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Abstract

We define the overconvergent de Rham-Witt complex Wt- U for a smooth affine
variety over a perfect field in characteristic p. We show that, after tensoring with
Q, its cohomology agrees with Monsky-Washnitzer cohomology. If dim C < p, we
have an isomorphism integrally. One advantage of our construction is that it does
not involve a choice of lift to characteristic zero.

To prove that the cohomology groups are the same, we first define a comparison
map

tF " QCt --+ Wt QZT"

(See Section 4.1 for the notation.) We cover our smooth affine C with affines B each of
which is finite, tale over a localization of a polynomial algebra. For these particular
affines, we decompose WttQ into an integral part and a fractional part and then
show that the integral part is isomorphic to the Monsky-Washnitzer complex and
that the fractional part is acyclic. We deduce our result from a homotopy argument
and the fact that our complex is a Zariski sheaf with sheaf cohomology equal to zero
in positive degrees. (For the latter, we lift the proof from [4] and include it as an
appendix.)

We end with two chapters featuring independent results. In the first, we reinter-
pret several rings from p-adic Hodge theory in such a way that they admit analogues
which use big Witt vectors instead of p-typical Witt vectors. In this generalization
we check that several familiar properties continue to be valid. In the second, we offer
a proof that the Frobenius map on W('c,) is not surjective for p > 2.

Thesis Supervisor: Kiran S. Kedlaya
Title: Cecil and Ida B. Green Career Development
Associate Professor of Mathematics
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Chapter 1

Introduction

We begin in the next chapter by recalling some concepts which we will use repeat-

edly. Our goal is to provide an alternative construction of the Monsky-Washnitzer

cohomology groups of a smooth affine variety, and in Section 2.1 we recall the cur-

rent construction. We point out the drawback of the current construction, namely,
its reliance on a non-functorial choice of lift to characteristic zero (despite which the

cohomology groups are functorial).

In Section 2.2 we recall the map tF which will be the basis for our comparison

map between Monsky-Washnitzer cohomology and overconvergent de Rham-Witt co-

homology. We also recall the notion of basic Witt differentials, which are a sort of

basis for the de Rham-Witt complex of a polynomial algebra in characteristic p. We

make the sense in which they are a basis precise in Proposition 2.2.8, both for the

full de Rham-Witt complex and for its finite level analogues.

In Chapter 3 we define the overconvergent Witt vectors of radius C for any smooth

affine ring (always of characteristic p). We define a Witt vector to be overconvergent

if it is C-overconvergent for some radius C. The notion of a fixed radius is important

because it enables us to work with finite-level Witt vectors. (The general notion

of overconvergence is meaningless for finite-level Witt vectors, because every finite-

level Witt vector is overconvergent of some radius.) There is a different definition of

overconvergence in [4], and we check that the two notions agree.

As the overconvergent Witt vectors form a subring of the Witt vectors, we define
the overconvergent de Rham-Witt complex as a subcomplex of the de Rham-Witt
complex. Because the de Rham-Witt complex contains elements which are infinite
sums of basic differentials, our definition must take into account specific radii. (An
earlier definition we considered involved defining the overconvergent de Rham-Witt
complex as the sub-differential graded algebra generated in degree zero by overcon-



vergent Witt vectors. This complex is a proper subcomplex of the overconvergent de

Rham-Witt complex as we define it.)
Our strategy for both the overconvergent Witt vectors and for the overconvergent

de Rham-Witt complex is to define the notion carefully for the case of a polynomial

algebra, and then use the functoriality of our constructions to extend the notion to

the case of general (smooth) affines. (See Definitions 3.0.5 and 3.0.6, respectively.)

In Section 4.1 we define our comparison map between the Monsky-Washnitzer

complex and the overconvergent de Rham-Witt complex. We check that it is has nice

properties with respect to radii both for the case of a polynomial algebra and for the

case of a finite etale extension of a polynomial algebra, though the latter result is

significantly more subtle.

This section also contains one of the more important results of the paper, Theorem

4.1.6. We adapt an argument from Monsky and Washnitzer's original paper [18]

to establish both the functoriality of our construction and the independence of our

comparison map from the choice of Frobenius lift, at least after tensoring with Q. We

describe to what extent our results also hold integrally.

In Section 4.2 we use an analogue of the basic Witt differentials described in

Section 2.2 to check that our comparison map is a quasi-isomorphism. We sacrifice

the independence property that the basic Witt differentials possess, but in exchange

our description is valid for a much larger class of rings. Our description holds for

every ring B which is finite 6tale over a localization of a polynomial algebra. For such

a ring, we decompose WtQ2 T into an integral part and a fractional part and then show

that the integral part is isomorphic to the Monsky-Washnitzer complex and that the

fractional part is acyclic. This argument is inspired by the argument of Section 3.3

in [14], which compares de Rham-Witt cohomology with crystalline cohomology.

In Section 4.3 we check that the special affines we have been working with suffice

to cover any smooth affine variety. This allows us to extract from our work in the

previous sections statements concerning general smooth affine varieties. The section

concludes with the following, which represents our main theorem.

Theorem 4.3.3. Let C denote a smooth variety over a perfect field in characteristic

p. Let i = Llogp(dimC)J. Let Ct denote a lift as in Section 2.1. Fix a Frobenius lift

F on Ct. Let tF denote the comparison map described in Section 4.1.

(a) Then after multiplying by p" the induced map on cohomology

p'tF : H'(2ct) - H'(Wt r)



is independent of F.

(b) It is functorial in the sense that for any map of smooth affines : D,

Frobenius lift F' on Dt, and lift g : Ct -- Dt, the two induced compositions

p'tF' g : H'(Qct) - H'(tD) --> H(WtQ7 5)

and

o ptF : H'(Qct) -- H'(WttfU-) --+ H'(Wt Q7)

are equal.

(c) Rationally, the map p"tF is a quasi-isomorphism. If dim C < p, we have an

integral isomorphism.

The proof of this theorem relies on the fact that the overconvergent de Rham-Witt

complex is a Zariski sheaf with sheaf cohomology equal to zero in positive degrees;

for that we reference [4]. For the convenience of the reader, we lift the proof in op.

cit. and include it, essentially verbatim, in our Appendix B.

The following two chapters, the final two before the appendices, contain signifi-

cantly different material, although the hope is that the notion of overconvergent Witt

vectors (if not the full complex) will eventually play a role here as well. In Chapter

5, we begin by reformulating several rings from p-adic Hodge theory in a way that

makes essential use of the ring of p-typical Witt vectors. In particular, we show that

A+ may be reinterpreted as an inverse limit of rings of Witt vectors, with transition

maps the Witt vector Frobenius. We verify several known properties of this ring. In

the next section, we replace the p-typical Witt vectors W in the earlier constructions

with the ring of big Witt vectors W. We mimic our proofs from the previous section

to deduce analogous properties of these new rings.

Chapter 6 is a note explaining a result that surprised us during our study of the

material in Chapter 5. Explicitly, we prove there that the Witt vector Frobenius

F: W (c) -W (c,)

is not surjective for p > 2 (though it is surjective on finite levels).

Our paper contains two appendices. The first is a collection of computations
involving Witt vectors which are necessary for some of our arguments but are not
particularly enlightening. It is the author's belief that the proofs of some of these
technical lemmas could be simplified through the use of Gauss norms as in [3] and
[4].



Finally, as already stated, our Appendix B reproduces the proof in [4] that the

overconvergent de Rham-Witt complex is a Zariski sheaf.



Chapter 2

Preliminary Material

2.1 Monsky-Washnitzer cohomology

This section serves the dual purposes of reviewing Monsky-Washnitzer cohomology

and of establishing some notation. Let k denote a perfect field of characteristic p.

Let W(k) denote the ring of p-typical Witt vectors with coefficients in k. Consider

any a E W(k)(x), the ring of convergent power series in one variable over W(k). We

can write
00 n

k

a = E pk E ajkxJ,

k=O j=O

where we force: each ajk E W(k)*UO; ank,k f 0 unless nk = 0; and for fixed j, ajk $ 0
for at most one value of k. Under these restrictions, this form is unique. Then we say

an element is overconvergent if there exists a C such that nk < C(k + 1) for k > 0.

If we wish to be specific, we call such an element C-overconvergent. The collection

of all overconvergent series is a ring which we denote W(k)(x)t.

We can generalize this to the multivariable case. For this, the second series should

be over a (bounded) multi-index, and the criterion becomes Inkl C(k+ 1), where the

norm is I(al,..., an)l = E ai. This agrees with the usual notion of overconvergence

(see for instance [11] for that notion). Our description enables us to write the ring

W(k)(x 1 ,... ,) t as a union of C-overconvergent modules, and we have defined the

radius C in such a way that when we make the analogous construction in the ring of
Witt vectors, the notions of radius will match.

Convention. Unless otherwise stated, A denotes the polynomial algebra in n
variables k[Tjl,. . , ]; A denotes the lift W(k)[x1,. .. , xn]; An denotes the polyno-
mial algebra over the truncated Witt vectors W,(k)[z,... ,,Xn]; A t denotes the ring



of overconvergent elements just described, and At,c denotes the submodule of C-

overconvergent elements.

We must also extend the notion of overconvergence to quotients of polynomial

algebras. For a smooth affine variety Spec B over k, there exists a smooth lift of the

form B = W(k)[xi, ... , Xn]/(fl, ... , f) (see [20], p. 35). We then set

Bt = W(k)(xi,... ,Xn)t/(fl,. ... , fm).

For this fixed presentation, we say an element x is C-overconvergent if there exists a

C-overconvergent element of W(k) (xl,... , n)t projecting onto x. The notion for a

particular C depends on the presentation, but the union over all C will be indepen-

dent.

One important property of these overconvergent lifts is that we can also lift maps,

though not uniquely (see Theorem 2.4.4 (ii) of [20]). In particular, there exist lifts of

Frobenius.

The previous paragraphs explained how to associate a ring Bt to a smooth affine

ring B = k[xl, ... ,n]/I. Let QBt/W(k) denote the module of continuous differentials

of Bt relative to W(k). The Monsky-Washnitzer cohomology groups of B are defined

to be the cohomology groups of the complex

QBt/W(k) ®Z Q.

The key point is that it is not obvious if these groups are independent of the choice

of lift or if the construction is functorial. Both of these questions have affirmative

answers, see [20] p. 37. The alternative construction we propose will not depend on

any choices and will be obviously functorial.

These notions are also well-defined and functorial integrally. This is implied in

Monsky and Washnitzer's paper [18], p. 205.

2.2 The de Rham-Witt complex

In this section we review the de Rham-Witt complex. Our focus will be on the

results required for what follows, and in particular our treatment will be by no means

complete. We will focus in this section on two main details: a homomorphism tF

which injects Bt into W(B), and the notion of basic Witt differentials for the de

Rham-Witt complex over a polynomial algebra A.



For a smooth affine B and a choice of Frobenius lift F : Bt -+ Bt, we have a map

SF : Bt - W(Bt) (2.2.1)

where, if we denote SF(X) = (so, si,...), the si are the unique solutions to the equa-

tions sp + ps ..+ + pns, = F(x) for every n > 0 (see p. 508 of [10]). The

important map for us will be tF, the composite of SF with projection to W(B):

t,: Bt 4 W(Bt) -- W().

Proposition 2.2.2. The map tF satisfies the following properties: (i) It is injective.

(ii) It is p-adically continuous. (iii) It is functorial in the pair Bt, F. (iv) If F(x) = x P

for some x, then tF(X) = [], the Teichmiiller lift of the reduction of x.

Proof. It is clear from the definition that if p { x, then -o # 0. Because tF is a

homomorphism and W(B) is p-torsion free, property (i) holds. For property (ii),
note that the length-n truncated Witt vector tF(x) n depends only on x mod pn+l.

Properties (iii) and (iv) are stated explicitly in [10]. IO

We now define the de Rham-Witt complex. Continue to let B denote an affine

ring in characteristic p, although the following few results come from [9], where they

consider in fact arbitrary Z(p)-algebras.

Definition 2.2.3. A Witt complex over B is the following:

1. A pro-differential graded ring E* and a strict map of pro-rings A : W (B) -+ E0.

2. A strict map (Frobenius) of pro-rings F : E.* -- E*, such that FA = AF (where

the second F is the usual Witt vector Frobenius) and Fd[b] = [b]p-ld[b]. (Here

[b] denote the image of the usual Teichmiiller lift of b under A.)

3. A strict map of graded E*-modules V : F,EL, --+ E.* such that AV = VA,
FdV = d and FV = p. (The notation FE., indicates that we think of E*

here as an E.*-module via the Frobenius map.)

A map of Witt complexes is a strict map of pro-differential graded rings commuting

with the three maps A, F, and V.

The reason for this definition is the following.

Definition 2.2.4. The de Rham-Witt complex over B is the initial object in the
category of Witt complexes over B. It is denoted W. -.



(Of course, it must be shown that this initial object exists. See for instance [9],
where this is proven more generally for Witt complexes over any Z(p)-algebra. In the

characteristic p case, it should be noted, we have not only FV = p but also VF = p.)
From now on, when we are not speaking of the de Rham-Witt complex in finite levels,
we omit the "." subscript. The following proposition (Theorem A of [9]) gives us a

way to represent elements of WQ2, though not uniquely.

Proposition 2.2.5. The canonical map 2W,,(-,) - WnQ2- induced by A in degree

zero, is surjective.

We now review some of the tools for studying the de Rham-Witt complex that

will be used in our analysis. They will give us a unique way to write each element of

the de Rham-Witt complex, though only over a polynomial algebra A. Most of these

definitions and results come from [14].

Definition 2.2.6. A weight k is a function with values in Z[1] defined on the integers

in a certain interval, k : [1, n] -- Z[]. The weight is called integral if each component

is integral.

The support of k, denoted Supp k, are those integers i for which k(i) O. We fix

a numbering of the elements in the support,

Supp k = {il,..., i},

in such a way that

ordp ki, < ... < ordp kir.

We use I to denote an interval of Supp k with the prescribed order,

I= {il, iz+l,..., il+m}-

We let k, denote the restriction of k to I.

We denote by P a partition of Supp k into disjoint intervals

Supp k = Io Li I1 U... U I,

where the order of the intervals Im agrees with the chosen order of Supp k. The

interval 1o may be empty, but the intervals 11,..., It may not be. Denote by r E

[0, 1 - 1] the first index such that ki,+l is integral. If I is not integral, set r = 1.



