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ABSTRACT

Most investment expenditures have two important characteristics:

First, they are largely irreversible; the firm cannot disinvest, so the

expenditures are sunk costs. Second, they can be delayed, allowing the firm

to wait for new information about prices, costs, and other market conditions

before committing resources. An emerging literature has shown that this has

important implications for investment decisions, and for the determinants of

investment spending. Irreversible investment is especially sensitive to

risk, whether with respect to future cash flows, interest rates, or the

ultimate cost of the investment. Thus if a policy goal is to stimulate

investment, stability and credibility may be more important than tax

incentives or interest rates.

This paper presents some simple models of irreversible investment, and

shows how optimal investment rules and the valuation of projects and firms

can be obtained from contingent claims analysis, or alternatively from

dynamic programming. It demonstrates some strengths and limitations of the

methodology, and shows how the resulting investment rules depend on various

parameters that come from the market environment. It also reviews a number

of results and insights that have appeared in the literature recently, and

discusses possible policy implications.
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IRREVERSIBILITY, UNCERTAINTY, AND INVESTMENT

I. Introduction.

Despite its importance to economic growth and market structure, the

investment behavior of firms, industries, and countries remains poorly

understood. Econometric models have generally failed to explain and predict

changes in investment spending, and we lack a clear and convincing

explanation of why some countries or industries invest more than others.

Part of the problem may be that most models of investment are based on the

implicit assumption that the expenditures are reversible. So, too, is the

net present value rule as it is usually taught to students in business

school: "Invest in a project when the present value of its expected cash

flows is at least as large as its cost." This rule -- and models based on

it -- are incorrect when investments are irreversible and decisions to

invest can be postponed.

Most major investment expenditures have two important characteristics

which together can dramatically affect the decision to invest. First, the

expenditures are largely irreversible; the firm cannot disinvest, so the

expenditures must be viewed as sunk costs. Second, the investments can be

delayed, giving the firm an opportunity to wait for new information about

prices, costs, and other market conditions before it commits resources.

Irreversibility usually arises because capital is industry or firm

specific, i.e., it cannot be used productively in a different industry or by

a different firm. A steel plant, for example, is industry specific. It can

only be used to produce steel, so if the demand for steel falls, the market

value of the plant will fall. Although the plant could be sold to another

steel company, there is likely to be little gain from doing so, so the
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investment in the plant must be viewed as a sunk cost. As another example,

most investments in marketing and advertising are firm specific, and so are

likewise sunk costs. Partial irreversibility can also result from the

"lemons" problem. Office equipment, cars, trucks, and computers are not

industry specific, but have resale value well below their purchase cost,

even if new.

Irreversibility can also arise because of government regulations or

institutional arrangements. For example, capital controls may make it

impossible for foreign (or domestic) investors to sell assets and reallocate

their funds. And investments in new workers may be partly irreversible

because of high costs of hiring, training, and firing.1

Firms do not always have an opportunity to delay investments. There

can be occasions, for example, in which strategic considerations make it

imperative for a firm to invest quickly and thereby preempt investment by

existing or potential competitors.2  But in most cases, delay is at least

feasible. There may be a cost to delay -- the risk of entry by other firms,

or simply foregone cash flows -- but this cost must be weighed against the

benefits of waiting for new information.

As an emerging literature has shown, the ability to delay an

irreversible investment expenditure can profoundly affect the decision to

invest. Irreversibility undermines the theoretical foundation of standard

neoclassical investment models, and also invalidates the NPV rule as it is

commonly taught in business schools. It may also have important

implications for our understanding of aggregate investment behavior.

Irreversibility makes investment especially sensitive to various forms of

risk, such as uncertainty over the future product prices and operating

costs that determine cash flows, uncertainty over future interest rates, and
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uncertainty over the cost and timing of the investment itself. In the

context of macroeconomic policy, this means that if the goal is to

stimulate investment, stability and credibility may be much more important

than tax incentives or interest rates.

An irreversible investment opportunity is much like a financial call

option. A call option gives the holder the right (for some specified amount

of time) to pay an exercise price and in return receive an asset (e.g., a

share of stock) that has some value. A firm with an investment opportunity

has the option to spend money (the "exercise price") now or in the future,

in return for an asset (e.g., a project) of some value. As with a

financial call option, the firm's option to invest is valuable in part

because the future value of the asset that the firm gets by investing is

uncertain. If the asset rises in value, the payoff from investing rises.

If it falls in value, the firm need not invest, and will only lose what it

spent to obtain the investment opportunity.

How do firms obtain investment opportunities? Sometimes they result

from patents, or ownership of land or natural resources. More generally,

they arise from a firm's managerial resources, technological knowledge,

reputation, market position, and possible scale, all of which may have been

built up over time, and which enable the firm to productively undertake

investments that individuals or other firms cannot undertake. Most

important, these options to invest are valuable. Indeed, for most firms, a

substantial part of their market value is attributable to their options to

invest and grow in the future, as opposed to the capital that they already

have in place. 3

When a firm makes an irreversible investment expenditure, it exercises,

or "kills," its option to invest. It gives up the possibility of waiting
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for new information to arrive that might affect the desirability or timing

of the expenditure; it cannot disinvest should market conditions change

adversely. This lost option value must be included as part of the cost of

the investment. As a result, the NPV rule "Invest when the value of a unit

of capital is at least as large as the purchase and installation cost of the

unit" is not valid. The value of the unit must exceed the purchase and

installation cost, by an amount equal to the value of keeping the option to

invest these resources elsewhere alive -- an opportunity cost of investing.

Recent studies have shown that this opportunity cost can be large, and

investment rules that ignore it can be grossly in error.4 Also, this

opportunity cost is highly sensitive to uncertainty over the future value of

the project, so that changing economic conditions that affect the perceived

riskiness of future cash flows can have a large impact on investment

spending, larger than, say, a change in interest rates. This may explain

why neoclassical investment theory has failed to provide good empirical

models of investment behavior.

