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Abstract

The main result of this work is a ¢g-analogue relationship between nilpotent trans-
formations and spanning trees. For example, nilpotent endomorphisms on an n-
dimensional vector space over [F, is a g-analogue of rooted spanning trees of the
complete graph K,. This relationship is based on two similar bijective proofs to
calculate the number of spanning trees and nilpotent transformations, respectively.

We also discuss more details about this bijection in the cases of complete graphs,
complete bipartite graphs, and cycles. It gives some refinements of the g-analogue
relationship. As a corollary, we find the total number of nilpotent transformations
with some restrictions on Jordan block sizes.
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Chapter 1

Introduction

The problem of enumerating the number of nilpotent matrices with certain restrictions
over a finite field has attracted great attention in the literature.

In 1958, N.J. Fine, IN. Herstein in [2], for the first time, found out that the
number of nilpotent n x n matrices over the g-element finite field F, is ¢V by
considering the decomposition according to Jordan canonical form. Later in 1961, M.
Gerstenhaber gave another proof of it suggested by algebraic geometry in [3]. That
was not the end of the story. After several years, in 1987, A. Kovacs considered the
problem of when the product of k£ n xn matrices will be nilpotent, and gave a solution
in [5] and [6]. There are more related results.

In general, people are interested in problems of the following form:

Problem. Consider all nilpotent matrices over F, of a fized size with some entries
set to be zero. How many are they?

For instance, the problem of when the product of k m x m matrices, A1 Ay --- Ay,

will be nilpotent is equivalent to consider when the following block matrix A is nilpo-

tent:
0 A 0 0 0
0 0 A --- 0 0
A=
0O 0 O 0 Ax
A, 0 0 0 0




Let’s start the discussion with some examples first.

Bad Example. Consider nilpotent 3 x 3 matrices of the following form:

* 0 =%
A - 0 ko ok 9
* % 0

where * denotes a entry from F,. One can easily compute the total number of nilpotent

matrices over [F; of the above form is:

2¢° — 2¢%> +2q — 1, if ¢ is odd,

¢+ -1, if ¢ is even.

It is not a polynomial of ¢.

OK Example. Consider nilpotent (n + 1) x (n + 1) matrices of the following form:

* E S 3
A= ,

* * %

* * 0

where * denotes a entry from F,. Define M,, to be the set of those matrices, i.e., all
nilpotent (n + 1) x (n + 1) matrices A = (a; ;) over [, such that a,41,11 = 0. We
want to calculate the cardinality of M,,.

Let A (resp. B) be the subset of M,, such that the last row of any matrix in A
(resp. in B) is nonzero (resp. zero). We have M, is the disjoint union of A and B5.

Let C (resp. D) denote the set of all nilpotent (n+1) x (n+1) matrices A = (a; )
over F such that (4,111, @n+12; - - -, ant1,,) IS DOt & zero vector (resp. is a zero vector).
Hence, the set of all nilpotent (n + 1) x (n + 1) matrices over F, is a disjoint union
of C and D. We have:

#C +#D = g+,

10



where #S denotes the cardinality of set S. Since A = (a;;) € D is nilpotent if and

only if @, 11041 = 0 and (a,;)7,—, is nilpotent, we have B =D and:

2

#B _ #D _ qn(n—l) . qn _ an - #C _ qn(n+1) . qn )

Define a map 7 : A x Fy — C by:

I, v I, —v
A

0 1 0 1

AXvr—

It is not hard to see that 7 is a ¢" ! to 1 map. That implies:

#A-q" _ #C n(n41)—1 _ n2—
1 7 HA =g g

n+1)—1

Hence, the cardinality of M,, is ¢ — ¢ 4 q¢7, a polynomial in q.

Motivated by these two examples, we want to look at those “OK Examples”. That
is, we want to consider restrictions under which the number of nilpotent matrices over

[F, is a polynomial in q.

Perfect Example. In M.C. Crabb’s paper [1], he used a combinatorial method to
calculate the number N,(n) of nilpotent endomorphisms on a n-dimensional vector
space V,, over [y, i.e., nilpotent n x n matrices, and used an analogous method to
count the number N(n) of rooted spanning trees of complete graph K,. From the
result he found that the set of nilpotent transformations is a “g-analogue” of the set

of rooted spanning trees, i.e., N,(n) is a “g-analogue” of N(n):
N(’I’L) _ nn—l _ (n>n—1 g (qn)n—l _ qn(n—l) _ Nq(n),

where n and q™ are the sizes of K,, and V,,, respectively.

11



Inspired by this, we want to focus on “Perfect Examples”, instead of “OK Exam-
ples”. That is, we want to consider restrictions under which not only the number of
nilpotent transformations, equivalent to nilpotent matrices, over [F, is a polynomial
in ¢, but also there exists a natural g-analogue relationship between spanning trees
of some graph and those nilpotent transformations.

The “Perfect Example” is: given a digraph GG with certain properties, we replace
each vertex with a vector space, and consider the the nilpotent transformation that
“maps along” the edges of GG. These nilpotent transformations are the g-analogue of
spanning trees of the expanded digraph, which can be get by replacing each vertex of
G with given number of vertices and connecting them “corresponding to” edges of G.
We calculate the total number these special nilpotent transformations and spanning

trees in Theorem 2.4 and show the g-analogue relationship in Corollary 2.5.

12



Chapter 2

Definitions and Main theorems

2.1 Basic Definitions

We use the standard notations following Stanley [7]: let ¢ be a fixed prime power and
[F, denote the ¢ element finite field. (All the vector spaces we talk about are over the
field IF,.) Let N and [P denote the set of nonnegative integers and positive integers,
respectively, and [n] = {1,2,...,n}, where n € P. For any finite set S, we let #S
denote its cardinality. For any two finite set S and S’ define S1JS’ to be the disjoint
union of S and S’. For a map f : S; — Ss, where S; and S, are two sets, let f(.5)
denote the image of S C S; under f in Sy, and if S; = S5 let f* be f composed with
itself k times, for k € N.

Next let us recall some basic definitions about linear algebra and graph theory.
We say a linear endomorphism f on vector space U is nilpotent if there exists some
large enough k € P such that f* = 0.

About graph theory, we are mainly interested in directed graphs or digraphs. A
directed graph or digraph G is a pair (V, E), where V = [m] is a set of vertices, £
is a set of (directed) edges, and the edge from i to j, i.e., with initial verter i and
final vertex j, where 7,5 € V, is represented as ¢« — j. If ¢ = j, then the edge is
called a loop.! Let Out(i) = {j € V:i — j € E}. A pathT in G fromi to j

is a sequence i = ig,i1,...,iq = v such that d € P, {ij, : 0 < h < d} C V and

'In fact, it means that the digraph can have loops but no multiple edges with the same orientation.
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{in, = int1 : 0 < h < d} are distinct edges of G that are not loops. We call it the
length of I'. An (oriented) tree with root i is a digraph 7" with i as one of its vertices,
such that there is a unique path from any vertex j to ¢. An (oriented) forest F' with
root set I is a collection of disjoint trees with I as the collection of the roots of them.
A spanning tree (resp. forest) of a digraph G consists of all the vertices and some
edges of G, such that it forms a tree (resp. forest).

We will be interested in a special kind of digraph. In a digraph G, let outdeg(i) =
#{j eV :i—jec E} (resp. indeg(i) = #{j € V : j — i € E}) denote the outdegree
(resp. indegree) of vertex i, and outdeg(G) = max{outdeg(i) : i € V'}. The digraphs
G we will consider are the ones such that outdeg(G) = 1, called a unidigraph. Clearly,
a tree or a forest satisfies this condition. In this case, we define o(i) be the unique
vertex, if exists, in Out(7), otherwise let o(i) = 0.

An example of a unidigraph Gq is given in Figure 2-1. In Figure 2-2 we list all

spanning forests of G, where I and II are the spanning trees.

Figure 2-1: Digraph Gy.

I 1 9 3 I 1 2 3
° o+o o+o °
I 9 3 vV 2 3
o+o ° ° ° °
\ 1 9 3 Vi 9 3

Figure 2-2: Forests of digraph Gj.

14



2.2 Digraphs and Vector Spaces

Definition 2.1. Given a digraph G = (V, E), the expanded digraph G; = (Vz, Er)

of rank 1. = (nq,na, ..., Ny,) is defined by the following conditions:
1. Vi = ULV;, where each V; = {a},x,...,x, } is a vertex set of size n; for
1=1,2,...,m.

2. Foranyx e V,,yeV,, v —ye€ Eyifand only ifi — j € E, foranyi,j € V.

For example, with n = (2,2,1), the expanded digraph (Gg); is given below:

1 2
Ly Ty

3
1 2
Lo Lo

Figure 2-3: Expanded digraph (Gp)s.

Definition 2.2. Given a digraph G = (V, E), a G-space of rank i = (ny,ng,...,np)
is a vector space U = Ug(n) = @, U;, where each U; is a vector space of dimension

n; fori=1,2,....,m, and m is the number of vertices of G, i.e., V.= [m].

Definition 2.3. Given a digraph G = (V, E) and a G-space U = Ug(n), a G-space

linear transformation f = fqu is an endomorphism of U satisfying:

where ®;exU; is the zero space.?

Pick a basis {x} : 1 <1 < n;} for each U; and let 92‘} be the nature promotion of

z} from U; to U, for i = 1,2,...,m. Let n = |n] = ny +na + -+ + n,,. Then the

2The G-space together with the transformation is the same as a representation of the quiver G.
But in the quiver case, the digraph is allowed to have multiple edges and each linear transformation
along a edge is considered separately. Here we won’t consider the multiple edges case and will treat
all transformations as one on the direct sum of all subspaces.

15



transition matrix My of f under the basis {f; 1<i<m,1<Il<mn}lisannxn
matrix that can be broken into blocks My = (M;;){"_,, where M, ; is an n; x n;

matrix (see Figure 2-4). Moreover M (i,j) = 0 if ¢ — j is not an edge in G.

nl n2 PR nm
1 Ml,l MLQ cee Ml,m
no M2,1 M2,2 T M27m
N Mp1 Myo - My,

)

Figure 2-4: Transition matrix.

If G is a unidigraph, the condition will be just:
flo. : Ui = Usgay

where Uy is the zero space. For example, if we consider Gy from Figure 2-1, the
G-space linear transformation f is required to map between spaces U; and U; and

map from U; to U, (see Figure 2-5).

f‘Uz flUd
U Us Us
floy

Figure 2-5: Gg-space linear transformation.

Let n = (2,2,1). Define a linear map fo on U by the transition matrix given in
Figure 2-6. Since, except for M; o and M, ;, the other blocks are all zero, the map fy

is a Gg-space linear transformation.

