
Feasibility of a 16bit, 3MSPS Multibit per Stage Pipeline

ADC using Digital Calibration

by

Matthew Louis Courcy

Submitted to the Department Of Electrical Engineering and Computer

Science in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 4, 1998

Copyright 1998 Matthew Louis Courcy. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant other the right to do so.

Signature of Author ....
Department o1 Elect cal En 'ring and CopuFebruaryr Science

February 4, 1998

Certified by.......................
Professor Hae-Seung Lee
. . Thesis Supervisor

Arthur C. Smith

A ccepted by...... . '...................... . ......
', ,. :-/, 3 (-

Chairman, Department Committee on Graduate Students

_ /f'



Feasibility of a 16bit, 3MSPS Multibit per Stage Pipeline ADC using
Digital

Calibration
by

Matthew Courcy

Submitted to the

Department of Electrical Engineering and Computer Science

February 4, 1998,

In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electircal Engineering and Computer Science

ABSTRACT

This work examines the feasibility of using a multibit per stage pipeline ADC to achieve
high resolution and linearity. The proposed architecture uses simple digital calibration of
the first stage to achieve high linearity with low digital complexity. By keeping the digital
complexity low, the ADC escapes the effects of coupled digital noise present in current
pipeline converters at this resolution.

A 16 bit 3 Ms/s pipeline ADC architecture using digital calibration is considered in
response to market needs. Background is given on ideal nyquist rate ADCs and some asso-
ciated performance metrics. Problems due to process parameters and physical non-ideali-
ties are discussed. Methods to correct these problems are presented. An overview of
pipeline architecture trade-offs is given, and an architecture, based on a current 14 bit
ADC, is chosen for the proposed ADC. Circuit modifications necessary to realize the new
16 bit ADC are discussed in detail. Final analysis of a simulated ADC is given, and issues
pertaining to final design are outlined.

Thesis Supervisor: Hae-Seung Lee
Title: Professor, Department of Electrical Engineering and Computer Science



Acknowledgments

I would like to recognize Larry Singer, Todd Brooks, Dave Robertson, Katsu Nakamura,

Mike Timko, Stacy Ho, Steve Harston, and Donald Paterson along with the rest of the

High Speed Converter Group at Analog Devices Inc. Without their expertise and help, I

would never have been able to complete this undertaking. I would especially like to thank

my supervisor, Larry Singer, who put up with hours of questioning, and persevered

through my detailed solutions of the least intuitive problems. I am not sure I would be

writing this without him. I'd also like to recognize Proffessor Hae-Seung Lee at MIT for

keeping my sanity in check during my time at Analog and during my thesis preparation.

I would like to thank my parents for their love and support in all aspects of my education,

including this thesis. I would like to thank my sisters, Lori and Tracey, and my uncle Gill

for believing in me through all of my hardships. I'd also like to recognize Kate. Without

her support, I would have never been able to write this document.

This research was supported by Analog Devices, Inc.



Table of Contents

1. Introduction ................................................... ................................................... 8

1.1 M otivation ..................... ........ .... ........ ............. ...... .. ...................................... 8

1.2 O rganization .......................... ...... ... ... . ..... ....................... ...................... 10

2. Evolution to the High-Speed Pipeline ADC.........................................................11

2.1 Introduction............................. .. .... ............... ... .... .................................. 11

2.2 Non-linearity Metrics For Nyquist Rate Converters.......................... ......... 11

2.3 The Flash ADC................ .. ....... .... ................ .......................... 14

2.4 The Tw o-Step A D C ...................................... .............. ................................... 15

2.5 The Pipeline A DC.................................... ................ ....... ..................... 18

3. Correction Techniques for Physical and Process Related Errors................ 20

3.1 Introduction.......................... .................... ... ......................................... 20

3.2 Integrate C apacitor Errors.................................... ....................................... 20

3.3 Integrated Resistor Errors ....................................... 25

3.4 M O SFET Errors ...................... .... ... .... . . .. ......... ....................... 26

3.5 Solving the Amplifier Offset Problem...............................28

3.5.1 Offset Correction of the Residue Amplifier............................ .... 29

3.5.2 Correction Offset Error in Flash Comparators........................ .... 33

3.6 Capacitor Error Effects and Calibration........................................38

3.6.1 C alibration...................... ............ .......... ............................................ 4 1

4. Architecture and Multibit per Stage Calibration................. ....... 47

4.1 Introduction....... ........... ...... . ..... ... ........... ............................................... 47

4.2 Power Management, Noise, and Error Correction in Pipeline Architectures.........47

4.3 Previous 16 bit Architectures.............................................49

4.4Achieving High Resolution without Calibration..................................................49



4.5 Achieving Linearity by Digitally Calibrating a Multibit per Stage ADC............53

4.6 Simulated Linearity and New Discoveries.............................. ........ 57

5. Circuit Design of the Proposed ADC........................................ ......... 62

5.1. Introduction........................................ .. ................................... 62

5.2 B ase A rchitechture................................................ ........................................... 62

5.3 The Proposed ADC and Its Structure................................ 66

5.4 The First Pipeline Stage.... ................................... 67

5.4.1 The Flash A D C ..................................... ... .. ............................... 67

5.4.2 The Residue Amplifier.................................67

5.5 M inimizing Noise...................... .......................................................................... 71

5.6 Design for Digital Calibration.....................................76

6. Calibration Results and Conclusion.......................................... ................... 86

6.1. Sim ulated R esults................................................... ..... .............................. 86

6.2 Future O utlook....................... ... .. .... ... ................. ........................... 87

Appendix A - C-language Simulator for INL and DNL................. .... 91

Appendix B - Verilog Code Representation of New Digital Circuitry........................03

Bibliography.................................................................................................................. 115



Table of Figures

Figure 2.1. DNL effects and DNL plots......................... .................... 13

Figure 2.2. INL effect and INL plot......................... ........................... 13

Figure 2.3. Flash A D C ................................................................... ........................ 14

Figure 2.4. Two-Step Architecture............................ .................................. 17

Figure 2.5. Step one R esidue ............................... ..... 1... ....... ....... ....................... 17

Figure 2.6. Two-step Bit Additions.......................... .. .................... 17

Figure 2.7. Pipeline Stage Architecture.............................................19

Figure 2.8. Pipeline Bit Additions.................................... ..................... 19

Figure 3.1. Dimensional Lithography Error.................. ....................... 21

Figure 3.2. A llignm ent Error........................................................................................ 22

Figure 3.3. Common-Centroid Layout....................................23

Figure 3.4. Actively Loaded Differential Input Pair..................... ...... 27

Figure 3.5. Simple Sampling Structure...............................................28

Figure 3.6. Capacitive MDAC Sampling to Ground and Ideal Residue..........................30

Figure 3.7. Residue Error due to Offset..................................32

Figure 3.8. Offset Cancelling MDAC and Associated Timing................................. 33

Figure 3.9. Offset Cancelling Differential MDAC and Associated Timing.................. 34

Figure 3.10. Differential Switched Capacitor Comparator........................... ..... 35

Figure 3.11. Pictorial View of Digital Error Correction..................................................36

Figure 3.12. Differential Offset Cancelled Sampling Comparator........................... 37

Figure 3.13. Residue Errors due to Gain Error and Array Mismatch.............................39

Figure 3.14. Over-range and Under-range Effects on Residue and Transfer Function.......40

Figure 3.15. Single Bit Pipeline Stage and Residue................................ ....... 42

Figure 3.16. Residue of the Karanicolas Single Bit Stage................................ .... 43

Figure 3.17. McCreary's Plots of Voltage Coefficients.......................... .......... 44

Figure 3.18. INL Due to Voltage Coefficients in Figure 3.17................................. 45

Figure 4.1. 5-4-4-4 A rchitecture ............................................ .................................. 51



Figure 4.2. 5-4-4-4 Architecture 14bit Linearity DNL and INL...................................52

Figure 4.3. Binary Weighted Capacitor Array...............................53

Figure 4.4. Residue for a 5 bit Pipeline Stage,

Complete with Calibration Measurement Points...............55

Figure 4.5. 16bit Converter Linearity without Calibration. DNL and INL........................59

Figure 4.6. 16bit Converter Linearity after Calibration. DNL and INL.............................60

Figure 4.7. Gain Error Distribution .................................... ...................................... 61

Figure 5.1. 5-4-4-4 AD924x Core Analog-Digital Converter............................................63

Figure 5.2. Differtial Sample and Hold Amplifier and Timing..................... 64

Figure 5.3. Flash and MDAC Pair Showing Circuit Timing.............................. .... 65

Figure 5.4. New 16-bit Pipeline ADC Architecture....................................66

Figure 5.5. First Amplifier Modes of Operation............................. 68

Figure 5.6. Amplifier First Stage - Before and After................................... ..... 70

Figure 5.7a. New Amplifier - Gain and Phase............................... .............................. 72

Figure 5.7b. View of Transition Frequency and Phase Margin...................73

Figure 5.8. New Amplifier - Worst Case Settling................................ ........ 74

Figure 5.9. New Digital Block for 16 bit Pipeline ADC................................... .... 78

Figure 5.10. Rom Coding and Summation Examples......................... .............. 80

Figure 5.11. Old and New Reference Switching Schemes in First MDAC.....................81

Figure 5.12. Old and New Schemes for Feedback Capacitor Sampling..........................82

Figure 5.13. Input/Output Transition Table ................................. 84

Figure 5.14. Flow Chart of Factory Calibration...............................85

Figure 6.1. BeHAV MODEL 16bit Converter Linearity before Calibration.

DNL and INL..............................89

Figure 6.2. BeHAV MODEL 16bit Converter Linearity after Calibration.

DNL and INL............................................ 90



Chapter 1

Introduction

1.1 Motivation

During the past ten years, the field of high-speed Analog-to-Digital conversion has

grown extensively. Medical and Imaging technologies have presented a need for Analog-

to-Digital Converters (ADCs) with sampling rates on the order of megasamples to tens of

megasamples per second (Ms/s). The earliest high speed data converters were Flash

ADCs. Flash type ADCs were limited to resolutions no greater than 8 bits. As the ADC

market pushed towards higher resolution ADCs, two-step and pipeline architectures prom-

ised higher resolution while covering a smaller area and consuming less power. The new

architectures did not operate quite as fast as their Flash counterparts, but in the 10Ms/s

market they won new customers. The promise of these new designs lead to the flooding of

the 10 to 12 bit ADC markets. The market stalled at 12 bits and the market began to focus

more on lower power consumption and higher sampling rates. ADC resolution plateaued

as a result of the new focus.

Another primary direction of ADC design in the past years has been toward the

monolithic implementation of mixed-signal integrated circuits. The coexistence of analog

and digital circuitry on the same substrate required that both analog and digital compo-

nents be manufactured using the same process technology. CMOS (Complementary MOS)

has proven to be the least expensive process with which to implement both analog and dig-



ital circuitry. A hybrid process named BiCMOS (Bipolar and CMOS) has been used to

implement higher frequency analog circuits while maintaining the digital capability of

CMOS. Due to the extra processing steps required, BiCMOS is more expensive to imple-

ment than CMOS, making CMOS the technology of choice. By using these well defined

processes, many analog electronics firms are currently competing to produce the state of

the art in the 10 to 12 bit high speed ADC market. The current state of the art in the 10 bit

range is a 1OOMS/s CMOS ADC consuming 1.1W of power.[1] In the 12 bit market, a

50Ms/s BiCMOS (Bipolar and CMOS) ADC consuming 535mW of power marks the state

of the art. [2]

The market for high-speed, high-resolution ADCs has just started to push beyond the

12 bit level. The period of stagnation in resolution enhancement has been due to the inabil-

ity of companies to produce pipeline ADCs that possessed sufficient linearity at resolu-

tions greater than 12bits. Non-linearity is caused by the inherent inaccuracy of today's

ADC manufacturing technology. In particular, the mismatch of transistors, resistors, and

capacitors, cause the greatest linearity problems in pipeline ADCs. A few circuit tech-

niques and measurement methods can be used to minimize the effects of this mismatch.

Architecture changes alone also allow greater than 12bit resolution to be achieved. Using a

multi-bit per stage pipeline architecture, Analog Devices Inc. has reported a 14 bit pipe-

line ADC running at 10MS/s. [3] This ADC has high resolution but lacks sufficient linear-

ity. The use of high-speed sigma-delta architectures has also allowed high-speed

oversampling ADCs to press beyond the 12 bit level. Analog Devices, Inc. has reported a

16 bit Sigma-Delta based ADC using oversampling techniques to perform 16 bit linear

ADC functions. The ADC marks the state of the art in high-speed, high-resolution

dynamic ADCs. [4] Many high resolution pipeline ADCs use calibration as method of

increasing ADC linearity. Analog Devices has reported a 14 bit 2.5MS/s BiCMOS factory

calibrated pipeline ADC. [5] The report stated that the ADC consumed 500mW of power.

In comparison to other linear 14bit ADCs of the time, it was relatively power-efficient. In

an even higher resolution arena, 16 bit, National Semiconductor has produced a 16bit

1MS/s digitally self-calibrated ADC, representing the state of the art in high-resolution

nyquist rate ADCs. [6] Calibration in this ADC is responsible for adding a large amount of

digital complexity to the ADC core. The switching noise associated with the digital cir-



cuitry ends up coupling through the substrate and corrupting the analog signal path. Con-

sequently, the ADC does not deliver true 16 bit noise performance.

The motivation of this thesis is to examine the feasibility of a 16bit ADC running at

3MS/s based on the 14bit converter architecture presented in [3]. This ADC employs digi-

tal calibration to increase linearity; yet the calibration is kept simple in order to diminish

the effects of digital noise coupling. With the use of digital calibration, the ADC is speci-

fied to achieve one quarter LSB DNL at the target resolution of 16 bits. The ADC alone is

also be specified to generate no more than one third LSB of input referred RMS noise.

1.2 Organization

This remainder of this thesis will be organized in the following manner. Chapter 2

discusses the evolution Flash ADCs to pipeline ADCs, and common linearity metrics used

in describing Nyquist rate converters. Chapter 3 discusses problems that arise in pipeline

ADCs as a result of processing errors and physical non-idealities. Methods for correcting

these errors will also be discussed at part of chapter 3. Chapter 4 discusses the trade-offs

of modern pipeline architectures, and makes an argument for the use of multibit per stage

ADCs in high resolution applications. Chapter 5 introduces the new ADC architecture and

discusses several modifications made to the existing AD9243 which result in the proposed

16 bit pipeline. Finally, chapter 6 reviews the results of a behavioral simulation on the 16

bit ADC architecture and briefly outlines issues of the future design process that must be

solved before release.



Chapter 2

Evolution of the High-Speed Pipeline ADC

2.1 Introduction

Over the years ADCs have been developed with a wide range of resolutions and

speeds. Within the ADC family exists a sub-family of converters whose input sample rates

match their output data rates. These converters are generally able to sample input frequen-

cies up to half the sampling rate, and are called nyquist rate converters. Unlike oversam-

pled ADCs, nyquist rate converters do not rely on increased clock speed to increase

linearity or decrease noise. Nyquist rate operation allows this family of ADCs to convert

much higher frequency signals than their oversampling counterparts. This fact makes

nyquist rate converters the clear choice for high- speed applications. The fastest nyquist

rate converters were Flash ADCs. Flash ADCs had a number of drawbacks. An evolution

towards new high speed converter architectures occurred in response to the Flash ADC's

drawbacks. Along one path, ADCs evolved from the low-resolution high speed Flash

ADC to the higher resolution pipeline ADC. This chapter gives an overview of the evolu-

tionary path and what drawbacks and advantages were gained along the way.

2.2 Non-linearity Metrics for Nyquist Rate Converters

Before discussing the events that lead to the conception of the modern pipeline

converter, a discussion of certain performance metrics for nyquist rate ADCs must be

given. Linearity, in any ADC, is very important. An ideal ADC has a linear staircase trans-

fer function mapping distinct sections of the analog input range to individual digital output



codes. The ideal N-bit ADC transfer function looks like a staircase with 2N steps, each of

which has equal run. Designers try to emulate the ideal transfer function when designing

linear ADCs, but errors will still exist. Linearity metrics are used to describe these errors.

The two linearity metrics commonly used in describing nyquist rate converters are differ-

ential non-linearity (DNL) and integral non-linearity (INL). Together these two metrics

can be used to illustrate an ADC's non-linear properties.

The first linearity metric discussed is differential non-linearity. DNL is defined as

the deviation of each digital output code width from the ideal. [7] Figure 2.1 shows an

ideal ADC transfer function segment and a similar segment with DNL. Figure 2.1 also dis-

plays plots of 'output code vs. DNL,' a visual representation of the metric. The ideal digi-

tal code width is given by,

FullScale
Ideal = (Eq. 2.1)

2
N

where FullScale is the ideal fullscale voltage range of the converter, and N is the resolu-

tion of the ADC in bits. DNL values of + 1/4 LSB and -1/4 LSB correspond to digital code

widths of 5/4 times and 3/4 times the ideal respectively. Specifications often state that a

converter's DNL falls between -1/2 and +1/2 LSB. This means that the step widths range

between 1/2 to 1 1/2 times the ideal respectively. The term, 'N-bit DNL' corresponds to

the system having DNL no greater than ± 1 LSB at N-bit resolution. The same can be said

for the term 'N-bit linearity' but in a more general sense. DNL surpassing +1 LSB denotes

a code width more that twice the ideal. Non-monotonicities or "extra codes" are indicated

in DNL plots by two or more consecutive codes with greater than +1 LSB DNL. At the

other extreme, -1 LSB DNL indicates that a zero width code exists, a code which is 'miss-

ing.' 'Extra' and 'missing' codes and some of their causes are discussed in more detail in

chapter 3.

Code width variations inevitably causes the slope of the ADC transfer function

tovary across the input range. Slope variation causes the ADC transfer function to waver

around a straight line lying between the lowest and highest output codes. The difference

between the non-linear transfer function and the ideal straight line ADC transfer function

is referred to as the Integral non-linearity (INL) of the system. [7] Figure 2.2 shows the



DNL Effects
Ideal Transfer Segment

and DNL Plots

Output Code DNL

' +2/3 -

2 0-

-2/3 -

Input Voltage

Transfer Segment with DNL

+DNL

-DNL

I I I I I
N Output Codes N+4

Output Code DNL

+2/3 -

-2/3 0-

-2/3 -

Input Voltage
Figure 2.1

I I I I I
N Output Codes N+4

transfer function of an ADC with INL and a "code vs. INL plot", the graphical representa-

tion of INL. The largest factor affecting ADC INL is circuit non-linearity. These factors

will be discussed more in-depth in chapter 3. Now that INL and DNL have been presented,

the evolution from the Flash ADC to the Pipeline ADC can be discussed.

INL Effect and INL Plot
Transfer Functions Output Code INL

Ideal

7. 7

bow

Output Codes

Figure 2.2

6 N+4

U

© N

N+4 -

N-

Input Voltage



2.3 The Flash ADC

One of the fastest nyquist rate ADCs is the Flash ADC. The Flash ADC is based on

the principal of equally partitioning the input range into 2 N distinct adjacent segments,

determining in which segment the input sample exists, and mapping that segment to a dis-

tinct code in the digital domain. This is all done during one clock cycle. Carrying out this

principal in practice requires a large amount of processing power. The Flash ADC

employs a highly parallel architecture to supply processing power and throughput. A Flash

ADC, shown in Figure 2.3, consists of an array of 2N-1 comparators making decisions at

2N-1 equally distributed analog voltages. The Flash input signal is routed to the input of

each comparator and decision levels are supplied by a string of 2N resistors. The output of

Flash ADC

+Vref -

R(2N)

R(2N_1)

R(2N-1)

Vin

R(3)

R(2)

R(1)

Figure 2.3

the 2N-1 comparators are latched once every clock cycle and the latch output lines are

mapped to a digital code via the decoder. Flash ADC conversion speed is dependent on a



few factors. The comparator reaction time, the time it takes a change at the input to change

the output, limits ADC accuracy and speed. For fast comparators this reaction time is quite

small. Latching speed and the decoder propagation delay also limit clocking speed. These

delays are typically on the order of a few nanoseconds. Due to these small time delays, the

Flash architecture is a good choice for very fast applications.

The Flash architecture does have a number of drawbacks. For each new bit of reso-

lution added to the ADC, the total number of comparators doubles. As a result, the ADC

size and power dissipation vary exponentially with resolution. Consequently, Flash ADC

resolution has not surpassed 8 bits without size and power problems. In practice, the Flash

architecture is also prone to non-linearity problems at high resolutions. In reality, resistors

never match exactly. Mismatch between string resistors causes non-linearity in the Flash

ADC decision spacing, leading directly to system INL. In addition, each comparator in the

array has a random input offset voltage. Offset voltages shift the comparator decision

points about randomly adding to system DNL. Low resolution Flash ADCs are less prone

to these non-linearity errors because decision spacing is typically much larger than the

comparator offsets or mismatch errors. The next generation of high speed ADC based on

this Flash architecture, the two-step ADC, was conceived to solve some of the problems

that plagued the Flash ADC.

