
VII. TUBE RESEARCH AND DEVELOPMENT

A. MAGNETRON DEVELOPMENT

Dr. S. T. Martin

A. G. Barrett

1. High-Power 10.7-Cm Magnetron

a. Testing and design

MF-8B magnetron is now undergoing bake-out on the tube-processing vacuum system.

The next magnetron of the series, MF-9B, is ready to be assembled, pending the com-

pletion of more window sealing experiments.

A great deal of trouble has been encountered in completing the seal-on of the window

to the tube. Several trials were made to join the window cup assembly to the MF-8B

magnetron. The first three trials employed the hydrogen furnace brazing method used

in assembling MF-7B magnetron. This method proved to be too critical for reliable

results. The gold-wire method (1), originally used in early British magnetron construc-

tion, was then adapted to the present design.

The successful joint consists of a 0.030-inch diameter, 24-carat gold wire ring

squeezed between carefully lapped copper surfaces. The copper expansion section of

the window cup had to be shortened and thickened to withstand the compression applied

by stainless steel clamping rings and studs. The studs were tightened with a torque

wrench in small steps to maintain even pressure on the gold wire.

Further experiments are in process to increase the reliability of this window assembly

method, and to improve the sequence of operations in the construction of these magnetrons.

b. Thoria cathodes

Shortly after power was applied to the thoria cathode in the test diode, and before

seal-off, current and pressure fluctuations indicated a hot spot, and burn-out finally

occurred. Examination of the diode after it was opened revealed that an end mount had

burned away from the cathode. This burn-out is believed to be due to faulty platinum

brazing. Since such weak spots cannot be detected by visual observation, future cathodes

will be pretested in a glass jar in a helium atmosphere to make sure that heating is

uniform.

Further thoria cathode activity awaits completion of the present group of oxide

cathode magnetrons.

c. Auxiliary equipment

The tube processing vacuum system, incorporating a stainless steel pumping lead

stem and larger diameter glass tubing, has been completed and is now in operation with

MF-8B magnetron. Figure VII-1 shows the magnetron connected to the pumping lead
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Fig. VII-l MF-8B magnetron mounted on processing bench.

Fig. VII - 2 Magnetron vacuum system.
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by means of an OFHC copper gasket compression joint. The studs and plates on the

magnetron compress the gold-wire window joint described in a previous section.

During bake-out the electromagnet is rolled back, and the oven, which can be seen

at the top of the picture, is lowered over the magnetron. The oven base is constructed

so that the oven is comparatively gas tight. Dry nitrogen is introduced through the

feed pipe which comes up near the cathode leads.

After bake-out and cathode processing are completed, the electromagnet is rolled

into position to provide magnetic field, and a pressurized test tank (not shown) containing

a water load is connected to the magnetron output section. The magnetron is then sub-

jected to pulsed operation while still on the vacuum system.

The magnetron is sealed off from the vacuum system by pinching off the 3/4 inch

copper tubing between the copper gasket joint and the magnetron. One of the features of

the system is the method of allowing for motion during pinch-off by means of the rollers

under the stand supporting the magnetron. The rollers also permit motion due to

thermal expansion to take place in the horizontal direction.

An over-all view of the magnetron and vacuum system is shown in Fig. VII-2. A

second copper gasket compression joint connects the pumping lead stem to the permanent

glass part of the system. This joint is located under the bench and away from the direct

heat of the oven. After pinch-off the whole pumping lead stem can be disconnected and

replaced in case the upper copper gasket joint becomes welded together during high

temperature bake-out. This arrangement overcomes the difficulties encountered with

the old vacuum system as described in the Quarterly Progress Report, January 15, 1951.

The remainder of the vacuum system is of conventional glass construction.

The vacuum system used with the 50-kw r-f induction heater for brazing windows

and cathode leads has been rebuilt to secure higher pumping speed. The new system

employs a 4-inch metal diffusion pump and attains a minimum pressure of 2.5 x 10 - 5 mm

of Hg. The increased pumping speed is expected to produce better metal-ceramic seals

in accord with techniques recently reported by Machlett Laboratories (2) and the Air

Materiel Command (3).

Parts are on hand for the connectors for the 25-ohm experimental high power pulse

cable. A test assembly has been made on a short spare length of cable, and the con-

nectors are now being assembled to the 60-foot cable.
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2. Magnetron Research

a. Noise properties of the pre-oscillating magnetron

Further activity in this field has been discontinued for the present.

B. MICROWAVE TUBES

L. D. Smullin G. Guilbaud C. E. Muehe, Jr.

Prof. L. J. Chu H. Haus L. Roberts

Prof. J. E. Thomas H. J. Krusemeyer H. E. Rowe

A. W. Boekelheide L. Stark

1. Noise and Space Charge Waves

a. Analysis of power in electron beam

An analysis of the kinetic energy in an electron beam was made. Technical Report

No. 190 on this subject is in preparation. The results may have possible application

to the design of low noise beam-type tubes. L. J. Chu

b. Experimental noise study

The analysis of the kinetic energy in an electron beam presents us with certain

possibilities as to the character of the noise standing wave in the drift tube: the a-c

kinetic power may be positive, negative or zero. Which of these exists in a space charge

limited stream may be found by a theoretical analysis of the region near the potential

minimum. Since it has not yet been possible to carry out this analysis, an experimental

approach will be attempted.