16



001 10
000 1 0
110 0 0

Figure 2-6: Transition matrix of f.

2.3 Main Theorem

Define Tr(G, n) and Nil(G, n) to be the set of spanning trees of the expanded digraph

G5 and the set of nilpotent G-space linear transformations, respectively.
Theorem 2.4. Given a digraph G, we have:
1. The number of spanning trees of the expanded digraph Gy is:

n;—1

s T ¥ w) 2(Mwo) @1

i=1 \ jeOut(i) T \i#lp

In particular, when G is a unidigraph we have:

#TI'(G, ﬁ) = Hng(zlgl . Z (H no(i)) , (22)
i=1 T \i#lp
where ng = 0, and the two sums are taken over all spanning trees of G and Iy

is the root of tree T, pr(i) is the parent vertex of 1 in T.

2. When G is a unidigraph, the number of nilpotent G-space linear transformations
18!

HNI(G,n) = [ J(g™o) ") (H (¢"w — 1)) : (2:3)

i=1 F \iglp
where ng = 0, and the sum is taken over all spanning forests of G and I is the

root set of the forest .

17



This is a direct corollary of Lemma 3.8 and 3.9 from Chapter 3.

Corollary 2.5. When G is a unidigraph, #Nil(G,n) is a g-analogue of #Tr(G,n),
i.e., the set of nilpotent G-space linear transformations is a gq-analogue of the set of

spanning trees of expanded digraph Gj.

Proof. Recall from Chapter 1, the g-analogue we are considering is to replace a
n-element set with a n-dimensional vector space over F,, and correspondingly replace

n with ¢". With the formula given in Theorem 2.4, we have:

#Tr(G,n) #Nil(G, n)
[ I

(o)™ -3 (0#F [[(ne) — 0)) ~2¢ [1(gPe®)™ =13 ((q®)# ! [](g"® — q°)).
1 F i g Ip 7 1 F i ¢ Ip

Ih—=s
=3

7

The summation in equation (2.2) is taken over all spanning trees of G. In the
above diagram, to make the summation range over all spanning forests, we add an
extra term 07/~ and treat a spanning tree as a special spanning forest I with only
one root. It is the same as considering the partial summation taken over all spanning

trees in equation (2.3), i.e., considering only the “leading terms”. O

Let us still take G from Figure 2-1 as an example. If n = (2,2, 1), from Theorem

2.4 together with the list of all spanning forest in Figure 2-2, we have:

I IT

#Tr(Go,n) = (ng“_l . n?rl -n§3_1) ( mpeme + ng-mg )

=il ol T2y (g +ng) = 32.

18



I IT

! !
#Nil(G, n) = (g2m=1 . gmn2=b) . gn2bs =) ((gm — 1)(g"2 — 1) + (¢"2 — 1)(¢" — 1)
111 vV
1 !
+ (g™ —1) + (¢ -1)
v VI
! !
+ (g™ —1) + 1 )

— qng-(nlfl) X qnl-(nzfl) . qnz-(ngfl) . qng . (qnl + qn2 _ 1)

=q¢%(2¢> - 1).

Figure 2-7 is an example of the 16 spanning trees of (Gy)s (see Figure 2-3). And

2

fo with transition matrix in Figure 2-6 is one of the ¢°(2¢®> — 1) nilpotent Gy-space

transformations.

1 a3t
3
Ty
1 2
Lo Ty

Figure 2-7: A spanning tree of expanded digraph (Gy)z-
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Chapter 3

Proofs

To prove Theorem 2.4 from Section 2.3, we define two bijections from Tr(G,n) and

Nil(G, n), respectively, to two sets whose cardinalities are easy to calculate.

Define St.(G,n) = {& = (a1, g, . .., )} and Sy (G, 0) = {8 = (B1, Bas - - -, Bm) },
such that o; = (@i 1, @iz, - - -, Ainy), Bi = (i1, bis -, Uiy, ), and agy € {0}(Ujcoun) V),
biy € @jcout(i)Uj, for any 1 <i <m, 1 <1 < n;. They are called the set of tree codes

and the set of transformation codes, respectively.

Definition 3.6. A tree code & = (a1, ,...,qy) from St (G,7) is good if there

exists a spanning tree T of G with root I = It such that:
1. a;;=01if and only if t =1 and l = ny, for any 1 <i<m,1 <[ < n,.
2. For any i # I, we have a;y, € Vyp(i), where pp(i) is the parent vertex of i in T

Define GSt(G,n) to be the subset of St.(G,n) that contains only good tree codes.

Definition 3.7. A transformation code 3 = (01, B2, ..., Bm) from Snu(G, 1) is good
if there exists a spanning forest F' of G with root set I = Ir such that:

bin, =0 if and only if i € I.

Define GSni (G, 1) to be the subset of Sxi(G, ) that contains only good transformation

code.

21



Take graph G from Figure 2-1 as an example. Let n = (2,2,1). The expanded

digraph (Gy)s is given in Figure 2-3. Then & = (o, ag, arg), where:

(

ap = (ﬁ,x%),
Qg = (x},O),
a3 = (l’%),

\

is one of the good tree codes corresponding to spanning tree II from Figure 2-2. And

B = (B, P2, B3), where:

.

ﬁl = (l’%,O),
B = (a1, —21 + 23),
\63 = (0).

is one of the good transformation codes corresponding to forest IV from Figure 2-2.

Now we can define these two bijections.

Lemma 3.8. There exists a bijection from Tr(G,n) to GS1.(G, 7).

Lemma 3.9. When G is a unidigraph, we have that b;; € Uy fori = 1,2,...,m,
l=1,2,...,n;. In this case, there ezists a bijection from Nil(G,n) to GSxi(G,n).

3.1 Lemma 3.8

3.1.1 Proof

Proof. The proof is divided into 3 parts.
1. A Bijection from all spanning trees of G to all rate 1 nilpotent set maps on V.

Given a spanning tree T}; of the expanded digraph G = (Vi, E5), we consider the
set map fr, on Vi LI {0} given by:

22



pr, (z), if z is not the root of T,

fro () = 0, if x is the root of T},

0, ifx=0,

(
where pr, (z) is the parent of x in Tj.

Define a nilpotent set map f on the set S to be the map f: SU {0} — SU {0}
such that f(0) = 0 and for large enough k € P we have f*(S) = {0}. And define the
rate of f to be the number of elements € S such that f(z) = 0. Hence, the map
T: — [, gives a bijection from all spanning trees of G to all rate 1 nilpotent set
maps on V.

2. Define map T, — a'® from Tr(G,n) to GSt(G,n).

For any 1 < i < m, let Vi(k) = fj’?ﬂ(Vﬁ) N V; and r; be the smallest integer such

that V;(”) = @. Then we have:

Vi, = Vi(O) D Vi(l) 5.0 V;(n'—l) » ‘/;(Ti) -

Recall that V; = {z{,2%,..., 2} }. Make the list yi,y5,..., v, as follows: firstly
the elements of Vi(o) — v (if any) in increasing order of the lower indices, secondly

)

the elements of V;(l) - V;(Q) (if any) in increasing order of the lower indices, and so on,

until finally the elements of V""" — V") in increasing order of the lower indices.

For any spanning tree T; of G and the corresponding rate 1 nilpotent set map

fr,, we define a™ = (o™, ad™, ..., al") to be:
O‘z‘Tﬁ = (az}i"ag:g’ s 7az?::lzi) = (fTﬁ(yi)ufTﬁQ/;)v s 7fTﬁ(y’7;LZ)> :

In order to prove Lemma 3.8, it suffices to show that the map T; — &’ is a
bijection from Tr(G,n) to GS(G,n).

Firstly, by the definition of fr., we have aﬁ € (Ujeour()V;)U{0} fori =1,2,... ,m,
[=1,2,...,n; Hence a’" € Sy(G, 7).

Secondly, in order to show that a’® € GSy,.(G, ), we need the following claim.

23



(We will prove it latter.)

Claim 3.10. fr, is a rate 1 nilpotent set map on V; if and only the following condi-

tions are satisfied:
1. Foranyl1 <i:<m,1<1<ny, wehaveaﬁ;«éo.
; ; Th _
2. There exists a unique I € [m] such that ap;, = 0.

3. For any 1 # I, there exists a sequence i = iy, 11, ...,1q = I such that iy, — ipi1
1s an edge of G, and the last entry of ag;ﬁ satisfies that al™ € Vi

iy, € Vinas for any
0<h<d.

Define a spanning tree T" of G to be with root I and the unique path from any
vertex i to I is the one given in condition 3 for any ¢ # I. It is not hard to see that the
three conditions in Claim 3.10 is equivalent to the definition of GS1,(G, 7). Hence,
the map T, — a’# is a map from Tr(G, 7) to GS(G, 7).

3. Define inverse map & — T2 from GS1,(G, 1) to Tr(G,n).

To prove that it is a bijection, it suffices to find the inverse map @ — T from
GSr(G,n) to Tr(G, n).

For any a = (o, a9,...,a,)} € GSn(G,n) and a; = (a;1,G:2,...,0,,), We

define a map f on Vi U {0} as following:
1. f*(0)=0.

2. Define Vﬁ(O) = V5 and Vﬁ(l) ={a;;:1<i<m,1<1<mn}NV; Let V;(O) —V
and V¥ =V (V. Define s” = 1 and s = n, — v, + 1.

3. Inductively, for k = 1,2,..., define V"™ = {a;; : 1 < i <m, s <1 <

ni} N V. Let Vi(kﬂ) = Vﬁ(k—H) N V;. Define Sgkﬂ) =n; — #V;(kﬂ) + 1.

(k+1)

4. Stop when s; > n; for all 1 <i <m, ie., when Vﬁ(kﬂ) = &. Define r; to be

the smallest integer such that V") = &.

5. For each i = 1,2,...,m, list the element of V; = {«{,2%,... 2% } as following:

first list the Sgl) - s§0) elements from Vi(o) - Vi(l) in increasing order of the

24



52) - sgl) elements from Vi(l) — VZ.(Q) in increasing order
ri=) _ ") glements from

7 %

lower indices, then the s
of the lower indices, and so on, until finally the s

‘/i(ri_l) — Vi(”) in increasing order of the lower indices, as y¢, ys, ... ,yf“.

6. Define f*(y!) =a;; fori=1,2,... m,l=1,2,... n,.

By the definition of GSt,(G, ), we know that y) is always an element of V) as

long as it is not an empty set, i.e., sﬁk) < mny. Since ar,, = 0, we have:

VY = a1 <i<ms® <1 <n}nv;

= ({ai,l:i#[,sgk) §l§ni}u{a17l:s§k) glgnl—l})ﬂvﬁ

C{ai,l:i#l,sgk) Slgni}u{af,l:sgk) <l<n;—1}

Hence, #V.F < dori(ng — sz(k) +1)—1= #V P 1 < 2V% Tt is not hard to
see that Vﬁ(kﬂ) C V,—L(k) for any £ € N. And because Vﬁ(o) = Vj is a finite set, there
exists a large enough r € P such that V,—fr) = . The inductive definition procedure
in Step 3 will end as said in Step 4. So we showed that f® is a well-defined set map
on V; U {0}.