2.4 The Two-Step ADC

A method of reducing the number of comparators in an ADC is to break the quan-

tization operation into two parts. If N/2 bits are returned by an initial coarse quantization,

and N/2 bits are then returned in a second fine quantization, the number of necessary com-

parators is reduced from 2 N to 2 N/2+1. A digital output code is generated by adding the fine

quantization to the coarse quantization. The process just described is the principle of the

two-step architecture. Figure 2.4 shows a block diagram of a two-step ADC architecture.

During the first step, the coarse Flash ADC quantizes the input sample to N bits. The digi-

tal output is input to a reconstruction DAC. The DAC output is then subtracted from the



original input sample. This value is then multiplied by a gain of 2N to produce a residue

which spans the second step's input range. Residue is sometimes plotted in relation to

input voltage as shown by Figure 2.5. In the second step, the residue is quantized by the

fine Flash ADC to M bits. The fine M bits and coarse N bits are then added as shown in

Figure 2.6 to produce an M+N bit code. More resolution can be attained in a two-step

architecture than in a conventional Flash due to the relaxed requirements on comparator

array size. A two-step ADC with a resolution of (4N-2) bits can be realized with the same

number of comparators necessary to construct a 2N bit Flash ADC. The ability to increase

resolution with little increase in power and area makes the two-step a better choice for

higher resolution applications.

The two-step architecture has its own drawbacks. In practice, two-step ADCs are

often implemented as switched-capacitor circuits. The residue gain element situated

between the two stages is implemented using an operational amplifier. In a switched

capacitor ADC, the residue amplifier needs time to settle to its final output value. The set-

tling time of the amplifier is governed by its closed loop gain and is typically much slower

than digital propagation delay. Consequently, a two-step ADC has a slower conversion

rate than the Flash ADC. Also, in addition to the non-linearity introduced by the Flash

ADC in each of the two steps, errors incurred by the reconstruction DAC, adder, and gain-

ADC in each of the two steps, errors incurred by the reconstruction DAC, adder, and gain

element cause DNL and INL. In a two step architecture, DNL and INL are typically

smaller than in the Flash ADC case. This is true because the Flash ADC in each step has

low resolution and subsequently low INL and DNL error while the DAC and gain error are

smaller than high resolution Flash error when output referred. Chapter 3 and 4 shed more

light on the effects of DAC and gain error on DNL and INL for two-step and pipeline

ADCs. Even though resolution can be increased and both power and area can be decreased

as a result of the two-step architecture, a maximum resolution still exists when the Flash

converters and residue amplifiers become too large. By further reducing the resolution of

each step and increasing the number of steps taken during the conversion, it is possible to

alleviate the resolution limitation.



Two-Step Architecture

Input

First Step
Digital Bits

Figure 2.4

Second Step
Digitial Bits

Step One Residue
+Vrei

-Vref I
-Vref Input Voltage

1
st Flash Transistion

Figure 2.5

+Vref

2 N-1 Flash Transistion

Two-Step Bit Additions

Assuming each step has six bit resolution...

AAAAAA

BBBBBB

AAAAAABBBBBB

(Bits returned by step one)

(Bits returned by step two)

(Digital output code)

Figure 2.6

N-bits



2.5 The Pipeline ADC

The pipeline ADC is a natural generalization of the two-step ADC in which M-1

stages and a final Flash perform the M-step data conversion. The first M-1 stages have the

form shown in Figure 2.7. As in the two-step ADC, each stage comes complete with a

Flash, a reconstruction DAC, analog adder, and a residue scaler. The Mth stage of the

structure is commonly a Flash ADC resolving the finest bits of the system. As shown in

Figure 2.8, the bits from each stage are added together to form a digital output code. The

pipeline converter is labeled "pipeline" because its operation allows for the high through-

put common to digital pipeline circuits. Each stage possesses a sample and hold amplifier

(SHA) used to sample the output voltage of the previous stage. As a result, each stage of

the pipeline samples an input voltage, completes a residue amplification, has its output

sampled by the following stage, and is then ready to sample the next input voltage all in

one clock cycle. As a result, the pipeline ADC has the ability to take a sample on every

clock cycle, the residues of which are gated down the pipeline one after another. Maxi-

mum throughput and Nyquist rate conversion are achieved by the pipeline ADC.

The pipeline has a number of advantages over the two-step ADC. The resolution

of the ADC can be increased by increasing the number of steps used to do each conver-

sion. Increased resolution can be achieved without a large number of comparators. Conse-

quently, power and area can be reduced to the point where amplifier power dissipation and

size exceeds that saved by reducing the Flash comparator array sizes. With decreased res-

olution in each stage comes a similar reduction in residue amplifier closed loop gain. Res-

idue gain reduction in each pipeline stage allows for shorter settling time and increased

speed. The pipeline ADCs sampling speed is hence limited by the slowest settling residue

amplifier in the pipeline. Ideally, a pipeline ADC optimized for high-speed, low power dis-

sipation, and small area would have a large number of stages each with one bit resolution.

In practice, converter linearity and resolution are limited by errors occurring in the Flash

ADCs, reconstruction DACs, and residue amplifiers. In practice, optimal designs may not

have single bit per stage structures. The issue of optimal pipeline architecture is discussed

in chapter 4, as pipeline architecture trade-offs are more closely examined.



Pipeline Stage Architechture

Input Stage
SHA Residue

FLASH DAC

ADC

W Digital Output Bits

Figure 2.7

Pipeline Bit Additions

Assuming a four stage pipeline with each stage having four bit resolution

AAAA (Stage 1 Bits)

BBBB (Stage2 Bits)

CCCC (Stage3 Bits)

+ 'IDDDD (Stage4 Bits)

AAAABBBBCCCCDDDD (Digital output code)

Figure 2.8

As the evolution from Flash ADCs to pipeline ADCs progressed, optimizations

were made for speed, power consumption, area, and resolution. Through the generations,

higher resolution conversion has become a possibility. In reality, process and noise related

errors cause problems in all sections of the pipeline architecture limiting resolutions to ten

to twelve bits. As a consequence, the source and effects of these errors must be understood

if they are to be corrected. The next chapter will shed more light of process related error

and simple circuit techniques used to alleviate the problems they cause. Chapter 5 will

give a description of noise effects found in switched capacitor pipeline ADCs.



Chapter 3

Correction Techniques for Physical and

Process Related Errors

3.1 Introduction

Due to the inherent inaccuracy of modern semiconductor processing techniques,

the ideal converters presented in chapter 2 can not be realistically implemented on silicon

substrates. Errors generated by the processing of circuit components such as capacitors,

resistors, and MOS transistors affect the signal path of the pipeline ADC directly. These

effects corrupt the proper operation of the pipeline ADC, sometimes fatally. In order to

perform proper ADC functionality it is very important to minimize or correct process

errors. A discussion of the causes and effects of these errors is important in understanding

how they might be corrected. This chapter will give insight into process related error and

techniques for suppressing the effects.

3.2 Integrated Capacitor Errors

Capacitive elements in modern CMOS electronics are implemented in parallel

plate configurations. Capacitors are commonly made of metal, polysilicon, or substrate-

silicon. Integrated capacitors give circuit designers the impedance modules necessary to



build continuous-time filters as well as the charge storage ability necessary for switched-

capacitor circuitry. Capacitors in high-precision switched-capacitor circuits need to match.

Most linear circuits including continuous time filters and switched-capacitor ADCs

require linear capacitor behavior as well. Capacitor mismatch and non-linearity currently

cause problems in the production of high-accuracy, linear switched-capacitor ADCs.

Mismatch is dependent upon the method of processing integrated capacitors. The

plates of any given capacitor are either deposited on the surface of an integrated circuit or

diffused into the silicon substrate. The accuracy of plate dimensions is highly dependent

on the accuracy of the photolithographic process used. Photolithographic processes usu-

ally cause dimensional defects on the order of 0.lum. This means capacitor lengths are

widths can vary by -. lum causing capacitor value fluctuation. Because the process is pho-

tographic, a certain amount of graininess occurs in the development of the photoresist.

This graininess leads to edge roughness which causes dimensional deformation. [16]

Dimensional variation can be seen in Figure 3.1. Alignment between masking steps can

cause inconsistencies in the relative positioning of capacitor plates. This error can usually

be averted by using a larger bottom plate in each capacitor. Small errors do still exist. An

example of alignment error is displayed in figure 3.2. Uneven dielectric thickness is yet

Dimensional Lithography Error (Exaggerated)

(Length error) AL

Actual Capacitor
Dimensions ' Ideal Capacitor
(Including Integrated Dimensions

Edge Roughness) Capacitor

Cl

- . "Aw

(Width error)

Figure 3.1

another error contributing to capacitor mismatch. Silicon-dioxide is the main dielectric



Allignment Error

1 ottiMomW
I Plate

Integrated I Integrated
Capacitor Capacitor

I C C2
II Top

Plate

Nominally C and C2 have equal values. The mis-allignment of Cl causes
its value to decrease, while the mis-allignment of C2 causes no appreciable

different from its nominal value.

Figure 3.2

used in silicon processes. If the thickness of the oxide varies across the capacitor, the

effective capacitance will vary accordingly. Common centroid layout techniques have

been employed to combat this error, but as in the case of alignment, small errors still exist.

An example of common-centroid correction is shown in Figure 3.3. In common centroid

layout, components a placed across chip gradients and cross interconnected in order to

average gradient effects and reduce the overall error. Because width and length deviations

and edge roughness effects each have a fixed stochastic variance, the change for small area

capacitors is a larger percentage of the total value than that of large area capacitors. Due to

the compact size of low value capacitor arrays, oxide thickness gradients yield little error

to mismatch; hence small capacitor mismatch is dominated by edge roughness and dimen-

sional deviations. On the other hand, large value capacitor arrays take up much more area.

Oxide gradients cause larger changes in value from capacitor to capacitor and the averag-

ing properties of the common-centroid technique become weak producing adverse effects

of matching. As mentioned above, large capacitor do not suffer that much from edge

roughness and dimensional change; hence oxide gradients tend to dominate capacitor mis-

match for large capacitor arrays. [15] Each of these process related errors causes problems

for circuit designers.

Several groups have conducted studies on the capacitor mismatching properties of

the processes which they use. Statistical data on capacitor mismatch vs. capacitor size is



used by designers who wish to predict how well their final integrated products will per-

form. A study done by Tuinhout, Elzinga, Brugman, and Postma gives results on a exam-

ple double-poly process. Results of this study show that the RMS mismatch ( AC/C) of

50umX50um capacitors is approximately 0.015% while for 200umX200um capacitors, it

is 0.005%. [8] Feasibility analysis of high-precision ADC circuit performance is easier to

perform given measured mismatch data.

Common-Centroid Layout

The thickness gradient is
represented by the shading
across the capacitors. The
lightest shading is the thinnest C2A
oxide, while the heaviest
shading respresents the C1A
thickest oxide.

Capacitors in common centroid
configuration match better
because the average of two
capacitors across the gradient
matches better than just single
capacitors.

For example if:

C1A = 2pF, C1B=lpF
C2A= 1.5pF, C2A=1.5pF

C1A+C1B 1 while CIA =0.67.
C2A+C2B C2A

Figure 3.3

Capacitors also exhibit non-linear behavior. Capacitor non-linearity has caused

numerous problems in high-precision linear and switched-capacitor circuitry. Capacitor

non-linearity, unlike mismatch, is based on physical properties of the device. Non-linear-

ity causes harmonic distortion and spurious behavior in systems manipulating dynamic

signals. In most communication applications, distortion is intolerable.

Capacitors can be fabricated from polysilicon, substrate silicon, or metal. Each

material exhibits a different degree of non-linearity. Capacitors constructed from polysili-



con and substrate silicon plates exhibit non-linear characteristics. Capacitor non-linearity

is caused by voltage dependent charge induction on the silicon plates of integrated capaci-

tors. Semiconductors deplete areas of charge at the dielectric-plate boundaries. The capac-

itance of the structure is non-linear because the voltage at the semiconductor-dielectric

boundary varies non-linearly with applied voltage. This non-linearity is commonly

referred to as a voltage coefficient. [9] The extent of the capacitor's non-linearity is depen-

dent on the doping concentration of the silicon plate. Depletion regions are typically wider

and cause higher non-linearity in more lightly doped silicon. In practice, it is possible to

more heavily dope the substrate plate of these capacitors to flatten the capacitor non-lin-

earity. Unfortunately, many processing techniques do not employ this extra doping step.

Consequently, circuits employing capacitors made with substrate silicon plates have bad

non-linear behavior. The non-linear effect in degenerately doping polysilicon is much

smaller than that for lightly doped substrate silicon. [9] For this reason, degenerately

doped polysilicon-oxide-polysilicon capacitor structures have become commonplace in

linear switched capacitor systems. The effects of capacitor voltage coefficients on the

ADC are discussed later in this chapter.

Capacitors made with metal plates exhibit more linear behavior. Charge induction

occurs differently on metal capacitor plates. Unlike semiconductor plates, metal plates

accumulate charge at the metal-dielectric boundary. No appreciable non-linearity in volt-

age from contact to dielectric occurs, making metal-metal capacitors linear. Proper con-

trols over capacitor fabrication are necessary to implement these capacitors.

Parasitic capacitance also causes problems. Non-linear parasitic capacitance is

common to both poly-poly and metal-metal capacitors. These capacitors sit atop an oxide

dielectric with a substrate beneath, creating a parasitic MOS structure. Although capaci-

tance from top plate to bottom plate is linear, the parasitic capacitance existing between

bottom plate and substrate is still non-linear. In many circuits, non-linear parasitics cause

minimal circuit non-linearity if voltages are carefully applied to the appropriate capacitor

plates. In switched-capacitor circuits, bottom-plate sampling is used to minimize the non-

linear parasitic error. By driving both input and reference voltages onto the bottom plate of

an input capacitor, the effects of non-linear parasitic charge build-up can be decoupled



from the output of a switched-capacitor circuit block. The end of this chapter deals with

the effects arising from capacitor mismatch and non-linearity. Methods for correcting the

effects of mismatch and non-linearity are also discussed.

3.3 Integrated Resistor Errors

Resistors are used for multiple applications. Resistor strings are used in Flash

ADCs to set the decision voltages for the Flash comparator array. Integrated resistors are

also important when constructing continuous time active filters. Resistors suffer from the

same lithographic problems that capacitors do resulting in resistor mismatch.

Resistors on silicon integrated circuits are commonly implemented with polysili-

con lying on a thick field oxide. With the market pushing for lower power applications,

large resistor values must be implemented for low power consumption. The value of a pol-

ysilicon resistor is given by,

R = (SR)L (3.1)
W

where W, L, and SR are width, length, and sheet resistance respectively. Polysilicon sheet

resistance typically ranges from 20-80 ohms/square. From the above equation it is appar-

ent that minimizing the width and maximizing the length of the resistor will maximize

resistance while minimizing chip area. Narrow devices are susceptible to lithographic sen-

sitivity. For high value polysilicon resistors, small changes in width cause large changes in

value. Silicon thickness, a contributing factor to sheet resistance, is not well controlled but

in resistor matching situations silicon thickness error can be minimized using common

centroid type techniques.

Resistors do have non-linear parasitic capacitance. As with integrated capacitors,

polysilicon resistors form MOS capacitive structures with the substrate. The parasitic

capacitance is non-linear and can cause problems in dynamic systems. The implementa-

tion considered in this thesis is immune to this capacitance. Resistors are used as DC com-

ponents converting DC currents into Flash decision levels. The effects of parasitic

capacitance are not present at DC and the analysis of non-linear effects is unnecessary.



The end of this chapter covers the effects of resistor mismatch on switched-capacitor pipe-

line ADCs. Methods for correcting the associated errors are introduced and discussed.

3.4 MOSFET Errors

As the primary active devices in CMOS integrated circuits, MOSFETs are the

most commonly used integrated devices today. In switched-capacitor circuits, MOSFETs

are used for more purposes than just amplification. Because MOSFETs make good switch-

ing devices, input switches, sampling switches, and charge routing switches are imple-

mented using MOSFETs. Although used for a wide variety of applications in integrated

circuit design, MOSFETs introduce a whole set of new problems to the circuit designer.

Much like integrated capacitors, MOSFET transistors suffer from width and length

variations. Variations lead to changes in amplifier gain and input offset voltage. MOSFET

transistors also suffer from mismatch of transistor threshold voltages. Threshold voltage

difference adds directly to the input offset voltage caused by dimensional errors men-

tioned. The total input offset for a differential MOS input stage with current load shown in

figure 3.4 is given by,

(-AW AW

Vos = A Vt( - 2) + A Vt(3 - 4)(VGS 2 (1-2 )( 1- 2 ) L(4) (3.2)

L(1 - 2) L(3 - 4)/

and is typically on the order of tens of millivolts.[14] Gain is typically over-engineered

and gain fluctuations in MOS transistors cause little concern. Offset voltages of millivolts

can be potentially hazardous pipeline ADCs. Input offset is typically the worst effect of

transistor mismatch. Offset affects are present in both residue amplifiers and Flash com-

parators.

New problems associated with MOSFETS appear when the devices are used as

charge transmission switches. Charge injection from the MOSFET channels and voltage

dependent channel resistance present problems in switched-capacitor signal acquisition

circuits. Figure 3.5 shows a passive sample-and-hold structure consisting of a single tran-



Actively Loaded Differential Input Pair

+Supply

Vbias 1w II M 4

M3

Output- Output+

In+ MI M2 -In-

-Supply

Figure 3.4

sistor and capacitor. When the switch is closed, the capacitor tracks the input voltage.

When the switch is opened, the capacitor voltage is sampled. If the switch is opened

quickly, approximately half the transistor channel charge flows freely onto the capacitor.

The act of adding transistor channel charge to the sampling capacitor is referred to as

charge injection. Injected charge causes the final capacitor voltage to be offset from the

ideal sample voltage. A fixed offset in this case would not cause a problem. The problem

in this case occurs because the charge injection onto the capacitor varies with the input

voltage. Because Vin is attached to the switch source, the variation of gate-source voltage

contributes a linear variation while the source-bulk voltage contributes a non-linear varia-

tion to the charge injection. In active switched capacitor systems, techniques are used to

minimize the effects of the non-linear charge injection contributed by the input transmis-

sion switch. The charge injection above assumes that the switch opens very quickly at

even intervals. If this is not the case, the switch timing can cause errors. If the switch

closes slowly, the voltage on the capacitor may no be the same as the input voltage at the

sampling instant. Also, if the sampling instant does not come at equal intervals, an effect

called clock-jitter produces deformations in the sampled signal.



Simple Sampling Structure

_L1

Vin1

Figure 3.5

Dynamically driven MOSFET input switches produce sampling problems. The

structure in Figure 3.5 has a finite bandwidth with a pole at,

1
Pl = RoNC (3.3)

where RON and C are the channel resistance and capacitor value respectively. Pole, pl,

affects the magnitude of the input signal at high-frequencies. RON is dependent on the gate

to source voltage of the transistor. As a result, the pole of the system is amplitude depen-

dent causing this system, at high frequencies, to exhibit behavior similar to harmonic dis-

tortion. Large complementary switches usually remedy the problem. The pole frequency

of the system can be increased by using a large switch. A complementary switch employs

source and drain coupled NMOS and PMOS devices to reduce channel resistance varia-

tion. As a result, the system pole is no longer as amplitude dependent, and system distor-

tion is reduced.

As described, physical non-ideality and lithographic error cause a number of prob-

lems in integrated circuit design. Linear and precision, low-offset circuits can be compro-

mised greatly by these errors. As a precision linear circuit, the pipeline ADC is often

compromised significantly by these errors. Methods of error cancellation must be

employed in order to reap the benefits of the pipeline ADC.

3.5 Solving the Amplifier Offset Problem

As mentioned in the section on MOSFET error, transistor mismatch in the input



stage of a differential operational amplifier causes a large offset to appear between its

input terminals. Amplifier input offsets manifest themselves at the outputs of active sam-

pling structures. The effects of offset vary based on how the application employs the

amplifier. Two amplifier applications used in pipeline ADCs, the residue amplifier and the

Flash comparator, are considered below.

3.5.1 Offset Correction of the Residue Amplifier

The first amplifier application considered is the residue amplifier. In chapter two, a

general description of pipeline ADC operation was presented. In switched-capacitor pipe-

line ADCs, the reconstruction DAC, SHA, addition block, and residue scaler described in

chapter 2, can be constructed with a single amplifier, a capacitor array, and a switching

network. This circuit is often called an MDAC (Multiplying DAC). The MDAC circuit is

displayed in figure 3.6. The MDAC operates in the following manner. During the first

phase of operation, the sampling phase, the input switches are closed allowing the input

signal to be sampled onto the each of the 2N capacitors in the input array. Another capaci-

tor, the feedback capacitor, is sampled to ground. The sampling switch to ground is

opened just prior to the end of phase one, injecting charge onto the capacitors in the array.

