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Ab stract

The eddy curent losses in a shaft rotatirng in a uniform magnetic field
perpendiclar to the shaft axis are calculated, when the shielding effect of the
induced currrent is included. Plots are given to show the increasing distortion
of the magnetic field in and around the shaft with increasing ratio of radius to
skir depth for the rotation freuency, for non-magnetic shaft material. Formulas
are given for the caEe of magnetic shafts.





EDDY CURRENT LOSSES IN A CONDUCTING SHAFT
ROTATING IN A 4AGNETIC FIELD

1. In recent design considerations of large synchro-cyclotrons, the problem

of computing the eddy current losses in a metal shaft rotating in a uniform magnetic

field perpendicular to the shaft axis has arisen. This shaft is used to drive the

rotating plates of a variable condenser used to produce the requisite frequency modula-

tion for the dee voltages. Although the solution of this classical problem may exist

in the literature of many years ago, it seems worthwhile to make the solution readily

available.

Let the metal shaft of radius A be driven with a constant angular velocity

S about its axis (the z-axis), the uniform external magnetic field in the y-direction

be Bo, and consider the shaft sufficiently long compared to its diameter so that end

effects may be ignored (Fig. 1).

a

0

, Y

BO

S ~~~~~~~x

Figure 1. Shaft of radius a rotating in uniform mag-
netic field Bo perpendicular to shaft axis.

There will be induced in the shaft a steady space distribution of currents parallel to

the axis, and since it is metallic one may neglect the contribution of the displacement

current to the total current. Furthermore, the velocity of any point of the shaft is

so small compared to the velocity of light that one may use the classical form of

Maxwell's equations for moving media. For the problem at hand, since all partial deriv-

atives with respect to time vanish, these take the form

url[E - ( x B)] = (1)

curl H = r 

where c- is the conductivity of the metal. These equations are valid inside the shaft.

For all exterior points we have the same equations with v = r = 0.
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At the surface of the rotating shaft, the boundary conditions require the

continuity of the tangential and normal components of H and B, respectively. The

tangential component of E is, however, discontinuous at this boundary. From the first

of Eqs. (1), one has
E = (v x B) - grad f (2)

and since (v x B) is everywhere parallel to the shaft axis and end effects are being

neglected, we may set the scalar potential yp equal to zero. By inserting Eq. (2) in

the second of Eqs. (1), there follows

cur H = a-(v x B); (3)

(v x B) has a z-component equal to (-mnBr), the remaining components being zero. We

set
B = curl A, Az = A(r,Q); Ar = A =- 0

and obtain from Eq. (3)

so that div A = 0

curl curl A = - A = _ m 

since B =1 A
r r 0 '

In polar coordinates Eq. (4) becomes

r l qaa + Lae _ A o!r a 0FA- O=
rr Or 2 2 -=

r b

(4)

(4a)

This equation holds for r<a; for r>a the vector potential satisfies Laplace's

Equation. Since A must be a single-valued function of the angle j, this is not a

separable equation. The solutions of Eq. (4a) which are needed are the real and

imaginary parts of f(r)e ", where f(r) is the non-cingular solution of the Bessel

equat ion.

i.e.

Thus we

and for

d --f 1 + (jk2 -)f = o
d2 r dr 2

with k = a-w, (4b)

f = J(J kr).

can write for ra

A A = a{b bl e J1 kr) m J + b2 m[ J./ r)e' (5)

r>a 2 2

A = A = - Br cosg + B ac osQ + Bc 2 A - sin

since for large values of r, A must go over to -B0x = -Bor cosQ.

If we now set p = kr, p = ka, and J1 Q P) = ul(p) + V1(P)

Eqs. (5) become:

r a A = B 0acos9 fblul(P) + b2Vl(P) + sine {bll(P) - bul(p)]

r) > a A = B a [cos -2 + P }o + c0 P sin .(6)
o Po P 2 I

The continuity of tangential E and normal B at r = a, (p = p) then provide the neces-

sary equations to determine the dimensionless constants bl, b2, cl, and c2. For the

snk" of simplicity, let us consider first the case of a non-magnetic shaft; i.e.,

A= 0.' This solution is of interest in the cyclotron application, since there the
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extaer-al field is so large that saturation conditions would exist in a steel shaft.

Frm the continuity of and p , one obtains the equations

c. = I b(P,) + b2V1 (%p) 

a'[ Po + Po ()j + b[,(P 0)

C2 = biv i( po ) - b2 i ( o
)

+ Pov(Po) = -2

bl[71 (p) + Pv1(P.)]- b[uI(Po) Pu(Po)]= 0

where the rImes denote differentiation with respect to p rom the general relation

J1 %z) + z dz lf(i I = (z))

ther follows

where we have wrtten

ui(p) p (p) = - p vo(p)

v1 (P) + p; (P) + PIo (P)

J0o p) U(P) + Jvo(p).