This paper has several objectives. First, I will review some basic

models of irreversible investment to illustrate the option-like

characteristics of investment opportunities, and to show how optimal

investment rules can be obtained from methods of option pricing, or

alternatively from dynamic programming. Besides demonstrating a methodology

that can be used to solve a class of investment problems, this will show how

the resulting investment rules depend on various parameters that come from

the market environment.

A second objective is to briefly survey some recent applications of

this methodology to a variety of investment problems, and to the analysis of

firm and industry behavior. Examples will include the effects of sunk costs
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of entry, exit, and temporary shutdowns and re-startups on investment and

output decisions, the implications of construction time (and the option to

abandon construction) for the value of a project, and the determinants of a

firm's choice of capacity. I will also show how models of irreversible

investment have helped to explain the prevalence of "hysteresis" (the

tendency for an effect -- such as foreign sales in the U.S. -- to persist

well after the cause that brought it about -- an appreciation of the dollar

-- has disappeared).

Finally, I will briefly discuss some of the implications that the

irreversibility of investment may have for policy. For example, given the

importance of risk, policies that stabilize prices or exchange rates may be

effective ways of stimulating investment. Similarly, a major cost of

political and economic instability may be its depressing effect on

investment.

The next section uses a simple two-period example to illustrate how

irreversibility can affect an investment decision, and how option pricing

methods can be used to value a firm's investment opportunity, and determine

whether or not the firm should invest. Section 3 then works through a basic

continuous time model of irreversible investment that was first examined by

McDonald and Siegel (1986). Here a firm must decide when to invest in a

project whose value follows a random walk. I first solve this problem

using option pricing methods and then by dynamic programming, and show how

the two approaches are related. This requires the use of stochastic

calculus, but I explain the basic techniques and their application in the

Appendix.

Section 4 extends this model so that the price of the firm's output

follows a random walk, and the firm can (temporarily) stop producing if



- 6 -

price falls below variable cost. I show how both the value of the project

and the value of the firm's option to invest in the project can be

determined, and derive the optimal investment rule and examine its

properties. Section 5 surveys a number of extensions of this model that

have appeared in the literature, as well as other applications of the

methodology, including the analysis of hysteresis. Section 6 discusses

policy implications and suggests future research, and Section 7 concludes.

2. A Simple Two-Period Example.

The implications of irreversibility and the option-like nature of an

investment opportunity can be demonstrated most easily with a simple two-

period example. Consider a firm's decision to irreversibly invest in a

widget factory. The factory can be built instantly, at a cost I, and will

produce one widget per year forever, with zero operating cost. Currently

the price of widgets is $100, but next year the price will change. With

probability q, it will rise to $150, and with probability (l-q) it will

fall to $50. The price will then remain at this new level forever. (See

Figure 1.) We will assume that this risk is fully diversifiable, so that

the firm can discount future cash flows using the risk-free rate, which we

will take to be 10 percent.

For the time being we will set I - $800 and q - .5. Is this a good

investment? (Later we will see how the investment decision depends on I and

q.) Should we invest now, or wait one year and see whether the price goes

up or down? Suppose we invest now. Calculating the net present value of

this investment in the standard way, we get:

NPV - - 800 + Z 100/(1.1)t - - 800 + 1,100 - $300
t-0
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The NPV is positive; the current value of a widget factory is V0 - 1,100 >

800. Hence it would seem that we should go ahead with the investment.

This conclusion is incorrect, however, because the calculations above

ignore a cost - the opportunity cost of investing now, rather than waiting

and thereby keeping open the possibility of not investing should the price

fall. To see this, calculate the NPV of this investment opportunity,

assuming we wait one year and then invest only if the price goes up:

NPV - (.5)[-800/1.1 + E 150/(1.1)t] - 425/1.1 - $386
t-l

(Note that in year 0, there is no expenditure and no revenue. In year 1,

the 800 is spent only if the price rises to $150, which will happen with

probability .5.) The NPV today is higher if we plan to wait a year, so

clearly waiting is better than investing now.

Note that if our only choices were to invest today or never invest, we

would invest today. In that case there is no option to wait a year, and

hence no opportunity cost to killing such an option, so the standard NPV

rule would apply. Two things are needed to introduce an opportunity cost

into the NPV calculation - irreversibility, and the ability to invest in the

future as an alternative to investing today. There are, of course,

situations in which a firm cannot wait, or cannot wait very long, to invest.

(One example is the anticipated entry of a competitor into a market that is

only large enough for one firm. Another example is a patent or mineral

resource lease that is about to expire.) The less time there is to delay,

and the greater the cost of delaying, the less will irreversibility affect

the investment decision. We will explore this point again in Section 3 in

the context of a more general model.
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How much is it worth to have the flexibility to make the investment

decision next year, rather than having to invest either now or never? (We

know that having this flexibility is of some value, because we would prefer

to wait rather than invest now.) The value of this "flexibility option" is

easy to calculate; it is just the difference between the two NPV's, i.e.,

$386 - $300 - $86.

Finally, suppose there exists a futures market for widgets, with the

futures price for delivery one year from now equal to the expected future

spot price, i.e., $100. 5  Would the ability to hedge on the futures market

change our investment decision? Specifically, would it lead us to invest

now, rather than waiting a year? The answer is no. To see this, note that

if we were to invest now, we would hedge by selling short futures for 5

widgets; this would exactly offset any fluctuations in the NPV of our

project next year. But this would also mean that the NPV of our project

today is $300, exactly what it is without hedging. Hence there is no gain

from hedging (the risk is diversifiable), and we are still better off

waiting until next year to make our investment decision.