Let t(k) denote the smallest integer so that pt(k)k is integral, and we let u(k) :=

max{0, t(k)}. We can think of u(k) as the denominator of k. Make similar definitions

for kIm, for intervals I,.

Definition 2.2.7. A basic Witt differential e := e((, k, P), for k and P as above and

( E Vu(I)W(k), is a special element of W~Q defined as follows. Set u = Vu(I)q.

1. If Io # 0, then

e := Vu(Io) (Xpu(Io)ko ) (dVu(I1)Xu(I1)kj) ... (dVU(I1)XPu(Ir)kr)

(F-t(r+)dXpt('r+1)kIr+l) (...F(l )dXPt'(I)k);

2. if Io = 0 and k is not integral, then

e:= (dV u (I ) (XpU(I1)kI )). (dVU(Ir)XPu(Ir)kIr (F-t(Z+)dXP(r+1)kIr+l ...

(F-t(I)dXPt(I)kl ;

3. if Io = 0 and k is integral, then

e := (F-t(l)dXPt(l)kIl) ... (F-t(I)dXPt(Ii) kil

Proposition 2.2.8. Each element of WQ-f can be written uniquely as a (possibly

infinite) sum of basic Witt differentials, where for any m all but finitely many of

the ( terms are in V m (W(k)). Furthermore, each element of W, n can be written

uniquely as a finite sum of basic Witt differentials with weights k having denominators

at most p"-l

Proof. These results are Theorem 2.8 and Proposition 2.17 of [14]. O

From the above proposition, it makes sense to consider the additive subset of W~Q2

consisting of elements whose terms are sums of basic Witt differentials of fixed weight
m. Proposition 2.6 of [14] tells us that this is a differential graded W(k)-module.
The same is true if we only fix the weight modulo 1. Let us denote the differential
graded module corresponding to a fixed weight m mod 1 by W mItQ. If our weight
is fractional and we wish to emphasize this, we may write Wfrac,mQ T.

The weight zero modulo 1 module is precisely what Langer and Zink call the
integral part. They call the complementary module the fractional part. They show



that WnT Q A QAan, and that WfracQ is acyclic (p. 74). Our strategy is to show

that

lim lim W ,int lim Bt,c
Cn C

and that Wt,c, mQ_ is acyclic for fixed non-zero weight m modulo 1, for every n, and

for C sufficiently large.

Proposition 2.2.9. Let k denote a fixed fractional weight mod 1, and let F denote

a lift of Frobenius to At which maps xi -H *4. The group W~Zc,k_" is an At-module,

where the multiplication is defined by aw := tF(a)w.

Proof. We will follow Langer and Zink's convention and let Xi denote [xi]. We need

to check that Wnrac,kQO is preserved under multiplication by tF(a), and it suffices to

check this for a monic monomial a, in which case tF(a) = Xm for some integral weight

m (here we used our assumption that the Frobenius lift maps xi to 4). We consider

aw for w a basic Witt differential of fractional weight k mod 1. There are two cases,

corresponding to the first two cases on p. 40 of [14].

In the first case,

W = VU (rXpOk) (dVul Xp"'lki) ... (F-tdXPtl k),

where the important thing point is that uo > ui for all i. (There is no such inequality

comparing u0 to the ty's.) We can write aw as

aw = Vuo(rXPUo(ko+m) Fu-ol (dXPlkl1) . ..FUo-tl (dXpt k))=: Vuo (i).

In the notation of [14] p. 43, each degree one term of w has the form

XpUo ki Xpso k.
d( ) or d( ).

pUO-Ui pUO-

Then Langer and Zink's Proposition 2.11 shows that wZ is a sum of basic Witt differ-

entials of weight pU (k + m). Hence the result follows from their Proposition 2.5.

In the second case uo = 0, so

aw = Xm(dVl XPuIk' ) . ..(F-tdXPt lk),

where now ul < ui for all i. Using the Leibniz rule and ignoring signs, this can be



expressed as a sum of a term

V 1 ,Xp"Ul .... (F-tldXPt' k ) F-t (dX m)

and a term

d(V~1XPul(ki+m). (F-tdXp tlk) = d (VU1Xp
uL ( k i m )  (F-t'dXPtIlk

The first of these summands can be treated as in the previous paragraph, and the

second is d applied to a term as in the previous paragraph. Proposition 2.6 assures

that d does not change the weight, so we are done. O





Chapter 3

The Overconvergent de

Rham-Witt Complex

Our goal is to define a subring Wt (B) C W(B) with B a smooth affine ring over

a perfect field of characteristic p. Our strategy is to define it carefully for the case

of a polynomial algebra, and then allow functoriality to provide the definition in

general. For the purposes of the following proofs, we define first Wt(R[xi,... , x]) C

W(R[xl,...,z x]) for R a perfect field of characteristic p and also for R an arbitrary

ring of characteristic zero.

As a subset, we define Wt(R[xl,... ,x]) C R[xl,...,zxn] as those sequences of

polynomials (fo, fi,...) such that there exists some constant C for which deg(fi) <

C(i + 1)pi for i > 0. Call such a sequence overconvergent, or, if we wish to be more

specific, "C-overconvergen"t or "overconvergent of radius C". In the next lemma, we

will use the same definition of overconvergent whether we are talking about elements

in the ring W(R[xl,... , x]) or in the ring R[xl,..., x]".

Lemma 3.0.1. Assume R has characteristic zero. A sequence is C-overconvergent

in the sense above if and only if its image under the ghost map is.

Proof. =- If we begin with the sequence (fo, fi,...), then its image under the ghost
map is (fo, foP+Pfl, fo2 +pfp +p 2 f2, . .. ). Clearly this new sequence is overconvergent,
with the same constant C. Of course, this did not use that our ring was characteristic
zero.

--= Here we do use the hypothesis of characteristic zero. Trivially deg(fo) <
deg(fo), deg(fl) < max(deg(fo), deg(fo + Pfl)) since p # 0, and so on. Hence the
latter sequence being overconvergent implies that the former sequence is overconver-
gent. []



We are now ready to prove the following:

Proposition 3.0.2. In the case in which R is a perfect field of characteristic p, and

in the case where R has characteristic zero, the subset of overconvergent Witt vectors

Wt(R[x 1,... , x,n]) C W(R[xi, ... , xn]) is in fact a subring.

Proof. We note now that in R[xi,...,z,]N (with componentwise addition and multi-

plication), the sum and product of two overconvergent sequences is overconvergent.

For addition, we simply take the larger of the two constants. For multiplication, it

suffices to add the two constants.

This fact together with the lemma and the fact that the ghost map is a ring ho-

momorphism already implies that Wt (R[x 1,..., xz]) C W(R [x,... , Xn]) is a subring

when R has characteristic zero. For R = ka perfect field of characteristic p, we begin

with the obvious surjection W(k)[xl,..., x,] -- k[x, ... , Xn]. We've just remarked

that the overconvergent Witt vectors of the left hand side form a subring. The im-

age of an overconvergent series must be overconvergent (because the degree can only

go down after killing the terms divisible by p), and hence because the induced map

on Witt vectors is a ring homomorphism, we've proven the result in general. (It

should also be remarked that we can find a preimage of any overconvergent sequence

in k[xl,..., x,] that is an overconvergent sequence in W(k)[xl,... ,x,n]. But this is

easy, because we may simply replace each coefficient with its Teichmiiller lift without

affecting the degree.) l

The above proof yields the following corollary, which will be useful later:

Corollary 3.0.3. The C-overconvergent Witt vectors form a W(k)-submodule of the

ring Wt(k[x1 ,. . .
,  ]).

It will be important to extend the notion to quotients of polynomial algebras.

Given a presentation k[x, ... ,Xn]/I, it is obvious what the analogue should be: If

w = (wo, wi,...) E W(k[x,... ,Xn]/I), we say w is overconvergent of radius C if

there exists v E W(k[x[l,..., xn]) which is overconvergent of radius C projecting onto

w. We cannot expect the number C to be independent of the presentation, but we

do have the following:

Lemma 3.0.4. The ring Wt(k[x l , ... , xn]/I) = UcW t c (k[x x,.., xz,/I) is indepen-

dent of presentation.

Proof. Assume we have an isomorphism

: k[zx,..., xn]/I --* k[y1,...,ym,]/



Let di denote the minimal degree among representatives in k[yl,..., ym] of c(xi). Let

d denote the maximum of the di's. Then it's clear that an element of radius C maps

to an element of radius dC. O

The preceding lemma ensures us that the following definition makes sense.

Definition 3.0.5. For a smooth affine C k[xl,... , ,n]/I, the overconvergent Witt

vectors with coefficients in iC are defined to be the image of Wt(k[xl,..., x,]) under

the map W(k[xl,... ,x,]) -+ W(C).

We use the above definitions to define the degree zero part of an overconvergent

de Rham-Witt complex. Within the de Rham-Witt complex (not yet the overconver-

gent de Rham-Witt complex), we extend the notion of C-overconvergence to higher

degrees as follows. We declare that: dw is C-overconvergent if w is; the sum of C,-

overconvergent elements for varying Ca is sup C0 -overconvergent, if that supremum

is finite; and the product of a C1-overconvergent element and a C2-overconvergent el-

ement is C1 + C2-overconvergent. Of course, elements in WQk[x,...,xn] will have many

representations, and we say an element is overconvergent of radius C if at least one

of those representations is overconvergent of radius C under the above formula. Note

that in degree zero, our declarations concerning products and sums have already been

verified.

Definition 3.0.6. The overconvergent de Rham-Witt Complex of a polynomial al-

gebra k[xl,...,x ,] is defined as the sub-differential graded algebra of WQk[x,...,xn]

consisting of those elements which are C-overconvergent for some C, as described in

the previous paragraph. It is denoted by W tQk[l..., 7n] . For B an affine ring in char-

acteristic p, we define WtQ7 as the image of W tQk[x1 ,...,-n] under the map induced by

some presentation k[xl,..., x,] -* B.

Lemma 3.0.7. The complex W tQ-g does not depend on presentation.

Proof. We know that the degree zero part of the complex does not depend on pre-

sentation thanks to Lemma 3.0.4. Now consider a term wodw 1 ... dwcm, with each

wc E Wt4 ° = Wt (B) which has radius C as specified by one presentation. By the

lemma, each wi has some radius C depending on C as specified by another presenta-

tion. Because the number of terms m + 1 is bounded by dim B + 1, we see that our

notion of overconvergence does not depend on presentation. Ol

We now show that the definition of overconvergent Witt vectors defined here
matches the notion from [4]. We begin by recalling that notion.



Definition 3.0.8. An element w E W(k[xl,... , x]) is called overconvergent if there

exist E > 0 and N > -oo such that for every basic Witt differential e( k,p, k, 7)
appearing in the decomposition of w we have ordv((k,p) - Ek| > N. (Here |k =

kl + -- + k and ordv(w) is defined to be the largest number m such that w E

V m W (k[xi, . . . ,,]).)

We restate the above definition using the concept of Gauss norm from [4].

Definition 3.0.9. For w = Ek,p e(k,p, k, P) in WQk[l,,...,x ] and e > 0, we define

the Gauss norm of w:

7y(w) = inf{ordv Gk,P - e k }.
k,,P

With this terminology, w is overconvergent if y,(w) > -oo for some e > 0.

Remark 3.0.10. We should point out that in our definition, radius Co is stronger

than radius C1 for Co < Ci. In the definition of [4], radius c1 is stronger than radius

Eo for Eo < E1. From a geometric viewpoint, their terminology is preferable.

Lemma 3.0.11. Our notion of overconvergence agrees with that from [4].

Proof. We show first that our notions agree in degree zero. Assume that we have an

element e( k,p, , k,7) satisfying ordv( k,) - Elk| > N. The first u(k) + ordv(rI) =

ordv(k,p) components of this element are zero, and the next component has degree

pordv((k,P)kI. The later components may be ignored. To say that such an element is

overconvergent under our definition, we must find a C such that

(ordv(k,p) + l)pordv(k,p)C > pordv(k,,P) |kj.

We can indeed find such a C: if N > 0, we may take C = 1; if N < 0, we may take

C = . It's essential that these expressions for C depend only on e and N.

The other direction is easier. Assume we have Witt components (fo, f, ... ) of an

element satisfying deg fi < (i + 1)piC for some C. We claim that such an element

is overconvergent under the notion of [4] with c = I and N = -1. Consider (a

monomial in) the term fo. The basic Witt differential to which it corresponds has

JkI < C and ordv(k,) = 0. We subtract off monomials in fo until we reach fo = 0.

Inductively, assume we have reached (0, . .., 0, fi, fi+ ,...). Consider now (a mono-

mial in) the term fi. Now ordv(k,p) = i and Ikj < (i + 1)C. This completes the

induction.

We show now that our notions agree in positive degrees. First we show that

an element which is overconvergent under our definition is overconvergent under the



definition of [4]. Note that their definition of radius behaves identically to ours with

respect to sums (p. 5). Their definition also behaves the same as ours with respect to

products, at least if the radii are the same (p. 5 again), and we can arrange that the

radii are the same because we need products of at most dim A + 1 elements. Finally,
from [14] Proposition 2.6, their radius can only improve after differentiation.

It remains to show that an overconvergent element under their definition is over-

convergent under ours. Because our notions behave the same with respect to sums,
it suffices to show that a basic Witt differential with constants 6 and N corresponds

to an overconvergent Witt differential under our definition with radius C depending

only on E and N.

We start with the first case within Definition 2.2.7. With our usual notation,
together with the notation of that definition, we are assuming that

ordv(,r) + u(lo) - EckIo -.. - ekiI > N.

The key is to use the formula V(x)dy = V(xF(dy)) = V(xyP-ldy) = V(xyP-1)dVy,
where y is a Teichmiiller, using the equations (V2) and (V3) on p. 543 of [10]. For

instance, if 1 = 1 = r, (where r = 1 is a concise way of saying that Io and I, are both

fractional), we can rewrite the basic Witt differential as

Vu(Zo) (Xpu(O)kIo) (dVu(I1)XP'(I1) ki

VU(ll) (Vu(Io)-U(1) (XPu(lo)kIo) dXPU(I1)kI)

Vu(Ij) (VU(Io)-u(I) (XPUoko +pu(IO) )ki -pu(I)k ) dVu(Io)-u(I)XPu1)k .

V"U(o) (qXpU(Io)kio+puU)kl-pu(1)kl ) dVu(Io) (XpU(ll)k).

