=0

a minor of A, A' A= i , and A0

z33+z3= 0

o
A 12 12
12 3=0

o

A3 3
A
33

12

A0

12
A
3 3

12

Hence Eq.

00

12 = Z12z 3=00
3

Z 0oo

4 can be written as

00 o
z 123 12 zoo

Z
12 z3 + z00

Following the same argument, one can arrive at the following general result.

Theorem. Given a linear lumped-parameter system (it could be active), as shown

in Fig. XIX-2, the response R(s), voltage or current, resulting from some excitation

F(s) current or voltage, is related to an element M(s), impedance or admittance (all not

necessarily located at the same place in the system) in the following manner
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0 T°
T M + TOM

T=
T __+T

where T = R(s)/F(s), and (-Moo) is the value of M which makes the system nonstable.

The superscript refers to the value of M at which T is evaluated.

We shall investigate Moo. Consider first the case in which F(s) is a voltage source,

and regard the network P as a two-pair terminal network, terminated to z = -M (see

Fig. XIX-3). It is obvious that since T = 0, then zmm, the driving-point impedance at

the terminals m-m' with the terminals f-f' terminated to -M., must necessarily be zero.

However, it can be shown (2) that

sc

Z Zc ff,
mm' mm' oc

ff +

where Zoc and Zsc are the driving-point impedances when the subscript terminals are

open-circuited and short-circuited, respectively.

Therefore

N = -Z
ff,

or

M =Zsc (9)ff

Similarly, if F(s) is a current source, Zff must be infinite, or

M =oc (10)ff,

Corollary. The instability impedance, that is, the impedance that will make the

network unstable when terminated at the terminals m-m', is equal to the negative imped-

ance when one looks from those terminals with the excitation and response terminals

short- or open-circuited (depending on whether the excitation is a voltage source or a

current source).

These results are summarized as follows:
Case 1. F(s) = Voltage; R(s) = Current

3 3

2

P :I t

I 2

Case 2. F(s) = Current; R(s) = Voltage

3 3' 3 Z33 3'

P E P

I 2' I' 2'

Z2 Z 3 + Z 
2 Z 33

12 3 Z

SO +Y03yO
3 I2 33Y

3 +Y
3 3
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Fig. XIX-2

General three-pair terminal
network with termination.

I 2'

Fig. XIX-4

Two-pair terminal network
with termination.

r r m

Fig. XIX-6

Equivalent of one-pair terminal network.

z 12

m7f

Fig. XIX-3

Equivalent two-pair terminal network.

f r r' m

E) P 12 ZT

Fig. XIX-5

Two-pair terminal network regarded
as three-pair terminal.
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Fig. XIX-7

General bridge-T network.
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Fig. XIX-8

Simplified equivalent networks.
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(b)

Fig. XIX-9

A general active network. (a) construction for negative
impedance; (b) components of the general active network.
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2. Application to Two-Pair Terminal Networks

By applying the foregoing theorem we shall find relations between the terminated

and unterminated functions of two-pair terminal networks (Fig. XIX-4). We shall repre-

sent the functions of the terminated network by capital letters, the unterminated char-

acteristics by lower case letters.

a. Transfer functions

Obviously, for this case, terminals m-m' and r-r' are not independent (see

Fig. XIX-2). Thus, if W of Fig. XIX-4 is a voltage source, to find the transfer admit-

tance of N (Fig. XIX-2), we must redraw P as shown in Fig. XIX-5. The following

relations are then easily obtained

I
0

T =

m-m'
open

o0
0, T = Y 2' Mo = Y 2 2

Thus

12Y12 =

Y 2 2 
+ YT

In a similar manner

z 12Z T
12 z22 + zT

(11)

(12)

b. Driving-point functions

For this case, terminals f-f' and r-r'

tion we obtain Fig. XIX-6, and we have

o0
T = z11' 0 1

are related. Thus, for the impedance func-

Moo = 22

Thus

22

Z11ZT yll
11 z22 + zT

z22

+ z 22 +ZT

But

z22 1

Y 11 z 1 1  Y2 2

Therefore
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1
+ z

Z =z (13)11 11 z22 + z T

3. Passive Bridge-T Networks

With the help of the previously stated theorem one can easily obtain the transfer

functions of bridge-T circuits. Figure XIX-7 represents the general form of an unter-

minated bridge-T network for which we shall compute the transfer impedance Z 1 2
(E 2 /1 1 ). This example corresponds to case 2. Figure XIX-8 is used to derive the

following functions

00 o zz 2Z z Z + z , Zoo = z 1 + z2  (14)