Analogy to Financial Options.

Our investment opportunity is analogous to a call option on a common

stock. It gives us the right (which we need not exercise) to make an

investment expenditure (the exercise price of the option) and receive a

project (a share of stock) the value of which fluctuates stochastically. In

the case of our simple example, next year if the price rises to $150, we

exercise our option by paying $800 and receive an asset which will be worth

V1 - $1650 (- f0150/1 .1t). If the price falls to $50, this asset will be

worth only $550, and so we will not exercise the option. We found that the

value of our investment opportunity (assuming that the actual decision to
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invest can indeed be made next year) is $386. It will be helpful to

recalculate this value using standard option pricing methods, because later

we will use such methods to analyze other investment problems.

To do this, let FO denote the value today of the investment

opportunity, i.e., what we should be willing to pay today to have the option

to invest in the widget factory, and let F1 denote its value next year.

Note that F1 is a random variable; it depends on what happens to the price

of widgets. If the price rises to $150, then F1 will equal E•150/(1.1)t-

800 - $850. If the price falls to $50, the option to invest will go

unexercised, so that F1 will equal 0. Thus we know all possible values for

Fl. The problem is to find FO, the value of the option today.

To solve this problem, we will create a portfolio that has two

components: the investment opportunity itself, and a certain number of

widgets. We will pick this number of widgets so that the portfolio is risk-

free, i.e., so that its value next year is independent of whether the price

of widgets goes up or down. Since the portfolio will be risk-free, we know

that the rate of return one can earn from holding it must be the risk-free

rate. By setting the portfolio's return equal to that rate, we will be able

to calculate the current value of the investment opportunity.

Specifically, consider a portfolio in which one holds the investment

opportunity, and sells short n widgets. (If widgets were a traded

commodity, such as oil, one could obtain a short position by borrowing from

another producer, or by going short in the futures market. For the moment,

however, we need not be concerned with the actual implementation of this

portfolio.) The value of this portfolio today is o0 - FO - nPO - FO - 100n.

The value next year, l1 - Fl - nP1, depends on Pl. If PI - 150 so that F1 -

850, ~l - 850 - 150n. If P1 - 50 so that Fl - 0, Ol - - 50n. Now, let us
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choose n so that the portfolio is risk-free, i.e., so that l1 is independent

of what happens to price. To do this, just set:

850 - 150n - - 50n,

or, n - 8,5. With n chosen this way, tl - - 425, whether the price goes up

or down.

We now calculate the return from holding this portfolio. That return

is the capital gain, 91 - 0, minus any payments that must be made to hold

the short position. Since the expected rate of capital gain on a widget is

zero (the expected price next year is $100, the same as this year's price),

no rational investor would hold a long position unless he or she could

expect to earn at least 10 percent. Hence selling widgets short will

require a payment of .1P0 - $10 per widget per year.6  Our portfolio has a

short position of 8.5 widgets, so it will have to pay out a total of $85.

The return from holding this portfolio over the year is thus li " t0 - 85 -

ti - (FO - nPO) - 85 - - 425 - FO + 850 - 85 - 340 - F0.

Because this return is risk-free, we know that it must equal the risk-

free rate, which we have assumed is 10 percent, times the initial value of

the portfolio, t0 - F0 - nPo:

340 - FO - .1(FO - 850)

We can thus determine that 0 -2 $386. Note that this is the same value that

we obtained before by calculating the NPV of the investment opportunity

under the assumption that we follow the optimal strategy of waiting a year

before deciding whether to invest.

We have found that the value of our investment opportunity, i.e., the

value of the option to invest in this project, is $386. The payoff from

investing (exercising the option) today is $1100 - $800 - $300. But once we

invest, our option is gone, so the $386 is an opportunity cost of investing.
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Hence the full cost of the investment is $800 + $386 - $1186 > $1100. As a

result, we should wait and keep our option alive, rather than invest today.

We have thus come to the same conclusion as we did by comparing NPV's. This

time, however, we calculated the value of the option to invest, and

explicitly took it into account as one of the costs of investing.

Our calculation of the value of the option to invest was based on the

construction of a risk-free portfolio, which requires that one can trade

(hold a long or short position in) widgets. Of course, we could just as

well have constructed our portfolio using some other asset, or combination

of assets, the price of which is perfectly correlated with the price of

widgets. But what if one cannot trade widgets, and there are no other

assets that "span" the risk in a widget's price? In this case one could

still calculate the value of the option to invest the way we did at the

outset - by computing the NPV for each investment strategy (invest today

versus wait a year and invest if the price goes up), and picking the

strategy that yields the highest NPV. That is essentially the dynamic

programming approach. In this case it gives exactly the same answer,

because all price risk is diversifiable. In Section 3 we will explore this

connection between option pricing and dynamic programming in more detail.

Changing the Parameters.

So far we have fixed the direct cost of the investment, I, at $800. We

can obtain further insight by changing this number, as well as other

parameters, and calculating the effects on the value of the investment

opportunity and on the investment decision. For example, by going through

the same steps as above, it is easy to see that the short position needed to

obtain a risk-free portfolio depends on I as follows:

n - 16.5 - .011
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The current value of the option to invest is then given by:

F0 - 750 - .4551

The reader can check that as long as I > $642, FO exceeds the net

benefit from investing today (rather than waiting), which is V0 - I - $1,100

- I. Hence if I > $642, one should wait rather than invest today. However,

if I - $642, FO - $458 - VO - I, so that one would be indifferent between

investing today and waiting until next year. (This can also be seen by

comparing the NPV of investing today with the NPV of waiting until next

year.) And if I < $642, one should invest today rather than wait. The

reason is that in this case the lost revenue from waiting exceeds the

opportunity cost of closing off the option of waiting and not investing

should the price fall. This is illustrated in Figure 2, which shows the

value of the option, FO, and the net payoff, V0 - I, both as functions of I.