From the definition procedure, we know that (f%)*(V,) NV, = V" for all k € N.
Hence, there is a unique element x in V5 such that f*(z) = 0. In fact, z =y} . And
(3 (Vi) = VA7 U {0} = {0}. That is, f& is a rate 1 nilpotent set map on Vi, which
bijectively gives a spanning tree T of Gj.

One can easily check that the two maps T, — a’™ and @ — T are inverse map

to each other. Hence, T, — a’" is a bijection from Tr(G,n) to GSt.(G,n). That

proves Lemma 3.8. O

Proof of Claim 3.10. “=", given that fr, is a rate 1 nilpotent set map on V;, we
need to show that the three conditions are satisfied.
Since fr, is a rate 1 nilpotent set map, we have T} is a spanning tree of G. T}

has a unique root x € V5. Assume x € V for some 1 < I < m.
Definition 3.11. A leaf of an (oriented) tree T is a vertex with indegree 0.
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Definition 3.12. For each vertex x of an (oriented) tree T, we say it is in level k if
the longest path from any leaf to x is of length k. For instance, all the leaves form

level 0.

By the definition of fr,, we have, for any k € N, fF (V) is always 0 union
the vertices of level k or higher. Thus, as the root of T, z is the only element in

/AL Vi(”). Hence, x = y! and at™ = fr.(r) = 0. And for any (i,1) # (I,n;),

7 Ing

since yj is not the root, we have a;{? = fr,(y}) # 0. This gives condition 1 and 2.
For condition 3, for any ¢ # I, let iy = i, for h € N inductively define i;,; to be

the index such that the last entry of a;";ﬁ satisfies that a’" € Vi

LhyT

ni1> and stop when
the1 = 1. There are two possible cases:
Case 1: The sequence stops at iy. Thus, we got a sequence ¢ = ig,41,...,0q = [

satisfying that the last entry of az;j‘ satisfies that az;inih eV, for any 0 < h < d.

ih+1’
And by the definition of fr, and Gy, we have i, — 4,41 is an edge of G. This gives
the condition 3.

Case 2: The sequence repeats. Assume, without loss of generality, that 0 < d; < d»

and 74, = i4,. For any k € N:

fT* (y:zh ) = az;ﬁn‘ € V;h-u . :
n i My, Ts Ty (Tz )
h b h = inomi c f ﬁh (Vﬁ) N ‘/;h+1 = V;'h+? 7é .

) (rs, —
Yni € Vi, "

Thus, ry, <rj,,,. Hence, ry, <y, . <-- <y, <ry, =T, acontradiction!
As a whole. we proved that fr. is a rate 1 nilpotent set map on Vj; implies the
three conditions.
“«<” given the three conditions, we want to show that fr. is a rate 1 nilpotent set
map on V.
With condition 1 and 2, if fr, is nilpotent, it is of rate 1. Hence, it suffices to

show that for some r € P:
V. = V—(D) » Vf(l) 2. Vf(’”—l) 2 Vf(r) — ¥

where V") = fE(Va) NV, = Ui’ilV;(k) for k € N.

26



It is not hard to see that:
Vi=V2 >y ooy o5

Since V; is a finite set, it suffices to show that #Vﬁ(k) > #Vﬁ(kﬂ) for any k£ € N if
v £ &,

By the definition of V,—T(k) and condition 3, we know that y,lu is always an element
of Vﬁ(k) as long as it is not an empty set. Assume that V,—Z(k) ={z,29,...,2n}, where

z1 =yl and N = £V % Since fr, (y},) = 0, we have:

VA = g (V) — {0}
={fr.(2) : 1 <t < N} — {0}
CA{fr.(z):2<t< N}

Hence, #Vﬁ(kﬂ) < N-1-= #V,—L(k) —-1< #Vﬁ(k). This proves that fr, is a rate 1

nilpotent set map on Vj. O

3.1.2 Example

Consider G = Gy as given in Figure 2-1 and n = (2,2, 1). In Figure 2-3 and Figure 2-
7, we give the expanded digraph (Gy)s and one of its spanning trees Ty. As discussed
in the proof of Lemma 3.8, the spanning tree Ty can be coded as a rate 1 nilpotent

set map fo on Vi = {1, 2}, 23 23, 23}, where:

(

(fo(z1), fo(ws)) = (23,27),
< (fo(ﬁ)afo(l”%)) = (37%70)7
(fola?)) = (3).

Hence, in terms of V; = Vi(o) D ‘/;(1) DD Vi(”_l) 2 VZ-(”) = J, we have:
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Vi = {ay, 23} D {=} o {1} O 2,
Vo ={af, a3} O {at, 23} D {#3} {23} D 2,

Vs={z}} D o.

This gives:
(yiayb = (33%,1‘%), (yf,y%) = (x%’x%)v (yi)) = (:L“;’)

Hence, Ty is bijectively mapped to a” = (a]°, ai?, ai?), where:

a{o - (ZL‘%, x%)v
Oéfo = ($%7 0)7
az’ = (a3)

This o satisfies the conditions in Lemma 3.8.

3.2 Lemma 3.9

3.2.1 “Adapt” a Basis

Before we prove Lemma 3.9, let us define the way to find a special basis.

For a n-dimensional vector space W with a given basis {x1,zs,...,2,}, we can
uniquely adapt the basis to W’ and get a new basis {y1,¥s,...,y,} satisfying that
{Yn—n's+1, Yn—n'12,---,Yn} generate the given n’-dimensional subspace W/ C W as

follows:

1. For s =0,1,...,n, let X, be the (n — s)-dimensional subspace of W generated
by {Zsi1,Ts42,. .., x5} Define S ={s: W'NX,_; # W nX}.

2. For s € S, define z, to be the unique vector in W’ N X,_; such that z, — x, lies
in the subspace of X spanned by the vectors {x; : t > s,t € S}.
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3. List the elements of [n] — S and S in increasing order as t; < to < -+ < tp_p

/
and s < 59 < -+ < 8.

/728172827 A '7an/>‘

4. Define (y1, Y2, -, Yn) = (T, Tigy - - - Ty

n—mn

The above construction is a well-known method from the theory of Schubert cells
in Grassmann varieties, see, for example, [4]. Tt can also be defined through reduced

row echelon forms of matrices.

Definition 3.13. A matriz is in reduced row echelon form if:

1. All nonzero rows are above any rows of all zeroes.

2. The leading coefficient (also called pivot) of each nonzero row is always strictly

to the right of the leading coefficient of the row above it.

3. Fvery leading coefficient is 1 and the only nonzero entry in its column.

Given the definition above, it is not hard to see that the construction we gave

above is equivalent to the following one in terms of reduced row echelon form:

1. Pick abasis {21, 29, ..., 2} of W, write it as linear combinations of {x, z9, ..., x,}

as (21,22, .- 2w) T = M(xy,9,...,2,)T where M is an’ x n matrix.

2. Consider the reduced row echelon form F of M. And let S be the set of column

indices of all pivots. List [n] — S in increasing order as t; < to < -+ < t,_p.
Let (21,25, ...,20)7 = E(xy,29,...,2,)7.
3. Define (y1,12, .- Un) = (T4y, Tegy oo Ty, 21, 250y 2y )

3.2.2 Proof

Proof. For Lemma 3.9, we assume that G is a unidigraph. The proof is similar to
the one given in the previous section. It is divided into two parts.

1. Define a map f — 3/ from Nil(G,n) to GSxu(G, 7).
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For any 1 <i <m, let Ul-(k) = f*(U)NU; and r; be the smallest integer such that
U = {0}. Then we have:

U; =0 >0 5 50 2 U = {0}

Recall that, for i = 1,2,...,m, U; has the basis {z},%,..., 2 }. Take it and
adapt it to Ui(l) to get another basis, then take the new basis and adapt it to UZ-(2),
and so on, until finally adapting to Ui(”*l) to get the basis {y{,v5,..., 95 }-

For any nilpotent G-space linear transformation f, we define 8/ = (ﬁ{ , ﬁQf o B0
to be:

g = (bflbebfn> = (f(n), F(w2), - f () -

In order to prove Lemma 3.9, it suffices to show that the map f — 3/ is a bijection
from Nil(G, n) to GSxu(G, n).

Firstly, by the definition of f, we have b{l € Uyy for i = 1,2,....m, | =
1,2,...,n; Hence B € Snu(G, 7).

Secondly, in order to show that 3/ € GSyu(G,7), we need the following claim.
(We will prove it latter.)

Claim 3.14. f is a nilpotent G-space linear transformation if and only the following

conditions are satisfied:
1. IfI={i€[m]: bfm =0}, then I # @.

2. For any i & I, there exists a sequence i = ig, i1, ...,iq such that o(ip) = ips1,

forany 0 < h <d, and iq € I.

Define a spanning forest I’ of G' to have root set [ and the unique path from any
vertex ¢ to a root is the one given in condition 3 for any ¢ ¢ I. It is not hard to see
that the three conditions in Claim 3.14 are equivalent to the definition of GSni (G, ).
Hence, the map f — 7 is a map from Nil(G,7n) to GSnu(G, 7).

2. Define the inverse map § — f° from GSxu(G,7) to Nil(G, 7).
To prove that it is a bijection, it suffices to find the inverse map 3 — fB from

GSNH(G, ﬁ) to Nll(G, 77L)
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For any 3 = (81,52, .- ., Bm)} € GSnit(G, ) and 3; = (big,big, .., bin,), we define

a G-space linear transformation f? as follows:

1. Define U® = U and U® = Span]Fq{bu 1 <i<m,1<I1l<mn;}. Let Ul-(o) =U;
and UY = U NU;. Define s” =1 and s{" = n; — dim UV + 1.

2. Inductively, for k = 1,2,..., define U**) = spang, {b;y : 1 < i < m,si” <1<

3. Stop when s+ n; for all 1 < i < m, i.e., when UKD = {0}. Define r; to

be the smallest integer such that U = {0}.
4. For each i = 1,2,...,m, take the basis {«},2%,... 2% } and adapt it to Ui(l) to
get another basis, then take the new basis and adapt it to Ui(z), and so on, until

finally adapting to Ui(”*l) to get the basis {y{,v5, ...,y }-

5. Define fﬁ(yi‘) =0by, fori=1,2,...,m,l=1,2,...,n;, and linearly generate 15

to be a G-space linear transformation.

