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ABSTRACT
Consider a setting where nodes can vary their transmission
power thereby changing the network topology, the goal of
topology control is to reduce the transmission power while
ensuring the communication graph remains connected. Wat-
tenhofer et al. [6] introduced the distributed cone-based topol-
ogy control algorithm with parameter α (CBTC(α)) and
proved it correct if α ≤ 2π

3
. Li et al. [4] proposed per-

forming asymmetric edge removal or increasing α to 5π
6

,
and proved that when applied separately these optimiza-
tions preserve connectivity. Bahramgiri et al. [1] proved that
when α ≤ 2π

3
it was possible to extend the algorithm to work

in three dimensions and described a variation to preserve k-
connectivity.

We give a short self-contained proof that when α ≤ 2π
3

the minimum spanning tree is contained in the graph pro-
duced by CBTC(α). Its interesting to note that by com-
parison other topology control algorithms are variations of
the Gabriel Graph [5], the Relative Neighbor Graph [2] or
the Delaunay Triangulation [3]; all of which are structures
known to contain the minimum spanning tree. The proof is
essentially an application of a lemma proved by Yao [7]. As
a consequence of this proof we get as corollaries new short
proofs of some of the main technical results of Wattenhofer
et al. [6], Li et al. [4] and Bahramgiri et al. [1]. (1) When
α ≤ 2π

3
the algorithm CBTC(α) preserves connectivity [6].

(2) The asymmetric edge removal operation preserves con-
nectivity [4]. (3) The algorithm can be extended to three
dimensions [1], and generally to n-dimensional space.
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1. DEFINITIONS AND ALGORITHM
Consider a set V of n nodes where ‖uv‖ is the distance

from u to v and p(u, v) : V × V → R+ is the minimum
power required to reach node v from node u. The model
assumes all nodes can transmit with the same maximum
power pmax and p(u, v) ≤ p(u,w) iff ‖uv‖ ≤ ‖uw‖; in other
words the power function is symmetric and a non-decreasing
function of distance. Furthermore a node has the ability to
accurately determine the direction from which another node
is transmitting.

Let G = (V,E) be the maximum power communication
graph, so E = {(u, v) | p(u, v) ≤ pmax}. Running CBTC
with parameter α produces some power assignment σα :
V → [pmin, pmax]. Using σα we define the graph G+

α =
(V,E+

α ) where E+
α = {(u, v) | p(u, v) ≤ σα(u) ∨ p(v, u) ≤

σα(v)}, and the symmetric version G−α = (V,E−α ) where
E−α = {(u, v) | p(u, v) ≤ σα(u) ∧ p(v, u) ≤ σα(v)}.

We describe the core of the CBTC(α) algorithm infor-
mally; for a detailed description we refer the reader to Wat-
tenhofer et al. [6]. The algorithm proceeds in synchronous
rounds, at the beginning of a round every node u broadcasts
a HELLO message. Each receiving node replies with an ACK
message, and node u collects the replies along with the direc-
tion from which they came from. Initially nodes transmit
with minimum power pmin and increase (i.e. double) the
transmission power when going into the next round. Node
u terminates the algorithm when either it reaches maximum
power or every cone with apex at u of aperture α contains
a neighbor.

2. RESULTS
Assuming the nodes are embedded in the Euclidean plane

and α ≤ 2π
3

Wattenhofer et al. [6] proved that G+
α is a

spanning subgraph of G; under the same assumptions Li
et al. [4] described the asymmetric edge removal procedure
to obtain G−α and proved it was a also spanning subgraph
of G; Bahramgiri et al. [1] allowed the nodes to be in three-
dimensional space and proved G+

α preserved connectivity.
We start with a succinct proof of a special case of Yao’s

lemma using the Euclidean metric; for the general lemma
see Yao [7]. An Euclidean minimum spanning tree is a min-
imum spanning tree were the weight of an edge (u, v) is the
Euclidean distance ‖uv‖.



Lemma 1 (Yao’s Lemma). If an edge (u, v) belongs to
the Euclidean minimum spanning tree, then v is u’s closest
neighbor in every cone with apex at u and aperture π

3
which

contains v.

Proof. Suppose not, then there exists an edge (u, v)
which belongs to the Euclidean minimum spanning tree T ,
u has a neighbor w where ‖uw‖ < ‖uv‖, and there is a cone
with apex at u and aperture π

3
which contains both v and

w.
Removing the edge (u, v) from T creates two disjoint con-

nected components P and Q where u ∈ P and v ∈ Q. If
w ∈ Q then the joining P and Q with the edge (u,w) creates
a tree of smaller weight – a contradiction.

Hence suppose w ∈ P , by the cosine law we have ‖vw‖2 =
‖uv‖2 + ‖uw‖2 − 2 ‖uv‖ ‖uw‖ cos θ where θ = ∠vûw. By
assumption we have ‖uw‖ < ‖uv‖ and since v and w are
contained in a cone with apex at u of aperture π

3
then clearly

θ ≤ π
3

. Hence cos θ ∈ ( 1
2
, 1] and thus ‖vw‖2 < ‖uv‖2,

therefore joining P and Q with the edge (v, w) creates a
tree of smaller weight – a contradiction.

Let MST (H) be the minimum spanning tree of H, now
we are ready to prove the main theorem.

Theorem 2. If α ≤ 2π
3

then MST (G) ⊆ G−α .

Proof. To prove this lemma its sufficient to show that if
α ≤ 2π

3
then e /∈ G−α ⇒ e /∈MST (G).

Fix some edge (u, v) /∈ G−α ; without loss of generality
we assume p(u, v) > σα(u). Consider a cone with apex
at u and aperture α ≤ 2π

3
with its axis passing through

v. By construction of CBTC(α) this cone contains some
vertex w and moreover ‖uw‖ < ‖uv‖. Since the cone has
aperture ≤ 2π

3
and v is at its axis, it follows that ∠vûw ≤ π

3
.

Hence there exists a cone with apex at u of aperture π
3

which
contains both v and w, and by Lemma 1 it follows that
(u, v) /∈MST (G).

Now as promised the corollaries trivially follow.

Corollary 1. If α ≤ 2π
3

then CBTC(α) enhanced with
asymmetric edge removal preserves connectivity of G (Li
et al. [4]).

Proof. By Theorem 2, MST (G) ⊆ G−α and by definition
MST (G) is a spanning subgraph of G.

Corollary 2. If α ≤ 2π
3

then CBTC(α) preserves con-
nectivity of G (Wattenhofer et al. [6]).

Proof. The asymmetric edge removal procedure only re-
moves edges hence G−α ⊆ G+

α , therefore as before we have
MST (G) ⊆ G+

α .

Corollary 3. If α ≤ 2π
3

then running CBTC(α) where
nodes are in three-dimensional space using three-dimensional
cones of aperture α preserves connectivity of G (Bahramgiri
et al. [1]).

Proof. We prove something stronger; if α ≤ 2π
3

then
CBTC(α) enhanced with asymmetric edge removal preserves
connectivity when nodes are embedded in n-dimensional
space using n-dimensional cones of aperture α. This follows
since the proof of Theorem 2 only required Yao’s Lemma
which holds for any number of dimensions (and under dif-
ferent metrics).
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