For I > $642, FO - 750 - .4551 > V0 - I, so the option should be kept alive.

However, if I < $642, 750 - .4551 < V0 - I, so the option should be

exercised, and hence its value is just the net payoff, VO - I.

We can also determine how the value of the investment option depends on

q, the probability that the price of widgets will rise next year. To do

this, let us once again set I - $800. The reader can verify that the short

position needed to obtain a risk-free portfolio is independent of q, i.e.,

is n - 8.5. The payment required for the short position, however, does

depend on q, because the expected capital gain on a widget depends on q.

The expected rate of capital gain is [E(P 1 ) - PO/P 0 - q - .5, so the

required payment per widget in the short position is .1 - (q - .5) - .6 - q.

By following the same steps as above, it is easy to see that the value

today of the option to invest is FO - 773q. This can also be written as a

function of the current value of the project, V0 . We have V0 - 100 +
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E1 (100q + 50)/(1.1)t - 600 + 1000q, so F0 - .773V0 - 464. Finally, note

that it is better to wait rather than invest today as long as FO > V0 - I,

or q < .88.

There is nothing special about the particular source of uncertainty

that we introduced in this problem. There will be a value to waiting (i.e.,

an opportunity cost to investing today rather than waiting for information

to arrive) whenever the investment is irreversible and the net payoff from

the investment evolves stochastically over time. Thus we could have

constructed our example so that the uncertainty arises over future exchange

rates, factor input costs, or government policy. For example, the payoff

from investing, V, might rise or fall in the future depending on

(unpredictable) changes in policy. Alternatively, the cost of the

investment, I, might rise or fall, in response to changes in materials

costs, or to a policy change, such as the granting or taking away of an

investment subsidy or tax benefit.

In our example, we made the unrealistic assumption that there is no

longer any uncertainty after the second period. Instead, we could have

allowed the price to change unpredictably each period. For example, we

could posit that at t - 2, if the price is $150, it could increase to $225

with probability q or fall to $75 with probability (l-q), and if it is $50

it could rise to $75 or fall to $25. Price could rise or fall in a similar

way at t - 3, 4, etc. One could then work out the value of the option to

invest, and the optimal rule for exercising that option. Although the

algebra is messier, the method is essentially the same as for the simple

two-period exercise we carried out above. 7 Rather than take this approach,

in the next section we extend our example by allowing the payoff from the

investment to fluctuate continuously over time.



- 14 -

The next two sections make use of continuous-time stochastic processes,

as well as Ito's Lemma (which is essentially a rule for differentiating and

integrating functions of such processes). These tools, which are becoming

more and more widely used in economics and finance, provide a convenient way

of analyzing investment timing and option valuation problems. I provide an

introduction to the use of these tools in the Appendix for readers who are

unfamiliar with them. Those readers might want to review the Appendix

before proceeding.8

3. A More General Problem of Investment Timing.

One of the more basic models of irreversible investment is that of

McDonald and Siegel (1986). They considered the following problem: At

what point is it optimal to pay a sunk cost I in return for a project whose

value is V, given that V evolves according to a geometric Brownian motion:

dV - aVdt + oVdz (1)

where dz is the increment of a Wiener process, i.e., dz - c(t)(dt)1/ 2 , with

e(t) a serially uncorrelated and normally distributed random variable. Eqn.

(1) implies that the current value of the project is known, but future

values are lognormally distributed with a variance that grows linearly with

the time horizon. (See the Appendix for an explanation of the Wiener

process.) Thus although information arrives over time (the firm observes V

changing), the future value of the project is always uncertain.

McDonald and Siegel pointed out that the investment opportunity is

equivalent to a perpetual call option, and deciding when to invest is

equivalent to deciding when to exercise such an option. Thus, the

investment decision can be viewed as a problem of option valuation (as we

saw in the simple example presented in the previous section). I will re-
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derive the solution to their problem in two ways, first using option pricing

(contingent claims) methods, and then via dynamic programming. This will

allow us to compare these two approaches and the assumptions that each

requires. We will then examine the characteristics of the solution.

The Use of Option Pricing.

As we have seen, the firm's option to invest, i.e., to pay a sunk cost

I and receive a project worth V, is analogous to a call option on a stock.

Unlike most financial call options, it is a perpetual option -- it has no

expiration date. We can value this option and determine the optimal

exercise (investment) rule using the same methods that are used to value

financial options. 9 To do this we need to make one important assumption.

We must assume that changes in V are spanned by existing assets.

Specifically, it must be possible to find an asset or construct a dynamic

portfolio of assets the price of which is perfectly correlated with V.10

This is equivalent to saying that markets are sufficiently complete that the

firm's decisions do not affect the opportunity set available to investors.

The assumption of spanning should hold for most commodities, which are

typically traded on both spot and futures markets, and for manufactured

goods to the extent that prices are correlated with the values of shares or

portfolios. However, there may be cases in which this assumption will not

hold; an example might be a new product unrelated to any existing ones.

With the spanning assumption, we can determine the investment rule that

maximizes the firm's market value without making any assumptions about risk

preferences or discount rates, and the investment problem reduces to one of

contingent claim valuation. (We will see shortly that if spanning does not

hold, dynamic programming can still be used to maximize the present value of

the firm's expected flow of profits, subject to an arbitrary discount rate.)
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Let x be the price of an asset or dynamic portfolio of assets perfectly

correlated with V, and denote by pVm the correlation of V with the market

portfolio. Then x evolves according to:

dx - pxdt + oxdz,

and by the CAPM, its expected return is p - r + OPVmo , where r is the risk-

free rate and 0 is the market price of risk. We will assume that a, the

expected percentage rate of change of V, is less than its risk-adjusted

return p. (As will become clear, the firm would never invest if this were

not the case. No matter what the current level of V, the firm would always

be better off waiting and simply holding on to the option to invest.) We

denote by 6 the difference between p and a, i.e., 6 - p - a.