By the definition of Sx; (G, 72) and given that G is a unidigraph, we know that at
least one element of {y! :i € I} is a vector from U (*)) as long as it is not the zero

(%)

space, i.e., there exists ¢(0) € I such that Si0) < Mi(0)- Since b;(o) = 0, we have:

»183(0)

U = spang, {by: 1 <i <m,s” <1< n)

= spang, {b;, : i # (0), sgk) <1 <n;} & spang {bi),; : 55?0)) <1<y — 1}

Hence, dim U+ < S (n; — s +1) =1 = dimU® — 1 < dimU®. It is not
hard to see that U®+D < U® for any £ € N. And because U = U is a finite-
dimensional vector space, there exists a large enough r € P such that U™ = {0}.
Since G is unidigraph, we have U™ = @;’llUi(r) = Ui’ilUi(r). Hence, the inductive
definition procedure in Step 3 will end as said in Step 4. So we showed that fB is a
well-defined G-space linear transformation.

From the definition procedure, we know that (f7)*(U) = U® for all k € N. Hence,
(f5)(U) = U™ = {0}. That is, f7 is a nilpotent G-space linear transformation.
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One can easily check that the two maps f — 4/ and § — fB are inverse maps to
each other. Hence, f — 3/ is a bijection from Nil(G,n) to GSxi(G, 7). That proves
Lemma 3.9. O

Proof of Claim 3.14. “=" given that f is a nilpotent G-space linear transforma-
tion, we need to show that the two conditions are satisfied.
Let r =max{r; : 1 <i<m}and I' ={i € [m] : r; =1}, so I' # &. Assume, for

contradiction, that there exists (0) € I’ such that bzf(o) nio) # 0. Thus:

f
0 75 b (0)m:(0) < Uo(i(O))
! i(0) Ti0)—1 f r
b( ni(0) f(y"(z(o)) € fro = 0 bi(O),ni(O) € f" #{0}.
i)y =T

Contradiction to the definition of r! Hence, b{n =0foralliel' ie., I DI and

I # @. This gives condition 1.

For condition 2, for any ¢ ¢ I, let i¢c = ¢, and for h € N inductively define

iny1 = o(ip), and stop when i;,1 € I. There are two possible cases:

Case 1: The sequence stops at 74. Thus, we get a a sequence © = 1g, 11, . . . , ig satisfying

o(ip) = ipy1, for any 0 < h < d, and ig € I. This gives the condition 2.

Case 2: The sequence repeats. Assume, without loss of generality, that 0 < d; < d»

and 74, = i4,. For any k € N:

f(ry:;zh) = b'{hvnih E Uih+1
v eyl = 0#Y . €fHU)NU,, =U " £0.

Th+1

h¢1:>bw #0

Thus, r;, <r;, . Hence, Tig, < Tig 1y <" <Tigy_y <Tiy =Tiy,a contradiction!
As a whole. we proved that f being a nilpotent G-space linear transformation

implies the two conditions.

“«<” given the two conditions, we want to show that f is a nilpotent G-space linear
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transformation.

It suffices to show that for some r € P:
U=U092uW >...ouCY>Uu" =0},

where U® = f*(U) = ¢, U = urm, U™ for k € N.

It is not hard to see that:

Since U is a finite-dimensional vector space, it suffices to show that dimU®) >
dim U*+Y for any k € N if U®) £ {0}.

By the definition of U®) and condition 2, we know that at least one element of
{yi :ieI}is a vector from U (*¥) as long as it is not the zero space, i.e., there exists
i(0) € I such that y;(i?()n e U® . Assume that U®) = spang, {21, 22, ..., 2y}, Where

1= y:l(i[z())) and N = dimU®). Since f(yi")

.) = 0, we have:

U*tD — f(U®)
= spang, {f(z) :1 <

t
= spang, {f(2):2 <t

IN

N}
N}

IA

Hence, dimU*) < N —1 = dimU® — 1 < dimU®. This proves that f is a

nilpotent G-space linear transformation. O

3.2.3 Example

Consider G = G as given in Figure 2-1 and n = (2,2,1). In Figure 2-6, we give the
transition matrix of a nilpotent G-space linear transformation f;. As discussed in the
proof of Lemma 3.9, in terms of U; = U” > UM 5 ... 5 "D 2yl = {0}, we

have:
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(
Uy = spang, (i}, 74} > spang, {«}, 73} > spang, {~} + o3}

> spang, {~#} + 23} 5 {0},
Us = spang, {3, 73} © spang, {13} 3 spang, {13} > {0},

Us = spang, {23} D {0}.

This gives:

Hence, f; is bijectively mapped to 30 = ( {0, 50,530), where:

;

{0 - (IL’%,O),
620 = (l‘%,—l‘%-}-l‘%),
\530 = (0)

This 570 satisfies the conditions in Lemma 3.9.
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Chapter 4

Examples

In this chapter, we discuss several applications of the proofs of Lemma 3.8 and 3.9
to complete graphs, complete bipartite graphs, and cycles. We will show that we can
decompose the set of nilpotent endomorphisms such that each subset is a g-analogue
of a subset of spanning trees from a corresponding decomposition (see Corollary 4.20,
4.23, 4.29, 4.32, 4.38, and 4.40). In addition, as in Corollary 4.22 and 4.31, we can
find the total number of nilpotent transformations with some restrictions on Jordan

block sizes.

4.1 Complete Graphs

A complete graph K, is a graph on the vertex set [n] such that every pair of distinct
vertices is connected by an edge. In digraph language, a complete graph on n vertices
is equivalent to a digraph on vertex set [n] such that every pair of distinct vertices is
connected by two edges of opposite orientations. In terms of the expanded digraph,
it is the same as the expanded digraph H,), where H is the digraph with one vertex

and a loop on this vertex (see Figure 4-1).

O

Figure 4-1: Digraph H.

35



4.1.1 Spanning Trees

A rooted spanning tree T of K, is equivalent to a spanning tree T of H,) if we orient
all the edges of T' towards the root. By Lemma 3.8, T is in bijection with & = («) €
GSt.(H, (n)), where a = oy = (a1, as,...,a,) and a; = a} for i = 1,2,...,n. Since

H has only one spanning tree that is a single vertex, we have the following result.

Proposition 4.15. A rooted spanning tree T' of K,, is in bijection with o = (ay, ag, . . .,

a,) such that:

1. a,=0.
2. a; €n] fori=1,2,....,n—1.

Hence, the total number of rooted spanning trees of K, is n™ *.

The bijection is similar to the Priifer code method.

In fact, the bijection gives us more than the above property. For example, it gives
a bijective proof of Theorem 5.3.4 from [7].

Let’s consider a rooted spanning tree T of K,, with n — d leaves, i.e., leaves in T

(see Definition 3.11).

Theorem 4.16. A rooted spanning tree T of K, with n—d leaves is in bijection with

a = (ay,as,..., a,) such that:
1. a,=0.
2. {a1,a9,...,a,-1} contains only d distinct numbers from [n].

Hence, the total number N(n,d) of rooted spanning trees of K,, with n — d leaves is:

d
Nnd) =Jn—i+1)- Y Ade-ducig
i=1 ACdx (n—1—d) (4.1)
) .
= co(dyn —1),
d
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where in the sum, \ ranges over all partitions with n — 1 — d parts and largest part
< d. o(s;t) is the number of ways to put s distinct numbers into t positions such that

each number appears at least once, and:

Proof. Since {ay,as,...,a, 1} contains all the nonleaf vertices, the bijection holds.
Hence, N(n,d) is also the total number of sequences « that satisfy conditions 1 and
2.

Given o = (ay,as,...,a,-1,0) that satisfies the condition that {ay, as,...,a,_1}

contains only d distinct numbers, we run the following algorithm:

1. Let j=1,t=1and set A = &.

2. Consider a,_;. If a,—; € A, then do nothing; otherwise, let ¢, = j, put a,_;

into A, and increase t by 1.

3. Increase 7 by 1. If j <n — 1 and t < d, repeat step 2; otherwise, stop.

When finished, we get a special set of distinct numbers A = {a;,, a4y, ..., a;,}.

Now write all a;’s in terms of numbers in A, we have:

(an—la Ap—2, ... ,Gl) = (am (77T >aid)P7

where P is a d X (n— 1) matrix in reduced row echelon form (see Definition 3.13) that
has a unique 1 in each column and zeros otherwise. In fact, the #;-th column of P has
a single 1 in the ¢-th row and zero otherwise, and columns between the i;-th column
and the 7;,1-th column has the 1 in rows 1,2,...,t, for 0 <t < d, where 7 = 0 and
igr1 = n. For instance, if n = 9,d = 4 and (i1, i2,13,74) = (2,4,5,7), then P has the

form:
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01 « 00 % 0 «
00010 %= 0 =%
; (4.2)
00001 %« 0 =«
00 0O0O0O0 1 x%

where *’s in the same column denote a possible position for the unique 1.

Delete columns iy, is, . . ., iq. We get a d x (n— 1 — d) matrix P. Let the partition
A= (A, o, ..., A\im1-q) be as follows: A is the number of *’s in the (n — d — s)-th
column, for s =1,2,...,n—1—d, i.e., the shape of A is the same as the shape of all
«’s in P flipped horizontally. For instance, with the same example as above, we have
A = (4,3,1,0). Conversely, given any partition A with n — 1 — d parts and largest
part < d, we can define iy, 1o, ..., 14 as follows: 7, is n — 1 — (d — t) minus the number

of parts > t in A, and there are A\{ Ay - - - \,,_1_g possible reduced row echelon matrices

P with 41,15, ...,4; having the same meaning as above.
Since N(n,d) equals the number of possible « = (aq,as,...,a,_1,0)’s, which is
the same as the number of possible (a;,,a;,,...,a;,)’s times the number of possible

P’s, we have:

N(nd)=(nn=1)---(n—d+1))- > A Aoia
ACdx (n—1—d)

Consider o(s;t). It is the number of ways to put s distinct numbers into ¢
positions such that each number appears at least once. Assume we have numbers
my, Mo, ..., ms and m; appears p; times, for i = 1,2,...,s. Then by the Principle of

Inclusion-Exclusion, we have:

o(sit) =Y =S s -

pi>0 p17p27"'7ps =0 (4

Since N(n,d) is also equal to the number of ways to choose d distinct numbers
from [n] and put them in to (a, as, ..., a,_1) such that each number appears at least

once, we have:
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N(n,d) = Z co(d;n—1).

This proves equation (4.1). O

In a rooted spanning tree T" of K,,, we say that a vertex is in level k if it is in level
kin T (see Definition 3.12). The same idea in the above proof can be used to show

the following theorem.

