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A. HIGH-DENSITY MICROWAVE GASEOUS DISCHARGES

Because of the low repetition frequency (8 per sec) of the high-power 100 Mc/sec

discharge pulses (Quarterly Progress Report, Research Laboratory of Electronics,

M. I. T. April 15, 1953) usual methods of measurement of power and standing-wave

ratio are not satisfactory. Consequently, a circuit has been developed which produces

pulses on an oscilloscope proportional to either the power incident on the cavity or

reflected from it. An additional circuit, including a Brown converter, switches alter-

nately one and then the other pulse to the oscilloscope. The standing-wave ratio can be

deduced from the ratio of the pulses, and the power absorbed by the cavity is propor-

tional to the difference, as indicated in Fig. II-1. By applying a continuous wave signal

to the dc amplifier, the oscilloscope deflection can be calibrated in terms of a wattmeter.

Preliminary observations have been performed with discharges up to 250 watts in

hydrogen in the pressure range of 1 to 200 mm Hg. It was found that the higher the

power in the discharge, the more difficult it was to match the cavity to the line and the

higher the standing-wave ratio. The appearance of a high-power discharge at 30 mm

pressure is shown in Fig. 1I-2. It shows the bright bounding regions and the dull

interior where the density is above that for plasma resonance. Near the edge of the

discharge the bright region penetrates further because there the density is lower. At

lower pressures (for example, 2 mm) it seemed more difficult to exceed plasma reso-

nance. This may be because the bounding sheath becomes thicker at lower pressures

and tends to fill the small cavity gap. If this is the case, a cavity with a larger gap

should solve this problem.

However, it will be easier to investigate this quantitatively when the technique men-

tioned in the previous Quarterly Progress Report is in operation. As shown in Fig. 11-3,
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Fig. 11-1 Fig. II-2

Oscilloscope pulse giving standing-wave High-power discharge in
ratio and power absorbed by the cavity. 30 mm Hg of hydrogen.
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Illustration of method of density meas-
urement using plasma resonance.
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the probing signal is transmitted through

the discharge and picked up by a detector.

Disks flush with the cavity wall have been

found to be satisfactory transmission ele-

ments. However, it is desirable to make

these as small as possible to provide a

localized probe and to minimize any per-

turbation of the discharge caused by the

disks. This introduces the problem of

sensitivity, particularly as the glass seals

(necessary for a vacuum cavity) reduce

the transmission by 20 db.

B. MEASUREMENT OF COLLISION CROSS SECTION

A study of increasing the average electron energy in the afterglow of a discharge

by means of an external electric field has been made. The nonuniformity of the electric

field in a microwave cavity adds to the complexity of the problem. In order to interpret

the measurements of (1/Po )(or/-i) correctly, it is necessary to know the correct density

distribution. Hence the problem of ambipolar diffusion for the case of a nonuniform
2 2

energy distribution must be solved. The following assumptions are made: (a) vc < <

(b) The energy lost due to energy gradients and diffusion is negligible compared to the

energy lost to collisions so that the electron distribution is Maxwellian with an electron

temperature

2 E
2

T =T +
e g 3k 2

where

2 2 2 y 2 z
E = E cos v cos

rms o(rms) B

and B and C are the dimensions of the cavity; (c) vc = bvh and (d) n

variation of electron density with time.

From the equations governing the flow of electrons and ions under

polar diffusion, the following equation is obtained:

n ey for the

conditions of ambi-

+ )v2n + 2 - Vn + n 1 - -g +

By separation of variables, one can write that n = n o m(y, z) p(x). The function p(x) is

a cosine distribution and m(y, z) is determined from the above equation after the
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Density distribution for varying values of h. (1/po)(o r/i) as a function of Uc

variables have been separated. The differential equation for m(y, z) is transformed to

a difference equation and the problem is solved numerically using a two-dimensional

net. A typical set of results is shown in Fig. 11-4. The curves give m(y, 0) for different

values of h for an average electron energy of 0. 16 volts at the center of the cavity.

The curves are compared to a cosine distribution which would be the case when a

uniform heating field is applied. Inasmuch as (1/po)(Or/o i) depends upon the average

of the density distribution for the case of nonuniform heating fields, the correct density

distribution must be chosen.

Measurements of (1/po) (rr /-i) were taken as a function of gas pressure and heating

field in helium. The results are shown in Fig. 11-5. The average electron energy at the

center of the cavity is designated by c. The theoretical curve is drawn for the case

of Pc = constant (h=l). The deviations from the theoretical curve depend on pressure,

the greater deviation occurring at the lower pressure.

The reason for the discrepancy is that assumption (b) is no longer valid and the

presence of energy gradients becomes important and the electron energy tends to become

uniform throughout the cavity. Hence (1/p)(a -ri) will approach the value for uniform

heating. The curve for uniform heating was obtained experimentally by increasing the

gas temperature thermally.

C. HOT PROBE STUDIES

The purpose of this program is to develop techniques pertinent to the application

of hot probes to the study of microwave gas discharges. Current techniques of measure-

ment have been unable to determine the space potential at a given point in the cavity.
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Standard double-probe methods are inherently unable to do this because the probes are

allowed to float; that is, the net current to the probes is zero. Recent attempts to apply

the results of Langmuir probe measurements to the determination of the space potential

have been unsucessful because of the lack of electron current saturation to the probe.