A few words about the meaning of 6 are in order, given the important

role it plays in this model. The analogy with a financialocall option is

helpful here. If V were the price of a share of common stock, 6 would be

the dividend rate on the stock. The total expected return on the stock

would be p - 6 + a, i.e., the dividend rate plus the expected rate of

capital gain.

If the dividend rate 6 were zero, a call option on the stock would

always be held to maturity, and never exercised prematurely. The reason is

that the entire return on the stock is captured in its price movements, and

hence by the call option, so there is no cost to keeping the option alive.

But if the dividend rate is positive, there is an opportunity cost to

keeping the option alive rather than exercising it. That opportunity cost

is the dividend stream that one foregos by holding the option rather than

the stock. Since 6 is a proportional dividend rate, the higher the price of

the stock, the greater the flow of dividends. At some high enough price,
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the opportunity cost of foregone dividends becomes high enough to make it

worthwhile to exercise the option.

For our investment problem, p is the expected rate of return from

owning the completed project. It is the equilibrium rate established by the

capital market, and includes an appropriate risk premium. If 6 > 0, the

expected rate of capital gain on the project is less than p. Hence 6 is an

oRportunity cost of delaying construction of the project, and instead

keeping the option to invest alive. If 6 were zero, there would be no

opportunity cost to keeping the option alive, and one would never invest, no

matter how high the NPV of the project. That is why we assume 6 > 0. On

the other hand, if 6 is very large, the value of the option will be very

small, because the opportunity cost of waiting is large. As 6 -+ c, the

value of the option goes to zero; in effect, the only choices are to invest

now or never, and the standard NPV rule will again apply.

The parameter 6 can be interpreted in different ways. For example, it

could reflect the process of entry and capacity expansion by competitors.

Or it can simply reflect the cash flows from the project. If the project is

infinitely lived, then eqn. (1) can represent the evolution of V during the

operation of the project, and 6V is the rate of cash flow that the project

yields. Since we assume 6 is constant, this is consistent with future cash

flows being a constant proportion of the project's market value. 11

Eqn. (1) is, of course, is an abstraction from most real projects. For

example, if variable cost is positive and the project can be shut down

temporarily when price falls below variable cost, V will not follow a

lognormal process, even if the output price does. Nonetheless, eqn. (1) is

a useful simplification that will help to clarify the main effects of
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irreversibility and uncertainty. We will discuss more complicated (and

hopefully more realistic) models later.

Solving the Investment Problem.

Let us now turn to the valuation of our investment opportunity, and the

optimal investment rule. Let F - F(V) be the value of the firm's option to

invest. To find F(V) and the optimal investment rule, consider the return

on the following portfolio: hold the option, which is worth F(V), and go

short dF/dV units of the project (or equivalently, of the asset or portfolio

x). Using subscripts to denote derivatives, the value of this portfolio is

P - F - FVV.

The short position in this portfolio will require a payment of 6VFV

dollars per time period; otherwise no rational investor will enter into the

long side of the transaction.12 Taking this into account, the total

instantaneous return from holding the portfolio is:

dF - FVdV - 6VFVdt

We will see that this return is risk-free, and so to avoid arbitrage

possibilites it must equal r(F-FvV)dt:

dF - FvdV - 6VFvdt - r(F-FvV)dt (2)

To obtain an expression for dF, use Ito's Lemma:

dF - FVdV + (1/2)Fw(dV) 2  (3)

(Ito's Lemma is explained in the Appendix. Note that higher order terms

vanish.) Now substitute (1) for dV, with a replaced by p - 6, and (dV)2

o2V2dt into eqn. (3):

dF - (p-6)VFvdt + oVFVdz + (1/2)o2 V 2Fdt (4)
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Finally, substitute (4) into (2), rearrange terms, and note that all terms

in dz cancel out, so the portfolio is indeed risk-free:

(1/2)o2V 2FVV + (r-6)VFV - rF - 0 (5)

Eqn. (5) is a differential equation that F(V) must satisfy. In

addition, F(V) must satisfy the following boundary conditions:

F(O) - 0 (6a)

F(V*) - V - I (6b)

Fv(V*) - 1 (6c)

Condition (6a) says that if V goes to zero, it will stay at zero (an

implication of the process (1)), so the option to invest will be of no

value. V* is the price at which it is optimal to invest, and (6b) just says

that upon investing, the firm receives a net payoff V - I. Condition (6c)

is called the "smooth pasting" condition. If F(V) were not continuous and

smooth at the critical exercise point V*, one could do better by exercising

at a different point.13

To find F(V), we must solve eqn. (5) subject to the boundary conditions

(6a-c). In this case we can guess a functional form, and determine by

substitution if it works. It is easy to see that the solution to eqn. (5)

which also satisfies condition (6a) is:

F(V) - aVB  (7)

where a is a constant, and 0 is given by:14

P - 1/2 - (r-6)/o 2 + ([(r-6)/o 2 - 1/2] 2 + 2r/o2 1/ 2  (8)

The remaining boundary conditions, (6b) and (6c), can be used to solve

for the two remaining unknowns: the constant a, and the critical value V* at
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which it is optimal to invest. By substituting (7) into (6b) and (6c), it

is easy to see that:

V* - (9)

and a - (V* - I)/(V*)P (10)

Eqns. (7) - (10) give the value of the investment opportunity, and the

optimal investment rule, i.e., the critical value V* at which it is optimal

(in the sense of maximizing the firm's market value) to invest. We will

examine the characteristic of this solution below. Here we simply point out

that we obtained this solution by showing that a hedged (risk-free)

portfolio could be constructed consisting of the option to invest and a

short position in the project. However, F(V) must be the solution to eqn.

