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Abstract

The eddy current losses in a shaft rotating in a urniform magnetic field
verperdicular to the shaft axie are calculated, when the shielding effect of the
induced currents 1s incluéed., Plots are given tc show the increasing distortion
of the magnetic field in and around the shaft with increasing ratic of radius to

skir depth for tke rotatiorn frequency, for non-magnstic shaft material, Formulas
are glven for the cate of magnetic shafts,






EDDY CURRENT LOSSES IN A CONDUCTING SHAFT
ROTATING IN A MAGNETIC FIELD

1. In recent design considerations of large synchro-cyclotrons, the problem
of computing the eddy current losses in a metal shaft rotating in a uniform magnetic
field perpendicular to the shaft axis has arisen. This shaft is used to drive the
rotating plates of a variable condenser used to produce the requisite freguency modula=-
tion for the dee voltages., Although the solution of this classical problem may exist
in the literature of many years ago, it seems worthwhile to make the solution readily
avallable,

let the metal shaft of radius g be driven with a constant angular velocity
@ about its axis (the z-axis), the uniform external magnetic field in the y-direction
be ;o, and conslder the shaft sufficiently long compared to its diameter so that end
effects may be ignored (Pig. 1),
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Figure 1, Shaft of radius a rotating in uniform mag-
netic field Bo pervendicular to shaft axis,

There will be induced in the shaft a steady space distribution of currents parallel to
the axis, and since it is metallic one may neglect the contribution of the displacement
current to the total current. Furthermore, the velocity y of any point of the shaft is
80 small compared to the velocity of light that one may use the classical form of
Maxwell's equations for moving media. For the problem at hand, since all partial deriv-
atives with respect to time vanish, these take the form

curlE!:-(va)] =0 } (1)

crl H = OE

where g~ is the conductivity of the metal. These equations are valid inside the shaft,

For all exterior points we have the same equations with v = o = O,
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At the surface of the rotating shaft, the boundary conditions require the
continuity of the tangential and normal componénts of H and B

F—14

respectively. The
tangential component of E is, however, discontinuous at this boundary. From the first
of Eqs, (1), one has

E=(vxB)-grad ¢ (2)
and since (v x B) is everywhere parallel to the shaft axis and end effects are being
neglected, we may set the scalar potential ¢ equal to zero. 3By inserting Eq. (2) in
the second of Eqs. (1), there follows

curl E = o (v x B); (2)
(v x B) has a z-component equal to (-n»Br), the remaining components being Zero. We

set
B = curl A, A, = A(r,0); A =4y=0 so that div A =0
and obtain from Eq. (3)
curlcurl.&r--var-—uo-w'g—% (4)
=4 04
since Br =32 °
In polar coordinates Eq. (4) becomes
2
120 24 1 QA 84
T T T rzcgz Kow 35 0. (42)

This equation holds for r<a; for r>a the vector potential satisfies Laplace's
Equation. Since A must be a single-valued function of the angle 8, this is not a
separable equation. The sclutions of Eq. (4a) which are needed are the real and

imaginary parts of f(r)e-"g, where f(r) 1s the non-cingular solution of the Bessel
equation. 2
L, 14, P - = o0 with k2 = pow, (4v)
dr r
1.0, £ =305 k).

Thus we can write for r<a

A = A = Ba blneﬁJ%kr)e'Jg + b, Im)/5 3, (/T kr)e ® ||\ (5)
z o 1 2 1
and for r>a az £
A = Az = - Bor cos® + Buc1 "y cos® + Bocz p sing

gince for large values of r, A must go over to -Box = -Bor cose,
If we now set p = kr, Po = ka, andﬁ Jl(,/jp) = ul(p) + jvl(p),
Eqs. (5) become:

rgca A = Ban:osG {blul(p) + bzvl(p)} + sind {blvl(p) - bzul(p)f]
P e
= JER * SR - ) 2
r>a A Ban:ow{ oo + o cl} + ¢y o sin@] N
The continuity of tangential E and normal Bat r = a, (p = po) then provide the neces-
sary equations to determine the dimensionless constants bl, bz, cl, and Coe For the
sake of simplicity, let us consider first the case of a non-magnetic shaft; i.e.,

W= Mg Thie solution is of interest in the cyclotron application, since there the
-2
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exteornal field go is so large that saturation conditions would exist in a steel shaft,

From the continuity of 24 and 12a s one obtalns the equations

whnere

2p p
e = Trynleg) * v legd ey = Bylp,) = vu(py)

4 [
[_ (po) N pov).(po)] = Da[uy e} poul(po)] =0
the primes denote differentiation with respect te p . From the gensral relation

RORE " (RO IR

r2 follows

where

Using

where

3ince

Hence
gives
P CPq

r<a

PP,
ry)a

wlp) * pry (p) = = p v ()

8
v,0p) + pvl (p) = + pu (p) ()
we have written JOQJSb) = (p) + Jv (p).
Bys. (8} in Zqs. (7}, one finds readily for the constants,
v u
b = ‘z- o = P = = -a 20
1 Po u, 2+v a 2 Po u “+v
o 'O
1V
°1 = 1 +-pi_].‘_9.2_.-—-_lb (9)
[+] uo-bvo
_ o2 U + vy
Cx = 2