Using Eqs. (8) in qs. (7), one finds readily for the constants,

b = - vo
1 PO u 2+v

2
;

o o

b - L -
2 ,P o 2

o o

c = 1 + a Bl9l O
P0 2 2

o o v0

(9)

= 2 Uou + VVl
Po u 2+ 2

o o

where the constants ul, vl, no, and vo are the values of the functions at p = Po.

The equations of the field lines of may be obtained as follows:

3ince = 1 and r r 6Q Q r ' one has

B
r

BQ

dr + aA d = 0.
or 6Q

A(r,Q) = const.

gives the field lines.

By using the constants given by Eqs. (9) in Eqs. (6), there follow

(10)

P P v (p) - ( (p) co) s
r < aC En i (Pn- Ul

+ O+ 2
P P

I '(po)V ( )
P >) P --
r) a 

- [Ju(p)+ -(-p

)+(p )v(p)

L u (Po)U1(po) + o(Po)v1(P) sinQ 2
+ ' 2 ' 2( .- p. s O) 2

(7)

(8)

or

Hence

(p)] sins = C01

(11)

- -

= -4r- . - 1, OAAm
rd4Q r 4[64



which determine the field pattern. Figures 2, 3, and 4 show plots for the typical

cases po = ka = i, 2.5, and 10.

2. The eddy current power loss per unit length of the shaft is now obtained

as follows:

The power loss per unit volume is, with the help of Eq. (6),

2 2

The integration over from 0 to 2 gives a factor n for the cos 0 and sin terms and

the product term integrates to zero. Thus one obtains for the power loss per unit

length 2 2 2 2 A 2 2

length= TTW 0
2a2 (b1 + b2

2) r [U1 (p) + 1 ()] dr (12)

and since from Eqs. (9) one has

b12 + b22 4
Po u2(Po) + Vo2p)

this can be written as 2 2a4

4- 1(Po) = PoS(Po) (ma)

PO
where 4 jPJ 1(JP )2 dp4 i po)l

(po)= ) 0= -;2

The integral can be evaluated by elementary methods and the final result is:

F(p) 2(-) r (p)ul(p) + 0 o)Vl(p> (13)
F() 2 u-p)+ p)

The function (po) is essentially the shielding function, since the factor Po in

Eq. (12a) is the dissipation per unit length which would result from the uniform field

Bo if one ignores the shielding action of the induced currents.

Figure 5 shows the function F(ka) vs. (ke) and shows how the losses fall off

sharply as ka increases, ka is A/~ times the ratio of shaft radius to skin depth at the

angular frequency ~. For small values of ka, the power series expansions of the Bessel

functions give

F(ka) = 1 1- 0.0286(ka)4 (13a)
12 2

showing the extraordinary lack of shielding for small ratios of radius to skin depth.

For large values of ja, the asymptotic forms of the Bessel functions give

'(ka)-,J (i) as ka- o . (13b)

Thus for large ratios of radius to skin depth, E. (12a) gives for the power loss per

unit length 2

P f= 2rrA f '
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Figure 2. Magnetic field pattern for p = ka O.Z where k = 6/ and a = shaft radius.
The shaded area represents tie cross section of the rotating shaft.
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Figure 3. Magnetic field pattern for p = ka = 2.5 where k = 4o; and a = shaft radius.

The shaded area represents te cross section of the rotating shaft.
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Figure 4. Magnetic field pattern for p = ka = 10 where k = Ib and a = shaft radius.
The shaded area represents tRe cross section of the otating shaft. The heavy
lines correspond to uniformly spaced lines of B . The lighter lines are
inserted to show the detailed behavior of the feld inside the shaft.
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3. In the case of a shaft of permeability ~L N , assumed constant, we must

have continuity of and f A at r - a (p = ). Prom Eq. (6) one then finds the

following values of the constants in place of Eq. 9).

Po -0- PFO

+ POu O % ' PoV o 1 = 1 + uV2 _- _- 2P o % PO Uo 0 , ,
b2 2 2

r t Po u0 0 pOO 0

2ti- +bv 2 (9a)
2 Po , 1 Po - 0

2 22~ _ (2 
02-v 1 + v2 il)

where the constants uo , u1, Vo, and v1 are the values of the functions at p Po. The
eddy current loss per unit length and the equations for the lines of B may then be

obtained by using the constants given by (9a) in Eqs. (12) and (6).

A
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