Theorem 4.17. Consider a rooted spanning tree T of K, with 0y vertices in level
k, where 69 > 61 > -+ > 0,1 > 6, = 0, and Zzzo&f = n. It is in bijection
with o = (ay, ag, . .., ay) such that {an, an_1,...,0n_q,+1} contains only dy1 distinct
numbers from [n], where d, = 0, + 6,1 + -+ + 0k, for k=10,1,... 7.

Let d = (dy,dy,...,d,), the total number N(n,d) of rooted spanning trees with

above property 1s:

di

N(n.d)=[[n—i+1)- > OO

i=1 (MO AL AT—1)

r—1

= 'H0<5k+17dk+2§ Ok),
505617"'751“71 k=0

where d,.1 = 0, \¥ ranges over all partitions with 8, — 041 parts and largest part

< diy1 smallest part > dyio, and TI(AF) = NEAE ... \k for k=0,1,...,r — 1.

Ok —0k+17

o(s1, so;t) is the number of ways to put s; + so distinct numbers into t positions such

that each of the first s; numbers appears at least once, and:

S1

o(s1,825t) = »_(—1)'

=0 {

S1 .
(81 + So — Z)t.

Proof. The bijection is implied by the proof of Lemma 3.8 in Section 3.1. Hence,

N(n,d) is also the total number of sequence « that satisfies the condition.

Given o = (aq,as, ..., a,), we run the following algorithm:
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1. Let j=1,t=1 and set A = &.

2. Consider a,_j+1. If a,—j11 € A, then do nothing; otherwise, let 7, = j, put

an—j+1 into A, and increase ¢ by 1.

3. Increase j by 1. If j < n and t < d;, repeat step 2; otherwise, stop.

When finished, we get a special set of distinct numbers A = {a;,, ai,, ..., q; dl}.

Now writing all a;’s in terms of numbers in A, we have:

(anyanflv"wCLl) = (ahaaiz""?a’idl)P?

where P = (P;;);;—; is a di x n block matrix in reduced row echelon form (see
Definition 3.13) that has a unique 1 in each column and zeros otherwise. And each

P, ; is a 0,41-; X 0,—; matrix that satisfies:
1. Ifi>j3, B, =0.
2. If i =j, P, is a reduced row echelon matrix.

3. If i < j, P;; is a matrix with a column equal to 0 if it corresponds to a pivot in

P.

;> and arbitrary otherwise.

That is, the matrix P has the form:

P171 * *
0 P272 *
0 0 Pr?"

where the * in column j denotes a matrix that has all zeros in a column if P;; has a
pivot in the same column, and other entries are possible positions for the unique 1 in
that column of P.

Using the same technique as in the proof of Theorem 4.16, we can bijectively get

a partition M from each P, i1k 41—k such that M has 0 — Ox+1 parts and the largest
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part is < §j41, for k= 0,1,...,7 — 1. Let A\* be the partition after adding dj_ to all
parts of ¥, Then the total number of reduced row echelon matrices P corresponding

to partitions (A%, AL, ... AT71) is:

r—1

T (O + disa) 05 + disa) - (N5, s, + disa)
k=0
r—1 r—1
=11 <A’f>\’§ . )\’gkﬂ;m) = [T oo,
k=0 k=0

Similar to the proof of Theorem 4.16, we have:

dy

N(nd)=[Jn—i+1)- Y TAOIA)--- TN,

=1 ()\07/\1’...7)@—1)

Consider o(sy, s2;t). It is the number of ways to put s; + so distinct numbers
into ¢ positions such that each of the first s; numbers appears at least once. Assume
we have numbers my, my, ..., m,,my,my,...,m, and m; appears p; times, for i =
1,2,..., 89, and m] appears p, times, for i = 1,2,...,so. Then using the Principle of

Inclusion-Exclusion, we have:

t
O—(sla 525 t) =

;o /
pi>0,p,>0 P15 P25 -5 Ps1y P15y P2y -+ 5 Psy

51 . S1 Nt
=> (-1) (s1+ 83 — i)',
i—0 i

Now N(n,d) is also obtained as follows: first choose ¢, distinct numbers from
[n] and put them into {a,,a, 1,...,a,_a._,+1} such that each number appears at
least once; then for k = r — 2,r — 3,...,0, choose d;,; distinct numbers from the
remaining n — dio numbers, together with the di,o chosen numbers, and put them
into {an—dy, s @n—dg 1—1:- - - » Gn—dp+1} such that each of the d;1 numbers appears at

least once. Hence, we have:
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r—2

_ n n — dk 2
N(n,d) = o(6de—r) | -] ) 0 (ker, diva; 61)
o, k=0 Ok+1
n r—1

= 'HU<5k+17dk+2§5k)'
50’517...767»71 k;:()

This proves equation (4.3). O

4.1.2 Nilpotent Transformations

Now we want to consider a nilpotent H-space linear transformation. With n = (n),
it is the same as a nilpotent endomorphism f : U — U, where U is an n-dimensional
vector space over F,,.

By Lemma 3.9, f is in bijection with 3 = (8) € GSxu(U, (n)), where 3 = 3 =
(b1,ba,...,b,) and b; = b} for i = 1,2,...,n. Since H has only one spanning forest

that is a single vertex, we have the following result.

Proposition 4.18. A nilpotent endomorphism f on n-dimensional vector space U is

in bijection with 3 = (by, b, ..., b,) such that:

1. b, = 0.
2.b;eU fori=1,2,...,n—1.

Hence, the total number of nilpotent endomorphisms on U is ¢~ V.

This bijection was also given in [1].
In fact, the bijection gives us more than the above property. We can also enumer-

ate the number of nilpotent endomorphisms of fixed rank.

Theorem 4.19. ' A nilpotent endomorphism f on n-dimensional vector space U of

rank d is in bijection with = (b1, by, ..., b,) such that:

IThis result was also given in Remark 3.1 of [1].
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1. b, =0.
2. {by, by, ..., by_1} spans a d-dimensional subspace of U.

Hence, the total number N,(n;d) of nilpotent endomorphisms on U of rank d is:

d
Nymid) =Ja"=d" - DY g™ g
i=1 ACdx (n—1—d)
) (4.4)
n i—1 n—1
=@ -4 ,
i—1 d

q

where in the sum, \ ranges over all partitions with n — 1 — d parts and largest part
<d, and
m| (" =" —q)- ("¢

o (@ =D(F—q) - (¢F— gk t)

Proof. Since f(U) = spang {b1,bs,...,b,—1}, the bijection holds. Hence, N,(n;d)

is also the total number of sequences 3 that satisfy conditions 1 and 2.
Given 3 = (by, b, ..., b,_1,0) satisfying the condition that {b;,bs, ..., b, 1} spans

a d-dimensional subspace, we run the following algorithm:

1. Let y=1,t =1 and set B = &.

2. Counsider b,—;. If b,—; € spang B, then do nothing; otherwise, let i; = j, put

b,,—; into B, and increase ¢ by 1.

3. Increase 5 by 1. If j <n —1 and t < d, repeat step 2; otherwise, stop.

When finished, we get a special set of independent vectors B = {b;,, by, ..., b;,}.

Now writing all b;’s as linear combinations of vectors in B, we have:

(bn—17bn—27 CII) bl) - (bila biza cee 7bid)E7

where F is a d X (n — 1) matrix in reduced row echelon form (see Definition 3.13).

In fact, the 7;-th column of E has a single 1 in the t-th row and zero otherwise,
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and the columns between the i;-th column and the 7;,;-th column has zeros in rows
t+1,t+2,...,d, for 0 <t < d, where ip = 0 and 74,7 = n + 1. For instance, if
n=9,d=4and (i, is,13,44) = (2,4,5,7), then F has the form as in equation (4.2),
where * denotes a entry from [F,.

Deleting columns 4y, iy, . . . , iq, we get a d X (n— 1 —d) matrix E. Let the partition
A= (A, A, ..., N\im1-q) be as follows: A4 is the number of *’s in the (n — d — s)-th
column, for s = 1,2,...,n—1—d, i.e., the shape of A is the same as the shape of all *’s
in E flipped horizontally. Conversely, given any partition A with n — 1 — d parts and
largest part < d, we can define iy, is, ..., 44 by the condition that i; isn — 1 — (d — )
minus the number of parts > t in A, and there are ¢*'¢*2 - - - ¢*»—1-4 possible reduced
row echelon matrices E with i1, 1s,...,i4 having the same meaning as above.

Since N,(n;d) equals to the number of possible 5 = (by,bs, ..., b,—1,0)’s, which
is the same as the number of possible (b;,,b;,, ..., b;,)’s times the number of possible

E’s, we have:

No(nid) = (¢" = 1)(¢" — q) -+~ (¢" —¢"7) - AU
ACdx (n—1—d)
By Proposition 1.3.19 from [7], we know that the sum in the equation is equal
to the total number of d-dimensional subspaces of a (n — 1)-dimensional space. This

proves equation (4.4). O

Compare equation (4.1) and (4.4), we can see that N,(n;d) is a g-analogue of

N(n,d).

Corollary 4.20. The set of nilpotent endomorphisms on n-dimensional vector space
of rank d is a g-analogue of the set of rooted spanning trees of complete graph K, with

n — d leaves.

The same idea in the proof of Theorem 4.19 can be used to prove the following

theorem.
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Theorem 4.21. ? Consider a nilpotent endomorphism f on n-dimensional vector
space U satisfying that dim f*(U) =dy, fork=0,1,...,r, wheren =dy > dy; > --+ >
d, = 0. It is in bijection with § = (by,ba,...,b,) such that {b,,bp—1,... ,bn—g,+1}
spans a dypi1-dimensional subspace of U, for k =0,1,...,r —1.

Let d = (dy,dy,...,d.). The total number N,(n;d) of nilpotent endomorphisms

with above property is:

di
= n i— 0 1 r—1
=1 ()\07)\17... 7)\7“71)
d1 r—1 6 (45)
— H(q” _ qi—l) . H q(5k—5k+1)dk+2 . k ,
i=1 k=0 Ok+1
q
where dyy1 = 0, 0y = di, — djyq for k=0,1,...,7, \¥ ranges over all partitions with

O — Ory1 parts and largest part < dy,1 smallest part > dyio, and |[N¥| = \E + N\ +
c AR fork=0,1,...,r—1.

O =041’

Proof. The bijection is an easy corollary of Lemma 3.9 that is proved in Section

3.2. Hence N,(n;d) is also the total number of sequence (3 that satisfies the condition.

Given 3 = (b1, ba, ..., b,), we run the following algorithm:

1. Let y=1,t =1 and set B = &.

2. Consider b,_j41. If by—j11 € spang, B, then do nothing; otherwise, let i = 7,

put b,_j41 into B, and increase t by 1.

3. Increase 5 by 1. If j < n and t < dy, repeat step 2; otherwise, stop.

When finished, we get a special set of independent vectors B = {b;,, bi,, ..., b;, }.