Consequently, a modification of the hot-probe technique used by Ernst is being investi-

gated to see if this will work in a microwave cavity.

A hot probe is an electrode which is heated to a temperature where thermionic

emission is appreciable. When such a probe is below the space potential, the electron

current to it is smaller than that to a cold probe of identical dimensions; the difference

between the two curves is due to the thermionic emission of the former. Since, when

the probe potential becomes greater than the space potential, the thermionic emission

decreases exponentially, the difference between the current drawn by a probe when hot

or cold should be zero when the probe potential is higher than space potential (this

analysis neglects contact differences of potential).

This effect will be investigated in a rectangular cavity resonant at 9.8 cm in the

TM11 0 mode. The probe, a 1-cm length of 0.003-inch tungsten wire, is heated by

square current pulses, and the probe current is measured when the heating current is

off so that the probe is an equipotential surface. The probe will be operated both hot

and cold; and the difference between the two currents will be found by balancing a

potentiometer when the probe is cold and then determining if it is balanced when the

probe is warm. Experimental verification of this effect will take place shortly.

D. ELECTRON-ION RECOMBINATION IN HYDROGEN

A cavity and a quartz bottle have been designed with relative dimensions such that

some of the higher diffusion modes were suppressed, as mentioned in the Quarterly

Progress Report of January 15, 1953. However, measurement of the electron density

decay curves in the afterglow still gave no indication of pure diffusion or recombination.

The only conclusion could therefore be that the hydrogen used contained impurities in

large enough quantities to give a dominating loss mechanism in form of attachment or

formation of negative ions.

We had used palladium leaks to introduce the hydrogen into the vacuum system.

However, when improving the vacuum system such that smaller leaks could be detected,

it was found that in most cases small leaks developed in the wall of the palladium tubing

the very first time the palladium came in contact with a hydrogen atmosphere. This,

of course, accounted for some of the impurities. Thereafter we tried commercial

spectroscopically pure hydrogen and found that it generally contained more impurities.

Two things therefore had to be done in order to secure a pure hydrogen atmos-

phere: (a) improve the vacuum system and (b) find a source of pure hydrogen. For the
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latter we used uranium hydride. A quartz tube containing filings of uranium was

connected to the vacuum system via a high-vacuum metal valve. The vacuum system

was baked at 4500C while the uranium could be baked at 8000C. A holding vacuum of
-9

less than 10 mm Hg was reached. Hydrogen was then let into the system and formed

UH 3 at about 100 0 C. When the hydride was heated up to about 250 0 C, most of the hydro-

gen was released, and experiments showed this to be much purer hydrogen than that

used earlier. The vacuum system was further improved to attain as high as possible

pumping speed between the liquid air trap and the quartz bottle containing the microwave

discharge.

In spite of large improvement in terms of purity, the loss of electrons in the after-

glow was still influenced by attachment at pressures above 1 mm Hg. It was noticed

that when receiving a discharge in the quartz bottle, large amounts of some condensable

material, probably water and carbon dioxide, were collected in the top of the liquid air

trap. This occurred in spite of a very thorough baking of the quartz bottle before intro-

ducing the hydrogen. We therefore ran a continuous discharge in the quartz bottle for

approximately 24 hours while baking the rest of the system. In this way we were able to

produce a pure enough hydrogen atmosphere so that measurements of the decay curves

could be made up to 17 mm Hg without any apparent sign of attachment. The Dap (ambi-

polar diffusion coefficient times pressure) for hydrogen in this pressure range was found

to be between 675 to 775 cm2 mm Hg/sec, and as far as we could determine from the

experimental result there was no sign of recombination. On the other hand, it was found

that higher diffusion modes have quite an influence on the decay of the electron density.

Roughly, we found a correlation between the amount of higher modes in the light distri-

bution as a function of coordinates and the amount of higher modes in the electron density

decay. The initial spatial distribution of electrons was arranged so as to contain as

small an amount of higher diffusion modes as possible. In this case the decay of the fun-

damental mode could be measured up to 17 mm Hg. Typical data are shown in Fig. 11-6.

E. PROBE STUDIES

The experiment described in the Quarterly Progress Report of January 15, 1953,

was continued. In computing central electron densities in steady-state microwave gas

discharges from the shift in the resonant frequency of the cavity, it is usually assumed

that the electron density distribution is sinusoidal. It was found that this assumption is

no longer correct above pressures of 1 mm Hg in hydrogen. By graphically integrating

the experimental electron density distribution, as found by moving double probes across

the discharge in a rectangular quartz bottle, it was found that the central electron

density might be lower by a factor up to two compared to values obtained by integrating

a sinusoidal distribution. Thus it is necessary to plot the density distribution for every
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Fig. II-6

Decay of the electron density in the afterglow of a hydrogen discharge.

point for which a comparison between probes and microwaves is desired. Probes made

of 5-mil tungsten wire gave fair agreement with microwave determinations of central

electron densities.

Since double probes yield only positive ion densities, an attempt was made to use

a single probe in an all-metal rectangular vacuum cavity and thus attain electron satur-

ation. The expected electron saturation current to the single probe was kept small

compared to the diffusion current to the walls so that the probe should not influence the

plasma appreciably. This was accomplished by using very small probes. However,

even when the computed electron saturation current to the probe was smaller than 1 per-

cent of the total diffusion current to the walls, no saturation was observed near plasma

potential.
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