(5) even if the option to invest (or the project) does not exist and could

not be included in the hedge portfolio. All that is required is spanning,

i.e., that one could find or construct an asset or dynamic portfolio of

assets (x) that replicates the stochastic dynamics of V. As Merton (1977)

has shown, one can replicate the value function with a portfolio consisting

only of the asset x and risk-free bonds, and since the value of this

portfolio will have the same dynamics as F(V), the solution to (5), F(V)

must be the value function to avoid dominance.

As discussed earlier, spanning will not always hold. If that is the

case, one can still solve the investment problem using dynamic programming.

This is shown below.

Dynamic Programming.

To solve the problem by dynamic programming, note that we want a rule

that maximizes the value of our investment opportunity, F(V):
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F(V) - max Et[(VT - I)e-pT] (11)

where Et denotes the expectation at time t, T is the (unknown) future time

that the investment is made, p is the discount rate, and the maximization is

subject to eqn. (1) for V. We will assume that p > a, and denote 6 - p - a.

Since the investment opportunity, F(V), yields no cash flows up to the

time T that the investment is undertaken, the only return from holding it is

its capital appreciation. As shown in the Appendix, the Bellman equation

for this problem is therefore:

pF - (1/dt)EtdF (12)

Eqn. (12) just says that the total instantaneous return on the investment

opportunity, pF, is equal to its expected rate of capital appreciation.

We used Ito's Lemma to obtain eqn. (3) for dF. Now substitute (1) for

dV and (dV)2 into eqn. (3) to obtain the following expression for dF:

dF - aVFVdt + oVFVdz + (1/2)o 2V 2Fwdt

Since Et(dz) - 0, (1/dt)EtdF - aVFV + (1/2)2 V2F w , and eqn. (12) can be

rewritten as:

(1/2)o2V2Fw + aVFV - pF - 0

or, substituting a - p - 6,

(1/2)o2V2Fw + (p-6)VFV - pF - 0 (13)

Observe that this equation is almost identical to eqn. (5); the only

difference is that the discount rate p replaces the risk-free rate r. The

boundary conditions (6a) - (6c) also apply here, and for the same reasons as
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before. (Note that (6c) follows from the fact that V* is chosen to maximize

the net payoff V - I.) Hence the contingent claims solution to our

investment problem is equivalent to a dynamic programming solution, under

the assumption of risk neutrality.
15

Thus if spanning does not hold, we can still obtain a solution to the

investment problem, subject to some discount rate. The solution will

clearly be of the same form, and the effects of changes in a or 6 will

likewise be the same. One point is worth noting, however. Without

spanning, there is no theory for determining the "correct" value for the

discount rate p (unless we make restrictive assumptions about investors' or

managers' utility functions). The CAPM, for example, would not hold, and so

it could not be used to calculate a risk-adjusted discount rate.

Characteristics of the Solution.

Assuming that spanning holds, let us examine the optimal investment

rule given by eqns. (7) - (10). A few numerical solutions will help to

illustrate the results and show how they depend on the values of the various

parameters. As we will see, these results are qualitatively the same as

those that come out of standard option pricing models. Unless otherwise

noted, in what follows we set r - .04, 6 - .04, and the cost of the

investment, I, equal to 1.

Figure 3 shows the value of the investment opportunity, F(V), for a -

0.2 and 0.3. (These values are conservative for many projects; in volatile

markets, the standard deviation of annual changes in a project's value can

easily exceed 20 or 30 percent.) The tangency point of F(V) with the line

V - I gives the critical value of V, V*; the firm should invest only if

V > V*. For any positive o, V* > I. Thus the standard NPV rule, "Invest

when the value of a project is at least as great as its cost," is
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incorrect; it ignores the opportunity cost of investing now rather than

waiting. That opportunity cost is exactly F(V). When V < V , V < I + F(V),

i.e., the value of the project is less than its full cost, the direct cost I

plus the opportunity cost of "killing" the investment option.

Note that F(V) increases when o increases, and so too does the critical

value V*. Thus uncertainty increases the value of a firm's investment

opportunities, but decreases the amount of actual investing that the firm

will do. As a result, when a firm's market or economic environment becomes

more uncertain, the market value of the firm can go up, even though the firm

does less investing and perhaps produces less! This should make it easier

to understand the behavior of oil companies during the mid-1980's. During

this period oil prices fell, but the perceived uncertainty over future oil

prices rose. In response, oil companies paid more than ever for offshore

leases and other oil-bearing lands, even though their development

expenditures fell and they produced less.

Finally, note that our results regarding the effects of uncertainty

involve no assumptions about risk preferences, or about the extent to which

the riskiness of V is correlated with the market. Firms can be risk-

neutral, and stochastic changes in V can be completely diversifiable; an

increase in a will still increase V* and hence tend to depress investment.

Figures 4 and 5 show how F(V) and V* depend on 6. Observe that an

increase in 6 from .04 to .08 results in a decrease in F(V), and hence a

decrease in the critical value V . (In the limit as 6 -+ w, F(V) -+ 0 for V <

I, and V* - I, as Figure 5 shows.) The reason is that as 6 becomes larger,

the expected rate of growth of V falls, and hence the expected appreciation

in the value of the option to invest and acquire V falls. In effect, it

becomes costlier to wait rather than invest now. To see this, consider an
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investment in an apartment building, where 6V is the net flow of rental

income. The total return on the building, which must equal the risk-

adjusted market rate, has two components - this income flow plus the

expected rate of capital gain. Hence the greater the income flow relative

to the total return on the building, the more one forgoes by holding an

option to invest in the building, rather than owning the building itself.