The input switches are then opened at the end of phase one. After the sampling switch

opens, the input capacitors have no DC path to ground and no charge is injected from the

input switches. During phase two, the amplify phase, the feedback capacitor is attached

between the inverting input and the output terminal of the amplifier. The capacitors in the

array are attached between either a positive or negative reference and the inverting ampli-

fier input. The positive or negative reference attachments are determined by the Flash's

quantization of the input sample. Charge is redistributed through the system during phase

two forming a residue. The ideal residue plot of the system is also shown in figure 3.6.

Note that the first stage Flash ADC has 2N decision levels unlike the Flash presented in

chapter two. Given an input voltage ranging from ground to +Vref, the residue of the

MDAC in Figure 3.6 is given by,

VOUT = 2VIN - iVref + + 2NVos (3.4)



where VOUT is the residue, VIN is the input sample, i is the quantization returned by the

Flash, Qinj is the charge injected by the sampling switch, C is the value of the feedback

Capacitive MDAC Sampling to Ground and Ideal Residue

Input
Swi ches

S
0
S

_ I-- ' ,

Analog hIput

MDAC ...

Capacitor Arra

_L

K.
I I

_
Cl

y 2

000

-(2N- 1) 1

Sampling
Switch

2

+vref
0

(Reference Switch Controller)

Decoder Circuitry

Residue

1
2

Flash Input

RESIDUE

1 st Flash Transistion

Input Voltage +Vref

2N Flash Transistion

Figure 3.6

30

-i
00 I0

FI

l



capacitor and each array capacitor, and Vos is the amplifier input offset. Although the

backend ADC has been designed with a small amount of extra correction range beyond the

fullscale input range, if the offset in (3.4) is large enough, it could push the residue of the

stage outside this correction range. The affected residue can be seen in Figure 3.7. This

mismatch in ranges leads to problems. When the offset affects shown in Figure 3.7 actu-

ally occur, for either positive or negative offset, the residue lying outside the next stage's

input causes an over-range condition. In an over-range condition, all the outlying residue

is quantized to the highest or lowest backend ADC code dependent on which reference

point was over-ranged. Ideally, a residue spans the fullscale of the backend exactly.

Assuming all of the array capacitors are matched and gain error does not exist, when one

reference is over-ranged, the other reference is under-ranged. When an under-range condi-

tion occurs, the quantization codes not spanned by the previous stage's residue are never

reached. These codes are referred to as "missing codes." In the overall transfer function of

the ADC, over-range conditions show up as horizontal segments, and "missing codes"

show up as vertical discontinuities. These discontinuities can be seen in Figure 3.7. If res-

idue amplifier offsets can be reduced so that residues no longer fall outside of backend

correction range, then the linearity of the transfer function can be preserved. The only

result of these small offsets will be an input referred ADC offset. A method known as off-

set cancellation can be used to reduce input referred converter offsets drastically.

By making some simple changes to the MDAC in Figure 3.6, the MDAC shown in

Figure 3.8 can constructed. This new MDAC reduces input offset effects at the MDAC

output. This technique is called offset cancellation. The circuit in Figure 3.8 works in the

following manner. During phase one, phil, the input voltage is sampled onto the bottom

plates of the 2N capacitors in the input array while ground is sampled onto the bottom

plate of the feedback capacitor. In the new scheme, the residue amplifier is in unity feed-

back causing the top plate of each capacitor to track the amplifier's input offset voltage.

Just prior to the end of phase one, the sampling switch opens injecting charge at the ampli-

fier's summing node. The input switches then open at the end of phase one. During phase

two, phi2, all connections are made as they were in the previous implementation. The new



Residue Error due to Offset

2N Flash Transistion

Overall Transfer functions for ideal and offset affected case

Ideal transfer function

O O

Input Voltage

Figure 3.7
output residue is given by,

Transfer with offset

Input Voltage

VOUT = 2NVIN- iVref+ + I Vos

where VOUT, VIN, Qinj, C, and Vos are the same as for (3.4) and A is the open loop DC

gain of the residue amplifier. The effect of offset has been decreased greatly, and the only

residual effect is very small. On the other hand, the charge injection offset remains. By

making the MDAC fully differential as shown in figure 3.9, charge injection can be

reduced. In a differential configuration, the same amount of charge is injected to both sum-

ming nodes if the two sampling switches match reasonably well. As long as the amplifier

provides adequate common-mode rejection, a common trait to most differential amplifiers,

Second
Stage
Input
Range

(3.5)



Offset Cancelling MDAC and Associated Timing

1 2

Input

Capacitor Array

Summing

1 ------------------- Node

1 ' Residue

2 LJ

Figure 3.8
the effects of charge injection are cancelled. Given a differential input where each side

swings between +Vref and -Vref, the new stage residue is given by,

VOUT = 2 NVIN - iVref + (2N - i)Vref + C n2 V o s  (3.6)

where Qinjl and Qinj2 match as well as the two sampling switches.

Equation (3.6) shows that the effects of input offset and sampling switch charge

injection have been effectively cancelled. Small offsets still exist, but only cause problems

in very high resolution ADCs.

3.5.2 Correcting Offset Error in Flash Comparators

Flash ADCs quantize the input sample taken in each pipeline stage. Much like the

Flash ADC architecture presented in chapter 2, the pipeline ADC Flash is comprised of a

resistor string which sets threshold voltages and an array of parallel switched capacitor

comparators. As also mentioned in chapter 2, the Flash ADC is not immune to the prob-

lems of amplifier input offset. The following section deals with correction of Flash ADC

errors.



Offset Cancelling Differential MDAC and Associated Timing

Differential Capacitor Array 2

---- ---- --- - - -

Input+ . 17 Capacitor Array

Differential
Residue

Input-

: : Capacitor Array

L _

Common 1  2
mode voltage

Figure 3.9
Figure 3.10 shows a differential switched capacitor comparator, consisting of two

input capacitors, a switched capacitor network, a high gain open loop amplifier, and a

latch. The comparator operates in the following manner. During phase one, phil, a differ-

ential voltage representing the comparator decision level is sampled across the two input

capacitors. The top plates are attached to the common-mode voltage of the system by a set

of sampling switches. Prior to the end of phase 1, the sampling switches open injecting

charge onto the two input capacitors. The effect of this charge injection is reduced due to

the differential structure of the circuit. At the end of phase one, the decision level switches

are opened and the input switches are closed. During phase two, phi2, the comparator

input tracks the input voltage minus the decision level, and the output gives the corre-

sponding decision of the comparator. Just before the end of phase two, the latch acquires

the comparator output decision. When an offset exists between the inputs of the amplifier,

the decision level of the comparator is shifted by -Voff. As mentioned in chapter 2, com-

parator decision levels can also vary from their ideal values due to resistor mismatch.

Comparator offsets and resistor mismatch cause DNL and consequently INL in each Flash

ADC.



Decision level deviation has serious consequences in pipeline ADCs. Even spacing

of decision levels is necessary so that the residue of the associated stage spans exactly the

next stage input range. Uneven threshold voltage spacing leads to over-range and under-

range conditions as seen in Figure 3.11. One method of correcting this problem is to add

more input range to the next pipeline stage. The input range of the following stage can be

effectively increased by decreasing

Differential Switched Capacitor Comparator

Vthresh+ __

Vin+ ----
Latch

Vin- -
/ 0 2- Digital

Output
Vthresh-

1 1 Common mode
voltage

Figure 3.10

the closed loop gain of the current stage. With extra range, over-range conditions do not

occur unless large circuit errors are present. The system can now "tolerate" decision error

of the Flash ADC. Another result is that the resolution of each stage is reduced by one bit.

This bit is used for "Digital Error Correction."

A pictorial view of digital error correction is shown in Figure 3.11. Stage X incor-

rectly quantizes an input signal to a value that is too low. The incorrect quantization shifts

stage X's residue into stage Y's extended input range. Stage Y quantizes the residue as

well as measuring the quantization error made by Stage X. The bits returned by stage Y

are then added to the stage X bit in an overlapping manner to form a corrected digital out-

put code free from decision level error. Digital error correction is a method of "tolerating"

Flash error and residue amplifier offset error. For instance in a five bit stage with a differ-

ential input range of five volts, ADC threshold points are 156.25 mV apart. With a zero

offset residue amplifier, a five bit pipeline ADC stage can tolerate +78 mV of Flash error

before over-ranging. Stages which sample continuous time signals typically need more

error tolerance due tracking differences between the MDAC and Flash. By reducing the



Pictorial View of Digital Error Correction

Error due to flash offset

Ideal Stage
+Vref 100 YK il 0 Codes011

d >001

-Vref - - - - 000

000 001 010 011 100 4- (Stage X codes)
Input Voltage

In the picture above for the non-error corrected two-stage configuration, the
arrow pointing to the bottom line representes the input voltage sample. Each of the
two stages has two bit resolution. The input sample is quantized incorrectly due to
the flash offset error, and the residue over-ranges the following stage. The difference
between the ideal code and what iscalculated is given by,

Ideal: 01100 + 00001 = 01101 With Error: 01000 + 00100 = 01100

Correction Range

Error due to flash offset Stage
+Vref - -------- 100 Y

100 Codes

-4 010
S-001

-Vref 000

000 001 010 011 100 4- (Stage X codes)
Input Voltage

In the second picute, the gain of the first stage has been reduced so that the
system possesses some correction range. Now if digitial error correction coding
is done on both ideal and errored residues, the results are given by,

Ideal: 0110+0001=0111 With Error: 0100+0011=0111

which are similar unlike the original case.

Figure 3.11

offsets of each comparator, more tolerance can be opened up for continuous time sam-

pling. Offset cancelled sampling comparators are employed to reduce comparator offset



error.

Figure 3.12 shows a differential offset cancelled sampling comparator. It consists

of two amplifiers with small gain, a set of input capacitors, a set of offset capacitors

between the two amplifiers, a switching network, and a latch. During phase one, phil, a

differential decision level voltage is sampled onto the input capacitors. The difference

between the output referred first stage offset and second stage input offset is sampled onto

the offset sampling capacitors. Prior to the end of phase one the four sampling switches

are opened injecting charge onto the input and offset capacitors. Once again the charge

injection effects are reduced. At the end of phase one the decision switches are opened. At

this moment the output is equal to the second stage offset. The new input referred offset is

given by,

1 AQinjl AQinj2
Voff V + + (3.7)

A,(A 2 + 1) OS2 1  (A 1)C 2

where A1 and A2 are the amplifier gains and VOS2 is the second amplifier's offset. Equa-

tion (3.7) does not have Vos 1 as a term because this offset is stored and cancelled by the

capacitors C2. During the second phase of operation the input voltage is applied across the

input capacitors, and the latch returns the appropriate state. Now that comparator decision

level is accurately represented, the resistor string mismatch and charge injection now con-

stitute the bulk of the Flash error. Resistor string error is typically quite small.

Differential Offset Cancelled Sampling Comparator

01 1 C-mode
Vthresh+in+ -

Latch
Vin- 2- VnI Lac Digital

02 Output

Vthresh- C1  C2

1 C-mode

Figure 3.12



3.6 Capacitor Error Effects and Calibration

The effects due to capacitor mismatch are not as easy to remedy as were amplifier

offset effects. Simple circuit techniques are not sufficient to correct the errors that capaci-

tor mismatch introduces to high resolution pipeline ADCs. Capacitive elements lie in the

main analog path of the pipeline ADC, corrupting analog signals directly. Unlike compar-

ator decision and resistor string error, capacitor error can not be represented digitally until

a complete conversion cycle has been completed, rendering a digital error correction type

technique ineffective. Capacitor mismatch currently places the largest constraint on pipe-

line ADC linearity.

The capacitor array, as shown previously by Figure 3.6, is the main charge transfer

block in the pipeline ADC. With an ideal set of capacitors, an MDAC will have a residue

which spans the exact input range of the next pipeline stage. As mentioned in the discus-

sion of Flash ADC errors, the distance between successive DAC transitions (vertical dis-

continuity in the residue plot) in any given stage is governed by the Flash ADC. On the

other hand, the size of each DAC transition is based on the ratio of the array capacitor

associated with that transition and the feedback capacitor of the MDAC. The gain of the

MDAC stage is also affected by capacitor mismatch error. If each array capacitor was

given an error am, then (3.6) would become,

Vou 2 +  a V - Vref + 2N - i + a Vref

m= 1 IN n=1 1=i +1
(3.8)

Qinjl - Qinj2 1 V
+ C +A+ 1 os

The residue has been corrupted and it is important to know how this error affects the digi-

tal output of the ADC.

Transition height variations and gain errors can be seen directly from the residue of

the associated pipeline stage. DAC transition size is governed by gain error and random

mismatch. Gain error adds uniform error to each of the DAC transitions made in the

MDAC. Capacitor mismatch within the capacitor array adds random size variations from



one transition to the next. The effects of gain error and combined gain and mismatch error

can be seen in Figure 3.13. Capacitor errors cause over-range and under-range conditions

in ADCs which are not digitally error corrected. By using digital error correction, true

over-range conditions will disappear. The specialized case of digitally error corrected

(DEC) pipeline stages is discussed from this point on. An under-range condition for a

DEC stage can now be defined as a DAC transition smaller than 1/2 the next stage input

range. Under-range conditions will cause "missing code" vertical discontinuity in the

ADC transfer function. In a case when capacitor error is very small, all the back-end codes

are reached. The highest and lowest codes are not spanned completely by the residue in

question and the result at the output is a "narrow code." A "narrow code" appears as a

Residue Errors due to Gain Error and Array Mismatch

- Ideal
With gain error

2N Flash Transistion

1St Flash Transistion 2" F
--------- Ideal

With combined gain error
and array mismatch

Figure 3.13



DNL point lying between -1 LSB and 0. When using digital error correction, an over-

range condition can be defined as a DAC transition larger than 1/2 the next stage's input

range. The digital error correction technique allows more than one way to arrive at the

same output code. When DEC is combined with an over-range condition, some back-end

ADC codes are reached more than once and "extra code" non-monotonicity results. When

the errors are very small, the highest and lowest back-end ADC codes are spanned more

than an ideal amount by the stage residue causing "wide codes" to appear. Wide codes

show up as DNL points lying between 0 and +1 LSB. The effects of under-ranging and

over-range can be seen in Figure 3.14. Missing codes and non-monotonicity are not

acceptable in ADC transfer functions because they compromise the ADC's linearity. Wide

code and narrow code widths must be kept close to the ideal step width in order to pre-

serve linearity.

Over-range and Under-range Effects on Residue and Transfer Function

Residue and Transfer function effect for "Over-range"

+Vref/2

- 0

--------- -Vref/2

Input Voltage
Input Voltage

Residue and Transfer function effect for "Under-range"

+Vref/2 "

-) 0

S--- ---------Vref/2 O

Input Voltage
Input Voltage

Figure 3.14



For lower resolution multibit/stage ADCs (under 12 bits) with less stringent con-

straints on linearity, capacitor matching levels are adequate and no correction is necessary.

It is important to solve the problems associated with capacitor mismatch when designing

ADCs of the 14 and 16 bit variety having reasonable linearity.

3.6.1 Calibration

When calibrating a part, a set of measurements are taken and later used to correct

the errors of the system. For precision components, calibration can be done in a number of

ways. Early calibration of pipeline ADC circuits was inherently analog. Techniques

involved either analog circuit design tricks or the direct alteration of physical components.

In a 14 bit pipeline ADC designed by Mercer at Analog Devices Inc., the two types of cal-

ibration techniques are employed together. This current-mode ADC employes laser-trim-

mable thin-film resistors as DAC elements. Matching within the DACs is achieved by

trimming the resistors. Residual gain error associated with the DACs is corrected by scal-

ing the input ranges of the pipeline stages. [5] Although an accurate method of matching

precision components, laser-wafer trimming is very slow and expensive. In pipeline

ADC's it is also possible for calibration to be done by measuring digital errors produced in

the analog front-end. These digital errors can simply be added to or subtracted from the

ADC's raw digital output. By doing this, ADC linearity can be corrected to a high-degree

of accuracy.

In 1992, Karanicolas approached the problem of digital calibration using a very

simple circuit. Figure 3.15 shows a single bit per stage module and its ideal residue plot.

Karanicolas proposed that reducing the amplifier closed loop gain, shrinking the output

residue range, and creating a buffer zone for error absorption could be used to eliminate

over-range conditions. This proposed buffer zone can be seen in Figure 3.16. Using offset

cancellation techniques in both Flash and MDAC blocks, Karanicolas kept offset errors to

a minimum. Residual offsets, charge injection effects, and mismatch error were then

absorbed into the buffer zone. The stage gain was made small enough so that all errors fell

within the range. This architecture allowed only under-range conditions. Under-range con-

ditions could be corrected digitally.



Single Bit Pipeline Stage and Residue

Pipeline Stage Ideal Residue
Analog Input

2

+Vref
0- - -

0 Input Voltage +Vref
Sampling Switch control

Comparator

Figure 3.15
In a pipeline ADC utilizing this approach, only a certain number of stages are

designed with gain reduction. Upon calibration, the final gain reduced stage is examined

first. The size of the DAC step is measured using the back-end ADC. The back-end is

either reasonably accurate in the case of the first measurement, or a calibrated pipeline

ADC itself. Calibration is performed by forcing the stage under calibration into certain

modes. During phase one of each mode, the mid range input voltage is sampled onto the

input capacitors. During phase two of mode one, the DAC transition is not applied. In

mode one, the output residue is equal to point A as seen in Figure 3.16. During phase two

of mode two, the DAC transition is applied. In mode two, the output residue is equal to

point B. Points A and B are quantized by the back-end ADC. Their values are stored in

memory as X and X2 respectively. The digital algorithm used on the calibrated stage dur-

ing normal mode operation and front-end calibration is given by,

Y Bit=0
S Y + (X -X2) Bit=l (3.9)

where C is the digital code produced by this stage and the back-end, and Y is the back-end



quantization of the stage's residue. The algorithm matches the top quantization level of the

first residue section with the bottom quantization of the second residue section. By match-

ing these codes, the algorithm corrects the DNL error associated with the uncalibrated

transition. The freshly calibrated stage and back-end stages now form a reasonably accu-

rate ADC for calibrating the upper pipeline stages. This calibration scheme is continued

stage by stage until the first stage of the pipeline is calibrated. Karanicolas was able to

achieve DNL of less than ±1/4 LSB at 15 bits with his digital calibration scheme. [10]

Residue of the Karanicolas Single Bit Stage

Bit=0 Bit=1
I I I

+Vref -Gain reduction leads to A }upper buffer zone
buffer zones at top and
bottom.

This residue plot is not
to scale and buffer zones
are typically much C
smaller. B } lower buffer zone

0 1I
0 Input Voltage +Vref

Figure 3.16

The calibration scheme mentioned above does have drawbacks. Pipeline ADCs

often have a power-of-two signal gain from input to output. Each calibrated stage in a

Karanicolas converter must have reduced gain in order to provide a sufficient buffer zone.

Gain reduction makes it necessary for extra stages to be implemented in order to provide

enough signal gain through the ADC. Extra stages take up extra area and burn more

power. The Karanicolas converter usually runs more than ten stages with reduced gain

causing a non-power-of-two ADC gain and a larger than normal gain error. An on-board

multiplier is used to correct the converter gain error. Digital multipliers are noisy due to

the large amount of digital switching they do. This noise couples to the analog circuitry

through the substrate. Added noise to the analog signal path degrades an ADC's noise per-

formance. Attempting to limit coupled noise, National Semiconductor designed new

clocking schemes on their 16 bit single-bit per stage pipeline ADC. [6]



The only INL which is corrected by the Karanicolas calibration algorithm is that

produced by the random DNL present in the transfer function. As the converter DNL is

reduced, so will the associated INL be reduced. Unfortunately, random DNL is not the

only cause of system INL and DNL correction methods do little to correct for non-DNL

related INL error. These other sources of INL manifest themselves as' non'-linearities in the

analog signal path of the pipeline ADC. In switched capacitor systems, capacitor voltage

coefficients, non-linear amplifier gain, and non-linear charge injection contribute to the

non-linearity of the ADC transfer function.

Capacitors, as mentioned in section 3.2, possess voltage coefficients which are

directly related to their physical parameters. In [9], McCreary measured the voltage coeffi-

cients of a number of differently doped silicon-silicon capacitors. These measurements

showed that more highly doped capacitor plates (ND= 1.5x10 20/cm3) gave relatively small,

linear voltage coefficients (-8ppm/V linear) while more lightly doped silicon

(ND=9x101 8/cm 3) gave relatively large, non-linear voltage coefficients (-250ppm/V aver-

age over curve). McCreary's plots can be found in Figure 3.17. With voltage coefficients

McCreary's Plots of Voltage Coefficients

AC KPPM
C ... rr. .'c"'' C KPPM

C1 C

EXPERIMENTAL

0.E E DM T

DATA D1

DI

-0.5 - CALCULATED

-12 -

-16 -8 0 8 16
' -1 -VOLTAGE V (V)

Fig. 9. Calculated and measured CV curves for poly-to-Si capacitor D2
with Nd(poly) = 9 X 10I/cm3 and Nd(Si) - 1.65 X 10 20 /cm 3 , anCS 0 20 40 * curves for poly-to-SI capacitor D3 with Nd(poly)= 1.2 X 1020/cm

VOLAGE V (v) 4 and N-(Si) a 5.5 X 10 1 /cm3 .
8.Calculated and measured CV curves for a poly-to.S capacitor
, h Nd(poly)o'1.S X 10Olcm3 and Nd(SO I ;1 X 1020/cm 3.