Thus

zozT + Z z 2 + zo(z 1 + z2 )Z
12 z1 + z2 + zT

or

Z12
Z =z + (15)

12 o 1 + z 2 +ZT

4. Negative Driving-Point Impedances

Now we shall consider the problem of synthesizing a negative driving-point imped-

ance. Obviously, the system must contain at least one amplifier. The general form of

the network is shown in Fig. XIX-9, where N contains only linear passive and bilateral

elements. Let the transfer admittances of the networks in Fig. XIX-9(b) be G and YlZ;

then the transfer admittance Y(A) of the network in Fig. XIX-9(a) is12

Y(A) YlZYGG GyRR (16)
12 YGG + YRR YGG + YRR

Now let z 3 be such that Y(A) equals zero. ThereforeY 12

yl2YGG = GyRR (17)

and from Eq. 7

y(A)oo

Y = -Y 12 (18)
33 3 y(A)o

12
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with the introduced quantities as defined in the previous section. A more explicit form

of Eq. 18 is

o

Y 2YGG - GRR YGG +YRRY = -Y (19)

Yl2YGG - GYRR YGG + YRR

Equations 17 and 18 are the essential relations in synthesizing negative driving-point

functions. Of course, if G, YGG' Y 1 2 , and yRR are all resistive terms, the synthesis

problem is greatly simplified. It should be realized that the quantity y )c/y(A)o could,
indeed, be always positive, since, with reference to Fig. XIX-9(b),

00

y 1 2  y 1 2  (20)
Y33 = Y3 o(20)

Y 1 2  Y1 2

is always positive, and G could be negative.

N. DeClaris
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B. NETWORK SYNTHESIS WITH DISTRIBUTED ELEMENTS

Theoretical, experimental, and analog results have been obtained for a new method

of designing distributed parameter filters in the time domain. The method is based

upon the open-loop impulse response of the system, and it yields the closed-loop tran-

sient response and the desired compensating network. Details of the method will be

given in forthcoming Technical Report 288.

Y. C. Ho

C. PIECEWISE LINEAR NETWORK THEORY

Substantial progress has been made in the application of an algebra of piecewise

linear functions to both analysis and synthesis problems. This algebra is based upon the

transformations defined in the Quarterly Progress Report, July 15, 1954, page 87. The

algebra has been developed to a point where it affords a systematic mathematical method

of analyzing and synthesizing piecewise linear networks that do not contain energy stor-

age elements.

A selection of some of the basic definitions and theorems follows. These are given

in purely abstract form. However, in the applications, the variables mentioned below
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become currents and voltages, while the constants are voltage or current sources,

resistances, or conductances.

The elements of the algebra are known as scalars and vectors. (There are many

similarities between this algebra and the algebra of vector spaces.) They will be formed

from the elements of an ordered field, F (the real number system).

Definition 1. A scalar is any member of an ordered field, F. (Scalars will be

denoted by small English letters or numbers.)

Definition 2. A vector is any proper subset of F. The elements of the vectors, and

the scalars, are both members of the same field. A vector will be denoted by a single

Greek letter, a, to indicate the whole set of elements, or by (a, b, ..... , n) to enumerate

each element. The elements of a vector are scalars. Note that the order in which the

elements of a appear is immaterial.

A scalar can either be a constant, (a), a variable, (x), or a function of a variable,

(a + bx). A vector can also contain members which are any of these three.

It should be observed that according to Definitions 1 and 2, a single element standing

alone may be either a vector or a scalar. In the derivations that follow, single elements

will be treated as either vectors or scalars interchangeably, but their status at any given

time will be clear from the context.

Definition 3. Scalar multiplication. The product of a scalar, c, and a vector, X =

(11' L2' .... In), is denoted by cX, where cX = (cll, cf 2 , . . . I cln).
Definition 4. Vector addition. The sum of two vectors, a = (a 1 , a, . . . . . an) and

= (b 1 , b 2. . . . . b ), is denoted by a ~p where a(D P is the set of all scalars, ap + bq,

a E a, and b E p.
p q

Example: Let a = (0, 3, 3 - 2x), P = (0, -2x). Then a ~ = (0, 3, 3 - 2x, -2x, 3 - 4x).