If the risk-free rate, r, is increased, F(V) increases, and so does V*.

The reason is that the present value of an investment expenditure I made at

a future time T is le-rT, but the present value of the project that one

receives in return for that expenditure is Ve" 6T. Hence with 6 fixed, an

increase in r reduces the present value of the cost of the investment but

does not reduce its payoff. But note that while an increase in r raises the

value of a firm's investment options, it also results in fewer of those

options being exercised. Hence higher (real) interest rates reduce

investment, but for a different reason than in the standard model.

4. The Value of a Project and the Decision to Invest.

As mentioned earlier, eqn. (1) abstracts from most real projects. A

more realistic model would treat the price of the project's output as a

geometric random walk (and possibly one or more factor input costs as well),

rather than the value of the project. It would also allow for the project

to be shut down (permanently or temporarily) if price falls below variable

cost. The model developed in the previous section can easily be extended in

this way. In so doing, we will see that option pricing methods can be used

to find the value of the project, as well as the optimal investment rule.

Suppose the output price, P, follows the stochastic process:
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dP - aPdt + oPdz (14)

We will assume that a < p, where p is the market risk-adjusted expected rate

return on P or an asset perfectly correlated with P, and let 6 - p - a as

before. If the output is a storable commodity (e.g., oil or copper), 6 will

represent the net marginal convenience yield from storage, i.e., the flow of

benefits (less storage costs) that the marginal stored unit provides. We

assume for simplicity that 6 is constant. (For most commodities, marginal

convenience yield in fact fluctuates as the total amount of storage

fluctuates.)

We will also assume that: (i) Marginal and average production cost is

equal to a constant, c. (ii) The project can be costlessly shut down if P

falls below c, and later restarted if P rises above c. (iii) The project

produces one unit of output per period, is infinitely lived, and the (sunk)

cost of investing in the project is I.

We now have two problems to solve. First, we must find the value of

this project, V(P). To do this, we can make use of the fact that the

project itself is a set of options. 1 6  Specifically, once the project has

been built, the firm has, for each future time t, an option to produce a

unit of output, i.e., an option to pay c and receive P. Hence the project

is equivalent to a large number (in this case, infinite, because the

project is assumed to last indefinitely) of operating options, and can be

valued accordingly.

Second, given the value of the project, we must value the firm's option

to invest in it, and determine the optimal exercise (investment) rule. This

will boil down to finding a critical P *, where the firm invests only if P >

P . As shown below, the two steps to this problem can be solved

sequentially by the same methods used in the previous section.17
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Valuing the Project.

If we assume that uncertainty over P is spanned by existing assets, we

can value the project (as well as the option to invest) using contingent

claim methods. Otherwise, we can specify a discount rate and use dynamic

programming. We will assume spanning and use the first approach.

As before, we construct a risk-free portfolio: long the project and

short Vp units of the output. This portfolio has value V(P) - VpP, and

yields the instantaneous cash flow j(P-c)dt - 6VpPdt, where j - 1 if P > c

so that the firm is producing, and j - 0 otherwise. (Recall that 6VpPdt is

the payment that must be made to maintain the short position.) The total

return on the portfolio is thus dV - VpdP + j(P-c)dt - 6VpPdt. Since this

return is risk-free, set it equal to r(V - VpP)dt. Expanding dV using Ito's

Lemma, substituting (14) for dP, and rearranging yields the following

differential equation for V:

(1/2)a 22Vpp + (r-6)PVp - rV + j(P-c) - 0 (15)

This equation must be solved subject to the following boundary

conditions:

V(O) - 0 (16a)

V(c') - V(c + )  (16b)

Vp(c') - Vp(c ) (16c)

lim V - P/6 - c/r (16d)
P-*w

Condition (16a) is an implication of eqn. (14), i.e., if P is ever zero it

will remain zero, so the project then has no value. Condition (16d) says

that as P becomes very large, the probability that over any finite time

period it will fall below cost and production will cease becomes very small.

Hence the value of the project approaches the difference between two
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perpetuities: a flow of revenue (P) that is discounted at the risk-adjusted

rate p but is expected to grow at rate a, and a flow of cost (c), which is

constant and hence is discounted at rate r. Finally, conditions (16b) and

(16c) say that the project's value is a continuous and smooth function of P.

The solution to eqn. (15) will have two parts, one for P < c, and one

for P > c. The reader can check by substitution that the following

satisfies (15) as well as boundary conditions (16a) and (16d):

f AlPf1 P < c

V(P) - (17)

A2P 2 + P/6 - c/r ; P>c

where:18 B1 - 1/2 - (r-6)/o2 + ([(r-6)/o2 - 1/2] 2 + 2r/o2 1/ 2

and P2 - 1/2 - (r-6)/a 2 - ([(r-6)/o 2 - 1/2]2 + 2r/o2)1/ 2

The constants A1 and A2 can be found by applying boundary conditions (16b)

and (16c):

r - 02(r-6)
Al rS(Oi-12) c

A - (r-6)
2  r6(Ol-l 2)

The solution (17) for V(P) can be interpreted as follows. When P < c,

the project is not producing. Then, AIPI is the value of the firm's

options to produce in the future, if and when P increases. When P > c, the

project is producing. If, irrespective of changes in P, the firm had no

choice but to continue producing throughout the future, the present value of

the future flow of profits would be given by P/6 - c/r. However, should P

fall, the firm can stop producing and avoid losses. The value of its

options to stop producing is A2PB
2 .
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A numerical example will help to illustrate this solution. Unless

otherwise noted, we set r - .04, 6 - .04, and c - 10. Figure 6 shows V(P)

for a - 0, .2, and .4. Note that when a - 0, there is no possibility that P

will rise in the future, so the firm will never produce (and has no value)

unless P > 10. If P > 10, V(P) - (P - 10)/.04 - 25P - 250. However, if a >

0, the firm always has some value as long as P > 0; although the firm may

not be producing today, it is likely to produce at some point in the

future. Also, since the upside potential for future profit is unlimited

while the downside is limited to zero, the greater is a, the greater is the

expected future flow of profit, and the higher is V.