It is easy to see that this is C-overconvergent under our definition, for some C de-

pending only on e and N. The other cases may be treated similarly. O





Chapter 4

Overconvergent de Rham-Witt

Cohomology

4.1 The comparison map

The construction in this section will make explicit the connection between the over-

convergent Witt vectors and the Monsky-Washnitzer algebra. Abbreviate as before

A = k[Zx,... ,x,] and At = W(k)(xi,... ,X) t . Fix a Frobenius lift F on At which

sends xi -+ x4.

In Section 2.2 we described the map

tF : At -+ W(A).

We claim that its image actually lands in Wt (A). Write

Zp nk

a E Ea

k=O j=0

subject to the conventions of Section 2.1. Assume a is a C-overconvergent series. We

will compute the Witt vector components of tF(a) and check that they are polynomials

with degrees satisfying certain bounds, which will ensure that tF(a) is overconvergent,
and in fact C-overconvergent for the same C.

Proposition 4.1.1. Write

(Co, C1 , 2, .. .) = tF(a) E W(A),

with a as above. Then the polynomials ci satisfy deg ci < C(i + l)pi. Hence tF maps



Atc into Wt 'c(A).

Proof. Our goal is to compute tF(O =0k j0 ajkXj). We already noted that our

map is a p-adically continuous homomorphism. So our goal is to compute

>Zp k ZtF(ajk)tF(X)
k=O j=0

We always have VF = p, and for the Witt vectors of an Fp-algebra, we also

have FV = p (see [10], p. 507). In particular, in our case F and V commute and

pk = VkFk. So our goal is to compute

k=0 j=0

Next, note that for ajk E W(k), tF(ajk) = ajk. This is true for Teichmiiller lifts

because, as k is perfect, every lift of Frobenius to W(k) sends [b] to [bp] = [b]P. Hence

it is true for any ajk, because we can write

00

ajk = pi[bi].
i=O

Because of our requirement that F(xi) = x , we have that tF(X) = [x].

So finally we have reduced to calculating the Witt vector components (Co, C1, ... )

of

E Vk F k(ajk)[Xipk]
k=O j=0

Write (hok, h1k, h2k, . ) = _o Fk(ajk)[xjpk]. Write Fk(ajk) = (aojk, alk,. .). Then

by [10] p. 505,

F k (ajk)[j p k = (aOjkjp jk j p k + l , a2jk jpk+2,...).

Then it will be an immediate corollary of Lemma A.0.1 in the appendix that deg hik <

pi+klnk I. (Here it is important that we took our norm on multi-indices to be the sum

of the indices, not the maximum of the indices.) Then another immediate application

of the lemma, together with our bounds on Inki, will yield our proposition. O

We have just shown that tF : Atc -+ WtC (A). We will now show moreover that

if an element of WtC is in the image of At under the map t F, then it is in the image



of A t c . This will require a more careful calculation than did the bound in the other

direction.

Proposition 4.1.2. Assume a E A t is not in At,c. Then its image tF(a) is not in

Wt,C

Proof. In terms of Witt vector components, write tF(a) = (co, c, c2 , ... ). We will

show that if no > C, then deg co > C. We will show that if Ino| < C and Inu > 2C,

then deg cl > 2pC. We will show that if Inol 5 C and Inll I 2C and In21 > 3C, then

deg c2 > 3Cp2. And so on.

We have represented a in such a way that for each k, if Ink > 0, then ankk # 0.

Recall that this implies ankk is a unit, i.e., is not divisible by p. Thus, if nk >

(k + 1)C,we can assume aonkk # 0 (recall the notation from the previous proof, that

Fk(ajk) = (aojk, aljk,...).) This will be important, because it enables us to get a

lower bound on the first term of at least one element

Fk(ajk)[p k] = (aOjkX p k aljkX pk+, a2jkX pk+...).

Our base case is the case Inol > C. Here it is clear that deg co > C. In general,
we assume |nil < (i + 1)C for 0 < i < k - 1, and Ink > (k + 1)C. From the previous

proposition, we know deg ci < C(i + 1)pi for 0 < C < k - 1. The first term of

Fk(ankk)[XnkPk] has degree > (k + 1 )Cpk.

If we write

Fk (ajk)[xi j k = (bk, blk, .),
j=0

then we know deg bOk > C(k + 1)pk (because addition is simple in the first Witt

vector component). Then considering the definition of addition in terms of ghost

components, we know

c + - ' + pkCk = pkb0k +'

All of the unwritten terms on the right hand side have degree < C(k + 1)pk. Hence

deg ck > C(k + 1)pk, proving the proposition. O

We should also extend our results to quotients of polynomial algebras. Let B
denote a smooth affine, let B denote a lift to characteristic zero as in Section 2.1, and

let BtC denote the C-overconvergent submodule corresponding to this presentation.



For a given element b E Bt'C , choose a series

00 nk

a= Zpk ajk cW(k)(x1 ,...,X)t = At
k=O j=0

which is C-overconvergent mapping to b. Let F denote a lift of Frobenius to Bt. We

can find some F' on At which induces F, but it may not send xi F x. Nonetheless,
from Proposition A.0.3 in the appendix, tF'(a) is (C + D)-overconvergent, where

D depends only on F'. Because tF commutes with projection, we have that tF(b) is

(C + D)-overconvergent, and in general C-overconvergent elements map into (C + D)-

overconvergent elements (as long as we pick consistent presentations).
Proving a partial converse will take more work. We restrict to affines as in the

following definition. Our terminology is taken from [19].

Definition 4.1.3. A standard 6tale affine is a ring of the form B = (Ah[ZI/P(z))g

with A a polynomial algebra as before, h C A, Ah the localization, P(z) monic, g E
Ah[z]/P(z), (Ah[z]/P(z))g again the localization, and P'(z) invertible in B.

For instance, an obvious choice is to take h = P'(z), and thus force the invertibility.

As the terminology suggests, a standard etale affine is etale over affine space (because

of our constraints on P). In the context of these special affines, we can get a partial

converse to the previous results.

Proposition 4.1.4. Let B denote a standard etale affine, and fix a presentation

B = [zl,... ), y, z, w]/(yh - 1, P(z), wg - 1).

Let

D EWtC( )

be in the image of tF. Then it is in the image of tFIBt,C+D, where D is a constant

depending only on B.

Proof. To prove the proposition, we must study the degree of lifts of pth roots.

Lemma 4.1.5. Let w E B denote a pth power which has a lift to A of degree C.

Then its pth root has a lift to A of degree at most [cJ + D, where D is a constant

depending only on B.

Proof. First note that dxl,..., dxn are free generators for 1: This is true of course

for a polynomial algebra, and hence also for its etale extension B. (An etale extension



is formally etale (p. 30 of [17]), so by [7] Corollary 20.5.8 we have an isomorphism

We claim that x - ... -x with 0 < ei < p- 1 are free generators for B as a

BP-module. It is clear that the module generated by these monomials over B is in

fact a ring which contains x 1,..., z, and the (perfect) field k. To prove that they

generate all of B, we refer to Proposition 21.1.7 of [7]. It asserts that because SQ/k is

generated by dxl,..., dxn, and because B is a finite type k[B] algebra, then the given

monomials are indeed generators. It remains to check that they are free generators.

Assuming they are not free generators, pick an expression for zero in the form

c C ' . . . x ' ', cl not all zero

which is minimal in the following sense: after ordering the monomials lexicographi-

cally, the largest monomial appearing in the expression with a non-zero coefficient is

smallest. Because dxl,..., dxn are free generators for OQ, the formula

d(E c;x' .. . Xn) = 0

yields n new expressions for zero, at least one of which has a non-zero coefficient, and

each of which is smaller under the ordering described above, which is a contradiction.

(For instance, the expression we deduce from the coefficient of dxl is

E ilC-1 ... xn,

since c, is a pth power and hence its partial derivatives vanish.)

From the above results, given any element in B, we can associate a unique pn-tuple
of pth powers in B, namely, the coefficients of the monomials xa ... x ". We can find

a constant D such that each element in the pn-tuples corresponding to yi, zi, and w i

for 1 < i < p - 1 has pth root with a lift of degree at most D.

We now carry out the following steps to prove the lemma. Write a lift w of U

as a polynomial of degree at most C in A. It can be written as a sum of terms

which are pth powers (of elements of degree IL j) multiplied by sums of terms of the

form x' -... Yin+ zin+2Win+3, with 0 < ij p - 1. The elements of the pn-tuple

corresponding to a term yi"+nzin+2wi"+3 have pth roots of degree at most 3D. Thus
the elements of the p"-tuple corresponding to xil in... in+ 1zin+2win+3 have pth roots

of degree at most 3D + n. In particular the coefficient of 1 for U has pth root of degree

at most [L + 3D + n and the other coefficients must be zero (from our assumptionP~ U11 I~ I~VI~ V1111~ IILI I ~I IVI U LbLIYII



that T is a pth power). This proves the lemma.

Choose D 1 such that tF(x) is Di-overconvergent for every degree one x C A. Let

D denote the max of 2D1 and the D of the previous lemma.

Now we assume we are given an element w E Wfc (A) mapping to our element

Z. We can of course find an element vo E A of degree C projecting to wo E A. The

element wo := w-tF(v0) has jth component with degree at most (j+1)piC+(j+1)piD

by Lemma A.0.10. Its projection wo to W(B) is the difference of two elements in the

image of tF, and hence its projection is in the image of tF. This together with the fact

that its zeroth component woo = 0 implies we can write wo' = p~T1. From the previous

lemma, the jth component of v7 has a lift of degree at most (j + 2)pJC + (j + 3)pJD.

Inductively, assume that at the kth stage of this process we have an element

vk whose jth component has degree at most (j + 1 + k)pJC + (j + 2k)pjD. Using

the previously cited lemma, killing off the zeroth component yields wk whose jth

component has degree at most (j + 1 + k)pjC + (j + 2k)pD. As before, its projection

to W(B) is in the image of tF and has zeroth component equal to zero, hence can

be written as pvk+1, where, by the previous lemma, the jth component has degree

(j + 1 + k + l)pJC + (j + 2k + 2)p3D. This completes the induction.

We have shown that T can be written as tF('), where for u we have nk < (k +

1)C + (2k)D for k > 1. In particular, v is C + 2D-overconvergent. Replacing D with

2D, we are done. LO

We now extend tF to a map of complexes. This yields our desired comparison

map:

tF : Bt - W9Q.

As indicated by the notation, it still depends on our choice of Frobenius lift F. The

following theorem will show as a corollary that the induced map on cohomology does

not depend on F, at least after tensoring with Q. It will also establish the functoriality

of our comparison map over Q.
We will closely follow the argument on pages 205-206 of [18]. Let B and C denote

standard 6tale affines.

Theorem 4.1.6. Let 1, 2 : Bt -+ Wt(C) denote two ring homomorphisms such

that for every b E Bt, V)2(b) - 01(b) = V(w) for some w. Then the induced maps on

differential graded algebras

P'1, p'V2 . QlBt --+ WtQ-C



are chain homotopic, where r = LlogP(dim B)].

The chain homotopy we produce will factor through the following algebra.

Definition 4.1.7. Denote by D'(C) the differential graded algebra with ith graded

piece:

D'() = W [ -][[T]] D WQp'[ ][[T]] A dT.
p p

Fix a presentation Bt = W(k)(xl,... , x, y, z, w)t/(yh - 1, P(z), wg- 1) and with

respect to this presentation define a homomorphism of differential graded W(k)-

algebras

: QBt -+ D'(C)

a- ai(x4) + T(02 (Xi) -1 i

p

Denote by ho and hp reduction modulo (T) and (T - p) respectively. The key point

of course is that ho o (p = b 1 and hp o p = 2.
We prove that p extends to all of OQBt. From the universal property of the de

Rham complex, it suffices to prove that sp extends to a map Bt -- W(C)[] [[TI].
Considering first the polynomial algebra case, we have

o n k  o nk T

Pki~a" -k 1 1 21)Epk E ajxj  E pk E aj(21(Xl) + T(02(Xl)
k=O j=O k=O j=O

We claim that the right hand side can be written as

m=0

where wm E W(C), for all m. But clearly, for fixed k,

T
+ ( 2 (1)

P3
- 0(1.)) 

can be written in this way, and so the claim follows from the fact that W(C) is
p-adically complete.

From this representation of op(f), we see that the image of At does indeed land in
D'(C), i.e., that for a fixed power of T, we do not have arbitrarily large powers of p

Y aj (01(Xi)
j=0

- 01 (XlOW)l ...



in the denominator. It shows moreover that in fact the power of p is bounded by the

power of T.

From the previous argument, a(h) = wi for some wi. Also, note that wo =

$'(h) must be invertible. Hence

1

= W
1- -( o

the sum being over i > 1. Repeat the exact same argument as above, this time for

00 nk 00 nk T

Epk ajxJyl E k E aJI(xl) + -(2(xl )  l(Xl)))"' y))
k=0 j=0 k=0 j=O

Now we identify the image of z under p. Write

P(z) = zr + fizr - 1 +... + fr-1 + fr,

where each fr lies in W(k)(xl,... ,n, y) (subject to certain conditions to ensure the

extension is etale). We guess
T i

and solve for the ci's. The term co must be a root of the polynomial

Xr + l (fl)Xr -l I- + + <(fr),

and so we set co = 1 (z).

Considering the coefficient of T, we find that

01(P)'(co)Ci = p(fi)lCc- 1 + -. + P(fr)l,

where cp(f)i denotes the coefficient of - in cp(f). This is solvable because our ex-

tension is etale. (Specifically, from p. 25 of [17], our extension being 6tale implies

that the resultant res (P, P') of the polynomial P is a unit. Immediately from the

definition of the resultant, see for instance p. 119 of [2], if a is a root of P(z) then

P'(a) divides the resultant and hence it too is a unit. Finally applying the homo-

morphism 1 yields that 41(P)'(co) is invertible.) We are able to get an equation for

every ci in this way, and solving these yields our choice of ,p(z). Checking that such

an expression satisfies appropriate convergence conditions (described below) will take



some care.

Finally, we extend to w in the exact same way that we extended to y.

To prove the homotopy asserted in our theorem, we define "maps" from D'(C)i -i

WtQl-1 which will serve as a homotopy between our maps p'ho and p'hp, where the

word "maps" is in quotes because the maps will actually only be defined on the image

of p'p. Let wi E WQ' []. Then set

L(TJwi) = 0

and

L(TdT A s) = ..
j+l

The right-hand term lies in WQ-[!], and for a general element 6 E D'(C) , L(3) could

be an infinite sum of such terms. We must show that L actually maps the image of

p' into WtQW. The next lemma assures us everything but the overconvergence.