The transformations, + and '-, were defined in the Quarterly Progress Report of

July 15, 1954, page 87. The following simple examples serve to illustrate the usefulness

of these transformations in representing piecewise linear functions.

Example 1. Conventional representation: Symbolism:

y= 2x x < 1

y=x+ 1< <2 ..... y=(2x, x + 1, 3)

y= 3 x > 2

Example 2: Conventional representation: Symbolism:

y = -1 x < -1

y = x -1 < x 1 .... y = (x, 1) , -1

y= 1 x> 1

Some theorems which have wide application are:
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+ +
Theorem 1. (ca) = c(a ) c > 0

(ca) + =(ap ) c 0

or, equivalently,
+ + -

(ca)4 = (0, c) - (a ) + (0, C)W (a)

A special case of Theorem 1 is

Theorem 2. Let a = (a). Then

-4~ f= a4=a
+ + +

Theorem 3. (ae P)- = a- + P3

Theorem 4. Inversion theorem.

Let y = F(x) = [fl(x), f 2 (x) ..... fn(x)] . If, for each function, F, fl, fl ...2

-1
f , there exists an inverse function, f , such that

y =fp[f (y)] and y = f[f (y) for all y

then

S -1 -1
x = F 1 (y) = f 1 (y), f 2 l (y) ..... nl(y)]

(Note the reversal of the positions of the plus and minus signs.)

In general, the condition that the inverse of each function shall exist is satisfied if

and only if the function is strictly monotonic and continuous. (That is, the function is a

1-1 transformation.) It should be observed that Theorem 4 establishes sufficient condi-

tions for the inversion of a function. This does not imply that an equation which does

not satisfy the above conditions cannot be inverted.

A wide variety of analysis and synthesis problems deals with monotonic functions

that do not fulfill the conditions of being strictly monotonic and continuous; that is,

they have regions of either zero or infinite

derivative. The simplest example of this is

the volt-ampere characteristic of an ideal

r J diode, which has one region of zero slope

- Dand another of infinite slope. It is useful to
(a) (b)

be able to deal analytically with these func-

Fig. XIX-10 tions. To this end the following two functions

Diode and voltage source. will be defined.
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Definition 5. The function, y = 0(x), is defined as

y = lim n = 0
n--( =

for all x

Definition 6. The function, y = o0(x), is defined as

y = lim (nx)=
n -

x>0

x=0

x<O

It is clear that for any finite value of n, no matter how large, these functions are

inverses. The question of whether they remain inverses in the limit is more difficult

and will not be discussed here. The important point is that for the purpose of this dis-

cussion they behave as inverses and will be considered as such. Some of their prop-

erties are

(a) 0(x) = oo-lx)

(b) 00(x) = 0 o-1(x)

(c) 0(x) + f(x) = f(x)

(d) 00(x) + f(x) = oO(x)
Sf(x)

for any f

x #

x=0
for any finite f

Example 1. From Definitions 5 and 6, the impedance of the diode of Fig. XIX-10(a) is

e = z(i) = 0(i), 00(i)]

Its admittance is

i = y(e) = z (e) = [m(e), 0(e)]

Example 2. The impedance of the voltage source of Fig. XIX-10(b) is

e = z(i) = V

Its admittance is

i = y(e) = z (e)

But

z(i) = V = V + 0(i)= e

0(i) = e - V

i = oo(e-V)

The following simple example serves to illustrate an application of the algebra to
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(0o,2) *

e2--2, )

./ I

Fig. XIX-11

Diode network and its driving-point admittance.

the analysis of diode circuits. Each step in the analysis is stated explicitly with a ref-

erence to the theorem being used.

Example. Consider the circuit of Fig. XIX-11(a). The i vs. e relationship for D 1

is i = [0(el),' (el)] -. Thus

= 3+ 0[o(el),o(el)] 

el= (i l ) = z l (i l ) = c

= [3 (el)] = y1 (el) (Theorems 2, 3, Def. 4)

(Theorem 4)

e2 = 2il + [(il - 3), 0(il)] + = [0(i 1 - 3), 2il = z 2(i 1) (Theorems 2, 3, Def.

= Z-1(e2 ) = (3, e/2)1 ( 3
i 1 = z 2 (e2) = (3, e/2 ) -

(Theorem 4)

i2 = [0(e 2 ),e 2]c +

i 1 + i 2 = (3, e 2 /2) + (0, e 2 ) + (See Fig. XIX-11(b).)

T. E. Stern
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