2
P u v v
o o

the constants Uy Voo Uy and v, are the values of the functions at p = Po*

The equations of the field lines of 3 may be obtained as follows:

B =l'g"e"andﬁ =--°'é, one has

T r de 9 or
B
Je SO SRR A
Bs rde T A 60

A(r,8) = const, (10)
the field lines,

3y using the constants given by Egs. (9) in Egs, (6), there follew
(p ) v (p.)
[1(0) ul(p)] cos8 - [nl(p) + : 2 vl(p)] sin6 = Gy
[_ e, P +_§ {ul(po)vo(po) - uo(pg)vl(po)}] coso | )
Po P P uo“(po)**voz(po)

.2 [“o(po)uléipo) + :o(po)vl(po)] ctno = G, |
P u, (e 1+, (p,)

A
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which determine the field pattern. Figures 2, 3, and 4 show plots for the typlcal
cases p = ka = %, 2,5, and 10,

2. The eddy current power loss per unit length of the shaft is now obtained
as follows:
The power loss per unit volume is, with the help of Eq, (6),
2 2
2_ 222 _ _ 20A°_ 2 22 }_ }
0E = ouw rzBr = ouw (69) ouw'B “a cow{blvl(p)-bale(p) sinO{blul(p)-’-bzvl(p) R

The integration over @ from O to 2m gives a factor T for the coszc and sinzo terms and
the product term integrates to zero. Thus one obtains for the power loss per unit

length : a
P = mew’s %a%(0, % + 1,°) [ r [ 26) + vlz(p)]dr (12)
and since from Eqs. {9) one has
b e w ey ’
Po %o (Po) * (Po)
this can be written as nc-wZB 234
P= yon F(p,) = PF(p) lia)
Po 5
where 4 P ‘Jl("/j. po)l dp
Tp,) = (£) =2 = :
S XY

The integral can be evaluated by elementary methods and the final result is:
8w (o Julp ) +v (p v, (p )
F(Po) = 2(_5_) [ oo u%_ Q 02 0’ 170 . (13)
0 Cuy (po) +v, (po)

The function F(po) is essentially the shlelding function, since the factor Po in
Eq, (12a) 1s the dissipation per unit length which would result from the uniform field
Bo if one ignores the shielding action of the induced currents,

Figure 5 shows the function F(ka) vs, (ka) and shows how the losses fall off
sharply as ka increases, ka is JE‘ times the ratlo of shaft radius to skin depth at the
angular frequency we. For small values of ks, the power series expansions of the Bessel
functions give

4
Pka) =1 = ﬁ(%) =1 - o.ozse(ka)4 (13a)

showlng the extraordinary lack of shielding for small ratios of radius to skin depth,
For large values of ka, the asymptotic forms of the Bessel functions give

F(ka)—»./2 (;2‘;)8 as ka — oo , (13v)

Thus for large ratios of radius to skin depth, Ey, (12a) gives for the power loss per
unit length 2
B
/a»
P= 2"6("-0') —
83 Bo

b




Figure 2. Magnetic field pattern for p_ = ka = 0.5 where k = ./ acw and a = shaft radius.
The shaded area represents tﬁe cross secticn of the rotating shaft.




Figure 3. Hagnstic field pattern for p_= ka = 2,5 where k = ,/u 0w and a = shaft radius.
The shaded area representre tBe cross section of the rgtating shaft.
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Pigure 4. Magnetic field pattern for g_ = ka = 10 where k = JHi & w and a = shaft radius.
The shaded area represents tfe cross section of the ?ote.ting shaft., The heavy
lines correspond to uniformly spaced lines of B, The lighter lines are
inserted to show the detalled behavior of the fgeld inside the shaft.
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3. In the case of a shaft of permeability n ¥ Mo assumed constant, we must
have continuity of ';‘ Yy and of 1 oA -5; at r=a (p = po). Irom Eq. {6) one then finds the
followinrg values of the constants in place of Bq. %9).

0-&[;.--:1—(-2"-1)]

b = 3 ¢
1+ & - f e N7 S 1)]
° [ po [-] O pO o] “O
- 2;:'-2“[1 +pu (-*-‘--1)]
b = 0 [o ] 0
2 2 2
2 ..Js.. 1 2) _ _‘.Jl_ "N
Yo [l . Po% (""o 1)] "o [ Po'o (“o 1)]
2 2 (9&)
2 m u1 + v ]
N U
&= 2 2
2 1 /B 2 1 ]
u“lL + { )] ++v 1 (= - 1)
° [ Polo Ho ] ° Po'o Ho
2. B
Py Mo (aguy +vory)
e = . 2 2
2 1 (b 2y L e (L
u, E. + N (""o - 13] v, E. A (p‘o ISJ

where the constants L ul. o and vl are the valuss of the functions at p = po. The
eddy current loss per unit length and the equations for the lines of B may then be
obtained by using the constants given by (92) in Egs. (12) and (6).
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