Figure 3.17

present in ADC array capacitors, with an increase in voltage, an increased amount of

charge would be redistributed in each stage as the input voltage increased causing the out-



put residue to change. The overall ADC transfer function would take on the shape of the

non-linearity in the voltage coefficient. In a fully differential pipeline ADC with common-

mode biased array capacitors, McCreary's voltage coefficient curves would produce an

INL plot shown in Figure 3.18. One way to resolve the INL problems due to voltage coef-

ficients is to use more linear capacitors when manufacturing these circuits. Highly doped

double-poly capacitors or metal-metal capacitors would be best to reduce converter INL.

Reside amplifier gain non-linearity can also be a problem to system INL. Each

amplifier must have a linear transfer function across it's entire output range. Frequently

open-loop gain will degrade non-linearly toward the upper and lower ends of this output

range due to output stage transistors operating near the triode region. On the other hand, if

the amplifier gain is designed to be more than accurate at the limits of the output swing

while having higher gain in the middle of the range, the non-linearity will not contribute

more than a fraction of an LSB to the converter INL.

INL Due to Voltage Coefficients in Figure 3.17

Output Code INL

0-4 LSBs
Dependant on

Doping in
McCreary's Work

Output Codes

Figure 3.18

Charge injection may also be a problem in high resolution pipeline ADCs. As

mentioned earlier in chapter 3, the input switch of a sampling structure adds a non-linear

voltage dependent charge injection to the input capacitor. In the sampling structure shown

in Figure 3.9 the input switch contributes little, but the little it does contribute is non-lin-

ear. The sampling switch may also cause problems. The charge dumped by this sampling



switch could possibly be affected by the non-linear impedance of the input switch. This

non-linear contribution is not yet known, but if it is necessary, it could be decreased by

decreasing the sample switch size or the input switch sizes.

INL is commonly corrected by matching codes. Highly linear external calibration

DACs are used to input an analog signal into a pipeline ADC. The calibrated output code

of the ADC is then compared to the DAC input code and the discrepancy in stored on chip

in a ROM. These discrepancies are then corrected as codes reach the output of the ADC

during normal operation. [6] This method of INL calibration is performed using external

circuitry and a large internal memory and tends to increase die area. The proposed ADC

currently deals only with DNL calibration. The calibration algorithm is discussed in more

detail in chapter 4.

For multibit per stage pipeline ADCs, digital calibration schemes have been pro-

posed. Karanicolas generalizes his calibration scheme to multibit bit per stage pipelines in

his thesis; yet gain reduction still exists. Digital calibration must be preformed without the

need for gain correction in order to better noise performance. Seung-Hoon Lee presents a

simple calibration technique for binary-weighted two-step ADCs. [11 ] A different form of

calibration, based on the ideas of both Karanicolas and Lee is presented in chapter 4. This

calibration method along with the other error correction techniques described above are

used to create a high-resolution pipeline ADC. The next chapter presents the architectural

background of the proposed ADC and how the architecture can be used to achieve good

linearity.



Chapter 4

Architecture and Multibit per Stage Calibration

4.1 Introduction

Achieving high linearity in pipeline ADCs is very important. Reducing the com-

plexity of any calibration on chip is equally important. The first step toward achieving

these goals is selection of an appropriate architecture. Architecture should provide solu-

tions to the two issues above as well as the issues of low-power dissipation, noise-perfor-

mance, ability to correct Flash and offset errors, and ability to perform all ADC

functionality. This chapter deals with the process of selecting an architecture for the pro-

posed 16 bit pipeline ADC.

4.2 Power management, Noise, and Error Correction in Pipeline Architec-

tures

Whether the issue is lengthening battery life or low temperature operation, most

ADCs today are designed to dissipate minimal power. ADCs which utilize circuit compo-

nents which draw less current, lower power amplifiers, and a smaller number of compara-

tors will naturally dissipate minimal power. Single bit per stage pipeline ADCs require

only a power of two multiplication and on comparator per stage. Residue amplifiers in



these ADCs often draw much less current than the higher gain-bandwidth amplifiers

implemented in multibit per stage pipeline ADCs. The single comparator per stage also

dissipates much less power than larger multibit comparator arrays found in multibit per

stage ADCs. There is on the other hand a trade-off. Multibit per stage ADCs implement

much fewer residue amplifiers and the extra comparators used burn relatively little power

in comparison to the residue amplifiers. For low speed applications, multibit and single-bit

per stage ADCs can be design to dissipate similar amounts of power although the single-

bit per stage ADC will typically win in the speed vs. power arena.

Good ADC noise performance is necessary for achieving maximum dynamic

range in specific applications. In single bit per stage ADCs, the converter noise is gener-

ated by a SHA and the first few stages of the pipeline. As will be shown in chapter 5,

increasing the input capacitance of a stage will decrease the ADC noise levels. To increase

the noise performance of a single bit per stage ADC, the input capacitances of the first few

stages must be kept large. These capacitor sizes impose a power restriction on the first few

residue amplifiers of the ADC and increase the power necessary to run the ADC properly.

In a multibit per stage ADC, the noise performance is governed by the SHA and first stage

primarily. Large capacitors are still needed on the SHA and first stage to ensure noise per-

formance, but smaller input capacitors can be used on the second and subsequent stages of

the ADC. The power constraints on the residue amplifiers in these ADCs are hence loos-

ened and become more lax than those of the single-bit per stage ADC. As a result, power

can be reduced with better noise performance in multibit per stage ADCs.

One of the key features of digital error correction in multibit per stage ADCs is its

ability to tolerate residue amplifier offsets and Flash decision errors reducing the fre-

quency of over-range conditions. These errors occur in both multibit and single-bit per

stage pipelines. Single bit per stage ADCs, on the other hand, can not tolerate these errors

without specialized design considerations. Multibit per stage ADCs employing digital

error correction require fewer design considerations when it comes to total error correction

than do single bit per stage ADCs. This advantage along with its noise performance capa-

bilities and low-power possibilities makes the multibit per stage architecture the choice for

the proposed converter.



4.3 Previous 16 bit Architectures

Achieving 16 bit resolution and linearity at high-speed is no easy feat. A number

of architectures have developed in order to solve the problem. As mentioned above, in

1996, National Semiconductor has developed a 20 stage pipeline using the Karanicolas

calibration approach. A number of front end stages are calibrated and good linearity is

obtained. Designed using a single bit per stage architecture, the part operates with both

low-power consumption (200mW) and high speed (lMs/s). As previously mentioned, the

analog section of National's part suffers from digital noise pollution. [6]

Analog Devices Inc., has developed a 16 bit ADC combining a Sigma-Delta front-

end modulator with a back-end multibit per stage pipeline ADC. [4] The Sigma-Delta

front end oversamples the input signal, performs a multibit quantization, and shapes the

quantization noise. The quantization noise is then measured by a twelve bit back-end pipe-

line ADC and subtracted from the front end output to achieve 16 bit resolution. The con-

verter is highly linear over an input signal bandwidth of 1.25MHz and has excellent

dynamic performance. As a dynamic system, the Sigma-Delta configuration is not useful

for converting individual samples, hence the part can not perform all useful ADC func-

tionality. Datel has also come out with other hybrid architectures useful in 16 bit applica-

tions. These ADC's currently mark the best the market has to offer in fast, 16 bit ADCs.

4.4 Achieving High Resolution without Calibration

Linearity in a pipeline ADC is governed by the stages that produce the most influ-

ential analog signal path errors. Each ADC stage adds a certain power-of-two signal gain

to the input. Consequently, when output referred, errors occurring toward the front of the

pipeline have the most signal gain applied to them. The first few pipeline stages typically

cause the largest linearity problems. The number of ADC pipeline stages along with their

respective resolutions, in the end, govern the linearity of the ADC.

As mentioned in chapter 3, capacitor mismatch in MDAC arrays adds error

directly to the analog signal path. Capacitor mismatch in a pipeline ADC is commonly

measured in bits of accuracy. If capacitor mismatch is said to be "ten bit good", the follow-



ing statement is true: Any DAC transition error due to capacitor mismatch in a pipeline

MDAC will not generate a "missing" or "extra" code in the output transfer function unless

the MDAC's residue is quantized to greater than ten bit accuracy by an ideal back-end

ADC. A non-linearity arises when an incorrectly sized DAC transition is subtracted in any

pipeline stage. If the error of a single array capacitor, Ci, is given as ai, the ith DAC transi-

tion of any N-bit MDAC is given by,

CfDacheight = (1 + ai)-- (4.1)

where Ci is the ideal input capacitance, and Cf is the feedback capacitor. This is simply the

ratio of the ith array capacitor to the feedback capacitor. This means that residue error due

to capacitor mismatch is not dependent on stage resolution. For similar capacitor match-

ing, the DAC transition heights in a 4 bit stage will produce no more error at the output of

its MDAC than the DAC transition heights in a 1 bit stage will at its output. For example,

if a 5 bit stage and a 1 bit stage, both with "ten bit good" capacitor matching, are each

attached to ideal ten bit back-ends, neither ADC produces "missing" or "extra" codes. The

ADC with the 5 bit first stage provides four bits better resolution and DNL than the ADC

with the 1 bit first stage. If digital error correction is also employed, the 5 bit first stage

case yields fourteen bit resolution and linearity. In comparison, the one bit stage can yield

at most eleven bit resolution and linearity.

In the example above, an ideal back-end converter is used. Ideal back-end convert-

ers do not exist. Similarly, if the linearity of a back-end ADC can be kept high, the front-

end ADC stage will still contribute the largest non-linearity to the system. Additional non-

linearity can be kept small by using a multibit per stage back-end. When referred to the

input of the back-end, the back-end non-linearity is much smaller than the front end con-

tribution. In this case, the first stage will be responsible for the largest ADC DNL. For

example, the DNL produced by the four bit first stage of a ten bit back-end ADC can be no

more than one eighth of a converter LSB if the capacitor matching is ten bit good. Con-

versely, if the back-end were constructed out of single bit stages, the first stage would add

one half converter LSB non-linearity, while the second would add one quarter LSB, etc.

The ability to achieve higher resolution without calibration is a distinct advantage of



multibit per stage pipelines. This advantage is exploited in the design of the proposed

ADC.

The AD924x, the core on which the proposed ADC is based, was designed with a

multibit per stage architecture. A back-end ADC comprised of two four bit pipeline stages

and a four bit Flash is used to provide resolution of ten bits with DNL of no more than one

quarter LSB. A five bit stage precedes the back-end increasing the total resolution to four-

teen bits. The first stage array capacitors were sized for noise performance and better than

"ten bit good" matching. The overall converter is a 5-4-4-4 structure giving fourteen bit

resolution and DNL of no more than one LSB. This architecture is illustrated in Figure

4.1. Figure 4.2 shows a computer simulation of the DNL and INL of a fourteen bit pipeline

ADC with the 5-4-4-4 structure. The performance of the AD924x architecture currently

marks the practical resolution and linearity limit achievable with non-calibrated pipeline

ADCs. [3]

In theory, higher resolution converters could be produced by increasing the resolu-

tion of the front-end stage. Pipeline stages converting more than 5 bits are impractical

power and area hungry structures. Another possibility for increasing resolution would be

to use higher than "ten bit good" matched capacitors in the first stage, and increase the

back-end ADC resolution. Matching capacitors to this level physically is difficult and

expensive. If a back-end with high enough
5-4-4-4 Architecture

Analog 5 Bit 4 Bit 4Bit 4 Bit
Input - Stage Stage -0Stage Flash

Front End

Digital Error Correction Back-end ADC

14

Digital
Output

Figure 4.1



5-4-4-4 Architechture 14bit Linearity DNL and INL

0.8

0.6

. l'ILIi ll I

-0.2 -

F 11 1-1 V I I TIM, n' 1"r mr I 711r I I W T T11r1 -1 rI 711r.TL r, I I'I T1 I I MT71 1 '1111 TI I II 1111111 I T, r vi III II I tYI m

2000 4000 6000 8000 10000 12000 14000 16000 18000

Digital Output Codes

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Digital Output Codes

Figure 4.2

resolution and linearity is used, digital calibration of the front-end can be used to achieve

-0.6

-0.8
0

11.1



high linearity.

4.5 Achieving Linearity by Digitally Calibrating a Multibit per Stage ADC

Using the general concept behind digital calibration stated in chapter 3, the calibra-

tion of a multibit stage can be done in a straightforward manner. Much like the calibration

of stages of single bit stages, calibration of multibit stages can be done by repeating the

Karanicolas measurement process for each of the 2 N DAC transitions. Unlike the Karani-

colas approach, gain reduction is unnecessary in digitally error corrected pipeline ADCs.

The correction range produced by the digital error correction technique supplies the neces-

sary buffer zone required for Karanicolas type calibration.

In "Code-Error Calibration Techniques For Two-Step Flash Ana-log-Digital Con-

verters," by Seung-Hoon Lee, et. al., a method of measuring DAC transition sizes and stor-

ing only the mismatch error is introduced. By subtracting the error terms from the digital

output of the ADC, Lee's algorithm reduced DNL to a sufficient level. Lee conducted the

first calibration of a 12 bit Two-Step ADC. By exploiting the DNL symmetry of a binary

weighted capacitor array as seen in Figure 4.3, Lee needed only 2(N-1) memory locations

to correct errors in an N-bit stage. [12] This calibration theory can be adapted to

unweighted capacitor arrays by using measurement methods employed by Karanicolas

and error extraction methods used by Lee.

The linearity specification for a pipeline ADC governs the number of stages requir-

ing calibration. If the back-end of an ADC is linear enough to produce no "missing" or

"extra" codes, then only the front-end ADC requires calibration. Linearity specifications

are typically stringent. Specified linearity of no more than one quarter LSB DNL is com-

monplace. An N bit ADC can be produced with no more than 1/4 LSB DNL when an

(N+2) bit linear ADC is designed and the two LSBs of the digital output code are trun-

cated. Using this concept, design of a 16 bit ADC with 18 bit linearity requires that an 18

bit linear ADC be developed.

To minimize digital complexity it is necessary to realize an 18 bit linear ADC with



Binary Weighted Capacitor Array

IIIIIII
Switched~
Input -~-)IIIIIII

I
IIIIIIIII
t
I
I
I
I
I
I

I J

2C 4C 8C 2(N-l)C C C:

2I I

: ** :/ : : :: :: I

F +Vref:
-Vref;

Summing
Node
(Amp)

Output
Node
(Amp)

Flash Input

Figure 4.3

single stage calibration. ADC resolution of 18 bits can be achieved by preceding a four-

teen bit linear ADC with a calibrated five bit stage. The linearity of the resulting ADC is

based on the back-end ADC and the effective calibrated matching of the first stage capaci-

tors. If the error is not measured to 14bit accuracy, the ADC linearity will drop to 16-17

bits. Due to the back-end linearity, measurement accuracy is guaranteed to be 14 bit good.

With measurements made correctly, the first stage produces worst case DNL no larger than

one quarter of a 16 bit LSB. In this architecture, the first stage is not the only stage to pro-

duce non-linearity error. Due to its non-linearity, the back-end produces worst case DNL

of one quarter LSB at 16 bits resolution. The 5-5-4-4-4 architecture with a single cali-

brated first stage can theoretically produce 18 bit DNL performance. This is the architec-

ture of the proposed ADC.

Instead of the two residue segments used by Karanicolas, there exist 2 N+1 in the



new converter. Figure 4.4 shows the 33 different residue segments of the new first stage.

Measurements are made by forcing the stage into certain modes of operation. The residue

corresponding to Ai, in Figure 4.4, is produced by the following procedure. A voltage

equal to the first Flash decision level is sampled onto the capacitor array during the sample

phase of the MDAC. During the amplify phase, all the switches are set to the low refer-

ence. Residue, Ai, is referred to as the base case in chapter 5. The residue corresponding to

Bi is produced by the following procedure. During sample phase, the same decision volt-

age is sampled onto the capacitor array. During the amplify phase all switches are forced

to the low reference except the one attached to Ci which is forced to the high reference. Ai

and Bi are quantized using the back-end. Subtracting the quantized values yields,

X i = A i - Bi  0>i>33, Ai = A, X0=O (4.2)

These measurements are done one at a time for each and every DAC step, and each Xi is

Residue for a 5 Bit Pipeline Stage
Complete with Calibration Measurement Points

+Vref - ------------------------------------------------------

Al A2  A3  A4  A2 9  A30  A3 1  A3 2
+Vref/2

-Vref/2
B1  B2  B3  B4  B2 9  B30  B3 1  B3 2

-Vref
-Vref Input Voltage +Vref

1st Flash Transistion Input 32 cd Flash Transistion

Figure 4.4

stored in memory. Using a Karanicolas type methodology, the output digital code would



now be given by,

Y Segment 0

C = i (4.3)
Y + ~ X,m Segment i 0<i<33

m= I

where C is once again the code produced by the stage and back-end, Y is the back-end

quantization of the stage residue, and i is the stage's Flash code. On the other hand, it can

be shown by,

Errori = X i - LSBF (4.4)

where LSBF is the digital representation of a first stage's LSB, that the error due to capac-

itor mismatch is a small component of the measured value. The other component, LSBF,

can be returned by the converter itself. This means that a wide digital code like Xi can be

narrowed by subtracting the ideal step size represented by LSBF. The new calibration

algorithm is given by,

Z Segment 0

C= { (4.5)
Z + Y Errorm Segment i 0<i<33

m= l

where Z is the raw digital output of the overall converter. The new algorithm uses nar-

rower digital memory locations and adds errors directly to the raw output of the ADC. By

doing this, the complexity of the integrated digital circuitry is reduced. Chapter 5 presents

the digital circuit that performs these functions.

The measurements mentioned above could be done differently, and this difference

is worth mentioning. Measurements could be done by sampling 32 different voltages, each

consistent with the 32 Flash transitions of the first stage, and measuring the step sizes at

these points individually. This new method requires an external DAC or additional internal

analog amplifier circuitry to perform calibration. This drawback is offset by the fact that

non-linearities in the input capacitor voltage coefficient could possibly effect the accuracy

of the measurements made by the original method. Without major non-linearities occur-

ring due to capacitor voltage coefficients, the original method of measurement will be



accurate. In the future, it may be necessary to involve an external DAC in the calibration of

the ADC to minimize errors cause by internal non-linearity.

4.6 Simulated Linearity and New Discoveries

Before implementing the proposed architecture, extensive computer simulation

was done to assure that the back-end ADC would provide good enough measurement

capability. A simulation program was written in the C language is shown in Appendix A.

A model of an N-bit pipeline ADC stage including the effects of input offset, Flash ADC

error, and capacitor mismatch was developed. Digital error correction was applied by

reducing the closed loop gain of each stage by half and overlap adding the Flash outputs.

First a worst case simulation of the 5-4-4-4 backend ADC was performed. Plots of DNL

and INL were displayed previously in Figure 4.2. With DNL of less than 1 LSB, the lin-

earity of the backend is good enough to ensure 18 bit overall ADC linearity. Next, a simu-

lation was run for worst case capacitor matching, input noise effects on calibration,

residue amplifier input offset voltage, and Flash error in a 16 bit ADC. DNL and INL plots

were extracted from the simulation results. The simulated INL and DNL plots for an

uncalibrated 16 bit ADC with a 5-5-4-4-4 architecture are displayed in Figure 4.5. Figure

4.6 shows simulated INL and DNL for the same converter after digital calibration is per-

formed. Note that after digital calibration, DNL meets the linearity specification and INL

is greatly reduced.

Besides proving that specified linearity can be achieved, the simulation led to a few

other discoveries. After adding random noise to the inputs of each pipeline stage in the

simulation, it was discovered that the noise effected the accuracy of the measurements in

the calibration phase. The effects of the noise on measurements can be reduced by one half

for each four times averaging done to the measurements. With a simulated 1 LSB RMS

input referred ADC noise, averaging by 1024 times reduced the effective RMS noise

effecting the measurements by 1/32. Effective input referred noise of 1/32 LSB RMS was

not large enough to cause error in the calibration measurements. Averaging by 1024 times

was employed to reduce the noise effects. As mentioned in chapter 3, residue amplifier

offset causes total ADC offset. Offset due to the calibration algorithm also added to the



total ADC offset. The transfer offset was corrected by measuring it after calibration and

subtracting its digital value from each calibrated ADC output. Finally, a gain error was

found in the ADC transfer function. A distribution of ADC gain error for the 5-5-4-4-4

architecture is illustrated in Figure 4.7. The gain error had a mean of 0 and standard devia-

tion of 0.22%. This error size caused no alarm during simulation and consequently no gain

error correction has been designed into the proposed converter.