Now write all b;’s as linear combinations of vectors in B, we have:

(bns bt -5 01) = (biy, iy by ) B,

2This result was mentioned also in Remark 3.2 of [1], but was stated incorrectly.
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where £ = (E;;);;—; is a d; x n block matrix in reduced row echelon form (see

Definition 3.13). Each E; ; is a 6,11_; X 0,_; matrix that satisfies:

1. If 4 > 7, Ei,j =0.

2. If i = j, B;; is a reduced row echelon matrix.

3. If ¢ < j, E;; is a matrix with a column equal to 0 if it corresponds to a pivot

in F; ;, and arbitrary otherwise.

That is, matrix £ has the form:

El,l * *
0 E2’2 *
0 0 Er?"

where the * in column j denotes a matrix that has all zeros in a column if £} ; has a

pivot in the same column, and other entries are arbitrary elements in IF,.

Using the same technique as in the proof of Theorem 4.19, we can bijectively get
a partition M from each E, i1k r+1-% such that M has 0 — 011 parts and the largest
part is < 0j41, for k = 0,1,...,7 — 1. Let A\* be the partition after adding dj» to all
parts of #1*. Then the total number of reduced row echelon matrices E corresponding

to partitions (A%, Al -+ A1) is

<q|;\°|q|;\1| .. .q|;\"71\> ) H q(5r—j—5r+1—j)5r+1 i — H qP\k H q(5k Op+1)dt2 H qu

i<j
Similarly to the proof of Theorem 4.19, we have:
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N,(n;d) = H(qn — ¢ Z qW’IqWI . qlk“ll

i=1 (/\07)\17... 7>\T,1)
dq r—1 . r—1
_ H(qn . qi71> . H Z qlAkl . H q(5k*5k+1)dk+2
i=1 k=0 \AkCopy1 % (65 —0k11) k=0
dq r—1 [ 5 r—1
_ H(qn . qi—l) H k . H q(5k—5k+1)dk+2
=1 k=0 6k+1 k=0
L q
dq r—1 5
s H(qn — qlil) . H q(5k76k+1)dk+2 . k
=1 k=0 5k‘+1
q
This proves equation (4.5). O

Corollary 4.22. The total number of nilpotent endomorphisms on an n-dimensional
vector space U with Jordan block sizes equal to the parts of the partition v F n is

N,(n,v"), where V' is the conjugate partition of v.

Proof. For a nilpotent endomorphism f, given its sizes of all Jordan blocks, the
dimensions of f¥(U) is the same as the number of parts of v that are > k, i.e.,
dim f*(U) = v}, for k =0,1,2,.... The proof follows from Theorem 4.21. O

Comparing equations (4.3) and (4.5), we can see that N,(n;d) is a g-analogue of

N(n,d).

Corollary 4.23. The set of nilpotent endomorphisms on an n-dimensional vector
space U satisfying dim f*(U) = dy, for k = 0,1,...,r is a g-analogue of the set of
rooted spanning trees of the complete graph K, with 9, vertices in level k, where

5k:dk—dk+1fOTkIO,l,...,T.
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4.2 Complete Bipartite Graphs

A complete bipartite graph K, ., is a graph on the vertex set ViUV, with V) = [n], Vo =
[m], and each vertex of V; is connected by an edge to each vertex of V5. In digraph
language, the complete bipartite graph K, ,, is equivalent to a digraph on vertex set
VI L V; and there are two edges of opposite orientations between each vertex of V;
and each vertex of V5. In terms of the expanded digraph, it is also the same as the
expanded digraph D, ), where D is the digraph with two vertices and two edges
between them (see Figure 4-2).

Figure 4-2: Digraph D.

Assume that in this section, » ranges over {1, 2}, and ¢ denotes {1,2} — {x}.

4.2.1 Spanning Trees

—

A rooted spanning tree T' of K,, ,, is equivalent to a spanning tree 1" of Dy, ) if we
H

orient all the edges of T" towards the root. By Lemma 3.8, T is in bijection with

a = (aj,a3) € GSt(D, (n,m)), where a; = (a},ad,...,al),ay = (a?,d3,...,d2%).

Since D has two spanning trees, we have the following result.

Proposition 4.24. A rooted spanning tree T' of K, ,, is in bijection with:

ap = (al,dl, ... ab),
g = (a%,a%,...,afn),

such that:
1. al € Im]U{0},d? € [n]u{0}. And one of a and a?, is zero.
2. al € [m],a?E n] fori=1,2,....n—1,7=1,2,... m—1.

Hence, the total number of rooted spanning trees of Ky, is (n+m)n™ tm" 1,
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In fact, the bijection gives us more than the above property. For example, it gives
a bijective proof of Exercise 5.30 from [§].
Let’s consider a rooted spanning tree 1" of K, ,, with n—d" leaves in V; and m — d?

leaves in V5.

Theorem 4.25. A rooted spanning tree T' of K,, ,, withn—d" leaves in V; and m —d?

leaves in Vy s in bijection with:

o = (a%,a%,...,a}z),
ay = (a2,a3,...,a%),

such that:

1 2
1. Exactly one of a,, and a;, is zero.

2. If al =0, then {aj,al,... al |} contains only d* distinct numbers from [m],

and {a3,a,... a3} contains only d* distinct numbers from [n].

3. Ifa?, =0, then {a},a},...,a.} contains only d* distinct numbers from [m], and

{a? a3,...,a% _,} contains only d* distinct numbers from [n).

Hence, the total number N M (n,m;d*,d*) of rooted spanning trees of K, , with n—d*

leaves in Vi and m — d? leaves in Vs is:

NM(n,m;d",d*)

d2

dl
=[[n—i+1)-JJm—i+1)
i=1 i=1
( Z ASPCRERD Z Hift2 = - fp—dt

ACd2x (n—1—d?) pCdtx(m—dl) (46)
+ Z AMAg - A2 Z pape - Hm—1—dr)

ACd2 x (n—d?) uCdlx(m—1—db)

n m

= : (o(d*n—1)-o(d'sm) + o(d*n) - o(d';m—1)).
d* d?
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Proof. Since {a},a’,...,a;} contains all the nonleaf vertices of V,, the bijection
holds. Hence, NM (n,m;d*, d?) is also the total number of pairs (aq, o) that satisfy
conditions 1, 2 and 3.

Assume, without loss of generality, that al = 0.

2

+), we run the following two

‘ — (o1 1 1 — (2 2
Given oy = (aj,as,...,a, 1,0), a9 = (aj,as3,...,a

algorithms:
1. Algorithm 1:

(a) Let i = 1,s = 1 and set A = @.

(b) Consider a} ;. If a! .

n—i* A

€ A', then do nothing; otherwise, let iy = 7, put

al . into A, and increase s by 1.

(c) Increase i by 1. If i <n —1 and s < d?, repeat step b; otherwise, stop.
2. Algorithm 2:

(a) Let j =1, =1 and set A? = @.

(b) Consider a,,, ;. If a?,,, ; € A? then do nothing; otherwise, let j, = j,

put a;,,,_; into A, and increase t by 1.

(c) Increase j by 1. If j < m and t < d', repeat step b; otherwise, stop.

When finished, we get two special sets of distinct numbers A' = {q; ,a},, ..., a}dQ ,
A? ={aj ,af,,...,aj  }. Now writing all a}’s and a}’s in terms of numbers in A' and

A? respectively, we have:

(@n-1: Ay g,y a1) = (a5, a4, a5, ) PP,
(a%,a% _|,...,a3) = (a?l,a?é, . ,a?dl)PQ,

where P! and P? are d* x (n — 1) and d' x m matrices, respectively, in reduced row
echelon form (see Definition 3.13) that have a unique 1 in each column and zeros

otherwise.
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Using the same technique as in the proof of Theorem 4.16, we can bijectively
get partitions A\ and p from P! and P? such that they have n — 1 — d? and m — d*
parts and the largest parts are < d? and < d', respectively. Then the total number

of reduced row echelon matrices P! and P? corresponding to partitions A and p is

(At Ao An—1-a2) (1 2 fbm—ar )
By symmetry, this shows the first part of equation (4.6).

Since NM (n,m;d',d?) is also equal to the number of ways to choose d? dis-

tinct numbers from [m] and d' distinct numbers from [n], and put them in to

1
n—

) and (a?,a3,...,a%) (or (ai,al,...,al) and (a?, a3, ..., a2,_,)), re-

1 1
(al,az,...7a » Ym ) ' m—1

spectively, such that each number appears at least once, we have:

n m
NM(n,m;d", d*) = N (o(d*n—1)-o(dym) + o(d*n)-o(d';m—1)).
d d

This proves the rest of equation (4.6). O

The same idea in the above proof can be used to show the following theorem.

Theorem 4.26. Consider a rooted spanning tree T' of K, ,, with ;; vertices from V,

in level k, where 05 > 65,1, 65 =0, 6} + 062, >0, and >, _,0p =1, > 1_o0r = m.

r

It is in bijection with:

(11 1
ag = (ay,a3,...,a,),
(2 2 2
ay = (a3, a3, ..., a2),
such that {al,al |, ... ,aifd}cﬂ} contains only di ., distinct numbers from [m], and
2 2 2 ~ 1 ot . _
{at,,az, 1,... 7am—d§+1} contains only dy ., distinct numbers from [n], where dj =

O +0r_ 4+ 405, fork=0,1,...,7.

Letting d* = (d, d5, . .., dx), the total number N M (n,m;d", d?) of rooted spanning

trees with the above property is:
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NM(n,m;d",d*)

di di
=[[n—i+1)-JJm—i+1)

i=1 i=1

0 1 r—1 0 1 r—1y  (4.7)
S nOna o ST IO - T ()
(A0 AL, Ar—1) (O, ... um=1)
n m ﬁH (<> o> (5*)

= ) : O(0k115A4950k),

0o, 08, ..., 0k 02,0%,...,02 1) o s

where dr; = 0, ¥ ranges over all partitions with 6}, — 5,%“ parts and largest part
< d2., smallest part > di_,, and pi* ranges over all partitions with 6} — 6}, parts

and largest part < di,, smallest part > d} .

Proof. The bijection is implied by the proof of Lemma 3.8 in Section 3.1. Hence,
NM(n,m;d",d?) is also the total number of pairs (o, ay) that satisfy the condition.

Given oy = (a},al,...,al),ay = (a?,a3, ..., a2), we run the following two algo-

) n ) m

rithms:
1. Algorithm 1:

(a) Let i =1,5s =1 and set A' = @.

(b) Consider aj,,,_;. If a},, ; € A', then do nothing; otherwise, let i, = 1,

put a,_,_; into A', and increase s by 1.