The demountable tube shown in Fig. VII-3 has been completed and is now being

assembled on the pump. It has a magnetically shielded chamber in which the electron

gun is mounted. The electron beam will be Brillouin-focused by an axial magnetic field

(Bma x = 750 gauss). Two resonant cavities are arranged to move within the vacuum,

with their coupling lines coming out through rubber vacuum seals. A vane with various

hole sizes and a fine grid over one hole is provided on the face of the first cavity. This

will allow the beam size to be measured and noise measurements will be made relative

to the partition noise caused by the fine grid in the path of the beam.

The first measurements will be of the current standing wave along the beam, in an

attempt to get a more accurate value of the SWR than Cutler and Quate were able to get

in their first experiment. If the SWR is finite the determination of the sign of the a-c

power can be made by using the first cavity as a resistance in series with the beam,

and the second cavity as a probe. H. E. Rowe
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CO-AXIAL CAVITY

SECTION A-A

Fig. VII-3 Apparatus for measuring noise space charge waves.
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c. Noise reduction by a two-stage electron gun

A theoretical study has been made of the noise-reducing properties of a two-stage

gun. This is analogous to Field's "velocity jump", except that the finite gap is accounted

for. (It is probably similar to Peter's work at RCA.)

The system analyzed is shown in Fig. VII-4.
FIRST

ANODE The Llewellyn-Peterson (1) equations for infinite

SI DRIFT TUBE parallel-plane flow were used for the two stages

-------- of the gun (cathode to first anode, and first anode
HELIX

to second anode); Ramo's (2) equations for a single

velocity electron beam were used between the
CATHODE SECOND

ANODE second anode and helix; and equations from Pierce's

Fig. VII-4 (3) book were used in the helix region.

Schematic of traveling wave tube The expression for the noise figure of such
with two-stage gun. a tube is

F = 1+ 0.429c MT 2C

where F is the noise figure, Tc is the cathode temperature, T is the standard reference

temperature (290 K), C is the gain parameter of the tube, H is the ratio of the plasma

wavelength in an infinite parallel-plane flow to the wavelength in the drift tube,

B = 1/2 
( - ) ( + a) 3 / 2

BCL
+ 1 - (1 a)

is the space charge factor between the first and second anode, a = Uc/ub , and M is

a function of QC, d, and b of the helix; 6 of the drift region; and the position of the helix

in relation to the anode. If BZ + H A is plotted versus for various values of H and a,

minima will occur around a value of = 0.6.

For a conventional single-stage gun the factor [B2 + H2A2]is replaced by the factor

1 + 2H 2]. Since H is a function of yob, we may plot a curve of the minimum value of

the ratio of these two quantities versus yob. Where

Yo - u b = radius of beam

This graph is shown in Fig. VII-5. The lower the ordinate of this graph, the better

the noise figure.

Electrolytic-tank studies are being made of the design of a two-stage gun suitable

for use in a 3-cm traveling wave tube.
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2. 3-Cm Pulsed Traveling Wave Source

a. Power output tube

The gun of this tube was described in the Quarterly Progress Report, January 15,

1951. The helix is wound of O. DID-inch molybdenum, on a 0 .125-inch diameter mandrel,

13 turns per inch, for a total of 74 turns. It is supported by four ceramic rods

Fig. VII-6 X-band pulse traveling wave amplifier. XPI.
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0.060-inch in diameter within a stainless steel envelope. The input waveguide is part

of the vacuum assembly and is made of steel. A Kovar-glass window (furnished by

Sylvania Electric Products Co.) is BT-brazed to the waveguide. The output waveguide

is built into the electromagnet structure and couples to the helix through the short

section of glass between the collector and stainless steel tube. A short section of

copper is used between the glass and stainless steel.

The first tube assembled is shown on the pump in Fig. VII-6. Unfortunately it

developed a leak. A second tube is being assembled.

G. Guilbaud

b. Driver tube

A medium-power tube is being built to act as a driver for the pulse tube described

above. A drive power of about one watt is required. A 2 kv, 10-ma tube has been

designed and is being built. The mechanical structure will be very much like the pulsed

tube in that the input waveguide will be a part of the vacuum envelope.

L. Stark

3. High-Power Traveling Wave Tubes

Some thought is being given to the design of traveling wave tubes for high pulse

powers, approximately 1 Mw. Beam-type tubes would require voltages of about 100 kv

(vj c/2). At these phase velocities an ordinary wire or tape helix may not propagate

as a helical sheath, but due to the periodicity of the pitch, it may have resonances that

cause it to radiate. (This has been shown by S. Sensiper of this Laboratory in an

unpublished analysis of the tape helix. His work will appear shortly as a Doctoral

thesis.)