Lemma 4.1.8. The map L sends the image of p"c into WQy.

Proof. For an arbitrary x E QBt, assume p(x) = ... + TJdT A wi + - -. From the

definition of p we see that pj+lwi E WQ. Furthermore, wi is a product of j + 1

terms of the form V(w) or dV(w) with w E WQ'. The terms dV(w) correspond to

terms dx E Q-, hence there are no more than dim B of them. But the term dT also

corresponds to some dx E O-, hence there are no more than dim B - 1 of the terms

dV(w). Because of equation 1.3.12 on p. 508 of [10], a term of the form

k

i=1

is divisible by p k-1. In our specific case k > j + 1 - (dim B - 1). So for pj-"wi toj+1

have no p in the denominator, it suffices that -, be a lower bound on the quantity
-dimB+1

[logP( -j+ )] in the case j > dimB - 1 and on the quantity Flogp,($-)] in the

case j < dim B- 1. In both cases, this is clear. O

We now prove that the image of L is in fact overconvergent. This will rely on the

following definition.

Definition 4.1.9. We say an element TJE is overconvergent of radius C if wi is
overconvergent of radius C. Radii for sums and differentials are defined as before.

This definition is useful because of the following.



Proposition 4.1.10. (a) If x E QBt is overconvergent, thenplyp(x) is overconvergent.

(b) If y = pK"p(x) is overconvergent, then L(y) is overconvergent.

Proof. (a) We first set some notation. For each i, let wi be such that 0 2 (xi)-

01(xi) = V(wi). Let D be such that each Oj(xi) is D-overconvergent. Note that

V(wi) is also D-overconvergent. Next, note that if two elements of D'(C) are C1 and

C2-overconvergent, then their product is C1 + C2 overconvergent, and their sum is

max(Ci, C2)-overconvergent.

Consider a E A t which is overconvergent of radius C. After fixing k, consider the

quantity
nkT T

k E aj(1(Xl) + -V(wi)) " (0 1 (Xn) + -V(wn))"
p pj=0

We can rewrite this as
Inkl i

Pk Vi,
i=O

where each vi is a sum of degree at-most Ink products of D-overconvergent Witt

vectors. From Lemma A.0.4 in the appendix, pkvi is then D(C + 1) overconvergent

for each i.

To complete the degree zero case, we must account for terms containing y = h, z,

and w = 19
From the previous argument, p(h) = E -wi for some wi, all overconvergent of

some radius D 1 . Also, note that wo = 01(h) must be invertible. After possibly

increasing D 1, we may assume that it too is overconvergent of radius D 1. Write

1

) 1 (( Ti wi

the sum being over i > 1. The key point is that EL is 2D 1-overconvergent and

has zeroth component of degree zero. Hence from lemma A.0.7, the element p(y)

is overconvergent of radius 5D 1. We may now apply the same argument as in the

previous paragraphs.

We now consider the terms including powers of p(z). From the above results it is

clear that every ci (in the notation above) will be overconvergent. We must verify that

they are all overconvergent for a common radius. Choose D such that the following

are all overconvergent of radius D: (0'(co)) - 1 , p(fi) for all 1 < i < r, and ci for

0 < j < r - 1. From the formula already given, this immediately implies that cl is

overconvergent of radius (r + 1)D and is in the image of Verschiebung, and hence is



extraconvergent of radius 2(r + 1)D (see the appendix).

We inductively assume that ci is in the image of V i and has jth component

with degree at most jpJ2(r + 1)D + ipi(r + 1)D. This is in particular 4(r + 1)D-

extraconvergent (because of our assumption that the first i components are zero), and

lemma A.0.8 in the appendix implies that ci+l also satisfies our inductive assumption,

and so we are done.

Again, we can use the same proof for w = that we used for y = ), now that we

know p(g) can be written as C -wi for some wi, all overconvergent of some radius

D 1.

The extension of this proof to higher degrees is automatic, because each element

in QBt is a finite combination (under the operations of differentiation, multiplication,

and addition) of terms in degree zero. (Note that this proof makes no mention of p'.)

(b) Because our map is additive and because of our definition of radius, it suffices to

show that if wi is C-overconvergent, then L(Tj 'i A dT) = is lC-overconvergent,

where 1 is some number depending only on B.

We use equation 1.3.12 on p. 508 of [10] again. It implies that the element wi

is in V m , where m > j - dimB + K and the element wil/(j + 1) is in V m' , where

m' > j - dimB + K - log(j + 1). There exists an N depending only on B such that

for j > N, m'> logp(j + 1).

Set v = [logP(j + 1)J. For any element w E V v such that (j+ 1)w is overconvergent

of radius C, we claim that w was overconvergent of radius 2C. Here is the argument:

Write w = (0,...,0, f,, f+l,...), and write dk = deg fk. We are interested in dk
when k > v. Let d = vp(j + 1). Then pdw is C-overconvergent by assumption, which

translates to pddk < (d + k)pd+kC for every k > v Hence dk (d + k + I)pkC <

2(k + 1)pkC, where the last inequality follows from the assumptions that k > v > d.

For the constant 1, we may take max(2, N): we have covered all the cases except

for the finitely many in which j < N, and in those cases we are dividing by no more

than a factor of N, which can increase the radius by no more than N (and in fact,
no more than a factor of [logp(N)J). Ol

It is trivial to check that L is indeed a chain homotopy. For the convenience of

the reader, we state explicitly the applicable sign convention:

d(w A l7) = dw A q + (-1)zw A d7,

where w is of degree i. Our notation is taken directly from [13], p. 748.

We have two corollaries to the theorem of this section.



Corollary 4.1.11. Let F, F' denote two lifts of Frobenius to Bt. Then the induced

maps

p'tF,p'tF ' " QB -+ WtQf

are chain homotopic.

Corollary 4.1.12. Let g: B -- C denote a morphism of localizations of polynomial

algebras. Let F1, F2 denote Frobenius lifts on Bt, Ct respectively. Fix a lift g : Bt -+

Ct. Let g also denote the induced map Wt-H --+ WtQ. Then the two maps

p"tF2 o 9, p"g o tF : QBt -+ WtQ

are chain homotopic.

The best case occurs when r = 0, or, equivalently, when dim B < p. In this

case we bound the degrees of non-zero terms occurring in OBt. The following result

is attained by applying the above argument to terms in degrees p - 1 and below.

Because we our argument now applies to only some of the terms in the complex, the

result can no longer be phrased in terms of a chain homotopy.

Corollary 4.1.13. Let F, F' denote two lifts of Frobenius to Bt. Then the induced

maps on cohomology

tF, tF' : Hi(RBt) - H (WtQ)

are the same for i < p - 2.

Proof. For i < p - 1, we can emulate the above argument to find maps h : Rt -
WQLB 1 such that dh + hd = tF - tF,. Hence, the induced maps on cohomology are

the same for i < p - 2. Ol

Remark 4.1.14. We thank Liang Xiao for pointing out that such a result might hold.

4.2 The induced map on cohomology

In this section we prove that the comparison map of the previous section is in fact

a quasi-isomorphism. Our basic strategy follows that of [14], where they compare de

Rham-Witt cohomology with Crystalline cohomology. They decompose WQ7- into

an integral part and a fractional part and demonstrate an isomorphism between the

integral part in finite levels and QA, and show that the fractional part is acyclic. We

mimic this, although we work with our standard etale affines B.



We know from [14] that

WQk[x1,...,xn] W int k[x,...X,n] e Wfrac k[,...,

This decomposition comes from the weights k in the basic Witt differentials. Using

these same weights we induce a direct sum decomposition

W tQk[xl,...,xn] int k[x,...,xn , W t,fracqk[,...,

In finite levels, from Section 3.3 of [14], we have an isomorphism

-An + W- ntQk[xl,...,Xn]"

Because inverse limits are left exact, and because B/A is flat, we know at least that

Oo --+ Wint - is injective, where B" denotes the p-adic completion of B.

We claim that the map

lim Blim ,C lim lim Wint,t,c
C n C n

is an isomorphism. Its injectivity follows from the injectivity of the maps QBt,c -4

Wint,t,C+DQ - (described in the previous paragraph) and the injectivity of the transi-

tion maps in the direct limit. The surjectivity follows from Proposition 4.1.4.

Our next objective is to show that for C sufficiently large, Wfrac,t,CQ_ is acyclic.

We keep the notation from the preceding section. Using the basic Witt differentials

of [14] we showed in Section 2.2 a finite direct sum decomposition

WnfracR . W mW Q y_4 ,

where the sum is over nonzero weights mod 1. We also checked that WmQgf is an

At-module for any (possibly zero) weight mod 1. Using our corollary on p. 70 in the

appendix, we deduce

WfracB 2 Bt At fract &t At mWnm ) = m (Bt At Wnm ).

(Tensor products of modules commute with direct sums, see [13], p. 608.)

Using basic properties of differentials and the above isomorphism, we see that any
element of WfracQ can be written as a finite (because we are in a finite level) sum
of elements of the form fwodwl1 ... dwm satisfying the following conditions:



1. Each wi is a monic monomial with (possibly fractional) exponents < 2.

2. No xi appears in two of the wi's.

3. Some xi appears to a fractional exponent.

4. The term f corresponds to an element of Bt.

If we want to restrict further to a specific weight k mod 1 (this is as specific as we

can get in this context), we also force:

5. The term fwodw l ... dwm has weight k mod 1, as read off from the exponents

of the monomials.

To summarize, f corresponds to a degree zero integral element, the fractional part

is contained in the wi's, and we have put strong restrictions on the exponents which

can occur in the wi's so that if we wish to compute the radius, this part may essentially

be ignored. The monomials are required to be monic so that p-power coefficients will

affect the radius of f.

To show that W'Qg is acyclic, without yet considering radius, we give a recipe

g which, given a cocycle, produces a preimage of it. (We suspect that g is in fact a

homotopy between the maps 0 and 1 on Wkft, but checking that g is well-defined

with respect to the relations which hold in the de Rham-Witt complex seems difficult.)
Continue to have the weight k fixed and non-zero. Without loss of generality we

may assume that the x1 exponent is fractional and appears in either the wo or wl

term (but not both by property 2 above). Let 1/a denote the exponent of xl. So in

particular, pla in Z(p).

We define g on a given term fwodwl ... dwn and extend it additively; g should

be thought of as integration with respect to Xl. For our purposes, checking that the

map g is independent of such a presentation is unnecessary.

If xl appears in wo, then put g(fwodwl ... dwn) = 0. If xl appears in wl, then

put

g(fwodw, ... dw) = w0w,(1 - a(xl ) + a(xl )2 _- )fd 2 ... dw.n

Note that the image of g has the same form as our original term: for instance, wowl

will play the role of wo, which is allowed because of our hypothesis that there are no

repeated variables, so no exponent becomes too large. This restriction on the form

will be important when we wish to read off the radius of an element.



Proposition 4.2.1. For a fixed presentation of an element w, dg + gd = 1. In

particular, every cocycle is a coboundary.

Proof. It clearly suffices to prove this for a single term w = fwodwl ... dw,. The two

cases, as before, are wo possesses an xl term and wl possesses an xl term. In the

first, dg(w) = 0 and

gd(w) = wo(1- ... )f dwl ... dw, + g(wodfdwl ... dwn).

Expand df = Of f/Oxidxi. The terms other than dxl get sent to zero under g. (Note

that the weight is preserved throughout, since we are working with weights mod 1.)

So
Of

gd(w) = wo(1 -.. )fdwl ... dw, + g(wox dXldwl ... dwn).Ox1

We need to merge the wo term and the dxl term, because they both have xl terms

which is not allowed. This yields

Of
gd = wo(1 - ..)fdwl ... dw, + g(axl dwodw1 ... dwn)

= wo(1 - -- )fdw...dw, + wo(-a(x -) + - x)axl f dwl ... dwn)

= fwodw1 ... dwn

where the rearrangement is allowed because, as p divides a, the series is absolutely

convergent.

The other case we must check is where w, possesses an xl term. Before proceeding

we will make a simplifying assumption. We can assume that each wi for i > 1

possesses only one term (using the product rule), and in particular wl has only xl.

This is admissible as long as we don't try to recursively apply our assertion to a term

that is no longer in the proper form, which we will not. Then

d(w) = -f dwidwo ... dw, + wodf dwl . .. dwn

gd(w) = wi(1 - -... )fdwodw2 . .. dwn + g(wodfdwl ---dw,)

= -wI(1 ...-)fdwodw2 ... dwn - (1 ... dxidW2 ... dwn
lol~l )fdwduhd~ Cubr,(0 -)



(note that by our assumptions dxldwl = 0 so the sum does not include i = 1) and

dg(w) = wil(1 - )fdwodw2...dw, + wo( - ...- )fdw, ... dw,+

wowid((1 - . ) f)dw2 . . .dw,.

So we have to show

wo(1 - ---)fdwl - dw, + wowid((1 - ---)f)dw2 . dwn,-

wowl(1 - dxidW2 . . .dwn = fwodwl ... dw,.

Write := (1 - ... )f. Then ¢ has the property that q + ax- = f. Additionally,
for any i = 1, - = (1 - . ) . Our assertion follows directly from these two facts.

(As for the previous case, we replace wldxl with axldwi.) O

We must now incorporate radii into the discussion. We will actually define a new

radius which takes advantage of our restrictions on the form fwodwx ... dw,. Fix a

presentation.

Definition 4.2.2. The radius of a term fwodwl .. dw, is defined to be the radius of

the term f. The radius of a sum of such terms is defined to be the supremum of the

radii of the terms.

Because the wi terms can contribute at most 2n + 2 to the old definition of radius,
and because n is bounded by the dimension of our variety, in the limit no new overcon-

vergent terms are introduced. In other words, an element which is C-overconvergent

in the new definition is (C + 2n + 2)-overconvergent in the old definition.

Lemma 4.2.3. An overconvergent element under the old definition is overconvergent

under the new definition.

Proof. First consider the polynomial algebra case in degree zero. We can write any

C-overconvergent Witt vector as

E- E V"(ajxJ),
n=0 J

where each summand is C-overconvergent. Consider such an element V (ajx). Say

IJ = d. In the old definition this corresponds to a term of radius d/(n + 1)p.
Write x J = X"txF where each variable of XF appears to degree < p'. Then x =



pnfl(z ). In the notation from above, f = pnxl where d/pn > deg x, > d/p n - m,

where m is the number of variables. Then f has radius between d/(n + 1)pn and

d/(n + 1)pn - m/(n + 1). This shows that in the polynomial algebra case in degree

zero, a term of radius C in the old definition will also be overconvergent of radius C

in the new definition.