(c) Increase i by 1. If i < n and s < d?, repeat step (b); otherwise, stop.
2. Algorithm 2:

(a) Let j =1, =1 and set A? = &.

(b) Consider a2, ,, ;. If a,,, ; € A?, then do nothing; otherwise, let j, = j,

put a72n+1_j into A?, and increase t by 1.

(c) Increase j by 1. If j <m and t < d}, repeat step (b); otherwise, stop.
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When finished, we get two special sets of distinct numbers A! = {a“, 212, e azld2 ,
1

A*={d} a3, ..., a;, 1} Now writing all a;’s and a}’s in terms of numbers in A" and

A? respectively, we have:

(CL?l’L’CL?l’L 1 (ID (azlpailga zld%) 17
(a2, ap, ,...,a7) = (af,a3,, ... ,a?d%)PQ,

where P' = (P};);;—, and P* = (P?);;_, are di x n and di x m block matrices,
respectively, in reduced row echelon form (see Definition 3.13) that have a unique
1 in each column and zeros otherwise. And each P}, is a 07,;_; X 0,_; matrix that

satisfies:

1. If i > j, P*. = 0.

2y

2. It v = j, P}; is a reduced row echelon matrix.

3. It < j, P7; is a matrix with a column equal to 0 if it corresponds to a pivot in

P?;, and arbitrary otherwise.

Using the same technique as in the proof of Theorem 4.16, we can bijectively
get a partition A* from each P\ 4,1k such that AF has 4} — op., parts and the
largest part is < 0¢,, and also a partition 4* from each P2, , ., , such that /i
has 67 — 6}, parts and the largest part is < &}, for k =0,1,...,7 — 1. Let A* be
the partition after adding dj ,, to all parts of 5\’“, and p* be the partition after adding

di.» to all parts of 4*. Then the total number of reduced row echelon matrices P*

and P? corresponding to partitions (A%, AL, -+ A" and (u®, pt, -, pumL) s
r—1 r—1
11 (A’EA’S N1 5,§+1> (M’fug M2 5,1“) = [
k=0 k=0

This shows the first part of equation (4.7).

Since N M (n,m;d*, d?) is also equal to the number of ways to first choose §2 (resp.

6}) distinct numbers from V5 (resp. V;) and put them into {al,al ,,... >a711—d}_1+1}
(resp. {a?,,a2, 4, ..., agnfd,%,ﬁl}) such that each number appears at least once; then
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for k =r—2,7—3,...,0, choose d;,, (resp. 0,,,) distinct numbers from the rest

m — di,, (vesp. n — di,,) numbers from V5 (resp. V), together with the dj,,

1 . 1 1 1

(resp. dj,,) chosen numbers, put them into {cznﬂl}g+1 7an7d,1€+171}> . ’anfdiJrl} (resp.
2 2 2 2 1

{am_d%H}, am_dzﬂ_l}7 ce am—d§+1}) such that each of the 05, (resp. d;, ) numbers

appears at least once. Hence we have:

n m
= o(0:d;y) | - (67 dy_y)
51 52
r—2 1 r—2 2
n—d, m —dj,
1 0 (Gsrs diyi 6F) | - H ) 0 (Oji1s disai Op)
k=0 Op+1 k=0 Ofs1
r—1
n m
- ’ : 0 (Or1s dyya; 7))
suat st \ezer . en ,EOH
This proves the rest of Equation 4.7. ]

4.2.2 Nilpotent Transformations

Now we want to consider the nilpotent D-space linear transformation. With n =
(n,m), it is the same as a nilpotent endomorphism f : Uy @ Uy — U; @ U, satistying
fx = flu, : Uy — U, where Uy (resp. Us) is a n-dimensional (resp. m-dimensional)
vector space over F,,.

By Lemma 3.9, f is in bijection with 3 = (81, 32) € GSnu(D, (n,m)), where
By = (b},bd, ..., 0L), B0 = (b%,03,...,b%). Since D has three spanning forests, we

have the following result.
Proposition 4.27. A nilpotent endomorphism f on Uy & Uy satisfying f, : U, — U,
18 1 byjection with:

By = (b}, b3, ... 0L),

ﬁZ = (b%7 b%v SRR bzn)a

such that:
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1. At least one of bl and b?, is zero.

2. by €Uy, b3 €Uy fori=1,2,...,n,5=1,2,...,m.
Hence, the total number of nilpotent endomorphisms on U1 ®Us with the above property
is <qn 4 qm _ 1)qn(mfl)qm(n71)

In fact, the bijection gives us more than the above property. We can also enumer-

ate the number of nilpotent transformations f of fixed ranks for f; and f.

Theorem 4.28. Consider a nilpotent endomorphism f on Uy @ Us that satisfies
fi 1 Uy = U, and fgar is of rank d°. It is in bijection with:

By = (b},bd, ... 0L),

By = (b3,03,...,02,),

such that:

1. At least one of b. and b?, is zero.

2. {b},bd, ... bL} spans a d*-dimensional subspace of Us, and {b?,03, ... b2} spans

a d*-dimensional subspace of U,.

Hence, the total number NM,(n,m;d",d*) of nilpotent endomorphisms on Uy & U,
with the above property is:

NM(n,m;d", d*)
dt d?
=[[@—¢"-TJ@=¢H-C > & > ¢~
i=1 i=1 ACd2 x (n—1—d?) am-dty c
cd' x (m—db)

+ Z g™ Z g™+ Z g Z qlul)

=%y ¢ » uCdl x(m—1—dl) ACd?x (n—1—d?) uCdl x(m—1—dl)
c d? x (n—d?) (4‘8>
d! d?
A , L n—1 m—1
— (qn o qz—l) . (qm o qz—l) X (qm—d .
H 11 d? d'—1
q q
e |1 m—1 n—1 m — 1
+q ~ + : )
d*>—1 d* d? d*
q q q q
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Proof. Since f1(U1) = f(Ur @ Uy) N Uy = spang {by,b5,...,b,}, fo(Us) = f(UL @
Uy) N Uy = spang {b3,03,...,b2}, the bijection holds. Hence, NM,(n,m;d',d?) is
also the total number of pairs (31, F;) that satisfy the condition.

Assume, without loss of generality, that bl = 0,2, # 0.

Given 1 = (b1,b3,...,b5 1,0), 8, = (b3,b3,...,b2)), we tun the following two

algorithms:
1. Algorithm 1:

(a) Let i=1,s =1 and set B! = &.

(b) Consider b,,_,. If b, _; € spang B', then do nothing; otherwise, let i = 1,

put b._, into B!, and increase s by 1.

(c) Increase i by 1. If i <n — 1 and s < d?, repeat step (b); otherwise, stop.
2. Algorithm 2:

(a) Let 7 =1,t =1 and set B> = @.

(b) Consider b7, ;. If b7, ; € spang B? then do nothing; otherwise, let

J¢ = 7J, put b?nJrl_j into B2, and increase t by 1.

(c) Increase j by 1. If j <m and t < d', repeat step (b); otherwise, stop.

When finished, we get two special sets of independent vectors B* = {b} ,b} ...,

117 7127

b}, B ={b3,0%,,.... b7}, where j = 1. Now writing all b;’s and b7’s in terms of

numbers in B! and B? respectively, we have:

(by_1,0h_g,...,b1) = (b, b}, ..., b}dZ)El,
(B2, 02,y 03) = (B2, 02, 02 B2,

where E' and E? are d* x (n — 1) and d' X m matrices, respectively, in reduced
row echelon form (see Definition 3.13). In fact, the is-th (resp. j;-th) column of E!
(resp. E?) has a single 1 in the s-th (resp. t-th) row and zero otherwise, and columns

between the is-th (resp. ji-th) column and the is,1-th (resp. ji11-th) column has
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zeros in rows s + 1,5 +2,...,d* (resp. t +1,t+2,...,d"), for 0 < s < d* 0 <t <d,
where ig = jo = 0 and ip241 =n, jgr 1 = m + 1.

Use the same technique as in the proof of Theorem 4.16, we can bijectively get
partitions A and p from E' and E? such that they have n — 1 — d? and m — d! parts
and the largest parts are < d? and < d!, respectively. And since j; = 1, we have
(1™=%") C p. Then the total number of reduced row echelon matrices E' and E?

AL glul,

corresponding to the partitions A and p is ¢
By symmetry, this shows the first part of equation (4.8).

The rest of equation (4.8) follows directly from Proposition 1.3.19 in [7]. O

Comparing equations (4.6) and (4.8), we can see that NM,(n,m;d", d?) is a ¢-
analogue of NM (n,m;d',d*). (Use the same trick as in proof of part 3 of Theorem
2.4.)

Corollary 4.29. The set of nilpotent endomorphisms f on Uy @ U, satisfying f, :
U, = U, and fgar 1s of rank d° is a q-analogue of the set of rooted spanning trees of

Kpm with n —d* leaves in Vi and m — d* leaves in V.

The same idea in the proof of Theorem 4.28 can be used to prove the following

theorem.

Theorem 4.30. Consider a nilpotent endomorphism f on U; @ Us that satisfies
fo: Uy — Uy and dim f*(Uy ® Ux) NU, = df, wheren =d} > d} > --->d =0,m =

BZ>d3>--->d>=0, and d'_; +d?_, > 0. It is in bijection with:

By = (b}, b3, ..., 0L),

By = (b3,03,...,b%),

such that {bL, b} ... 7b711—di+1} spans a d, -dimensional subspace of Us, and {b,,
b2y, ..., bfnfdiﬂ} spans a dy | -dimensional subspace of Uy, for k=0,1,...,r—1.

Letting d* = (df,d3, ..., d"), the total number NM,(n,m;d", d*) of nilpotent en-

domorphisms with the above property is:

57



NM,(n,m;d",d?)

di di
:H<qn - qul) . H<qm _ qul)
i=1 i=1
0 1 r—1 0 1 r—1 4.9
D A TRy S FU SR L PPO o (4.9)
(>\07)\1’,,,’)\r71) (#Ohull’,,,“urfl)
di di r—1 5*
— (qn — qi_l) . H(qm — qi_l) . H H q(612_6;+1)dz+2 . k ,
i=1 i=1 k=0 * h1
q
where dy, | =0, 0y = d —di ., for k=0,1,...,r, N¥ ranges over all partitions with

oy — 02, parts and largest part < d;_, and smallest part > di_,, and pi* ranges over

all partitions with 0; — 64, parts and largest part < di., and smallest part > dj,,.

Proof. The bijection is a easy corollary of Lemma 3.9 that is proved in Section
3.2. Hence, NM,(n,m;d",d?) is also the total number of pairs (3, 3;) that satisfy
the condition.

Given 3 = (b1,b, ... bL), By = (b3,b%,...,b2), we run the following two algo-

m

rithms:
1. Algorithm 1:

(a) Let i=1,s =1 and set B! = &.