By exploiting the linearity of multibit per stage ADCs, an architecture, namely the

5-5-4-4-4 structure, has been chosen to fulfill the linearity specification of the proposed

ADC. In contrast to the Karanicolas approach, 16 bit accuracy can be attained with a high

degree of linearity while calibrating only one pipeline stage. In theory, this ADC architec-

ture can produce the desired linearity and performance. In practice, issues pertaining to

speed, accuracy, noise performance, and digital functionality must be addressed before a

final product can be released. Chapter 5 discusses practical aspects of the proposed ADC

while addressing the issues mentioned above.



16bit Converter Linearity without Calibration. DNL and INL

x 10
4

Digital Output Codes

-6 1 I
0 1 2 3 4 5 6 7

X 10
4

Digital Output Codes

Figure 4.5



16bit Converter Linearity after Calibration. DNL and INL

-0.8 I I I
0 1 2 3 4 5 6 7

x 10
4

Digital Output Codes

2 3 4 5 6 7

x 10
4

Digital Output Codes

Figure 4.6

-0.2

0

-0.2

-0.4

-0.6 I-

-0.8
0

-0.4

-0.6



Gain Error Distribution

I I I L 11111111 1 II I IJ II II11III11hII
-0.01 -0.005

Figure 4.7

30-

25-

20-

nL
-0.015 0.005 0.01 0.015

1111111111111)1111 111111111111 1 I* ' ' ' ''' " "'''-~



Chapter 5

Circuit Design of the Proposed ADC

5.1 Introduction

Now that the theory of operation, error correction, and architecture modification

has been presented, circuit level design for the proposed ADC can be discussed. Circuit

levels changes are very important to the overall operation of the ADC. The proposed ADC

architecture change calls for a new first stage. The first stage must be designed to provide

sufficient accuracy and speed to operate within the ADC specifications. Circuit changes

must be made to guarantee that the ADC provides sufficient noise performance. For lin-

earity purposes, a digital overhaul must also be performed in order to supply the on-chip

functionality required by the calibration algorithm. This chapter deals with each of these

considerations individually.

5.2 Base Architecture

The proposed ADC is based in part on the AD9243, 3Ms/s 14 bit pipeline ADC.

The AD9243 is a switched capacitor mixed signal circuit with a block diagram shown in

Figure 5.1. The ADC is comprised of analog and digital sections. The analog section

includes a SHA, three MDAC stages, four Flash ADCs, a voltage reference, and a set of



output buffers. The digital components include a clock generator, MDAC switch decoding

circuitry in each MDAC & Flash pair, encoding and delay circuitry for Flash outputs, and

digital error correction logic. Together these subsystems work as a 14 bit linear entity.

5-4-4-4 AD924x Core Analog-Digital Converter

5-Bit 4-Bit 4-Bit
Analog , . .
Input SHA MDA MDA MDA

4-Bit

FLASH FLASH LASH ASH

I -- - -I- - --- --S-- S-- -- ------

55
6 5

Analog Voltage
Reference

Supply References Digital Error Correction Logic

14

Clock Generator Analog Output Buffers

Digital
Output

Figure 5.1

The AD9243 operation is as follows. The SHA tracks a continuous time signal on

one the first of two clock phases, samples the input just prior to the end of this phase, and

transfers the input sample value to its output during the second clock phase. As long as it

properly settles to the correct value, the SHA output can be sampled by the first pipeline

stage prior to the end of the second clock phase. A differential SHA along with the ADC

clocking scheme is shown in Figure 5.2. Figure 5.3 illustrates the first stage of the pipe-

line, the next stage to be considered. The first stage works in the following manner. During

the second clock phase, the MDAC and first Flash track the SHA output. By this time the

Flash has already sampled its decision levels. Prior to the end of the second clock phase,

the MDAC samples the SHA output and the Flash latches on the decisions made. During

the first phase of the next clock cycle, the MDAC uses the latched Flash output to settle to

a residue value. This residue value is ready for sampling by the next stage just prior to the



end of the current clock phase. This process is repeated by the successive stages of the

pipeline on alternating clock cycles. As a result, the latency of each stage is one half clock

cycle. The bit outputs by each Flash are delayed by different amounts so that they may be

added together on the same clock phase. A digital error corrected code is produced in the

correction logic. The code is then adjusted to eliminate code over-range and is buffered to

the output pins. The latency from input to output is on the order of 3 clock cycles and pre-

sents no appreciable delay.

Differential Sample and Hold Amplifier and Timing

S / - C om m on
01 Mode

-input +output

+input + -output

Common
01 Mode

ADC
Clock 1

Timing 
2

2

Figure 5.2

Other components are necessary in the overview of the AD9243. For instance, the

on-board voltage reference and reference amplifier provide two reference voltages, 1.25V

and 3.75V, representing the single-ended input range of each stage. Implemented with a

fully differential architecture, the AD9243 has a 5Vp-p differential input range. As a

result, one LSB at 14 bits is 305uV. Another component, the clock generator, takes an out-

side master clock and generates the non-overlapping clock phases shown in Figure 5.2.

Finally, between each Flash ADC and MDAC exists logic to provide communication.



Encoders in the Flash create thermometer code from the outputs of the Flash latches. This

thermometer code is used by the MDAC. In the MDAC a decoder is used to operate the

reference switches during the MDAC amplify phase.

Flash and MDAC pair showing circuit timing

MDAC Timing is consistant with Figure 5.2

Capacitor Array with Internal
Reference Switches CM

2 -it

-Ref
Vin+ 2 1 - Residue -

Decode to Switches IT _ CM02
Flash ADC

Flash ADC

Vthresh+Comparators

Vin+ +4 [ _ with this

Latch - timing and

Vin- 1 + Digital each with
V+ 2 Output a different

____ threshold
Vthresh- voltage.

Figure 5.3

Certain performance measures are useful when it comes to adapting the ADC for

higher resolution. The INL and DNL of the AD9243 limit the INL and DNL of a new con-

verter. Knowledge of these metrics is important. The AD9243 operates with max INL of 2

LSBs and max DNL of 1 LSB at fourteen bit resolution. The noise performance of the

AD9243 is also important in designing noise performance into the new converter. Input

referred RMS noise in the AD9243 isl35uV, or 44% of an LSB. Since the new converter

must operate at 3Ms/s, the speed of this ADC is also important. The AD9243 converter



runs comfortably at a speed of 3Ms/s. Consequently, extension to 16 bits at this speed

requires no changes to the back-end ADC itself.

5.3 The Proposed ADC and Its Structure

Realization of the proposed 16 bit ADC actually requires minimal adaptation of

the AD9243. Simple circuitry changes and trade-offs are made so that each of the new

ADC specifications is met. The architecture of the 16 bit ADC is displayed in Figure 5.4.

The addition of a 5 bit MDAC and Flash ADC pair, the elimination of the SHA, and the

overhaul of the part's digital circuitry constitute the only major changes made to the

AD9243. Conversion to a 5-5-4-4-4 architecture requires the addition of a new front-end

stage. A SHA free circuit implementation increases the ADC's noise performance. Also, a

digital circuit overhaul is necessary to supply off-chip calibration and on-chip correction

capability. All the other circuit components are left alone. The latency of the new ADC is

similar to that for the AD9243. With the new first pipeline stage taking the place of the

SHA from the AD9243, the timing of the back-end is left unchanged. Of the adaptations

presented above, the new first pipeline stage amplifier shall be considered first.

New 16-bit Pipeline ADC Architecture

5-Bit 5-Bit 4-Bit 4-Bit

Analog
Input - MDA MDA MDA MDMDA

4-Bit

FLASH LASH LASH FLASH LASH

5 5
6 6 5

Analog Voltage
Reference

Digital Input/Ouput Logic,
Supply References Error Correction and

Calibration Logic, Memory,
and Output Buffers

Clock Generator 16

Digital
Output

Figure 5.4



5.4 The First Pipeline Stage

The first stage in every pipeline must meet a set of stringent specifications in order

that the entire pipeline work. For the proposed first stage these specifications are as fol-

lows. The first stage must be able to provide 5 bit resolution over its input range. Both the

Flash and MDAC capacitor array must be size accordingly. With a first stage resolution of

5 bits, the residue amplifier must have a closed loop gain of sixteen. The residue amplifier

must also be able to settle the same load capacitance as the AD9243 SHA in the same

amount of time. Settling must occur to sixteen bit accuracy so that calibration measure-

ments will be correct and normal mode operation will be accurate. Aside from the residue

amplifier and Flash, the first stage capacitor array and switching network need to be modi-

fied so that the entire MDAC can be forced into calibration states.

5.4.1 The Flash ADC

The addition of a Flash ADC is very simple in this case. A duplicate of the Flash

ADC used in the first stage of the AD9243 can be used as the new first stage Flash ADC.

The Flash returns the 5 bits required in the resolution specification. The Flash ADC is con-

structed from an array of 32 offset cancelled sampling comparators. As a result, the Flash

provides the increased error correction needed for continuous time sampling. With the

new dynamic sampling scheme, sampling agreement must be made between the first

MDAC and first Flash ADC. In chapter 6, this issue will be discussed as a future design

consideration.

5.4.2 The Residue amplifier

Unlike the Flash ADC, the addition of the residue amplifier is not simple. An

appropriate amplifier architecture must be found to provide all of the specifications

required above. The first stage amplifier must have high DC gain for settling accuracy. The

application also requires high bandwidth in order to quickly settle a sizable load capaci-

tance under high closed loop gain conditions. An adapted version of the AD9243 first

stage residue amplifier is used to do the job.



The AD9243 first stage amplifier is a Miller compensated two-stage amplifier. The

amplifier is used in two distinct modes of operation. These modes of operation are dis-

played in Figure 5.5. The two-stage amplifier itself is not unity gain stable. As a result, the

first and second stages are decoupled during the sampling phase. Tied in unity feedback,

the first amplifier stage performs the offset cancellation sample function. During the

MDAC amplify phase the two stages are again coupled. With a higher closed loop gain

during amplify phase, the residue amplifier is stable and performs the correct residue

amplification. With some modification this amplifier can be used in the first stage of the

new ADC.

First Amplifier Modes of Operation

Analog Capacitor Residue
Input Array Amp > Amp2 Output

All capacitors including Sampling mode

feedback capacitors
exit in capacitor array

Analog - Capacitor Residue
Input - Array Output

Amplication Mode

Figure 5.5

Understanding the specifications of the AD9243 first stage residue amplifier is

necessary when adapting for use in the new first stage. The old amplifier settles a 5pF load

capacitance in 166ns. The amplifier also has enough DC gain to settle a ten-bit back-end

to approximately 14 bit accuracy. The new op-amp must settle a load capacitance of

approximate 15.5pF. The amplifier DC gain must also be increased to provide at least 16



bit settling accuracy. This accuracy can be related directly to DC gain by,

GainError = (5.1)
1 +DCgain

16 bit settling accuracy can be translated to a gain error of 0.00153%. The smallest gain

providing such gain error is 65400. As a result, DC gain should be designed to be greater

than this value. Taking into account these facts, a new residue amplifier can be designed.

First of all, considering the large difference in load capacitance, it is necessary to

make the new amplifier have a higher drive capability. The new load capacitance is more

than three times the load seen by the old amplifier. In order to keep the second order sys-

tem pole of this amplifier at the same place as it was in the old amplifier design, the second

stage transconductance must be scaled up by three. The increase in second stage transcon-

ductance increases the second stage input parasitics causing pole movement toward lower

frequencies. By scaling the compensation capacitors up by three, the second order pole

placement can be preserved. An increase in compensation now requires a three times scal-

ing of the first amplifier stage transconductance. In effect the total amplifier is scaled by

three. As a scaled version of the old residue amplifier, in both size and current, the new

amplifier can settle the required load capacitance. Settling the load to the appropriate accu-

racy is also necessary.

To better the settling accuracy of the first stage residue amplifier, more DC gain

must be added. Both amplifier stages already possess single cascode transistors to achieve

high output impedance. The addition of a second cascode transistor would further increase

the DC gain of the entire amplifier. It would also reduce the output headroom of each stage

which is already critically small. Both DC gain and offset cancellation performance can be

manipulated by changing the first stage amplifier gain. As a result, modification is done on

the complementary cascoded first stage amplifier shown in Figure 5.6a. In the old first

stage amplifier transistors Ml and M2 set bias voltages for the cascode transistors. By

using these transistors to set the common-mode output voltages for a pair of differential

gain enhancement amplifiers, the DC gain of the residue amplifier can be increased while

the headroom at the output nodes stays the same. The new amplifier first stage is shown in

Figure 5.6b. Also, after increasing the first stage DC gain, cancellation of the first stage

input offset voltage becomes much better.



After the gain enhancement was added to the amplifier, settling time and accuracy

were tested. Originally DC gain fell well above the specified value and settling was light-

ning fast. It was found that the settling speed was more dependent on the slewing than on

actual linear settling. This slewing is directly related to the slew capabilities of the new

Amplifier First Stage - Before and After

Original Amp First Stage New Amp First Stage

in+

out-

(a) (b)
Figure 5.6

gain enhancement amplifiers. Speed and accuracy were well within specifications and

could be degraded without a loss of performance in the overall ADC. A series of optimiza-

tions was done so that the amplifier would slow down, become less accurate, and bum less

power. These optimizations included reducing the physical size of all transistors by 2/3,

reducing the bias current and power of the amplifier by 2/3, and reducing the value of the

compensation capacitors by 2/3 to preserve bandwidth. After the optimizations were made

the final amplifier design still met the necessary specifications. Gain and phase for the

final amplifier design is given in Figure 5.7. Figure 5.7 takes into account the closed loop

gain of 16 and the worst case conditions for these plots. The amplifier has a DC gain of



105dB, 177000. It is stable with a closed loop phase margin of >700. Figure 5.8 shows the

worst case settling over process conditions and input voltages for the amplifier. Note the

slewing in the settling function as the amplifier settles in lOOns. The initial power dissi-

pated by the entire first stage residue amplifier was approximately 15mW. After the modi-

fications, the amplifier power rose to 45mW.

Changes made to the rest of the first stage circuitry are tied closely to the calibra-

tion scheme that will be used. These modifications are dealt with when the calibration cir-

cuitry is introduced.

5.5 Minimizing Noise

In modem electronics it is very important to keep noise levels as low as possible to

prevent noise from masking very small input signals. In ADCs, tolerance to noise depends

directly on the resolution of the ADC. The minimum noise level that can be attained in an

ADC is referred to as the quantization noise level. RMS quantization noise is given by,

LSB
o L (5.2)

where LSB is the LSB voltage of the system. When the ADC random noise component is

smaller than the quantization noise, the quantization noise dominates. If the RMS input

referred random noise component is kept under 1/3 LSB, the increase in ADC noise will

be less than 4dB. This noise level gives relatively good performance and is used as a target

for the proposed ADC.

Analog noise is due to a number of different factors. Amplifier noise contributes to the

overall ADC noise component. Amplifier noise is typically tough to calculate by hand, so

an intuitive view shall be given. During each phase, sample and amplify, the first stage

amplifier contributes noise components to the ADC. During sampling mode, the unity

feedback first amplifier stage amplifies its input noise onto the capacitor array. This noise

is composed of thermal and flicker noise components. Flicker noise is dominant at low fre-

quencies. In circuits with high sampling rates using offset cancellation, the flicker noise

component is effectively cancelled with the DC input offset of the amplifier. [13] Thermal



New Amplifier - Gain and Phase
120 vdb(at,ac) -------- vp (at,ac)

20

3001 .o .. -- i-- i-- iii-ii----.-;------ i- . - .-----. -

60 -:-~-i~~~--------------------r41

-6 0 .... .. ...- -- --
i , i i : i ' ii t ii ii i : : t i : : :::: I , i i 1 1 11 :

01 1 10 100 1e3 1e4 le5 1e6 1e7 1e8 1e9 lelO_ 1 6 0i i i ii lii! i i i ll i i ii : ii i i i !: t i i :::! t !::

6 . ..-.-. ..-.. ..... ..... ...... .... .

-12 6 0 ---------i----i--i- --- -- !- -- ----- --i . . - -

i i iiiiii i iiiiiiiiii ! ii, l [ ii: I i i ,i !

ii it iiii i iiiii j :ii~ ii ii i iiii i i ii'iii i iiiiii , i ::i--------- ii iiiii- -i- !! -- i i i i __I_.I_ Li'i-i- -i iii-.-.-... . .....i !!i!0 : ----------------------- ------

- 2 8 0 -------- ------ - t t --------- i - t -------- ::::

-300 ------~-i~iii~~: I -------

• 1:" 1 i0j i0 le3 l le5 le6 it le i lelO

i freq

Figure 5.7a : :

72:::: : 111



View of Transition frequency and Phase Margin

vdb(at, ac) -------- vp (at, ac)

-5
i- -- - - - - - - -- - i--- -- i- i i- ------------ -------- --- ---- -- - -- - ---- -- -------- - - - - - ----- I --------- i

-2 0 ------------ -------- - -------- --- --- --- --- - ------- ------------------- ------- -------- -------- ------------ I -----~--~-----~------- ---------- --------'-------.-'--~--

-- ----- .......--- -- --, -- ------...... .. .. . -- -- -- -------- ----- --------- -- - -- ---- -- --- ----.. .... .... .--.. ... .- --..---.. ......i ... ..i .. < i i_4 .............. -- ........--.....---------........... -------- -------------- -------- --- i .................. - -i ........ i..-.-..--- ------

-s T7 ------.. . . . . -- - - I -- -- -.--.-..-.--..--.. .............. ... .. --------------------- --- -- - 4--- -- i --- --- -- -- --- -- ---- ---- --- -- ... -- - --

5 -- T.........-........... . - --- i----- - --- -- - --- ,--- - -:---- --- ---- '-.- - -- -

--------------. ------ ---------------- ----.- ----- ------.. .. .. .. .i --i- --i ! -, : -.. .. ... .. .. ... .. ... ..:- --- ---- --- ---.. . ... .. .. ... .. .....- -- -- ---- -----

------- ------------ -----. .........- -. ........-- -- --- --:-- ---. ..........-- -. ..- -. ....- --- :: --: - ----.......-- - .....- - ...-- --- -------
-!0-9 5 ----------I ------ ~-------------- - ------ i-~-~-:-- -------------- ------ ------------ I ---------------- I--- i-----

-1 0 0 . . . . . . . . . . . . . . . . - - - - ---, -- --- - ------.. . .. . .. . .. "-- -- b- - ; --ll' ... .. .. ..... .. .. T . .. - -- - - - -b - . . . . . . . . . . . . . .------- i- - --- ;- 1

-------- 12 ----- ....................... -- ....................................- ----- ...... --- .................................................. --------
- 4 0 i ~ j~~~~-- ----------------------- -------------------------ji i

105 ----------- ------ L --------------L --------------- ----- ----

1 1 0 :-------------- ----- --- - ------ ------------------- ----- --- ----------- -------- ------ I -----

1 1 5 --------- -------------- ------- ----- -- ----- ---- --- -----------

1 2 0 -------------- ---- -- - ------------- -----------...--------i------ ------ --- i--------- - ---------------- L------- ----- li-- ---------- ----------------------------

le5 le6 le7 le8 le9



New Amplifier - Worst Case Settling
1.249425 -----------  -

1.24942

1.249415

1.24941

1.249405

1.2494

1.24939 ----------

1.24939 .......

1.249385

1.24938

1.249375

1.24937

1.249365

1.24936

1.249355 - -

1.24935

1.249345

1.24934

1.2493351

1.24933

1.249325 ----

1.24932

1.249315

1.24931

1.249305 ---------------

1.2493
1.5 1.5

(outt) -<:

. . . . - - - -- -

---------------- --------

---------------- --------.

-------------- --------.

............. -- --------

--------------- --------.

iiiii
-itial--
lew ---

>v(outc)

--------------------

-----------------

-----------------

-Pos -iti -ve-:,--

-----------------

-----------------

-----------------

------------------ I

-----------------------

-----------------
2 1.54 1.56

Second Piss
Negative Slew

1.58 1.6 1.62
time, xle-6

Figure 5.8

-----------------

---------------

------------

----------------

----------------

1.64 1

-- - - -. -- - - --.. . .. --.. ..

--;---;-- '-' ------- -----

----- -.. . . . . . .---- -------

---------, -, ------- -------.

-- - -- -.. . --- -- -- ----- .. ..

------- --------- : -------

------.............---.. ...
-----------6 ----

1.7

i

----------

----------

-----------

------------

----------~

----------

---------

-----------K---

.. . . . . . . . . .

.. . . . . . . . . .