Next we consider the polynomial case in higher degrees. Write it as vodvl... dvn.

Each vi can be written as fwodwl ... dw,. Then the result follows from the following

two facts: (1) If w = fwodwl ... dwn is C-overconvergent (in the new definition), then

dw is (C + 1)-overconvergent. (2) If w, w' are C, C'-overconvergent respectively (in

the new definition), then ww' is (C + C' + M)-overconvergent, where M depends only

on the ring B.

To extend to the general case, we call upon lemmas A.0.11 and A.0.12 from the

appendix, which together with the above give it to us immediately. O

Let m, denote the degree of ay and similarly for mz and m,. Let m = my +

mz + m,. We will show that for C > m, g maps Wfrac,t,C,kQ7 into itself (with our

new definition of radius).

Lemma 4.2.4. For an element w of radius C > m (under our new definition of

radius), g(w) is also overconvergent of radius C.

Proof. Because of our definition of g and radius, (and because 0 is of course overcon-

vergent of every radius), it suffices to prove

(1- a(xi ) + a2( )2 -

is overconvergent of radius C.

Write f = c cixiyi2Zi3Wi4, a representation of f for which

vp (c > 1

|il + i2 + i3 + i4 - C

Because the series (1-... - )f converges, as already noted, it suffices to check that each

term aj(xi aj) f is overconvergent of radius C. By the same reasoning, it suffices

to consider the case f = cxi1yi2zi3Wi4. And finally, because the map aj (xl ) is a

composite of maps a(x '-), by induction it suffices to show the result for j = 1. Let



dl denote the exponent of x1 . Then we calculate:

a(xi )Cil yi2zi3wi4 = dlCiaxilyi2zi3wi4 + i 2ciail+lyi2-1 3 w 4

ax iaxw

CiZi+1 i2 i3-10 
4  i 4 ciail+y i2 i3 i4-1

To complete the claim, we need to show that all four of these terms are overcon-

vergent of radius C. Because pla, it suffices to check that

vp(c) + 1 > 1

ill + i2 + i3 + i 4 + m - C

This is equivalent to checking

Cv,(ci) + C > lill + i2 + i3 + i4 + m,

which we know by our assumptions. O

4.3 The comparison map for smooth varieties

This section establishes that the special affines considered in this paper suffice to cover

any smooth affine variety in characteristic p. It concludes with our main theorem.

Proposition 4.3.1. Any smooth scheme has an open cover by standard etale affines.

Moreover, we can choose this cover to consist of sets so that any finite intersection is

again standard stale affine.

Proof. Any smooth scheme is covered by opens which are etale over affine space. The

first statement then follows from [19], Chapter 2, Theorem 1.1. Within the proof, we

see that we may choose our cover to consist of distinguished opens of the form D(f).

It's clear from the definition of standard etale affine that a distinguished subset of

one is again standard etale. Finally, the intersection of two distinguished opens is

again a distinguished open. From this, the second statement follows. O

We must use the following external result from [4]. Its proof is reproduced in

Appendix B.

Proposition 4.3.2. Let Spec C denote a smooth affine.



(a) We denote by f E C an arbitrary element. Let d E Z be nonnegative. The

presheaf defined on the basis {Cf} by

Wtdspec(Spec Cf) : Wtd

is a sheaf for the Zariski topology on Spec C.

(b) The Zariski cohomology of these sheaves vanishes in degrees j > 0, i.e.

Haor(SpecC, WtSpec) = 0.

We are ready to state the main result of our paper.

Theorem 4.3.3. Let C denote a smooth variety over a perfect field in characteristic

p. Let n = [logp(dim )]. Let Ct denote a lift as in Section 2.1. Fix a Frobenius lift

F on Ct . Let tF denote the comparison map described in Section 4.1.

(a) Then after multiplying by p' the induced map on cohomology

p'tF : H'(Qct) --+ H'(WtQ)

is independent of F.

(b) It is functorial in the sense that for any map of smooth affines - : C -+ D,

Frobenius lift F' on D t , and lift g: Ct - Dt, the two induced compositions

p'tF, g : H'(Qct) -+ H'(Dt) -+ H'(WtQy)

and

go ptF : H (Qlct) -+ H.(Wt ) - H'(WtQ72)

are equal.

(c) Rationally, the map p'tF is a quasi-isomorphism. If dim C < p, we have an

integral isomorphism.

Proof. Because our complex is a sheaf, it suffices to check (a) and (b) locally. Propo-

sition 4.3.1 shows that we may then reduce to the special affines considered in the

previous sections. For such affines, these properties were asserted in the corollaries
on p. 38.

In Section 4.2, we checked that tF : QBt --+ Wint,tQ was an isomorphism, and
that W actfCQB was acyclic for C sufficiently large. (For B of the specific form in



question.) We wish to say

lim lim Wfrac,t,Q = Wfract

C n

is also acylic. For fixed n and C, Wfrac,t,CQB is finite length over W(k), so cohomology

commutes with inverse limits in our case. Cohomology always commutes with direct

limits, so we have succeeded in showing that tF is a quasi-isomorphism for our special

affines. Hence, by parts (a) and (b), for any smooth affine C, the induced map on

cohomology

p'tF : H'(Qct) -+ H'(WtQ i)

locally has the form p'(p, with o an isomorphism.

Cover Spec C by our special affines as in Proposition 4.3.1. Call the special affines

Spec Bi; we need only finitely many because Spec C is compact. For some tuple

of indices I, let Spec B1 denote nifl Spec Bi. From the proposition we know that

these are also special affines. For the following spectral sequence, let H denote either

Monsky-Washnitzer cohomology or overconvergent de Rham-Witt cohomology. From

our Cech resolution we have a spectral sequence with E(q = Hg(Spec BI) where I is

a p-tuple. Because the Zariski cohomology of our sheaf vanishes in positive degree,

by [6], Proposition 0.11.4.5, this spectral sequence degenerates to HP+q(Spec C). By

Theorem 3.5 of [15], our local isomorphism thus determines a global isomorphism. O

Using Corollary 4.1.13, we can attain an integral quasi-isomorphism in low degrees.

Corollary 4.3.4. The induced map on cohomology

tF : Hi(Qc) -+ H'(Wtf Q)

is an isomorphism for i < p - 2.

Proof. We may use the same proof as for Theorem 4.3.3. The point is that the map

tF induces isomorphisms between the two spectral sequences in the regions q < p- 2.

(Here p stands for the characteristic, not the horizontal coordinate of the spectral

sequence. We let pi denote this horizontal coordinate.) Because we are beginning

at the sheet El, all differentials map from this region q < p - 2 into itself. Our

ultimate goal is an isomorphism between the components EPq for pi + q < p - 2.

No non-zero term from outside the region q < p - 2 is mapped into the region

pi + q < p - 2 by a differential. So, our local isomorphism in low degrees provides a

global isomorphism. O



We end this section by noting that the bound on i in Corollary 4.3.4 is not al-

ways sharp. In particular, if dimC = p - 1, then by Theorem 4.3.3 we have an

integral isomorphism also for H p- 1. More specifically still, we always have an integral

isomorphism in the case Spec C is a curve, even if p = 2.





Chapter 5

An Approach to p-adic Hodge

Theory

This chapter and the next are not closely connected to the previous chapters. In

this chapter, we reinterpret some rings from p-adic Hodge theory in such a way that

they admit "big" analogues. Most significantly, we do this for the ring A+. In future

work, we hope that our previous material will play an important role, in particular

for the construction of p-adic Hodge theory's dagger rings. Bear in mind that where

we write W, we mean p-typical Witt vectors, and where we write W, we mean big

Witt vectors.

5.1 The p-typical case

We start by recalling a result used in the proof of Lemma 1.1 in [8].

Lemma 5.1.1. Let A denote a ring, and a, b E A. If a - b mod p, then aP v bp -

mod p'. More generally, if a b mod p, then ap'- 1 bpv-  mod pV+j-1

Proof. The first statement is proved directly in [8], and the proof is easily adapted

for the more general statement. O

We denote by 6- the ring of integers of the algebraic closure of Qp and by 6c,
the completion of --.

Definition 5.1.2. We write E+ for lim Oc with transition maps x - xp , where the



latter is equipped with a ring structure by declaring

(x + Y)i = lim (xi+j + yi+j)p and
j--oo

(Xy)i = ziyi.

Proposition 5.1.3. We have an isomorphism

lim W(Ocp) - W(lim Oc ) =: A+,

where the maps in the first inverse system are the (p-typical) Witt vector Frobenius.

Proof. We will define three maps and show that each is an isomorphism. Their

composition will be the isomorphism promised in the proposition.

We now define the following maps:

lim W( -c) - lim W(Oc /p) - W(lim /p) W(lim c).

The map 7r is the obvious projection.

Next we explain the map a. Write x = (Xl, x, .. .) for an element of lim W(Oc,/p),

so each xp, E W(6c,/p). Let Xpi denote the jth Witt vector component of xpi.

Write an element of W(im 6 c,/p) as y = (yi, yp,.. .), where each ypi E lim C,/p.

Then we define a(x) = y with ypjpi = Xppi (i.e., the indices switch). This is

well-defined because over a ring of characteristic p, the Witt vector Frobenius is

induced by the map x '-+ xp . It is a ring homomorphism because (x(1 ) + x( 2))pipj =
f (1() (2) (), while (yl) + y(2))pi f )(y , (2) , (1) (2) ) where

Sf(pr p1, ... p while (y +()))pp ) where

f is the polynomial defining Witt vector addition, and similarly for multiplication.

Finally, we define the map /. It suffices to describe a map m 6 pp -- lim 6C,.

Let (, ,a,...) E lim &c,/p. Let a, denote any lift to Oc,. The map P sends this

element to (b, bp. .), where bp : limj_ o ap  The limit exists by Lemma 5.1.1.

The same lemma shows that the map does not depend on the choice of lifts. The

map is clearly multiplicative. It is additive because of the definition of addition in

this ring (Definition 5.1.2).
We now show that each of these ring homomorphisms is an isomorphism. The

map 7 is injective because vp(xppj) = pv,(xp,+pj), and so 7(x) = 0 if and only if

v,(pipj) = oo for every i, j. To see that it is surjective, we construct a preimage of

(T-,T -,...), where each xT E W(Ocp/p). Let xpi denote any lift. Then our preimage



is defined to have pith component

lim Fj (xpi+j).
j--00

The map a is clearly injective and surjective. The only non-trivial part was

checking that it was well-defined and a ring homomorphism, which we have already

done.

Finally, the map lim ,/p --+ lim p inducing P3 is an isomorphism because it has

an obvious inverse given by projection. That this is a left inverse is completely trivial.

To see that it is a right inverse, note that if we start with an element (bl, bp,.. .), then

when we lift the projected elements (bl, bp,.. .), we may simply take the original

elements again. [

Recall, for instance from [1], the map 0 : A+ --+ 6p which sends

p k[Xp] " ZpkXkl,
k=O k=O

where each xpk E lim 61,. The left hand term can be written in terms of Witt vector

components as (x1, xI .. .). Because E+ = lim 6@, is perfect, given the Witt vector

components of W(lim 6cp), we have a unique corresponding set of x1, x, ... as above.

The pnth root of some ypi = (yp , ypip,...) E E+ is (ypip., yip +l,...). Hence

k=O

Proposition 5.1.4. The map 0 sends x := (xl, x,...) E limW(6,) to xl 1 .

Proof. Let y := a o r(x), so in particular ypipi = Xp-. Our definition of P involves

choosing lifts of the terms yppi, but in this case we have a canonical such lift, namely

xpipj. So from the definition,

(p o ao r(x))pjpj = lim j+k
k-oo p+kpj

Replacing k by k - j, which does not affect the limit, we have

(Po a o 7r(x))p = lim pk.

k--oo Pkp



Plugging this in to the definition of 0 from above yields

0 0 i

(0o oc ao 7(x)) = ~ i ~ = lim pkpj _ = lim EpP .
k o-- P ---00 pip3-

j=0 j=0 j=0

Now note that L=orpipx is precisely the pith ghost component of pxi. But by the

definition of the Frobenius map, this term is independent of i. Taking i = 0 completes

the proof. O

Note. The above proof is due to Ruochuan Liu. It is significantly more transparent

than the author's original proof.

Note. From now on, unless otherwise noted, we will write A+ to denote lim W(6p).

This will be the most useful of the various representations, because it translates most

easily to the "big" setting.

Lemma 5.1.5. We have a well-defined injective ring homomorphism, which we call

the "ghost map",

w : A+  I c ,,
iEpz

defined by wp(x) = pk (Xpi) for any k-j = i where wpk denotes the pkth component

of the usual ghost map defined on W(6cp).

Proof. This is clearly well-defined from the definition of the Witt vector Frobenius

on ghost components. Because the usual ghost map is a ring homomorphism, so too

is this extended ghost map. It is injective because the usual ghost map is injective,
which is true because O, is p-torsion free. O

Note. Under the above definition, the map 0 on A+ corresponds to the first ghost

component wl.

Lemma 5.1.6. For every r E pz, we have a Frobenius homomorphism Fr : A+ - iA+

defined as follows. Let x = (xl,Xp,...) E A+. If r = p' with i > 0, Fr(x) =

(Fi(xl), F'(xp),...) where F without a subscript denotes the usual (p-typical) Witt

vector Frobenius. If r = pi with i O0, then Fr(x) = (i , Xpi+ ,...).

Proof. For the i > 0 case, it is clear that Fr is a ring homomorphism because the

usual Witt vector Frobenius is. We attain the result for all values of r by noting that

Fp is the inverse of Fp-. O

Within the previous proof we used the following result.



Corollary 5.1.7. The Frobenii defined above are in fact automorphisms.

Proposition 5.1.8. Let x E A and suppose p I w,- (x) for every i > 0. Then p I x.

Note. The author thanks Abhinav Kumar for showing him this short proof.

Proof. We show that if p wp,-l(x), then p I xl. The same argument will show that

p xp for every i. This, together with the fact that F is a homomorphism, implies

P ix.
We simplify notation. Let a, b E W(6c,) be (p-typical) Witt vectors with F(b) = a

and p I bl. Then we will show a is divisible by p.