(b) Consider by, ;. If b, ; € spang B', then do nothing; otherwise, let

is =1, put by, , into B!, and increase s by 1.

(c) Increase i by 1. If i < n and s < d2, repeat step (b); otherwise, stop.
2. Algorithm 2:

(a) Let 7 =1,t =1 and set B> = &.

(b) Consider by, ;. If b7, _; € spany B?, then do nothing; otherwise, let

je =7, put b7, ., ; into B, and increase t by 1.
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(c) Increase j by 1. If j < m and t < dj, repeat step (b); otherwise, stop.

When finished, we get two special sets of independent vectors B! = {b} b}

Lb, .
} B? = }. Now writing all b}’s and b3’s in terms of numbers in B1

{v2,05,,..., ]1

and B? respectively, we have:

(bL,bL ..., bY) = (bl bL ... bl )ET,

117 7127 Zd%
(B2 ,02 _1,...,b%) = (b?l,bi,.. bj2 VE?,

where E' = (E} ;)7 ,_, and E* = (E7,); ;_, are di X n and d} X n matrices, respectively,
in reduced row echelon form (see Definition 3.13). And each E}; is a 67,, ; X 0;_;

matrix that satisfies:
1. Ifi > j, Eifj:O.

2. If v =7, E; is a reduced row echelon matrix.

3. It i < j, Ef; is a matrix with a column equal to 0 if it corresponds to a pivot

in E7;, and arbitrary otherwise.
Using the same technique as in the proof of Theorem 4.16, we can bijectively
get a partition A¥ from each E},; , ., such that \* has &} — 67, parts and the
largest part is < 07, and also a partition ji* from each E?., , ., , such that ji*
has 0 — ;. parts and the largest part is < 5k+1, for k=0,1,...,r —1. Let \* be
the partition after adding d3 4o to all parts of 5\’“, and p* be the partition after adding

dp, to all parts of 4*. Then the total number of reduced row echelon matrices E*

and E? corresponding to partitions (A%, AL, -+ X""Y) and (p, pt, - pmt) s
0 1 r—1 0 1 r—1
<qIA Mg \) . <q|u P \) .
This shows the first part of equation (4.9).

Since |AF| = |AF| + (6] — 6f.1)di 5 and || = |iF| + (02 — 6},1)d} 1o, the rest of
equation (4.9) follows directly from Proposition 1.3.19 in [7]. O
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Corollary 4.31. Consider a nilpotent endomorphism f on Uy ®Us with f, : U, — U,.
If fof1 has Jordan block sizes equal to the parts of the partition v' = n, and fifs has
Jordan block sizes equal to the parts of the partition v* & n, then the total number
of possible f’s is a sum of NMq(n,m;czl,cp) over all possible {05, € N : k € N}
satisfying:

Oy, 4 0, > (V)i — (V" )jy1 = 05 + 05y 10,

where: )

dgk = (V*)ﬁc’
d§k+1 = (V*)Z — O3,

\5§k+1 = (V*);g - (V*)§c+1 — 03y

Proof. For a nilpotent endomorphism f, f., given the sizes of its Jordan blocks, the

dimensions of (f,f,)*(U,) is the same as the number of parts of v* that are > k, i.e.,
dim (fo f.)*(U,) = (v*)},, for k=10,1,2,....
Since (fof)"(Uy) = f2*(U; @ Uy) N Uy, the proof follows from Theorem 4.30. [

Comparing equations (4.7) and (4.9), we can see that NM,(n,m;d", d?) is a ¢-
analogue of NM (n,m;d", d?).

Corollary 4.32. The set of nilpotent endomorphisms f on Uy & Uy that satisfy fy :
Uy, — U, and dim f*(Uy @ Us) N U, = d}; is a g-analogue of the set of rooted spanning

trees of Ky, with 0 wvertices from V, in level k, where 6; = dj — di | for k =
0,1,...,r.
4.3 Cycles

An m-cycle C,, is a digraph on the vertex set [m], whose edges are i — i + 1, for

i=1,2,...,m, where m + 1 is the same vertex as 1 (see Figure 4-3).
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3

Figure 4-3: Digraph C),.

We want to consider spanning trees of the expanded digraph (Cy,)n = (Vi, Er)

and the nilpotent C,,-space linear transformations.

4.3.1 Spanning Trees

By Lemma 3.8, a spanning tree T of the expanded digraph (C,,)7 is in bijection with
a = (o, as,...,00) € GS1(Chpy, 1), where a; = (ai,al, ... al), fori=1,2,... m.

Since C), has m spanning trees, we have the following result.

Proposition 4.33. A spanning tree T;; of the expanded digraph (Cy,)n is in bijection
with & = (a1, g, ...,am) € GS1(Chy, 1), such that there ezists a unique I € [m]

satisfying:
1. al =0, and aj € Vg forl=1,2,...,n;—1.
2. a, € Viyy fori#£1,1=1,2,...,n,.

Hence, the total number of spanning trees of (Cp,)n is

m m 1
I OE
=1 =1
Using the same technique as in the complete bipartite graph case in Section 4.2,

we can get the following theorems.

Theorem 4.34. A spanning tree Ty, of the expanded digraph (C,)n with n;—d' leaves
in' Vi, fori = 1,2,...,m, is in bijection with & = (ay, g, ..., ) € GS1(Cpp, 1),

such that there exists a unique I € [m] satisfying:
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2. {af,a}, ... al _,} contains only d"*' distinct numbers from Vi1, and {a},aj,

.., al,. } contains only d'T distinct numbers from Viiy for any i # 1.

Hence, the total number CN(n;d, d?, ..., d™) of spanning trees of (Cp,)n with n; — d’

leaves in V; is:

=i+ 0] -2 11 2. NN A,

J=1 I=1 i=1 \NCditlx(n;—dit1—¢; ) (4.10)

1, ifi=1I,
0, ifi#I.

Theorem 4.35. Consider a spanning tree T;, of the expanded digraph (Cy,)n with 0},

i1 =

vertices from V; in level k, where &, > 5, 61 =0, 310, 6i_, >0, and >_,_, 6% = n;,
fori=1,2,...,m. It is in bijection with & = (o, v, ..., an) € GS(Cyy, 1), such
that {al, ,al, _,,... ,a;i_dﬁl} contains only d?jrll distinct numbers from Vi1, where
di =68 +6 | +--+0, fori=12... mand k=0,1,...,r.

Set d' = (di,dy, ..., d"). Then the total number CN (n;d*,d?, ..., d™) of spanning

trees with the above property is:

CN(n;d", d* ...,d™)

m di m
:H H(ni_j+1) H Z TIADIT(ND) - - TI(XE )
i=1 \j=1 =1\ (NJ, AL N ) (4‘11)
m s m r—1
=IT( . . " . | TITI-eihaiob,
i1 \O0b, 0%, ..., 0% 1, itik=o0

where di., = 0, X, ranges over all partitions with 0}, — 6, parts and largest part

< d};frll and smallest part > d;ilz, fori=1,2,... mand k=0,1,...,r — 1.
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4.3.2 Nilpotent Transformations

By Lemma 3.9, a nilpotent C,,-space linear transformation f is in bijection with

B = (61,02, 0m) € GSnit(Ciy 72), where f; = (b3, bh,..., b, ), fori =1,2,...,m.

Since C,, has 2™ — 1 spanning forests, we have the following result.

Proposition 4.36. A nilpotent C,,-space linear transformation f is in bijection with

B = (01,02, ..., 0m) € GSxiu(Cyn, 1), such that:

1 2 m ;
1. At least one of {b,,,b;,,... b } is zero.

2.0 €Uy fori=1,2,... o mandl=1,2,...,n;.

Hence, the total number of nilpotent C,,-space linear transformations is:
m m m
[Jamtm- (H ¢ —[]lg" - 1)) :
i=1 i=1 i=1

This implies the result in [6].

Using the same technique as in the complete bipartite graph case in Section 4.2,

we can get the following theorems.
Theorem 4.37. Consider a nilpotent C,,-space linear transformation f that satisfies

dim f(U;) = d* fori = 1,2,...,m. It is in bijection with 3 = (B, Ba,...,Bm) €
GSNil(Cin, ), such that:

1. At least one of {by, ,b2,,..., b } is zero.
2. {bi, by, ... b, } spans a d"T'-dimensional subspace of Uiy fori=1,2,...,m.

Hence, the total number CN,(n; d*,d?, ... ,d™) of nilpotent C,,-space linear transfor-

mations with the above property is:
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Y 11 3 | 3 iy (4.12)

@AICIm] i€] \NCdit! x (n;—di+1-1) il (1m— Ly ¢ i
C At x (n; — dit)
m d
; n; —1
— n; n;—dt1 t
I -e- X I0|" | 1T "
(A (2
i=1 j=1 oxIcm) el | d idl T —1

q

Corollary 4.38. The set of nilpotent C,,-space linear transformations f that satisfy
dim f(U;) = d™Y, fori = 1,2,...,m, is a g-analogue of the set of spanning trees of

expanded digraph (Cp,)n with n; — d* leaves in V;, fori=1,2,...,m.

Theorem 4.39. Consider a nilpotent C,,-space linear transformation f that satisfies
dim fF(U)NU; = di, where n; = djy > di > -+ > d. =0, and Y ;" d'_
for i = 1,2,....,m. It is in bijection with 3 = (B1,P2,...,0m) € GSxi(Cpm,n),
such that {bl, ,bl, _1,...,
1,2,....mk=0,1,...,r—1.

Set d = (di,dy, ... ,d"). Then the total number CN,(n;d*,d?, ... ,d™) of nilpotent

>0,

b;i_dﬁl} spans a d;;ll dimensional subspace of U;y1, fori =

Cy-space linear transformations with above property is:

CN,(n;d", d* ...,d"™)

1
m m

— j—l 2 : g NG N
_H H ) . C]‘ 0|q‘ 1|q| 1l
i=1 \j=1 =1 \ (AL AL ) (4.13)
m dll m r—1 +1 - 57,
ST T =) T (oo | | ),
. . . 61—}—1
=1 7=1 i=1 k=0 k+1

q

where d.y =0, 0;, = di, — di .|, \i, ranges over all partitions with o;, — 6, parts and

largest part < dzJrl and smallest part > d;:_fz, fori=1,2--- mand k=0,1,..

., T
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Corollary 4.40. The set of nilpotent C,,-space linear transformations f that satisfy
dim fF(UYNU; = di, fori=1,2,...,m and k = 0,1,...,r — 1, is a g-analogue of
the set of spanning trees of the expanded digraph (Cy,)n with i wvertices from V; in
level k, fori=1,2,...,m and k=0,1,...,r — 1.
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