--------

..........

U

0o

+ctU

4.ot

-A

---------- ---------

.. .. ... ..... .. ------.

.. . . . . . . . . . . . . ------.

--------------
.............. ------.



noise is wideband and adds significantly more noise power at the amplifier summing node.

Wideband noise added by drive amplifiers is also caught on the input capacitors of a pipe-

line stage. The capacitor array and input switches, on the other hand, form an RC low-pass

filter which filters and reduces the power of this input amplifier noise. During the amplifi-

cation phase, the amplifier's input noise is multiplied by its closed loop gain and sampled

by the next pipeline stage. This noise contribution is quite large. KT/C noise, or switch

noise, is the another noise component in switched-capacitor circuits. Produced by the

input switches, switch noise is trapped on the capacitor when the sampling switch opens.

The RMS value of this noise for a differential sampling structure is given by,

2KT
K= (5.3)

where C in the MDAC input capacitance. Noise contributes are made on both phases. Dur-

ing the sampling phase, switch noise is contributed by the input switches of the MDAC.

During amplification, the reference switches will add to the total noise but the amplifier

will dominate the second phase contribution. Noise in switched-capacitor circuits can be

reduced by increasing the value of C in Eq. 5.3. Circuit changes in the proposed ADC for

noise performance shall now be discussed.

The new converter has the same input range as the AD9243. Its LSB size is 76uV.

The noise from the SHA and first MDAC of the AD9243 is 130uV RMS. From the Eq.

5.3, to lower the noise to 26uV RMS, the capacitors in the circuit would have to be

increased 25 times. The AD9243 SHA has 4pF input capacitors. The new ADC would

have 100pF input capacitors. This capacitance is ludicrous in high-speed applications. The

SHA would also have to drive 25 times its original load. This notion is impractical and the

proposed ADC does not include a SHA. With a SHA, the input referred noise is dependent

on the SHA and first stage. The second stage noise, when input referred, is reduced by the

closed loop gain of the first stage and is almost negligible. Without a SHA, the first stage

becomes the only dominant noise contributor in the system. This means by increasing the

first stage array capacitor sizes, the noise performance can be increased.

Without the presence of a SHA, the first ADC stage no longer samples a held volt-

age. In the new configuration, the first MDAC and Flash ADC pair sample a continuous

time input signal. This input signal is driven through the input switches by an external



buffer amplifier. During the sampling instant the sample switches of all the Flash compar-

ators as well as the sample switch of the MDAC open. The input switches then open as

usual. A problem may occur if all the sample switches do not open at the same time. As

mentioned earlier, this issue will be discussed in Chapter 6.

SPICE simulations were used to measure the noise contributed by the first two

stages of the new ADC. Each of the array capacitors in the first stage was increased from

0.2pF to 0.6pF. Taking into account the back plate and input switch parasitic capacitances

of the first MDAC, the input capacitance of the first MDAC rose to approximately 40pF.

All other capacitances in the ADC were left alone. SPICE simulations returned promising

numbers. During the first MDAC's sampling phase, the input referred noise of the system

was 1.37 x 10-7 V2. During the second MDAC's sampling phase, input referred noise reg-

istered at 4.78 x 10-8 V2. Together, the two phases contributed 26.8uV RMS input referred

noise to the ADC. Noise associated with the third and following stages contributed very

little to the input referred amount so this noise was not considered. The 26.8uV RMS

ADC generated noise measured above just meets the target specification of 1/3 LSB.

5.6 Design for Digital Calibration

In chapter 3, the theory of digital calibration was discussed. Implementation must

now be performed. Since most of the calibration is done in the digital domain, a redesign

of the AD9243's digital circuitry is required for calibration to be possible. Functionality

must also be added to the first stage MDAC so that calibration measurements can be made.

In this design the amount of digital complexity must be kept low. The calibration must

also guarantee that the ADC's performance doesn't vary much between uses. Whether cal-

ibration is performed on chip or off, all of these issues must be addressed.

Two different methods of digital calibration, self-calibration and factory calibra-

tion, can be used to calibrate the new ADC. In self-calibration, the ADC calibrates itself

every time it powers up or at specific times when it is not being used. Self-calibration

requires the ADC to have an on-board calibration controller. The controller increases the

digital complexity of the ADC contrary to the requirement of digital simplicity. With self-

calibration, DNL can change between successive calibrations. The other form of digital



calibration, factory calibration, is done by external equipment at the manufacturing site.

An on-chip calibration controller is no longer needed, and digital simplicity can be

attained. In factory calibration, error coefficients are stored in a non-volatile on-board

memory and do not change after the initial write sequence. As a result, DNL does not fluc-

tuate and more stringent specifications can be applied. Factory calibration meets both

specifications for digital simplicity and strict specification and for this reason is used on

the proposed ADC.

The proposed digital circuit overhaul must provide the following:

* Non-volatile memory for storage of error coefficients and offset value.

* Mathematical operators to pre-add error coefficients. This pre-addition is analogous to

the summation term of the calibration algorithm shown in Eq. 4.5.

* Mathematical functionality so that the offset correction and pre-added error coefficients

can be added to the raw digital output during normal mode operation.

* Ability to force first MDAC into calibration states.

* A path for uncorrupted ADC measurement information to reach the ADC output during

calibration.

* Provide input/output interface circuitry for external DSP communication during cali-

bration.

A digital block designed specifically to meet these requirements is shown in Figure

5.9. The block is comprised of delays, error-correction logic, a bank of electronically writ-

able fuses, a bank of pre-adders, a selector, two adders, input/output logic, and a binary to

single line-select encoder. These units along with an external DSP and some first stage

MDAC modifications are all that is needed to perform a factory calibration.

The delay/correction logic can be seen in the upper right corner of Figure 5.9. The

delay block makes sure that each of the Flash output words reach the correction logic at

the same time. The correction logic adds the delayed words together. The last two bits of

each word are overlapped with first two bits of the next in order to perform digital error

correction. The output of this block is the raw ADC output code. In each Flash the output



words are binarily encoded. When added, the encoded words produce a raw output code

which ranges from 0 to 262143. The flash encoding for the new ADC is shown in Figure

5.10. After digital error correction, the raw ADC code is ready to be offset corrected and

DNL corrected.

Error coefficients calculated during calibration are stored in a bank of fuses. The

bank of fuses constitutes the non-volatile memory in the system and can be seen at the far

left in Figure 5.9. Another set of 11 fuses referred to as the offset fuse in Figure 5.9 is used

New Digital Block for 16 bit Pipeline ADC
Thermometer code

control for first stage switches Inputs from Flashs

Cal (Set)
Cal (Set)Addr(6) Value(7) WriteFuse

Figure 5.9

to store the offset correction term. Given the attainable capacitor matching, Initial C pro-



gram simulations proved that correction coefficients could be represented by 7 bit or nar-

rower two's-complement words. As a result, the fuse bank is composed of an array of 32

words, each represented by 7 fuses. The fuse bank has 14 inputs. Of these 14 inputs, 7 are

used to supply the block with a value, 6 are used to supply an address, and one is used to

write the value to the addressed memory word. The offset fuse has 14 inputs of which 13

are used to input a value and one carries the write signal. The inputs are fed directly from

the input/output logic and are controlled by an external DSP during calibration. At the out-

put of the fuse bank is a pre-adder block. It is composed of 32 adders, the output of each

given by,

Correctionterm(i) = Error(j) Correctionterm(O) = 0 (5.4)

j=1

where Error(j) is stored at address j of the fuse bank. The outputs from the adder, each 11

bit words, are fed into a 33 to 1 selector. The bits used to select the appropriate correction

term are fed directly from the output of the delay block and correspond to the first stage

Flash ADC output. By using the Flash output bits directly, the appropriate selection term

is always correctly selected. The ADC offset term is subtracted from the selected correc-

tion term and stored in the correction register. The correction register, during calibration,

can be zeroed so that raw measurement data passing through the calibration adder is not

corrupted on its way to the ADC output. During normal mode operation, the raw ADC

code and appropriate correction term combine in the calibration adder to form a calibrated

output code. This output code is fed into the input/output block. The correction adder and

calibration adder both perform two's-complement addition and are sized to avoid over-

range. Now that the digital error correction, calibration correction, and offset correction

circuitry has been described, the focus can change to circuitry active during calibration.

In the first MDAC, a number of circuit changes are needed so that calibration mea-

surements can be performed. First of all, the external DSP must be able to control the ref-

erence switches of the first MDAC individually. Each MDAC in the AD9243 has decoding

circuitry that translates Flash thermometer code into reference switch signals used by the

MDAC. By multiplexing 32 DSP controlled input lines with the Flash thermometer code

input lines, the MDAC allows control from either the Flash or external DSP. The binary to



ROM Coding and Summation Examples

First Rom
Coding
011110
011101
011100
011011
011010
011001
011000
010111
010110
010101
010100
010011
010010
010001
010000
001111

- 001110
001101
001100
001011
001010
001001
001000
000111
000110
000101
000100
000011
000010
000001
000000
111111
111110

Second Rom
Coding
101110
101101
101100
101011
101010
101001
101000
100111
100110
100101
100100
100011
100010
100001
100000
011111

*011110
011101
011100
011011
011010
011001
011000
010111
010110
010101
010100
010011
010010
010001
010000
001111
001110

Top number in each row is highest Flash ADC
quantization level, while bottom is lowest. The
Arrow points to the center Flash quantization
level.

Third Rom
Coding

10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110

Fourth Rom
Coding

10110
10101
10100
10011
10010
10001
10000
01111

- 01110
01101
01100
01011
01010
01001
01000
00111
00110

Fifth Rom
Coding

11000
10111
10110
10101
10100
10011
10010
10001

-- 10000
01111
01110
01101
01100
01011
01010
01001
01000

Examples of addition:

Center Quantization:
001110

011110
01110

101110
~L 10000
0100000000000000000

High Quantization:
011110

011110
01110

101110
- .01111
0111111111111111111

Low Quantization:
111110

011110
101110

101110
F 110000
0000000000000000000

Figure 5.10
line-select decoder in the Figure 5.9 is used to decode a binary input into the selection of a

single output line. With the help of the decoder and multiplexor, the DSP, during the cali-



bration mode, has free control to select any one reference switch in the first MDAC. The

DSP now has the ability to calibrate the ADC. The multiplexing scheme is illustrated in

Figure 5.11.

Sampling during calibration is also important. During calibration, the MDAC sam-

ples the negative reference because this can be done with a simple attachment. If the nega-

tive supply is sampled and then a DAC transition is tripped during calibration, the first

stage residue might over-range the backend converter causing an error in that measure-

Old and New Reference Switching schemes for first MDAC

Control to Differential
Switches

Control to Differential
Switches

SDecode to
Switches

Decode to
Switches 32

Cal 64 to 32
32 Signal I multiplexor

Thermometer
Code from Flash ADC Calibration J 32 32

Control Thermometer
Lines Code from Flash ADC

Old Scheme for controlling New Scheme for controlling
Capacitor Array reference switches Capacitor Array reference switches

Figure 5.11

ment. This over-range is not acceptable and can cause major problems in the calibration.

As mentioned in chapter 3, the stage samples the first Flash decision level during calibra-

tion avoiding over-range in the back-end ADC. During normal mode sampling, two sepa-

rate feedback capacitors are sampled to ground. If one of the two feedback capacitors

samples the positive reference, the residue of the MDAC is the same as if the first Flash

decision level had been sampled normally. With the addition of a few switches, the

MDAC's residue, during calibration, comes out to the correct voltage. The new feedback

capacitor configuration can be seen in Figure 5.12. With the new modifications described

above, the DSP can now calibrate the ADC without over-ranging the measuring ADC. On

the other hand, the DSP does not have direct control over any of the internal digital blocks.



It actually enters commands and data though the 16 output pins of the ADC. The input/

output logic is responsible for supplying the correct signals to the internal digital blocks.

The input/output block handles two distinct modes of operation. During normal

mode operation, the input/output logic truncates the 18 bit output of the calibration adder

to 16 bits. The logic also makes sure that the truncated code falls within the allowable dig-

ital output range (0-65535). During the calibration mode, the input/output logic acts as and

interface between the external calibration DSP and the internal digital blocks. The input/

output logic takes DSP commands and translates them to internal controls. During calibra-

Old and New Schemes for Feedback Capacitor Sampling
Cal -+Vref

CM (
S'2

CM mp
Output

TT
Capacitof Residue
Array Amplifer

CM-

Capacito:
Array

T2 Amp
Output

Residue
Amplifer

Old attachment for two New attachment with cal signal
feedback capacitors controling one feedback capacitor's

sampled value

(For more MDAC detail look at Figure 5.3)

Figure 5.12

tion, the ADC 16 pin output is broken down into 13 data pins, Lsbs and Addr, and three

control pins, CLK, OFF, and INOUT. One extra pin, CAL, is used to set the calibration

mode. The translation table for the input/output block can be seen in Figure 5.13. This

shows how the data pins can be switched between data inputs or outputs dependent on the

control pin values. Together, the input/output logic and DSP perform the calibration steps

outlined in Figure 5.14.

The digital circuit overhaul described in this chapter allows digital calibration to be

done while keeping digital simplicity. The simplicity of this circuit has an advantage over

__ i



the digital multiplication. In the new proposed digital block, the adder blocks do a major-

ity of the digital switching. Adder switching occurs on the positive edge of each clock

phase and stops within a few nanoseconds. The settling time of each residue amplifier is

166ns. Noise coupled from these digital switching structures only occurs during first 10ns

to 20ns of the amplifier settling time.As a result, each residue amplifier has plenty of time

to settle after the noise component has disappeared. In each stage, the sampling instant

occurs before the positive edge of the next clock phase in what is called the ADC quiet

time. By sampling during the quiet time, the ADC can escape the effects of digitally cou-

pled noise.

The changes to the AD9243 described in this chapter make it possible for linearity

and resolution to be increased to the 18 and 16 bit levels respectively. These changes alone

are good enough to ensure that the specifications set for the proposed converter are met.

The ADC can run at 3Ms/s due to the new first stage's settling capability. Having a SHA

free design, the new ADC generates only 1/3 LSB RMS input referred noise. A digital

overhaul has also been done so that calibration can be performed. It must now be proven

that this circuitry works in a complete converter configuration. Chapter 6 outlines simula-

tion results for a calibrated behavioral model of the ADC. Chapter 6 also outlines some

future design considerations.



CAL

INOUT

Input/Output Translation Table
SIGNAL HIGH

CLK OFF

Output Measurement for Capacitor = Addr

0 0 0 Addr -> Input, Lsbs -> Output
MDAC Cal signal high, clear corr. reg.
No write signals

Output Offset Value

0 0 1 MDAC Cal Signal low, do not clear corr. reg
Addr -> Output, Lsbs -> Output
No Write Signals

Output Measurement for Base Case, no caps

o 1 0 Addr -> Input, Lsbs -> Output
MDAC Cal signal high, clear corr. reg.
No Write Signals

o 1 1 Does Nothing

Input 7 bit value for writing to fuse=Addr

1 0 0 Addr -> Input, Lsbs -> Input
MDAC Cal signal high, clear corr. reg.
No Write Signals

Input 13 bit value for writing to offset fuse

1 0 1 Addr -> Input, Lsbs -> Input
MDAC Cal signal low, do not clear corr. reg.
No Write Signals

Write 7 bit value to fuse=Addr

1 1 0 Addr -> Input, Lsbs -> Input
MDAC Cal signal high, clear corr. reg
Write Fuse, Do not Write offset

Write 13 bit value to offset fuse

1 1 1 Addr -> Input, Lsbs -> Input
MDAC Cal signal low, Do not clear corr. reg.
Write Offset, Do not write fuse.

CAL SIGNAL LOW

Addr = output bits 8-13
Lsbs = output bits 0-7

Correction Register signal low
MDAC Cal signal low

Addr -> Input means Addr bit are input lines
Lsbs-> Output means Lsbs bits are output lines

DSP has control of Lsbs, Addr, OFF, INOUT, CAL, CLK

Figure 5.13



Calibration Flow Chart of external factory DSP

Store # in Ram (i)

Set I/O circuit to
Measure Offset

Figure 5.14



Chapter 6

Calibration Results and Conclusion

6.1 Simulation Results

Using a computer simulator, a behavioral model of the proposed ADC was con-

structed. This model was used to prove that calibration could truly be performed with the

proposed digital circuitry in chapter 5. Four MDAC models provided the MDAC function-

ality for the behavioral model. Each model also represented MDAC capacitor error, offset

error, and gain error. Five Flash models were used as quantization functions. The Flash

models provided decision level error capability also. A block housing a Verilog represen-

tation of the new digital block was added to the ADC. This Verilog representation can be

found in Appendix B. A clocking scheme analogous to a real time clocking scheme was

implemented for the timing of the behavioral model. A DSP was designed using Verilog

and attached to the ADC output lines. During the simulation, errors were assigned to the

MDACs and Flash ADCs. A full calibration ensued and error coefficients were written to

the on board memory. After the calibration steps, the DSP was detached from the ADC,

and an analog simulation was performed. The analog simulation entailed ramping the ana-

log input voltage from reference to reference while the ADC sampled 220 times. The out-

put codes were then analyzed and INL and DNL plots were extracted from the resulting

transfer function. Figure 6.1 shows the ADC DNL and INL before the calibration was per-



formed. Figure 6.2 shows the ADC DNL and INL after calibration. In the proposed ADC

INL and DNL were improved drastically. The DNL fit within the set specification, and the

simulation proved that the new digital circuitry would work as planned.

6.2 Future Outlook

Even though the specifications set in this work have been met, a good amount of

design must be done before the proposed ADC is ever released. The following are a num-

ber of considerations that should be taken into account as follow-ups to this work:

" Capacitor Non-linearity - Even though non-linearity is not taken into account in the

design of this ADC, a 16 bit ADC could be a useful tool for studying the effects of

capacitor non-linearity and other circuit non-linearity in the pipeline ADC. Specifically

the resolution at which the non-linearity requires correction could be determined using

the first silicon of this ADC. Assuming McCreary's work, [9], is valid for silicon capac-

itors, the highly doped characteristics in the left plot of Figure 3.17 would yield a gain

error of 0.002% with little INL. The characteristics of the right plot would yield a gain

error on the order of 0.0625% with estimated INL not larger than 2 LSBs. Using more

heavily doped capacitor plates would definitely be necessary for reducing converter

non-linearity.

" Clock Skew Between MDAC and Flash - The first MDAC and Flash sample a continu-

ous time input signal. The Flash and MDAC should both sample at the same time. Due

to clock skew, the Flash ADC could be responsible to making decisions on a different

input sample than the MDAC has acquired. If this error is too large, then the ADC will

over-range. The worst case timing error can be found be assuming the circuit can toler-

ate 78mV of Flash error and then finding what the fastest time the input signal can

sweep this voltage. The maximum sweep rate of a signal oscillating at half the Nyquist

rate is given by,

Rate = Amplitude x 2 x pi x 1.5Mhz (6.1)

In the proposed converter the amplitude is 5V and the subsequent sweep rate is

4.7x10 7 volts/sec. Given this sweep rate, and the fact that the total error tolerance is



78mV, if the sampling instants of the MDAC and Flash differ by 78mV/4.7x10 7 volts/

sec, or 1.65nS, then trouble will occur. Therefore the skew in the sampling instant

between the first MDAC and the first Flash must be minimized. This can be done using

careful layout techniques to minimize clock skew.

* Input Drive - The input capacitance of the proposed ADC is nearly 40pF. For high

speed applications this is a hefty load capacitance for an input buffer to drive. A power-

ful enough input buffer must be supplied in order to drive the ADC, or noise perfor-

mance can be sacrificed for increased drive capability.

* Input Noise - The noise described in chapter 5 is generated by the ADC stages only.

The on-board reference buffer and external input buffer will also contribute noise to the

system. In order to keep noise performance good, quiet buffers must be designed to per-

form these two functions.

* First Stage residue amplifier - The first stage residue amplifier has been optimized for

settling performance. The issue of how well the amplifier can track its input remains.

The amplifier might need to be modified so that overall ADC distortion can be kept to a

minimum.