Write b = p[/0]+V (b). All we are using here is that multiplication by p behaves as

expected on the first Witt vector component, and that the difference of two elements

with the same first Witt vector component is in the image of verschiebung. Then

F(b) = pF([o]) + FV = p([] + b)

This completes the proof. O

Lemma 5.1.9. The ring A+ is separated for the p-adic topology.

Proof. From Lemma 5.1.5 we know the ghost map is injective, so the result follows

from the fact that 6Cp is separated. O

Lemma 5.1.10. We have a one-to-one correspondence between elements in A+ and

the tails of their ghost components (...., Wp-2, p-, W1, Wp, . . .).

Proof. We need only show that if (. . ., 0, , , wp+l,...) is in the image of the ghost

map, then it must be (...,, 0, 0, 0,,...). By applying a suitable Frobenius isomor-

phism, we may assume wp-i = 0 for all -i < 0. From Proposition 5.1.8, such an

element would be infinitely divisible by p (because dividing by p corresponds to di-

viding each ghost component by p, and so this tail would remain unchanged). Because

A+ is separated by the previous lemma, we are done. O

Lemma 5.1.11. Fix x E A + . If some w,r() € 0, then w,p-i(X) € 0 for all -i << 0.

Proof. Because A+ is p-torsion free, we may use Proposition 5.1.8 to assume that,
after potentially changing r, p { wr (x). Because the Frobenius maps are isomorphisms,
we may assume r = 1.

From the definition of the Witt vector Frobenius, we have that xP1  Xll mod p,
and more generally x, -xll mod p. Then because xll = wl(x) and more generally

xpl = wp,-i(x), we have that w,-i 0 mod p for all -i < 0, and we are done. [



Proposition 5.1.12. The ring A+ is a domain.

Proof. This follows from Lemma 5.1.11 and the fact that 6c, is a domain. O

Proposition 5.1.13. We have (A+)GQp = Z

Proof. Such an invariant x will have to be in

lim W (ZP) C A+.

We claim that all of the ghost components of x are equal. Assume two of them are

not equal. This implies two adjacent terms are not equal, and after using a Frobenius

map, we may assume wi(x) € wp(x).
We now apply Dwork's Lemma 1.1 of [8] with p, = id. Because these elements

are in the image of xl under the ghost map, we have that wl (x) - wp(x) mod p. But

we also have that wl(x) equals the pith ghost component of xp , hence wl(x) - wp(x)

mod pi for every i. This is a contradiction, and so the statement of the proposition

holds. O

Proposition 5.1.14. We have (A+ [])GQp = Qp and moreover (Frac A+)Gap = Qp.

Proof. The first statement follows from the previous proposition and the fact that

A+ is p-torsion free. The bulk of the work lies in proving the second assertion.

The inclusion Qp C (Frac A+)GQP is obvious. Conversely, let 1E (Frac A+)GQ.

Because A+ is p-torsion free, if Pa E (Frac A+)GQp then so too is a. Hence we will

assume p t x and p t y, and prove that ' E Zp. By the previous lemma, only the tails

of the ghost components are important, and so we may assume p { x1l and p ~ y11.

We know that xpi x ll mod p and similarly for y. In particular, vp(xil) < and

similarly for y. Thus we may define the ghost components wp-i for non-negative i as

ratios of the corresponding ghost components of x and y; we will not be dividing by

zero.

For our element to be invariant under GQ, each ghost component wp, must lie

in Qp. From our assumptions on x and y, each ghost component must actually lie

in Zp. After multiplying by an element in Z*, we may assume wl = 1, which means

precisely that xll = yll. (About xll itself, we know its p-adic valuation is less than

1, but it need not lie in ZP.)

We will prove by induction on i that wp-i - 1 mod p for all i > 0. We have

already asserted the base case. Inductively assume the result for a fixed value i - 1.



We have by definition = w- and -i. Cmbining these yields

(Wp y - w P-i+)Y P1 = P(Wp-i+lypip - xpip).

Considering p-adic valuations, and using the fact that p { y1 as assumed in the first

paragraph above, we see that vp(w_j - wp-i+l) > 0. Since it is in Zp, the valuation is

at least one. Now, using our inductive assumption, we know wp-i - 1 mod p, which

completes the induction.

We next claim that pip = ypip mod p for all 0 < j < i. For fixed i we will prove

this by induction on j, the case j = 0 having been proved above. Now assume the

result for a fixed j - 1. We know

<1'; + PXpp + + Xpipi = WU-(-j)(Yl + Pi' + +IflYpipi).
pt 1"--1 P P P

(Note that this formula only makes sense if j < i.) Using Lemma 5.1.1 and reduc-

ing both sides modulo pij+ shows that xpipj = yppi mod p, which completes the

induction.

We will now show that wp-c(-j) - 1 mod pi+l for each 0 _ j < i. Then we will

be done. We again use the formula

x +P-ip + - -+_Xi = Wp •(i-j)( + p4 pi+ .. +py").

It is immediately clear from what we have proven that
--1 ,-

x~P + p .p + - + pi j - .xpp + PYl p + + piypy modpi+1.

Hence wp-(i-j) E Z can be written as 1 + pi+l with a, bE c, and p I b. This

completes the proof. O

5.2 The big case

Let Z denote the integral closure of Z in C, and define A+ :=lim W(Z) where W

denotes the big Witt vectors and with transition maps the big Witt vector Frobenii.

Our goal in this section is to prove results for A+ analogous to those proved for A+

in the previous section. For instance, the following corresponds to Lemma 5.1.5 in

both content and proof.

Lemma 5.2.1. We have a well-defined injective ring homomorphism, which we call



the "ghost map",

rCQ+

defined by w,(x) = wb(Xa) for any = r where wb denotes the bth component of the

usual ghost map defined on W(Z).

Proof. This is clearly well-defined from the definition of the Witt vector Frobenius

on ghost components. Because the usual ghost map is a ring homomorphism, so too

is this extended ghost map. It is injective because the usual ghost map is injective,
which is true because Z is torsion free. O

As in the p-typical case, we will be able to simplify certain arguments by using

Frobenius isomorphisms defined on A+.

Lemma 5.2.2. For every r E Q+, we have a Frobenius homomorphism F A+

A+ defined as follows. Let x = (x1, 2,...) E A+. If r E Z+, we set Fr(x) =

(Fr(Xl), Fr(X2), . .), where on the right hand side F denotes the usual rth Frobenius

on big Witt vectors. Still assuming r E Z+ , we set F (x) = (x,, X2r,...). For general

r = Q+, we define Fr as the composition F o F 1 = Fi o Fa. As in the p-typical
b b

case, these Frobenii are isomorphisms.

Proof. It is clear for r E Z+ that F is a homomorphism, and in fact an isomorphism

with inverse F1. This shows that F1 is also a homomorphism. Thus so too are the

composites. The morphisms for general rational r are well-defined by properties of

the usual Frobenius morphisms. O

Proposition 5.2.3. The ring A+ is a domain.

Proof. Let x, y denote two non-zero elements of A+. It will suffice to show that

Wr(x) / 0 and w,(y) # 0 for some rational r. We know that there are some rational

u, v such that w,(x) # 0 and w,(y) # 0. Let p denote a prime occurring in the

factorization of u or v. From the p-typical case (we can use Frobenii to apply it)
we know that there exists an N such that w u(x) # 0 for all n > N, and similarly

for y. In this way we can assume that u and v have the same p-adic valuation, and

then, after applying Frobenius, that this valuation is zero. Because u and v have only

finitely many prime factors, this process terminates. Ol

Proposition 5.2.4. We have (A+)GQ, = Z.

Proof. The proof is the same as for Proposition 5.1.13. LO



Proposition 5.2.5. We have (Frac A+)GQP = Q

Proof. Write ! with x, y E A+ for a fixed element. Without loss of generality we

may assume wI(y) # 0. Fix any prime p. We have a Galois equivariant projection

+ , where the subscript is to remind us of the fixed p. Then from Proposition

5.1.14 we know that -- Wl(x) for every i E Z. The right hand side is independentwpi(y) - wl(y)

of p, hence - j() for any primes p, q and integers i, j.
The key point in the above was showing that ghost components with prime power

index were equal to ghost components with index 1. But after applying Frobenius,

we can show that ghost components with index a product of two prime powers equal

ghost components with prime power index. Continuing in this manner we get that

the ghost components are independent of index, which proves the proposition. O





Chapter 6

Properties of the Frobenius map

We denote by 6- the ring of integers of the algebraic closure of Qp and by 6c, the

completion of 6-. For arguments which are equally valid for both these rings, we

denote the unspecified ring by R.

Lemma 6.0.1. Fix an element x 1 E R and an integer n > 1. There exists an

element x = (x,xp,..., xp) E W,+1(R) with F(x) = 0 E Wn(R) if and only if

vP(xJ) !1 + +pi.

Proof. -= We will find xp,... ,x, as in the theorem which moreover satisfy v,(xpi)

1£+ -.-+ p for all i < n. In order that x = (xl,Xp,... ,xp) be in the kernel of

Frobenius, it is necessary and sufficient that

i=0

for all 1 < j < n. We will show that the equation with j = 1 is solvable by an

element xp satisfying our condition on valuation. Then inductively we will show

that for x 1,...,xj-1 fixed and satisfying our valuation conditions, the jth equation

is solvable by an element xp satisfying our condition on valuation.

Base case: The equation xP + pxp = 0 is solvable by an element of valuation

pVp(xl) - 1 ...+ pn,

Inductive step: We now consider the jth equation with j < n, having chosen

elements xl,... ,x~-1 satisfying our first j - 1 equations as well as our valuation

conditions. We are done if we show that for each i < j - 1, the element p xi

has valuation at least j + -... + p, for j < n. This is just a calculation:
ip( p:-i) 2 i>+ pilp



Some new notation will help: Set m = j - i > 1 and k = n - i > 2. Note that

k > m + 1. Then we are trying to show

1 1 1 1
pm( + . ) ) >m+-+"'+

p p p p-m

We can rewrite the left-hand side as (pm-1 +... + 1) + +- .. + p--, from which the

proposed inequality is obvious.

It remains to show that the very last equation, i.e., the one for j = n, is solvable

given fixed Xl,...,xpn-1 of the promised valuations. (For Xpn we do not have a
n--i

valuation requirement.) So we must show vp(pix ) > n for i < n. So we wish

to show i + pn-iv,(xpi) > n. Using the notation m = n - i, we are done because
pm( ± + + _i) >m.

=> We continue to refer to the equations above. The equation for j = 1 shows

v,(xl) > . And inductively, the equation for fixed j < n shows that v,(xpj-1) > 1

Inductively, assume that for fixed k < n - 1 we have vp(x i) > 1 + ... - for

0 < i < n - k. The equation with j = 1 yields v,(xi) > + . + 74. Inductively,

to extract the result from fixed j < n- k, we verify v,(p~x-) ) >J + -+ -+ 1 for

i - j - 1. For i = j, this follows from the previous stage. For i < j - 2, we compute

vp(p3 ) > i + p,-i( + j + + where the last equality

follows from the same considerations as above. So we deduce that v,(pi- 1xp, >)

+1 + + 4. From this the result follows at once. O

Lemma 6.0.2. Fix an element xl E R. There exists an element x = (xl, xv,...) E

W(R) with F(x) = 0 if and only if v(x) > p.

Proof. -= This direction follows immediately from the previous lemma.

€= From the previous lemma, the following elements are in the image of the ghost

map: (x 1, 0, *, ... ), (x 1, 0 0,, *,.. .), etc. Because the ghost map is injective (and be-

cause of the injectivity of its restriction to finite levels) the result follows. LO

It turns out that the Frobenius map is not surjective on W(6c,) or W(OT ).

Proposition 6.0.3. Assume p > 2.

(i) The maps F: Wn+1(R) -* Wn(R) are surjective.

(ii) The map F: W(R) -- W(R) is not surjective.

Proof. (i) Every element in W(R) may be written in the form '- o0 Vi([x]). We

know that F([x]) = [xP]. So from the formula Vi(F'([xi])) = V'([1])[xi] we see that

it suffices to show V'([1]) is in the image of F.



Our strategy is to consider the image of V'([1]) under the ghost map, which is

(0, ... 0, pi, p i,.. .), and to show that there is some element (ai, 0,... 0, Op, pi,...) in

the image of the ghost map. Because &Cp is p-torsion free, the ghost map is injective.

Hence showing the existence of such an element in the image of the ghost map is

sufficient to show that V'([1]) has a preimage.

We prove this by induction on i, starting with the case i = 1. We have an element

(p, p, p,...) in the image of the ghost map: it is the image of p[l]. We also have an

element (pp,p, pP,...) in the image of the ghost map: it is the image of [pp]. Finally,
as p > 2, the Dwork Lemma applied to W(Z) shows that (0, , pP,...) is in the image

of the ghost map. Combining these, we see that (p - p, 0, p, p,...) is in the image

of the ghost map. From our lemma on the kernel of F, we get that (-p, 0,p,p, . ..)
is in the image of the ghost map, and moreover, an element (al, O,p,p,...) is in the

1 1
image of the ghost map if and only if al = -pP mod pp-1.

Now inductively assume that for a fixed value i, an element (ai, 0, ... , 0, p , p, ,...)

is in the image of the ghost map if and only if ai (-1) p1 + mod pi-. Applying

Verschiebung to this element we find an element

(0, (-1)ip ,, . . ,, Opi+l,pi+l, .. .) (6.0.4)

in the image of the ghost map. We also have elements

(p1,p,0,O,...)

and

(p +"'+P p "'+ , I ....

and

Multiplying these previous three elements together, and adding them to the element

(6.0.4) above, completes the induction.

(ii) We consider whether or not an arbitrary element 0 V([1]) [yp] is in the

image of F. For its supposed preimage, write (xl, x,,.. .). Considering the its first
1 1

two ghost components, we get immediately that xl = yfp mod pp. Considering the

first three ghost components, we have

x1 -- y - p-y mod pp .



From the first four:

1 1 1±1 11
x 1 = y P - py + p P y mod pP-

We show that, for certain choices of ypi, no x, E oP can simultaneously satisfy each

of these conditions. In particular, no x, e R can either.

Consider the sequence (1, 1 + h,...). This may be written in the form

1 1 1
(1 1,1 _ - ,...).p-1 p p

W will describe how to pick a sequence of ypi as above with yi = 0 such that no such

x, can exist.