Preliminary designs of a 1-Mw tube show that it is not possible to make a single

winding helix with a diameter that will give reasonable gain and bandwidth. It appears,

however, that multifilar helices may approach closer to the ideal of a helical sheath,

and the critical frequencies for a given diameter and velocity are pushed up in approxi-

mate proportion to the number of windings on the helix. In order to get a quantitative

check of this theory, measurements will be made on single and bifilar helices wound to

give a phase velocity of about c/2. Apparatus is being constructed for these

measurements . L. Stark

4. Operation of Pulsed Magnetrons into a High Q-Load

The circuit described in the Quarterly Progress Report, January 15, 1951 has been

shown to be capable of coupling most of the magnetron power into an external high Q

cavity (Fig. VII-7). However, it was found that very intense X-radiation was generated
-6

in the cavity. With an indicated pressure of 2 x 10 mm Hg on the ionization gauge on
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Fig. VII-7 Switching circuit for coupling
the enerv of a magnetron into
an external cavity.

CAVITY

the pumping lead, there was a visible bluish discharge in the cavity and a total radiation

intensity of 3r per minute was measured at point X in Fig. VII-8. Sixty percent of this

radiation had a photon energy < 100 kev and the limit of the spectrum was about 1 Mev,

with a peak magnetron power output of about 0. 5 Mw. (The radiation measurements

were made by Dr. S. Levin of the Health Physics Department.)

To minimize the amount of lead required to shield the apparatus, and to eliminate

breakdown across the iris of the cavity on the waveguide side of the vacuum window, a

new cavity and waveguide section have been built, both of OFHC copper waveguide. The

waveguide section is sealed by resonant vacuum windows on both ends. The cavity as

well as the waveguide section are evacuated through a pumping hole in the broad side of

the waveguide. The cavity is tuned by changing the distance between the top and bottom

faces by squeezing.

WAS MEASURED

Fig. VII-8 Position where the x-radiation
intensity was measured.

An attempt will be made to determine

the minimum voltage required of an injected

signal on the tips of the magnetron vanes

to lock the magnetron into the desired mode

of operation. A c-w magnetron will be used

to inject a locking signal through a 1B38

pre-Tr tube. The pre-Tr tube will break

down under the higher power of the pulsed

magnetron and connect the latter to the high

Q cavity without a ballast load.

H. J. Krusemeyer
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5. l-Mev Pulsed Electron Source

a. Tube

Construction of the Pierce-gun type diode described in the Quarterly Progress

Report, January 15, 1951 has progressed to the point where it is nearly ready for the

final assembly.

Tests showed that the proposed filament-cathode assembly consumed considerably

more power than anticipated; therefore the length of the cathode cylinder has been

shortened to minimize the area of radiation. A 0.0034-inch diameter tungsten wire is

being used for the filament in order to reduce filament current and minimize I 2 R losses

in the aluminum foil transformer secondary windings, through which the filament cur-

rent must pass. This filament draws 850 ma at 28 volts when the cathode is operating

at 830 °C. However, 67 volts must be applied to the grounded side of the split trans-

former secondary, and a loss of 33 watts results in the transformer alone.

An attempt has been made to obtain a light metal for the electron window which

would absorb less energy from the electron beam than would a stainless steel window.

A 0.0015-inch thick stainless steel window was held at 450°C for three days, with no

vacuum failure. A titanium window, however, failed after only one hour because of

high-temperature creep. While it has not yet been tested, beryllium seems to offer

the desired characteristics if a sufficiently thin sheet can be obtained.

A. W. Boekelheide

b. Modulator

A modulator for the high-energy electron source has been designed and is being

constructed. It is of the d-c line discharge type and employs a 100-henry charging

reactor, two 371B charging diodes in parallel, and a 0.1 mfd storage capacitor. The

value of the storage capacitor will have to be adjusted, since it is practically impossible

to calculate. This is because the total capacity of the tube, secondary of the pulse trans-

former, leads, etc., as seen from the primary input terminals, is not at present known.

A pair of 5C22 thyratrons operated in parallel will be employed as a switch for the

modulator. An 18-kv, 0.3-amp, induction regulated, d-c power supply is being employed

to drive the modulator. An A/R range scope whose trigger is amplified by a pulse

amplifier will be used to trigger one thyratron. The use of a balanced reactor in the

plate circuit of the thyratrons insures firing of both tubes even though only one is

triggered. "he principal components of the modulator circuit are shown in Fig. VII-9.

The balanced reactor has been tested with a pair of 5C22 thyratrons at a pulse width

of 1 p.sec and 1000 cps recurrence. Operation was quite satisfactory. The reactor

consists of twenty turns of No. 18 copper wire wound over a hypersil core on a form

1-3/4 inches in diameter. The modulator is capable of delivering pulses of 20 kv at
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PULSE
TRANSFORMER

Fig. VII-9 Resonant d-c line charging modulator.

600 amp to the primary of the pulse transformer. At a 50-to-i step-up this provides

the 1-million volt pulse potential for the diode. The limitation to the pulse voltage is

due to the thyratrons. This may be increased by a series-parallel arrangement of

four tubes if necessary. L. Roberts