BeHAV MODEL 16bit Converter Linearity before Cal. DNL and INL

-0.6

-0.8

-10 4 5 6
0 1 2 3 4 5 6

x 10
4

Digital Output Codes

-20 3 4 5 6
0 1 2 3 4 5 6

X 10
4

Digital Output Codes
Figure 6.1



Behav Model 16bit Converter Linearity after Cal DNL and INL

0 1 2 3 4 5 6 7

x 10
4

Digital Output Codes

Figure 6.2

Digital Output Codes

0.6

0.4

0.2

0

-0.2

-0.4

-0.6



Appendix A

C-language Simulator for INL and DNL

The following code simulates a calibrated 5-5-4-4-4 architecture with 10 bit capacitor
matching offset error, gain error, and decision spacing error. The program returns files cor-
responding to INL and DNL for the calibrated system.

i) Random number generator

This file, generator.h contains a guassian random number generator */

Author:Matt Courcy, Todd Brooks

WorkPlace:Analog Devices

Name:Generator.h (Random Number Generator)

*/

double RANDOl(rand)

int *rand;
(
int rand2;
double randoml;

do{
*rand=*rand*1103515245 + 12345;

rand2=(unsigned int)(*rand/65536)%32768;

randoml=(double)rand2/32768.0;

} while((randoml <=0.0) (randoml >=1.0));

return(randoml);

/* GENERATE AN ARRAY OF RANDOM DATA RETURNED IN random_data. number

DESIGNATES THE NUMBER OF ELEMENTS IN THE ARRAY, AND

randseed IS THE RANDOM NUMBER SEED. THE FUNCTION RETURNS

A RANDOM INTEGER TO ITS CALL LINE, THIS CAN BE USED AS THE

RANDOM NUMBER SEED FOR THE NEXT CALL TO THIS FUNCTION. */



int generator(number, rand_seed, random data)
int number;
int rand seed;
double *random_data;
{
double randoml, xl, yl, z, yyl, xxl, s, 1;
double num_sigma;
int *rand, index;

num_sigma=12.0;

rand=(int *) malloc(sizeof(int));

*rand=rand_seed;
for(index=0; index<number; index++)

{
do {

do {
randoml=RANDOl(rand);
xl=randoml;
randoml=RANDO1(rand);
yl=2*randoml-1.0;
xxl=xl*xl;

yyl=yl*yl;
s=xxl+yyl;
} while (s>1.0);

randoml=RANDOl1(rand);
l=sqrt(-2.0*log(randoml))/s;
z=(xxl-yyl)*l;
} while (z>num sigma 1 z<-num_sigma);

*(random_data+index)=z;

return(*rand);

ii) File modeling ADC stage "stagegen_small.h"

/* CALIBRATABLE RESIDUE STAGE */

void res_genc(vina, vinb, cmlevel, idealcap, topfeedcap, topsamplecap,
botfeedcap, botsamplecap, ampgain, stageoffset, residuea, residueb, dac-
code, reftop, refbot, forcedac, forcecode,order,feednumber,decrand,cal)
double vina;
double vinb;
double cmlevel;
double idealcap;
double *topfeedcap;
double *topsamplecap;
double *botfeedcap;
double *botsamplecap;
double ampgain;
double stageoffset;
double *residuea;



double *residueb;
int *daccode;
double reftop;
double refbot;
int forcedac;
int forcecode;
int order;
int feednumber;
double *decrand;
int cal;

double chargetop, chargetop2;
double chargebot, chargebot2;
double resa;
double resb;
double vintotal;

double id, low, hig;
int i;
double res;
double scalefactor;
int bits;
double divfac;
double topcap, botcap;

bits=(int)ldexp(1.0,order);
chargetop=0.0;
chargebot=0.0;
chargetop2=0.0;
chargebot2=0.0;

for(i=0; i<bits; i++)

/* Top half differential charge */
/* Bottom half differential charge */
/* Top half differential residue */
/* Bottom half differential residue */
/* Difference between differential

inputs */

/* difference between output residues */
/* ampgain effect on residue */

chargetop=chargetop+(*(topsamplecap+i))*(cmlevel-vina);
chargebot=chargebot+(*(botsamplecap+i))*(cmlevel-vinb);

vintotal=vina-vinb;
for(i=0; i<(bits+l); i++)
{
id=(double)i;
divfac=(double)(bits);
low=((2*id/divfac)-(1.0/divfac)-l1.0+((0.125/divfac)*(*(decrand+i))));

hig=((2*id/divfac)+(1.0/divfac)-1.0+((0.125/div-
fac)*(*(decrand+i+l))));

low=low*(reftop-refbot);
hig=hig*(reftop-refbot);

if((vintotal<hig) && (vintotal>=low))
*daccode=i;

if(forcedac)
{



*daccode=forcecode;

if(cal==l)

for(i=O; i<(bits); i++)

if(i!=((*daccode)-1))

chargetop2=chargetop2+(*(topsamplecap+i))*(cmlevel-refbot);

chargebot2=chargebot2+(*(botsamplecap+i))*(cmlevel-reftop);

else

chargetop2=chargetop2+(*(topsamplecap+i))*(cmlevel-reftop);

chargebot2=chargebot2+(*(botsamplecap+i))*(cmlevel-refbot);

else

for(i=O; i<(bits); i++)

if(i>=*daccode)

chargetop2=chargetop2+(*(topsamplecap+i))*(cmlevel-refbot);

chargebot2=chargebot2+(*(botsamplecap+i))*(cmlevel-reftop);

else

chargetop2=chargetop2+(*(topsamplecap+i))*(cmlevel-reftop);

chargebot2=chargebot2+(*(botsamplecap+i))*(cmlevel-refbot);

topeap=0.0;

botcap=0.0;

for(i=O; i<feednumber; i++)

topcap=topcap+(*(topfeedcap+i));

botcap=botcap+(*(botfeedcap+i));

resa=cmlevel-((chargetop-chargetop2)/(topcap));

resb=cmlevel-((chargebot-chargebot2)/(botcap));

scalefactor=(ampgain/(l+ampgain));

res=scalefactor*(resa-resb);

*residuea=cmlevel+res/2.0+stageoffset/2;

*residueb=cmlevel-res/2.0-stageoffset/2;



iii) Modeling program including calibration and DNL and INL run "modeling.c"

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include "generator.h"

#include "stagegen_small.h"

#define NUMRUNS 1

#define INL 1

#define DNL 1

main(argc ,argv)

int argc;
char **argv;

FILE *inldnlfile;

double noiset[45000], noiseb[45000],

noisetl[45000], noisebl[45000],

noiset2[45000], noiseb2[45000],

noiset3[45000], noiseb3[45000],
noiset4 [45000],noiseb4[45000],
topfc[10], botfc[10],
topsc[116], botsc[116],

ampgain[5], decideh[116],

decidel[5], soff[5],

reftop[5], refbot[5],
inl[70000], dnl[70000], ifl,

vina, vinb, resa, resb, total, ave, id, divfac,high,inh,inlow;

int randseed, randseed2, measurement[64], correctionterm[64],

orgrand,

index, i, indexl, correct, daccode, number, numberl, numl, num2,

offset, numt, averaging;

if(argc<3)

exit (0);
randseed=atoi(argv[1);
randseed2=atoi(argv[2]);

/* OPEN OUTPUT FILE */

if((inldnlfile=fopen("inldnlfile","w+"))==NULL)

printf("Can't Open: inldnlfile\n");

exit (0);
}

/* ASSIGN ERRORS TO STAGES VARIABLES*/

orgrand=randseed;

randseed=generator(10,randseed,&topfc[O]);
randseed=generator(10,randseed, &botfc[O]);

randseed=generator(116,randseed,&topsc[0]);



randseed=generator(116,randseed,&botsc[0]);
randseed=generator (5,randseed,&ampgain[ 0]);
randseed=generator(116,randseed,&decideh[0]);
randseed=generator (5,randseed,&decidel[0]);
randseed=generator(5,randseed,&soff [0]);
randseed=generator(5,randseed,&reftop[0]);
randseed=generator (5,randseed,&refbot[O]);

for(index=0; index<64; index++)

correctionterm [index]=0;
for(i=O; i<2; i++)
measurement[index]=0;

)

if(orgrand==-1)
{
for(index=0; index<10; index++)

topfc[index]=1.0;
botfc[index]=1.0;

)
for(index=0; index<116; index++)

topsc[index]=1.0;
botsc[index]=1.0;
decideh[index]=0.0;

)
for(index=0; index<5; index++)

ampgain[index] =500000000.0;
decidel[index]=0.0;
soff[index]=0.0;
reftop[index]=3.00;
refbot[index]=2.00;

)
else

for(index=0; index<10; index++)

topfc[index]=1.0+(1.0/(1024.0))*topfc[index];
botfc[index]=1.0+(1.0/(1024.0))*botfc[index];

for(index=0; index<64; index++)

if(index>31)

topsc[index]=1.0+(1.0/(1024.0))*topsc[index];
botsc[index]=1.0+(1.0/(1024.0))*botsc[index];
decideh[index]=0.0+0.005*decideh[index];

else

{



topsc[index]=1.0+(1.0/(1024.0))*topsc[index];
botsc[index]=1.0+(1.0/(1024.0))*botsc[index];

decideh[index]=0.0+0.005*decideh[index];

}
}

for(index=64; index<116; index++)

{
topsc[index]=1.0+(1.0/(512.0))*topsc[index];

botsc[index]=1.0+(1.0/(512.0))*botsc[index];

decideh[index]=0.0+0.005*decideh[index];

}

for(index=0; index<5; index++)

{
ampgain[index] =50000.0+500.0*ampgain[index];

decidel[index]=0.0+0.005*decidel[index];

soff[index]=0.010*soff[index];

reftop[index]=3.00;

refbot[index]=2.00;

}

/* RUN CALIBRATION PROCESS WITH "averaging" TIMES AVERAGING FOR NOISE */

correctionterm[0]=0;

numt=0;

averaging=1024;

for(index=0; index<32; index++)

{
randseed2=generator(4096,randseed2,&noiset []);

randseed2=generator(4096,randseed2, &noiseb[0]);

randseed2=generator(4096,randseed2,&noiset [0]);
randseed2=generator(4096,randseed2,&noisebl[0]);
randseed2=generator(4096, randseed2,&noiset2 [0]);

randseed2=generator(4096,randseed2,&noiseb2[0]);
randseed2=generator(4096,randseed2,&noiset3[0]);
randseed2=generator(4096,randseed2, &noiseb3[0]);

randseed2=generator(4096,randseed2,&noiset4[0]);

randseed2=generator(4096,randseed2,&noiseb4[0]);

for(indexl=0; indexl<averaging; indexl++)

{
noiset[indexl]=noiset[indexl] *0.000024;
noiseb[indexl]=noisebt[indexl]*0.000052;

noisetl[indexl] =noisetl[indexl] *0.000052;

noisebl [indexl]=noisebl[index] *0.000052;

noiset2[indexl] =noiset2[indexl] *0.000052;

noiseb2 [indexl]=noiseb2[indexl] *0.000052;

noiset3[indexl]=noiset3[indexl] *0.000052;

noiseb3 [indexl]=noiseb3[index] *0.000052;

noiset4[indexl]=noiset4[indexl] *0.000052;
noiseb4 [indexi] =noiseb4 [indexi] *0.000052;



id=(double)index;

divfac=32.0;

high=((1.0/divfac)-l.0);

inh=(O.S*high)+2.5;

inlow=(-0.5*high)+2.5;

resgenc(inh+noiset[indexl],inlow,2.5,1.0,&topfc[O],&topsc[OlI

&botfc[01,&botsc[Olampgain[O],soff[O],&resa,

&resb,&daccodereftop[O],refbot[0],1,0,5,2,&decideh[O],l);

vina=resa;

vinb=resb;

number=O;

numberl=O;

resgenc(vina+noisetl[indexl],vinb,2.5,1.0,&topfc[2],&topsc[321,

&botfc[2],&botsc[32],ampgain[l],soff[l],&resa,

&resb,&daccodereftop[l],refbot[11,0,0,5,2,&decideh[32],O);

vina=resa;

vinb=resb;

number=daccode-2;

number=number*8;

resgenc(vina+noiset2[indexl],vinb,2.5,1.0,&topfc[4],&topsc[641,

&botfc[4],&botsc[64],ampgain[2],soff[2],&resa,&resb,

&daccodereftop[2],refbot[2],0,0,4,2,&decideh[64],O);

vina=resa;

vinb=resb;

number=number+daccode+6;

number=number*8;

resgenc(vina+noiset3[indexl],vinb,2.5,1.0,&topfc[6],

&topsc[80],&botfc[6],&botsc[80],ampgain[3],soff[31,

&resa,&resb,&daccodereftop[33,refbot[3],0,0,4,2,&deci-

deh[80],O);

vina=resa;

vinb=resb;

number=number+daccode+6;

number=number*8;

resgenc(vina+noiset4[indexllvinb,2.5,1.0,&topfc[8],

&topsc[96],&botfc[8],&botsc[96],ampgain[4],soff[4],&resa,

&resb,&daccodereftop[4lrefbot[41,0,0,4,2,&decideh[96],O);

vina=resa;

vinb=resb;

number=number+daccode+8;

numl=number%128;

resgenc(inh+noiseb[indexllinlow,2.5,1.0,&topfc[01,&topsc[Ol,

&botfc[01,&botsc[Olampgain[Olsoff[O],&resa,&resb,

&daccodereftop[O],refbot[0],l,(index+l),5,2,&decideh[O],l);



vina=resa;
vinb=resb;
number=O;
numberl=O;

resgenc(vina+noisebl[indexl],vinb,2.5,1.0,&topfc[2],
&topsc[32],&botfc[2],&botsc[32],ampgain[l],soff[l],&resa,

&resb,&daccodereftop[llrefbot[l],0,0,5,2,&decideh[32],O);

vina=resa;

vinb=resb;

number=daccode-2;

number=number*8;

resgenc(vina+noiseb2[indexl],vinb,2.5,1.0,&topfc[4],&topsc[64],

&botfc[4],&botsc[641,ampgain[2],soff[2],&resa,&resb,&daccode,

reftop[2],refbot[2],0,0,4,2,&decideh[64],O);

vina=resa;

vinb=resb;

number=number+daccode+6;

number=number*8;

resgenc(vina+noiseb3[indexllvinb,2.5,1.0,&topfc[6],&topsc[801,
&botfc[6],&botsc[801,ampgain[3],soff[3],&resa,&resb,&daccode,

reftop[3],refbot[3],0,0,4,2,&decideh[80],O);

vina=resa;

vinb=resb;

number=number+daccode+6;

number=number*8;

resgenc(vina+noiseb4[indexl],vinb,2.5,1.0,&topfc[8],&topsc[961,

&botfc[8],&botsc[96],ampgain[4],soff[4],&resa,&resb,&daccode,

reftop[4],refbot[4],0,0,4,2,&decideh[96],O);

vina=resa;

vinb=resb;

number=number+daccode+8;

num2=number%128;
numt=numt+((numl-num2));

measurement[index]=nunt;

correctionterm[index+l]=numt/averaging;

/* OFFSET CALIBRATION

number=O;

correct=O;

resgenc(2.5,2.5,2.5,1.0,&topfc[O],&topsc[O],&botfc[O],&botsc[O],

ampgain[Olsoff[O],&resa,&resb,&daccodereftop[O],refbot[O],

0,0,5,2,&decideh[01,O);



vina=resa;
vinb=resb;
nuniber=nunber+daccode- 1;
nunlber=nunlber* 16;

correct=correct-correctionterm [daccode];
resgenc(vina,vinb,2.5,1.0,&topfc[2],&topsc[32],&botfc[2J,&botsc[32],

ampgain[1] ,soff[1] ,&resa,&resb,&daccode,reftop[1] ,refbot[1],
0,0,5,2,&decideh[32] ,0);

vina=resa;

vinb=resb;

nuniber=nuzber+daccode-2;

nunlber=nunlber* 8;

resgenc(vina,vinb,2.5,1.0,&topfc[4],&topsc[64],&botfc[4J,&botsc[64J,

ampgain[2] ,soff[2J ,&resa,&resb,&daccode,reftop[2] ,refbot[2J,
0,0,4,2,&decideh[64] ,0);

vina=resa;

vinb=resb;

nuniber=nimber+daccode+6;

nunlber=number* 8;

resgenc(vina,vinb,2.5,1.0,&topfc[6],&topsc[8o],&botfc[6J,&botsc[80],

ampgain[3] ,soff[3] ,&resa,&resb,&daccode,reftop[3] ,refbot[3],
0,0,4,2,&decideh[80] ,0);

vina=resa;

vinb=resb;

nuniber=nunber+daccode+6;

nunmber=nunmber* 8;

resgenc(vina,vinb,2.5,1.0,&topfc[8],&topsc[96],&botfc[8],&botsc[96],

ampgain[4J ,soff[4] ,&resa,&resb,&daccode,reftop[4] ,refbot [4],
0,0,4,2,&decideh[96J ,O);

vina=resa;

vinb=resb;
nuniber=nunter+daccode+8;

off set= (nunmber*averaging-correct);
offset=off set- 131072*averaging;

/* RUN CALCULATION OF LINEARITY *

for(index=0; index<70000; index++)

{n~ne]OO
dnl[index]=O.0;

for(i=0; i<1048576; i++)

ifl=( (double)i)+0.5;

100



vina=2 .00+1. 0*ifl/104 8576.0;

vinb=3 .00-1.0*if1/1048576.0;

nuznber=0;

correct=0;

resgenc(vina,vinb,2.5,1.0,&topfc[0],&topsc[0],&botfc[0],&botsc[O],

ampgain[0] ,soff [0],&resa,&resb,&daccode,reftop[0] ,refbot[0],

0, 0, 5,2,&decideh [O0J ,0);

vina=resa;

vinb=resb;

nuniber=nunber+daccode- 1;

nunmber=nunmber* 16;

correct=correct-correctiontelfl[daccode];

res-genc(vina,vinb,2.5,1.0,&topfc[2],&topsc[32],&botfc[2],&botsc[32J,
ampgain[1] ,soff [1],&resa,&resb,&daccode,reftop[1J ,refbot[1],

0,0,5,2,&decideh[32J ,0);

vina=resa;

vinb=resb;

number=nuniber+daccode-2;
nuniber=nunlber* 8;

resgenc(vina,vinb,2.5,1.0,&topfc[4],&topsc[64],&botfc[4],&botsc[
6 4],

anipgain[2] ,soff [2] ,&resa,&resb,&daccode,reftop[2] ,refbot [2],

0,0,4,2,&decideh[64J ,0);

vina=resa;

vinb=resb;

nunber=nunter+daccode+6;
nunmber=nunlber* 8;

resgenc(vina,vinb,2.5,1.0,&topfc[6],&topsc[80],&botfc[6],&botsc[BO],

ampgain[3J ,soff [3J ,&resa,&resb,&daccode,reftop[3] ,refbot[3],

0,0,4,2,&decideh[80] ,0);

vina=resa;
vizib=resb;

nuniber=nunber+daccode+ 6;

nunter=ntumber* 8;

resgenc(vina,vinb,2.5,1.0,&topfc[8],&topsc[96],&botfc[8J,&botsc[
9 6J,

ampgain[4] ,soff [4] ,&resa,&resb,&daccode,reftop[4] ,refbot [4],

0,0,4,2,&decideh[96] ,0);

vina=resa;

vinb=resb;

number=nunmber+daccode+8;

numberl= (nunmber*averaging-correct-off Set) /(averaging*4);

1* STORE DNL ANID INL INTO OUTSIDE FILE NAME inidnifile *

101



number=0;

total=0.0;

index=0;

for(i=(0+0+1); i<(65536); i++)

if(dnl[i]==0.0)
index++;

total=total+dnl[i];

ave=total/(65536.0-2.0-(double)0-(double) 0-(double)index);
inl[0]=0.0;

for(i=(0+0+1); i<(65536); i++)

{

dnl [i] =dnl [i] -ave;

if((i==0) && ((dnl[i]/ave)!=-1.0))
{
inl[i]=0+dnl[i];

}
else if((dnl[i]/ave)!=-1.0)

{
inl[i]=inl[i-1]+dnl[i];

if((DNL) && (NUMRUNS==l) && ((dnl[i]/ave)!=-l.0))
fprintf(inldnlfile,"%f ",dnl[i]/ave);

if((INL) && (NUMRUNS==1) && ((dnl[i]/ave)!=-l.0))
fprintf(inldnlfile,"%f",inl[i]/ave);

if(((DNL) (INL)) && (NUMRUNS==1) && ((dnl[i]/ave)!=-1.0))
fprintf(inldnlfile,"\n");

}

102



Appendix B
Verilog Code Representation of New Digital Circuitry

This verilog code represents the entire digital circuit described in chapter 5. It does not
include the external DSP algorithm, but includes the interface logic that is used by the
ADC to communicate with the DSP. This file was used in the behavioral simulation lead-
ing to the results in chapter 6.