Each of our choices of R contains the ring W(F,). We restrict to the case where

our coefficients y E R are Teichmiiller lifts of elements in Fp. We use the results of

the paper [12]. In its notation, the set Sa,b contains 1 only if 1 < a < p. Which

values are possible if we require it to contain the entire sequence? From our second

formulation of the sequence, clearly a = p - 1 is possible. We claim it is the only

possibility. This follows immediately if we write

1 1 c-1 c-1 c
(- +''" +---+ )(P- c) = (1 - ) "

In order that the function f : Tb - Fp given by f(i) = x __ be twist-recurrent, it is
p-1

necessary that the sequence yi be eventually periodic. Choosing a sequence for which

this fails, we have that x1 could not be in the ring c7,, and hence not in our ring

R. O



Appendix A

Witt Vector Calculations

This appendix contains several necessary but perhaps unenlightening calculations

involving Witt vectors. Its organization is not as linear as that of the previous sections.

Lemma A.0.1. Let f, g e W(Aperf ) and write f = (fo, fl,...) and similarly for g.

Write di = max(deg fi, deg gi). If f + g = h, then

deg hi < max(pido,pi-dl, ...,di).

If the components of f and g have only integer exponents, then so too do the compo-

nents of h.

Proof. From the definition of addition in terms of ghost components, we see immedi-

ately that

deg hi < max(p dij, pk hi-k)
j,k

for 0 < j < i and 1 < k < i. The first claim follows by induction on i. The

claim concerning integral exponents follows from the fact that W(A) C W(A perf) is

a subring. O

Lemma A.0.2. Let F denote a lift of Frobenius to At. Let D be such that F(xi) is

overconvergent of radius D/2 for every i. Then

F: At,c At,pC+D

Proof. Write
oo n k

= 0pk I akjX
k=O j=O



for an element of At c . This means in particular that Ink < (k + 1)C. (Recall that

j is a multi-index.) The map F is a p-adically continuous homomorphism, so

F(g)=
nk

pk k F(akj)F (x )

k=0 j=0

For each i = 1,... , n, write

OO nik

F(xi) = k bikj
k=O j=O

Because F is a lift of Frobenius, Injol = p. We have assumed that each F(xi) is D/2-

overconvergent; below we will need the slightly weaker bounds D 2 p and Inilk < kD

for k> 1.

For 1 > 1, let r : At - Wi(k)[xl,..., x,] denote the natural restriction map. For

a C At, let d(1, a) := deg rl(F(a)). We also define

d(l, nk) :=max d(l, xi).
o0_ljInkl

Then we have

d(1, nk) nkP

d(2, nk) < (nk- 1)p + D

d(3, nk) < (k - 2)p + 2D

d(nk, nk) lp + (nk - 1)D

d(nk + 1, nk) nkD,

and so on. If we write F(g) = E opk 0 l ckjx j , with the usual conventions, then

we find immediately

Imi I _max d(l, nk) < nkp + (1 - 1)D1- l+k=i

< (k + 1)Cp + (1- 1)D

< (i + 1)(Cp + D).

Thus F(g) is overconvergent of radius pC + D, as claimed.



Proposition A.0.3. For any lift F' of the Frobenius map to Bt, the induced map

tF' : Bt _+ WS2

has image in WtQ7.

Proof. First, note that we can restrict to the case of degree zero. This is because the

left-hand side consists of finite combinations, under the operations of differentiation,

addition, and multiplication, of elements in degree zero. Restricting then to degree

zero, we start with the polynomial algebra case. Let g E At have radius C. By

Lemma A.0.2, (F)n(g) has radius at most pn(C + D). We will show tF(g) has radius

at most C + D.

To fix notation, we write SF(g) = (so(g), si(g),...) E W(At), where sF is the map

2.2.1. Using the notation of the previous lemma, tF(g) = (r(so(g)), r 1(s1 (g)),.. .), so

we would like to prove d(1, s,(g)) _ (n + 1)pn(C + D) for each n.

Our inductive proof requires bounds on d(i, s,(g)) also for i -f 1. In particular we

prove d(i, s,(g)) < (n + i)pn(C + D) for all n > 0, i > 1.

Base case: Because so(g) = g is C-overconvergent, we know d(i, so(g)) < iC <

i(C + D), as required.

Now assume the result for so(g), ... , n- s_l(g). By the definition of sn(g), we have

so 0 (g) + ... +pisj(g) P +... + psn(g) = Fn(g).

From the definition it is clear that d(i, a) = d(n + i, pa) for any a E A t . We

thus complete the assumption if we show (n + i)pn(C + D) is an upper bound for

d(n + i, Fn(g)) and d(n + i - j, sj (g )P"3 ). For the first, we apply Lemma A.0.2.

For the second, we use the inductive assumption to note that d(n + i - j, sj(g)) <

(n+i)pj(C+D). The result then follows from the observation that d(i, ak) < kd(i, a).

This completes the proof in the case of a polynomial algebra for any lift of Frobe-

nius. In general, for a smooth algebra B, we start with a surjective map A --+ B. We

find a Frobenius on A t lifting F', and use the functoriality of the map tF asserted in

Proposition 2.2.2. Oi

Lemma A.0.4. Let V : At -+ Wt(A) denote a homomorphism and D denote a

number such that 4(xi) is D-overconvergent for each i. If x denotes a monomial of

degree C, then /p(x) = (fo, fi, f2, . . .) with deg f < (i+1)pD+piDC. Moreover, if g E

At, not necessarily a monomial, has radius C, then 0/(g) is D(C + 1)-overconvergent.



Proof. We prove this by induction on C. The base case C = 1 follows immediately

from the definition of D. Assume the result for a fixed value of C. We must compute

(fo, fl, f 2, ... )(g0, gl, g2,.. ) = (h, hi, h2,. ..

where (go0, 91, 92,...) = (j) for some j and where deg fi < (i + 1)piD + piDC. We

use the definition of Witt vector multiplication in terms of ghost components. From

this we find

(fo, fop + pf, . . .)(90, 9~ + pgl .. .) = (ho, h' + phI ... ). (A.0.5)

We wish to bound the degree of hi. The formula for the ith ghost component

involves terms j pk k for j, k < i. But as we are interested in the part pihi,

we may further restrict to j + k < i. (Recall that, though these formulas are found in

characteristic zero, we will eventually be projecting to characteristic p, so any p-power

coefficients in our formula for hi will vanish.)

So it suffices to study the degree of fJ gi-k for j + k <i. The degree of such a

term is at most

pi-j((j + 1)piD + piDC) + pi-k((k + 1)pkD < (j + k + 1)piD + piD(C + 1).

Because j + k < i, such a term satisfies the required bounds and completes the

induction.

For the last assertion, let y denote a monic monomial of degree C(m + 1). Then

/(pm y) = (fo, 1 , ... ) where f 2 = 0 for i < m and

deg f i < pm ((i - m + 1)pi-mD + pi-mDC(m + 1)) = (i - m + 1)piD + piDC(m + 1)

< (i + )p'D(C + 1)

for i > m. 0

The following lemma is analogous in content to the previous one, but its proof

is greatly simplified by a stronger definition of overconvergent, which requires in

particular that the zeroth term have degree zero.

Definition A.0.6. A Witt vector w = (wo, wl,...) is called C-extraconvergent if

deg wi < ipiC for all i.

Note that a C-extraconvergent Witt vector is C-overconvergent, and conversely,



a C-overconvergent Witt vector with deg wo = 0 is 2C-extraconvergent.

Lemma A.0.7. Let (fo, fi, ... ) and (go, g1,...) be extraconvergent Witt vectors of

radii C and D. Then their product (ho, hl,...) is max(C, D)-extraconvergent.

Proof. As in the proof of lemma A.0.4, to bound the degree of hi it suffices to check

the degree of ff ig -kfor j + k < i. This latter degree is

pi-j (jC) + pi-k (kpk D) 5 ip i max(C, D),

as required. O

Lemma A.0.8. Let (0, fi,...) be C-extraconvergent and (go, gl,...) D-overconvergent,

with C > 2D. Then their product (ho, hi,...) satisfies deg hi _ ipiC + p'D.

Proof. Similarly to the previous lemmas, we consider pi-j (jpjC) + pi-k((k + 1)pkD)

and note that for i > 1,

max jpiC + (k + 1)piD = ip C + p D.
j+k<i

Lemma A.0.9. We have a sequence of expressions

Z= Z--(ZaiPflI

= (za2 )P2 f 2 I

Furthermore, there exists a constant C for which we can find such expressions with

ai, bounded for all i, I, and with deg fil < Cp' for all i.

Proof. We have already seen that B is generated as a B'-algebra by monomials
1 

...
- X en with 0 < ei _ p - 1. We can recursively apply the result to find that

B is generated as a BP -algebra by monomials xz' - - - x, with 0 < e < pn - 1.

(For example, we can replace an expression of the form z = z2pX3 + Px2 with z =

(z 2px + zPx 2)
2P 3  3 + ( 2  + ZPX2)P2 . Use the fact that (a + b)P = ap " + bp".)

Because these expressions possess finitely many terms, the result is trivial for
the first equation. Let r denote the degree of the monic polynomial P(z) which z

satisfies. Let C1 denote a constant so that we can find an expression z = -Z(zalI)pfi
with all < r and deg flI < pC.



Let 1 denote the maximal degree among the coefficients of P(z). Pick C > C1

such that (p - 1)C > r21p + Clrp.

We have an expression for z with ai, < r - 1 and with deg fii < pC. Inductively,
assume we have written the nth expression for z in this way, with anI < r - 1 and

deg fnl < p"C.

To simplify notation, it is harmless to drop the sums and consider a single expres-

sion

S= (zan )pnfn

Substituting in our 1st expression for z, with the sums still suppressed, we find

Z = (zalPf )anPnfn alanpn+l flPfn.

Using P(z), we can write
r-1

ZalanPn+l 
gi

i=O

and from our bound I on the degrees of the coefficients of P(z), we get

deg gi < alanpn+ll < r 21pn + 1.

We are finished by induction because

pn+lC > r 2lp 2 1 + Clrpn + + Cp.

Lemma A.0.10. Let w denote a D-overconvergent Witt vector with zeroth component

of degree one. Write wN = (fNo, fNl,.. .). Then these terms satisfy the following

bounds:

deg fNi < 2ip'D + (N - i)p.

Proof. The proof is by induction on N. For N = 1, the case i = 0 is trivial, and the

cases i > 1 follow from the assumption that w is D-overconvergent. We inductively

assume the result for some fixed value of N and consider the case N + 1. As in the

previous proofs, our goal is to compute

(fo, fll, ... )(fgo, fNl, ..- ) = (IN+,0, IN+l,1 - ).



Also as in the previous proofs, we find

deg fN+l,i _ pi-j deg fij + pi-k deg fNk.

We are done if we show that

2(j + k)piD + (N + 1 - j - k)p < 2ipiD + (N + 1 - i)p.

This follows from the inequality

(i - j - k)p i < 2(i - j - k)p'D,

which in turn follows from j + k < i and 1 < D (the latter of which was implied by

our assumptions on w). O

Lemma A.0.11. Let w = Vk(xel ... xnye) be C-overconvergent. Then we can write

w as as a sum of terms of the form

tF(fi)Vki(X1 ...

where each j < pk+i - 1 and where pk+ifi is 0-overconvergent, where C depends only

on C and B, and in particular does not depend on k.

Proof. It is immediate that

W = [X" '  xan][ya+l]Vk(Xe-l .. Xnhe )

where aj, a < C(k + 1) and ei < pk - 1. We checked in section 4.2 that [zx' - - xan]

could be written in the stated form. Likewise the bounds on mean that

Vk (X1 ... x enh )

will pose no trouble. The difficulty is in accounting for the term [ya+l].

From our lemma A.0.10, we know

[ya+l] = tF(ya+l) + Vj ([goj),
j=1



where deg goj < 2jp D + (a + 1)p. Inductively, assume we have written

k 00

[ya+] _= tF(gj)VJ + E V ([gkj])

j=0 j=k

where gy has degree 2jD + a + 1 for all j and 9jk has degree (2jD + a + 1)pk for all j, k,
and where the notation Vj has suppressed terms of degree at most n(pj -1)+d(pi -1).

We have just checked the base case k = 0.

To check the case k + 1, we note that as in our first paragraph,

Vj([gkk]) = [gk]V 1 ,

where deggk < 2kD + a + 1. We can rewrite [gk] as tF(gk) + E V ([hkj]) where

deg hkj _ (2jD + 2kD + a + 1)p, and this completes the induction.

Substituting in (k + 1)C for a, we see that we may let C = C + 2D + 2. O

Lemma A.0.12. Let w = Vk(x el ... znyeze W e ") be C-overconvergent. Then we can

write w as as a sum of terms of the form

tF(fi)V (k+ i e... ),

where each j < pk+i - 1 and where pk+ifi is C-overconvergent, where C depends only

on C and B, and in particular does not depend on k.

Proof. We begin with the equation

W = [ ... xan][ya+l][za'][ga" ]Vk( ... xn z e'e"),

where ai,, a a', a" < C(k + 1) and ei, , e', e" < pk - 1. Again, we may consider terms

individually. For all but the last term, the proof goes through as before. (We don't

even need to reduce high powers of z using its minimal polynomial.)

From the argument in lemma A.0.9, we see that we can write ze' as a sum of terms

(zc)pkfk, where c < r and deg fk < Npk + e'd < Npk(k + 1)C. Thus

Vk (X1 .. .n ze"g [zC]Vk[

As before, the term [zc] (here c is even bounded) poses no problem, and for the term

Vk [*], we may apply lemma A.0.11. []



Corollary A.0.13. Let B/A denote a finite dtale extension of a distinguished open

in affine space. Then we have an isomorphism

Bt 0At Wn-i- WnQ-.

Proof. We use the following isomorphisms:

W,(B) ®w,cq) WSnQ

Wn(A) An+ Bn+1

An+1 ®At Bt

SWnQ, from [14], Proposition 1.7;

Wn(B) from [14], p. 69;

Bn+1 since At/(pn +l ) - An+,, and similarly for B.





Appendix B

The Overconvergent de

Rham-Witt Complex is a Sheaf

In this appendix we reproduce Proposition 1.2 of [4], together with its proof, to show

that our overconvergent de Rham-Witt complex is a Zariski sheaf. (It is, in fact

an 6tale sheaf, see loc. cit. Theorem 1.8, but we will not need this fact.) The only

difference between this appendix and what appears in [4] is that we have removed

a few parts which are unnecessary for our purposes. In particular, the notation

below is somewhat different from the rest of this paper. In it, A denotes a smooth

affine over k, not necessarily a polynomial algebra. The map A is a surjective map

k[T 1,..., T] - A as in our Definition 3.0.6.

Proposition B.0.1 (Proposition 1.2, [4]). (a) We denote by f E A an arbitrary

element. Let d E Z be nonnegative. The presheaf

Wt"Spec A/k(Spec Af):= WtRdA/k

is a sheaf for the Zariski topology on Spec A (compare [5], 0, 3.2.2).

(b) The Zariski cohomology of these sheaves vanishes in degrees j > 0, i.e.

Ha, (Spec A, W t pecA/k) = 0.

We fix generators t,..., t, of A and denote by [ti],..., [tr] the Teichmiiller rep-

resentatives in W(A). An elementary Witt differential in the variables [t 1],..., [tr] is
the image of a basic Witt differential in variables [TI],..., [Tr] under the map A.

Before we prove the proposition, we need a special description of an overconvergent

element z in WtQdA/k. Let [f] E W(A) be the Teichmiiller representative. Hence



1 1 1-= - is the Teichmiiller of - in W(Af). For the element z we have the following
[f If J f
description.

Proposition B.O.2. The element z E WtQdf/k can be written as a convergent series

1=0

where each l, is a finite sum of elementary Witt differentials 7(t) in the variables

[tl],...,[tr], images of basic Witt differentials r(t) in variables [T1],...,[T,] which

have weights kF satisfying the following growth condition:

3Ci > 0, C2 E R such that for each summand 71(t) we have

r, + Ikt I C ordri t) + C2.

Furthermore we require that for a given K > 0,

min ordprt) > K for almost all 1.
t

Proof. Using the composite map of de Rham-Witt complexes

WQk[T,...,T,,Zi,Z 2]/k --- WQk[T,...,Tr,Y,Y- 1 /k W Af/k

Ti T T ti
Z1 Y Y f--f

Z2 y-1 y-1 f-1

we see that zi is the image of an overconvergent sum of basic Witt differentials in

WQk[Tl,...,T,,Y,Y-1l/k.

We use here an extended version of basic Witt differentials to the localized poly-

nomial algebra k[T 1,...,T,,Y,Y- 1 ] (compare [10]): A basic Witt differential a in

WQk[Tl,...,T,,Y,Y- 1]/k has the following shape:

I) a is a classical basic Witt differential in variables [Ti],..., [Tr], [Y].

II) Let e(k,p, k, P) be a basic Witt differential in variables [Ti],..., [Tr]. Then

II 1) a = e(Ek,P, k, P ) d log[Y]

II 2) a = [Y]-re(k, k,P, k, ) for some r > 0, r E N

II 3) a = F"d[Y]-e(k,p,k,, k, ) for some 1 > 0 , p t, s > 0.



III) a =V ( [Y]P"ky [T]PukIo)dVu (I) [T]P'(I)kI ... F-t(Id)d[T]t (Id)kld (see [3], (2.15)).

In particular, k is a

Id = P, u > O, ky E

weight function on variables

P <0'

[T,],..., [T] with partition 1o U... U

u(ky) _ u = max{u(Io), u(ky)} (notations as in [3]).

If 10 = 0, we require u = max{u(Ii), u(ky)}.

IV) a = da' when a' is as in III).

An overconvergent sum of basic Witt differentials a in WQk[T,...,T,Y-11/k is an

infinite convergent sum w such that there exists C1 > 0, C2 E R with the following

properties:

* If a of type I) or of type II 1) occurs as a summand in w, we require

Iki I C 1 ord, k,P + C2.

* If a is of type II 2) or II 3) occurs as a summand in w then

r + kI k C1 ordp, k, + C2 (with r = 1 -pS in case II 3).

* If a is of type III) or IV), then

d

ky I + Z 1kI < C ordp (VUJ) + C2

j=O

(here, ky -ky,ljk = E ks).

It is a straightforward exercise to show that the image of

Wt Qk[Ti,..,Tr,ZI,Z2 ]/k -+ WQk[T,...,T,,Y,Y- 1 ]/k

consists exactly of sums w described above.

In the situation of condition III) we consider the first factor V" ( [Y]puky [T]p"klo).

For simplicity we assume Io = 0; this does not affect the following calculations.



Let -ky = - and 1 < -- < 1 + 1 for an integer 1. We have
pU - P

V U ( y = V( y]1 [ )
= [y] [y]r-le

Now consider

1VU 1 '= V[y]V (
y VU (1 [y](l+)pu-r.

the image of a in WQ~d/k where

Th
1 , .'~\u -

e above factor y),+V" ([YJlt-r ) is mapped to V

Represent f as a polynomial of degree g in t, ... , tr. Then
. .. 1

the image ot a in WII/k is ot the torm [f where is

U ( [f](l+1)pu-r )
it is easy to see that

a (possibly infinite)

sum of images of basic Witt differentials it in variables [Ti],..., [Tr] with weights kt

satisfying

Ik l S9 (1+ 1 -
r

pU

d

+ k I1
j=O

d

< g++ lki l.
j=0

The case da (type IV) is deduced from the case III by applying d to a and the Leibniz
1

rule to the image of da in W2d/k. So if the image of a as above is rf-+17 then the

image of da is

1 d 1

If]Ef flt
- (fi+2 f - 1 d[f])

1
1[]+2T1

where j is a sum of images of basic Witt differentials t in variables [T1],..., [T] with

weights kt satisfying

Iktl < 2g +
d

j=0

1 p U [Y
1]Pu-r+1pu

V"1 1 ( Yp.

V" ( [y]pky)

o ^

iF-l] _+ [f-], IT] ----> til.



We can also compute the images of a in WQAfi/k where a is of type I or II and obtain

again a representation
1

[f]i for r > 0.

These cases are easier and omitted.

Now we return to the original element z E WtjdAf/k. We may write z as a

convergent sum
00

Z = E m,
m=O

where um is an elementary Witt differential being the image of a basic Witt differential

am in W 2 k[T,...,T,,YY-1]/k of type I, II, III or IV.

In all cases we have a representation

1-
Wm = f M

where ,m is the sum of images of basic Witt differentials jm in variables [TI], ... , [Tr]

with weights kt such that

rm + Iktjl _ C1 ord, (tm) + C2 + 2(g + 1).

Now consider - for a given integer N - the element z modulo FilN, so the image

2 (N) of z in

WNaI/k Nk WN WN(A) [ 1
WN(A)

b(N)
One then finds a lifting z(N) of :(N) in WQAf/k such that z(N) = Z wm is a finite

m=O
sum, i.e.

1
[f]rm

where now jm is a finite sum of images of basic Witt differentials r in variables

[T],..., [T,] satisfying the growth condition

rm + Ik'I < C, ord, (i) + C2

with C 1 := C1, C2 = C2+ 2(g + 1).

The elements z(N) can be chosen to be compatible for varying N and we have
z = lim z(N). It is clear that the second condition of the lemma is also satisfied, this



finishes the proof of Proposition B.0.2. O

Now we are ready to prove Proposition B.0.1.

As WQS is a complex of Zariski sheaves we need to show-in order to prove part

(a) of the proposition-the following claim:

Let z E WQd/k for some fixed d, let {fi}i be a collection of finitely many elements

in A that generate A as an ideal. Assume that for each i the image zi of z in WQdt/k

is already in WtQ A/k. Then z Wt /k
Let [f] be the Teichmill Then E With inverse d= [
Let [fl] be the Teichmiiller of fi with inverse =

Lemma B.0.3. There are elements ri E Wt(A) such that
n

E ri[fVi] = 1.
i=1

n

Proof. Consider a relation E aifi = 1 in A.
i=1

Lemma 2.25 in [3],

n

Then Z [ai]
i=1

[fi] = 1 + V E Wt(A). By

(1 + Vr)-l E Wt(A).

Define ri = (1 + Vr)-1 - [ai].

Lemma B.0.4. For each t there are polynomials Qi,t[T, .

that

(1) degree Qi,t < 3 - nt

(2) E Qi,t ([f],..., [fn], ri,..., rn)[fi] t  1.
i=1

For the proof of this Lemma, compare [16].

We know that SpecA = Ui=D(fi). For a tuple 1 < il < ... < im < n, let

Ui1 ...im = nYD(fij). Fix d E N and let

Cm = Cm(Spec A, WtA/k)

-= @lil<... <im<nWtQAfil ""fi /k

= E1<il<...<im<nr(il ...im, WtdI/k).

Then consider the Cech complex

0 -+ C
O 
--+ C

1 
-+ C

2 
--

We have Co = WtQA/k and CO --+ C1 is the restriction map Wt/k -

all i. It is then clear that Proposition B.0.1 follows from the following.

S,T 2n] in 2n variables such

WQAf/k for



Proposition B.0.5. The complex C' is exact.

Proof. The proof is very similar to the proof of Lemma 7 in [16]. We fix as before

k-algebra generators ti,..., tr of A. Suppose r E Cm , m > 2, is a cocycle. Then a

has components

WtQdf.Am/k
Afil ... im k

Applying Proposition B.0.2 we see that cri...im has a representation as an overcon-

vergent sum of Witt differentials as follows: ail...im = E1=0 Mi-... l m with

M lim .. 1 i...im(ji - 1j fllil...im
3

a finite sum

where [fil...im] := [fij ... [fim] ...im is a sum of images of basic Witt differentials

rii..im in variables [T],..., [T], (T -+ ti) and weights k j i satisfying

i) j + It)...im C(ordp ri).im + 1)

ii) 1 > ordp lj 2> 1 - 1.
li1...im

Notation: We say that M ... ir has degree < C(1 + 1).

We shall construct a cochain T so that 9T = a. The reduced complex

C°/FilnC* = C°({D(fi)}j, WnQ,/k)

is exact. We will inductively construct a sequence of cochains

Tk E Tki 1... im- 1

such that the sum
00

k=O

converges in Cm- 1 to a coboundary of a. The k are chosen to satisfy the following

properties:

(1) -(Elk Tk) = U modulo Fil21 -lCm

(2) Toil...il E WG Afl... fim/k, for k > 1 Tkil...im_ E Fil2k-1WtfAf, ... m/k

i...i E ...i, WtdpecA/k)
07il ... im E (ll.in Spec A/k)

1l<il<'"<im-1<n



(3) il ...im E Wfin 1 to be understood as a

polynomial in the "variables" [fi, ..., [fn], rl,..., rn, with the coef-
il ... i , 11

ficients being finite sums of elementary Witt differentials in [tll],..., [tr] such

that the total degree (with [tl],..., [t,] contributing to the degree via possibly

fractional weights) is bounded by 24nC2k. We write degree Tki...im_l < 24nC2k

(4) [fi jC2+7kil...im 1 W A/ink , 1, n, with degree
lk -.. [m.Ifi ..

[f]C2k+1 kil...im-1 < C2 k+1 + 24nC2k.

Then (2) implies that all the coefficients l of the polynomial representation (3) satisfy

ord, r> 2k - 1. Also (1) implies that a(E 'O Tk) = a. Using (2) and (3) we will show

that 'I% k E Cm-1, i.e. is overconvergent.

Define elements ai, ...,im E WOQd  for n > 0 by
fil"fir

2s+ -1

sil,...,im = i M ..im.

a=O

Then o7il,...,i ail,jim mod Fil2s+ and degree usi,...,im < C22+1.

Define the cochain T0 E Cm- 1 by

n

70i...im-1 ai,2C [fi] 2 Oi,...,imi
i=1

Suppose we have constructed, for some integer s > 0, cochains Tk C m -1 for

0 < k < s satisfying (1) - (4). Then we construct -r, as follows: Let yii...im =

(l -8 -(Z oTk)i5...im. We see that cyi...im E Fil2-1C m is a cocycle modulo

Fil2s+lCm and degree rsi...im < 24nC2s-1

Define
n

T-si1...im-1 Qi,C2 [fi]C2s+1_si...im-li"

i=1

Then E =0 Tk satisfies (1) by ([6], 1.2.4.). We have

[fi]c2 +7Sil ...im-li WtQAfi ..im_l Fil2 -lw tfi...fim /k

= Fil2s-1 WtAf.. _l

and therefore Tsi ...im_, satisfies (2) (we have used (4) for Tk, k < s). Moreover,



Tsil...im_ has total degree bounded by

24nC2s-1 + 3nC2s+l + C2s+l < 24nC2s

and 7, satisfies (3). It is straightforward to show property (4) for T.. Therefore it

remains to show that Zk=_0 Tk is overconvergent. This will be derived from properties

(2) and (3) as follows.

It follows from (3) that Tsi...im can be written as a finite sum Tsil...im_ =

l r'M,, where I runs through a finite set of multi-indices in N', r, = r Al .• r"

for I = (A1,..., An) and Ms,i is a finite sum of images of basic Witt differentials wst

in variables [Ti],..., T,], [Yi],..., [Y], [Z] with

m-1

[T FH [tj], [r1 [f ], [Z], II [f ]
j=1

with weights k' satisfying

II + Il < 24nC2S = C'2S

(C' := 24nC) and

1ordp w > 2s - 1 =

(*) 1
> C- (III + Ik) - 1.

For fixed I and varying s we get a sum

E rTIM s, = rI Ms,I.
S S

Because of the condition (*), w = Z M,1 is overconvergent with radius of conver-
8

gence e = and

C-7 C1

Here , is the quotient norm of the canonical Gauss norm y, on WQk[T,...,Tr,Y,...,Yn,ZJ/k-

We now look again at the definition of ri. There exist liftings j, r of r, ri in Wt(S)
and ai of ai in S where is a finite sum of homogeneous elements such that

r1 = (1 + V- -1-a].



For 6:= , there exists E > 0,

because we have a finite sum of homogeneous elements. By [3] Lemma 2.25,

'E(Fi) > -6 as well.

Let DI be a lifting of w1 in WtQk[T ,...,T,r, ,Y, ,Z]/k such that J,(wl) = ye( L). Then

we obtain by Corollary 0.16 in [4],

> +

2 I - 1 + - = -1.

As this holds for all I, we see that E 7Tsi...,_, is overconvergent with radius of
s=O

convergence E, and hence Proposition B.0.5 follows, and so does Proposition B.0.1. LO

Corollary B.0.6. The complex WtQSpecA/k, defined for each affine scheme as above,

extends to a complex of Zariski sheaves Wt dX/k on any variety X/k.

> E such that
C'
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