'timescale 1 ns / 100 ps
module digital_block
(fuse0,fusel,fuse2,fuse3,fuse4,fuse5,fuse6,fuse7,fuse8,fuse9,fuselO,fus
ell,fusel2,fusel3,fusel4,fusel5,fusel6,fusel7,fusel8,fusel9,fuse20,fuse
21,fuse22,fuse23,fuse24,fuse25,fuse26,fuse27,fuse28,fuse29,fuse30,fuse3
1,flashO,flashl,flash2,flash3,flash4,phasel,phase2,databus,cal,calmda-
cout,lsbsout,addrout,offsetin,wroff,wrfuse);

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]

fuse0;
fusel;
fuse2;
fuse3;
fuse4;
fuse5;
fuse6;
fuse7;
fuse8;
fuse9;
fuselO;
fusell;
fusel2;
fusel3;
fusel4;
fusel5;
fusel6;
fusel7;
fusel8;
fusel9;
fuse20;

/* 32 Input fuse registers */
/* 7 bits per fuse */

103



input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[5:0]
[5:0]
[4:0]
[4:0]
[4:0]

fuse2l;
fuse22;
fuse23;
fuse24;
fuse25;
fuse26;
fuse27;
fuse28;
fuse29;
fuse30;
fuse31;
flash0;
flashl;
flash2;
flash3;
flash4;

input phasel;
input phase2;
inout [15:0] databus;
input cal;
input [12:0] offsetin;
output calmdacout;
reg calmdacout;

output [6:0] isbsout;
ing */

output [5:0] addrout;

/* Bidirectional databus 16bits */
/* Calibration pin */
/* Input from offset fuse */
/* Calibration Signal to Hook to first Mdac */

/* During this signal samples are taken from the

/* references and amplification is done by

/* calibration controlled caps otherwise by flash

/* Output 7 isbs of dataline used from load-

/* fuses and offset fuse

/* Used to address fuse bank and to select

/* capacitor to measure.

output wrfuse;
output wroff;
reg wrfuse;
reg wroff;
reg [6:0] isbsout;
reg [5:0] addrout;

/* Write signal to fuse bank */
/* Write signal to offset fuse */

wire [5:0] selectline; /* wire representing selection of correction fac-
tor */
wire [19:0] raw in; /* Output of correction logic = raw digital */
wire [6:0] isbline; /* interconnecting isb bus */
wire [5:0] addrline; /* interconnecting address bus */
wire wrfuseline; /* interconnecting fuse write line */
wire [10:0] muxoutline; /* interconnecting mux output line */
wire wroffline; /* interconnecting offset write line */
wire [19:0] off_addoutline; /* main_sum output line */

104



wire clrreg; /* correction register clear signal only asserted
*/

/* clear during (cal AND not offset) */

always (lsbline)
begin
isbsout <= isbline; /* When isbline changes set output equal to new

value */
end

always @(addrline)
begin
addrout <= addrline; /* When address line changes set output to new

value */
end

always @(clrreg)
begin
calmdacout <= clrreg;/* When clrreg changes set calmdacout to new value

*/
/* clrreg high, sample from references amp from addressing */
/* clrreg low, sample cmlevel amp from flash */
/* clrreg low during offset calibration and normal usage */
end

always @(wrfuseline)
begin
wrfuse <= wrfuseline; /* When wrfuseline changes set output to new

value */
end

always @(wroffline)
begin
wroff <= wroffline; /* When wroffline changes set output to new value

*/
end

correction_module
F(flashO,flashl,flash2,flash3,flash4,phasel,phase2,raw_in,
selectline);
add mux A
(fuse0,fusel,fuse2,fuse3,fuse4,fuse5,fuse6,fuse7,fuse8,fuse9,fusel0,
fusell,fusel2,fusel3,fusel4,fusel5,fusel6,fusel7,fusel8,fusel9,fuse20,f
use21,
fuse22,fuse23,fuse24,fuse25,fuse26,fuse27,fuse28,fuse29,fuse30,fuse31,
muxoutline, selectline);

/* Instantiate correction_module */

main_sum B (offsetin,muxoutline,phasel,phase2,raw_in,clrreg,
off_addoutline);

/* Instantiate main_sum */

105



output_logic C (cal,databus,off_addoutline,addrline,lsbline,wroffline,

wrfuseline,clrreg);

/* Instantiate output_logic */

endmodule

module

correction_module(flash0,flashl,flash2,flash3,flash4,phasel,phase2,out,

flash0bits);

input [5:0] flash0;

input [5:0] flashl;

input [4:0] flash2;

input [4:0] flash3;

input [4:0] flash4;

input phasel;

input phase2;

output [19:0] out; /* Output number : Raw digital code */

output [5:0] flash0_bits;
/* Bits from first stage, used to select correction factor from

mux.*/

reg [19:0] out;

reg [5:0] flash0_bits;

reg
reg

reg
reg

reg
reg

reg
reg

reg
reg

[5:0]
[5:0]
[5:0]
[5:0]
[5:0]
[5:0]
[5:0]
[4:0]
[4:0]
[4:0]

f011;
f012;

f013;

f014;

fill;
f112;
f113;

f211;
f212;

f311;

/* Delay registers */

always @(phase2 or

begin

if(phase2)

begin

f012 <= f011;

f014 <= f013;

fill <= flashl;

f113 <= f112;

f212 <= f211;

f311 <= flash3;

end

end

f011 or f013 or f112 or flashl or f211 or flash3)

/* This block loads the appropriate delay */
/* registers for phase2 */

always @(phasel or flash0 or flash2 or f012 or fill)

106



begin
if(phasel)
begin
f011 <= flash0;

f013 <= f012; /* This block loads the appropriate delay */

f112 <= flll; /* registers for phasel */
f211 <= flash2;

end
end

/* The following block adds the flash values together with the appropri-

ate */
/* overlap to produce an error corrected output signal */

always @(f014 or f113 or f212 or f311 or flash4 or phasel)

begin
if(phasel)
begin
out <=

{1'b0,f014,13'b0}+{5'bO,f113,9'bO}+{9'b0,f212,6'b0}+{12'b0,f311,3'b0}+

(15'b0,flash4};
end
flash0_bits <= f014; /* Assign selection line output */

end

endmodule

module main_sum (offsetin,mux_in,phasel,phase2,raw_in,regclr, sum_out);

input [12:0] offsetin;
input [10:0] muxin;
input phasel;
input phase2;
input [19:0] raw_in;
input regclr;
output [19:0] sum_out;
reg [19:0] sum_out;

wire [12:0] offset;
reg [13:0] regl;

/* Compliment offset for easy subtraction */

assign offset = ((-offsetin)+l);

/* This block simulates an adder and register */

/* If regclr is high, the the output of the */

/* block is 0, but is regclr is low, then the */
/* the output is then mux_in-offsetin which */

/* is the necessary function for calculating */

/* an individual correction term */
/* The register loads on phasel while the */

/* clear signal is asychronous */

107



always @(regclr or offset or mux_in or phasel)
begin
if(regclr)
regl <= 14'b00000000000000;

else if(phasel)
regl <= {mux_in[10],mux_in[10],mux_in[10],muxin}+{offset[12],

offset);
end

/* This block adds the correction factor to
/* raw digital number. The register here is
/* loaded of phase2 */

always @(regl or phase2 or raw_in)
begin
if(phase2)
sumout <=

{regl[13],regl[13],regl[13],regl[13],regl[13],regl[13],regl} + raw in;
end
endmodule

module add mux
(fuse0,fusel,fuse2,fuse3,fuse4,fuse5,fuse6,fuse7,fuse8,fuse9,fusel0,fus
ell,fusel2,fusel3,fusel4,fusel5,fusel6,fusel7,fusel8,fusel9,fuse20,fuse
21,fuse22,fuse23,fuse24,fuse25,fuse26,fuse27,fuse28,fuse29,fuse30,fuse3
1,mux_out,select);

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[6:0]

fuse0;
fusel;
fuse2;
fuse3;
fuse4;
fuse5;
fuse6;
fuse7;
fuse8;
fuse9;
fusel0;
fusell;
fusel2;
fusel3;
fusel4;
fusel5;
fusel6;
fusel7;
fusel8;
fusel9;
fuse20;
fuse2l;
fuse22;
fuse23;
fuse24;
fuse25;
fuse26;

/* 32 input fuses 7 bits each */

108



[6:0]
[6:0]
[6:0]
[6:0]
[6:0]
[5:0]

fuse27;

fuse28;

fuse29;

fuse30;
fuse31;

select;

output [10:0] mux out;
reg [10:0] muxout;

[6:0] addout0;

[7:0] addoutl;

[8:0] addout2;

[8:0] addout3;

[8:0] addout4;

[8:0] addout5;

[8:0] addout6;

[9:0] addout7;

[9:0] addout8;

[9:0] addout9;

[9:0] addoutl0;

[9:0] addout1l;

[9:0] addoutl2;

[9:0] addoutl3;

[9:0] addoutl4;

[10:0] addoutl5;

[10:0] addoutl6;

[10:0] addoutl7;

[10:0] addoutl8;

[10:0] addoutl9;

[10:0] addout20;

[10:0] addout2l;

[10:0] addout22;

[10:0] addout23;

[10:0] addout24;

[10:0] addout25;

[10:0] addout26;

[10:0] addout27;
[10:0] addout28;

[10:0] addout29;

[10:0] addout30;

[10:0] addout31;

/* Single mux output line */

/* Output of 32 adders */

/* Used for summing 32 input fuses */

*/
/*This following block accumulates the values of the fuses */

/*adder0-fuseO, adderl=adder0+fusel, adder2=adderl+fuse2 etc. */
/

assign addout0=fuse0;

assign addoutl={addout0[6],addout0}+{fusel[6],fusel};

109

input

input

input

input

input

input

wire
wire
wire
wire
wire
wire

wire

wire

wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire

wire

wire
wire
wire
wire
wire
wire
wire
wire
wire



assign addout2={addoutl[7],addoutl}+{fuse2[6],fuse2[6],fuse2};
assign addout3=addout2+(fuse3[6],fuse3[6],fuse3};

assign addout4=addout3+(fuse4[6],fuse4[6],fuse4};

assign addout5=addout4+{fuse5[6],fuse5[6],fuse5};

assign addout6=addout5+{fuse6[6],fuse6[6],fuse6};
assign addout7={addout6[8],addout6}+{fuse7[6],fuse7[6],fuse7[6],fuse7};
assign addout8=addout7+(fuse8[6],fuse8[6],fuse8[6],fuse8);

assign addout9=addout8+{fuse9[6],fuse9[6],fuse9[6],fuse9};

assign addoutl0=addout9+{fuselO[6],fuselO[6],fuselO[6],fuselO};
assign addoutll=addoutl0+{fusell[6],fusell[6],fusell[6],fusell};

assign addoutl2=addoutll+{fusel2[6],fusel2[6],fusel2[6],fusel2};
assign addoutl3=addoutl2+{fusel3[6],fusel3[6],fusel3[6],fusel3};
assign addoutl4=addoutl3+{fusel4[6],fusel4[6],fusel4[6],fusel4};
assign addoutl5={addoutl4[9],addoutl4)+{fusel5[6],fusel5[6],fusel5[6],

fusel5[6],fusel5});
assign
addoutl6=addoutl5+{fusel6[6], fusel6[6],fusel6[6],fusel6[6],fusel6};

assign

addoutl7=addoutl6+(fusel7[6], fusel7[6], fusel7[6], fusel7[6], fusel7};
assign

addoutl8=addoutl7+{fusel8[6],fusel8[6], fusel8[6],fusel8[6],fusel8};

assign

addoutl9=addoutl8+{fusel9[6],fusel9[6],fusel9[6],fusel9[6],fusel9};
assign
addout20=addoutl9+{fuse2O[6],fuse2O[6],fuse2O[6],fuse2O[6],fuse20);
assign
addout21=addout20+{fuse21[6],fuse21[6],fuse2l[6],fuse2l[6],fuse2});
assign

addout22=addout21+fusefuse22[6],fuse22[6],fuse22[6], fuse22[6],fuse22};

assign

addout23=addout22+{fuse23[6],fuse23[6],fuse23[6],fuse23[6],fuse23);

assign

addout24=addout23+(fuse24[6],fuse24[6],fuse24[6],fuse24[6],fuse24);

assign

addout25=addout24+{fuse25[6] , fuse25[6],fuse25[6] , fuse25[6] , fuse25};
assign

addout26=addout25+{fuse26[6],fuse26[6],fuse26[6],fuse26[6],fuse26};

assign

addout27=addout26+{fuse27[6] , fuse27[6], fuse27[6] , fuse27[6] , fuse27;
assign

addout28=addout27+{fuse28[6],fuse28[6],fuse28[6],fuse28[6],fuse28};
assign

addout29=addout28+{fuse29[6],fuse29[6], fuse29[6] , fuse29[6] , fuse29};

assign

addout30=addout29+{fuse30[6],fuse3[6], fuse3[6], fuse3[6], fuse3O);
assign

addout31=addout30+{fuse31[6],fuse3l[6],fuse3l[6],fuse3l[6],fuse3l};

/

/*This following block preforms the function of multiplexor upon*/
/*the 32 inputs to the block. The output is selected using the */
/*select signal.*/

110



*/

always @(addoutO or addoutl or addout2 or addout3 or addout4 or addout5

or addout6 or addout7 or addout8 or addout9 or addoutlO or addoutll or

addoutl2 or addoutl3 or addoutl4 or addoutl5 or addoutl6 or addoutl7 or

addoutl8 or addoutl9 or addout20 or addout21 or addout22 or addout23 or

addout24 or addout25 or addout26 or addout27 or addout28 or addout29 or

addout30 or addout31 or select)

begin

case (select)

0 : mux_out <= {addout0[6],addoutO[6],addoutO[6],addout0[6],addoutO};
1 : mux_out <= {addoutl[7],addoutl[7],addoutl[7],addoutl};
2 : mux_out <= {addout2[8],addout2[8],addout2};

3 : mux_out <= (addout3[8],addout3[8],addout3};

4 : mux_out <= {addout4[8],addout4[8],addout4};
5 : mux_out <= {addout5[8],addout5[8],addout5};

6 : mux_out <= (addout6[8],addout6[8],addout6};

7 : mux_out <= (addout7[9],addout7};

8 : mux_out <= (addout8[9],addout8};

9 : mux_out <= (addout9[9],addout9};

10 : mux_out <= {addoutlO[9],addoutlO};

11 : mux_out <= {addoutll[9],addoutll);

12 : mux_out <= {addoutl2[9],addoutl2};

13 : mux_out <= {addoutl3[9],addoutl3};

14 : mux_out <= {addoutl4[9],addoutl4};

15 : mux_out <= addoutl5;

16 : mux_out <= addoutl6;

17 : mux_out <= addoutl7;

18 : mux_out <= addoutl8;

19 : mux_out <= addoutl9;

20 : mux_out <= addout20;

21 : mux_out <= addout21;

22 : mux_out <= addout22;
23 : mux_out <= addout23;

24 : mux_out <= addout24;

25 : mux_out <= addout25;
26 : mux_out <= addout26;
27 : mux_out <= addout27;

28 : mux_out <= addout28;

29 : mux_out <= addout29;

30 : mux_out <= addout30;

31 : mux_out <= addout31;

default : mux_out <= 11'b00000000000;
endcase

end

endmodule

module output logic (cal,data,word_in,addr,lsbs,wroff,wrfuse,clrreg);

input cal;

inout [15:0] data;

111



input [19:0] wordin;
output [5:0] addr;

output [6:0] isbs;
output wroff;
output wrfuse;
output clrreg;
reg clrreg;
reg [15:0] data reg;
wire [15:0] data = data_reg;

reg [5:0] addr;
reg [6:0] isbs;
reg wroff;
reg wrfuse;
wire offset;
wire io;
wire clk;

/* This assign block assigns all control signals from the bidirectional
bus */
/* These control signals are to be used when cal is high */

assign offset = data[15];
assign clk = data[14];
assign io = data[13];

/* This block is used to assign the write and clear signals for the dig-
ital */

/* These signals write fuses, offsets, or clear the correction regis-
ter */
/* Based on the control signals */

always @(offset or clk or io or cal)
begin
wroff <= (io & clk & offset & cal);
wrfuse <= (io & clk & -offset & cal);
clrreg <= (cal & -offset);

end

/* This block is manipulation of the output bus */
/* If cal is low then normal operation happens */
/* The output is a 16bit number which is limited */
/* between all l's and all O's, if too small all */
/* O's is the condition, and if too high all l's */
/* is the condition. */

/* In cal mode, if io is high then the bottom 13 */
/* pins (addr,lsbs) is set by external source and */
/* read into the registers isbs and addr */
/* isbs and addr are directed to the offset fuse */
/* and the fuse bank. Addr addresses the proper fuse */
/* in the fuse bank while addr is the msbs of the offset */
/* fuse. When clk is asserted, depending whether offset */
/* is high or low, a fuse is written. i.e. */

112



/* offset = low on clk fuse "addr" is written with the value "isbs" */

/* offset = high on clk offset fuse is written with the value "addr,lsbs"

*/
/* In cal mode if offset is high and io is low */

/* bottom 13 pins are used as outputs to */

/* so an external circuit can manipulate measurements */

/* If cal mode and offset is low and io is low */

/* Then isbs represent a measurement output and addr */

/* is an input address. The input address is used to */

/* select the cap to be measured, and the isbs */

/* correspond to the measurement made on that cap */

always @(cal or data[12:0] or word_in or io or offset or clk)

begin
if(cal)

begin

if(io)

begin
data_reg <= 16'bz;

if(offset)

begin

addr <= data[12:7];

isbs <= data[6:0];

end
else

begin

addr <= (1'b0,data[12:8]};

isbs <= data[6:0];

end

end

else

begin

if(offset)

begin

data_reg <= {3'bz,word_in[12:0]};

addr <= 6'bz;

isbs <= 7'bz;

end
else

begin

isbs <= 8'bz;

if(clk)

addr <= {1'bO,data[12:8]};

else

addr <= {1'bO,data[12:8]}+1;

datareg <= {8'bz,word_in[7:0]};

end

end

end

else

begin

if(wordin[19:17]==2)

data_reg <= 16'bllllllllllllllll;

else if(word_in[19:17]==3)

113



data_reg <= 16'bOO00000000000000;
else

data_reg <= word_in[17:2];
isbs <= 7'bz;

addr <= 6'bz;
end

end

endmodule

114



Bibliography

[1] K.Y. Kim, N.Kusayanagi, A.A. Abidi, "A 10b 100MS/s CMOS A/D Converter,"
IEEE Journal of Solid State Circuits, Vol.32, no. 3, pp. 302-311, March 1997.

[2] F.Murden and R. Gosser, "A 12b 50MS/s twostage A/D Converter," in International
Solid State Circuits Conference, San Francisco, Ca., 1995, pp. 278-279

[3] L. Singer and T.Brooks, "A 14-bit 10-MHz Calibration Free CMOS Pipelined A/D
Converter," 1996 Symposium on VLSI Circuits, Honolulu HAWAII, 1996, pp. 94-
95.

[4] T. Brooks, D. Robertson, D. Kelly, A. Del Muro, S. Harston, "A 16bit SIGMA
DELTA Pipeline ADC with 2.5MHz output Data Rate," in International Solid State
Circuits Conference, Salon, 1997, pp. 208-209.

[5] D. A. Mercer, "A 14-b 2.5MSPS Pipelined ADC with on Chip EPROM," IEEE Jour-
nal of Solid State Circuits, vol. 31, no. 1, pp. 70-76, Jan. 1996.

[6] M. Mayes and S. W. Chin, "A 200mW, lMsample/s, 16-b Pipelined A/D Converter
with On-Chip 32-b Microcontroller," IEEE Journal of Solid State Circuits, vol. 31,
no. 12, pp. 1862-1872.

[7] B. Razavi, Data Conversion System Design, IEEE Press, 1995.

[8] H. P. Tuinhout, H. Elzinga, J. T. Brugman, F. Postma, "The Floating Gate Measure-
ment Technique for Characterization of Capacitor Matching" IEEE Transactions on
Semiconductor Manufacturing, Vol. 9, No. 1, February 1996.

[9] J. L. McCreary, "Matching properties, and voltage and temperature dependence of
MOS capacitors," IEEE Journal of Solid State Circuits, vol. SC-16, pp. 608-616,
Dec 1981.

[10] A. Karanicolas, H. S. Lee, and K. Bacrania, "15-b 1-Msample/s digital self-cali-
brated pipelined ADC," IEEE Journal of Solid State Circuits, vol. 28, no. 12,
pp.1207-1215, Dec. 1993.

[11] Seung-Hoon Lee, "Code-Error Calibration Techniques for Two-Step Flash Analog-
to-Digital Converters," Ph.D. Dissertation, University of Illinois, Urbana, IL.

[12] S. H. Lee and B. S. Song, "Digital-Domain Calibration of Multi-Step Analog-to-
Digital Converters", IEEE Transactions of Circuits and Systems, vol. 27, no. 12, pp.
1679-1688, Dec. 1992.

[13] S. Ho "Design of a 10-bit 10Ms/s Pipelined A/D Converter," Master's Thesis,
Department of Computer Science and Electrical Engineering, Massachusetts Intitute
of Technology, Cambridge, MA.

115



[14] P. R. Gray and R. G. Meyer, Analysis and DEisng of Analog Integrated Circuits,
Wiley 1984.

[15] D. J. Allstot and W. C. Black, Jr. "Technological Deisng Considerations for Mono-
lithic MOS Switched-Capacitor Filtering Systems" (Proceedings of the IEEE,
Auguest 1983)

[16] Gregorian, Analog MOS Integrated Circuits for Signal Processing, Wiley 1986.

116