Figure 7 shows V(P) for a - .2 and 6 - .02, .04, and .08. For any

fixed risk-adjusted discount rate, a higher value of 6 means a lower

expected rate of price appreciation, and hence a lower value for the firm.

The Investment Decision.

Now that we know the value of this project, we must find the optimal

investment rule. Specifically, what is the value of the firm's option to

invest as a function of the price P, and at what critical price P* should

the firm exercise that option by spending an amount I to purchase the

project?

By going through the same steps as above, the reader can check that the

value of the firm's option to invest, F(P), must satisfy the following

differential equation:

(1/2)a2p2Fpp + (r-6)PFp - rF - 0 (18)

F(P) must also satisfy the following boundary conditions:

F(O) - 0 (19a)

F(P ) - V(P*) - I (19b)

Fp(P*) - Vp(P*) (19c)
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These conditions can be interpreted in the same way as conditions (6a)-

(6c) for the model presented in Section 3. The difference is that the

payoff from the investment, V, is now a function of the price P.

The solution to eqn. (18) and boundary condition (19a) is:

aP1  P *
F(P) - P P* (20)

V(P) - I , P > P

where 11 is given above under eqn. (17). To find the constant a and the

critical price P , we use boundary conditions (19b) and (19c). By

substituting eqn. (20) for F(P) and eqn. (17) for V(P) (for P > c) into

(19b) and (19c), the reader can check that the constant a is given by:

a 2A2 (p2-1) + 1 (21)
a 1 6P1

and the critical price P* is the solution to:

A2(1-2) ( 1-1) * c
(p*)Y2 + P I - 0 (22)1l 6f1 r

Eqn. (22), which is easily solved numerically, gives the optimal investment

rule. (The reader can check first, that (22) has a unique positive solution

for P* that is larger than c, and second, that V(P ) > I, so that the

project must have an NPV that exceeds zero before it is optimal to invest.)

This solution is shown graphically in Figure 8, for 'o - .2, 6 - .04,

and I - 100. The figure plots F(P) and V(P) - I. Note from boundary

condition (19b) that P* satisfies F(P ) - V(P*) - I, and note from boundary

condition (19c) that P is at a point of tangency of the two curves.

The comparative statics for changes in o or 6 are of interest. As we

saw before, an increase in o results in an increase in V(P) for any P.

(The project is a set of call options on future production, and the greater

the volatility of price, the greater the value of these options.) But
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although an increase in a raises the value of the project, it also increases

the critical price at which it is optimal to invest, i.e., P */ao > 0. The

reason is that for any P, the opportunity cost of investing, F(P), increases

even more than V(P). Hence as with the simpler model presented in the

previous section, increased uncertainty reduces investment. This is

illustrated in Figure 9, which shows F(P) and V(P) - I for a - 0, .2, and

.4. When a - 0, the critical price is 14, which just makes the value of the

project equal to its cost of 100. As a is increased, both V(P) and F(P)

increase; P* is 23.8 for a - .2 and 34.9 for a - .4.

An increase in 6 also increases the critical price P* at which the firm

should invest. There are two opposing effects. If 6 is larger, so that the

expected rate of increase of P is smaller, options on future production are

worth less, so V(P) is smaller. At the same time, the opportunity cost of

waiting to invest rises (the expected rate of growth of F(P) is smaller), so

there is more incentive to exercise the investment option, rather than keep

it alive. The first effect dominates, so that a higher 6 results in a

higher P*. This is illustrated in Figure 10, which shows F(P) and V(P) - I

for 6 - .04 and .08. Note that when 6 is increased, V(P) and hence F(P)

fall sharply, and the tangency at P moves to the right.

This result might at first seem to contradict what the simpler model of

Section 3 tells us. Recall that in that model, an increase in 6 reduces the

critical value of the prolect, V , at which the firm should invest. But

while in this model P* is higher when 6 is larger, the corresponding value

of the project, V(P*), is lower. This can be seen from Figure 11, which

shows P* as a function of a for 6 - .04 and .08, and Figure 12, which shows

V(P ). If, say, a is .2 and 6 is increased from .04 to .08, P* will rise
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from 23.8 to 29.2, but even at the higher P*, V is lower. Thus V - V(P )

is declining with 6, just as in the simpler model.

This model shows how uncertainty over future prices affects both the

value of a project and the decision to invest. As discussed in the next

section, the model can easily be expanded to allow for fixed costs of

temporarily stopping and restarting production, if such costs are

important. Expanded in this way, models like this can have practical

application, especially if the project is one that produces. a traded

commodity, like copper or oil. In that case, o and 6 can be determined

directly from futures and spot market data.

Alternative Stochastic Processes.

The geometric random walk of eqn. (14) is convenient in that it permits

an analytical solution, but one might believe that the price, P, is better

represented by a different stochastic process. For example, one could argue

that over the long run, the price of a commodity will follow a mean-

reverting process (for which the mean reflects long-run marginal cost, and

might be time-varying). Our model can be adapted to allow for this or for

alternative stochastic processes for P. However, in most cases numerical

methods will then be necessary to obtain a solution.

As an example, suppose P follows the mean-reverting process:

dP/P - A(P - P)dt + odz (23)

Here, P tends to revert back to a "normal" level I (which might be long-run

marginal cost in the case of commodity like copper or coffee). By going

through the same arguments as we did before, it is easy to show that V(P)

must then satisfy the following differential equation:

(1/2)o2p2Vpp + [(r-p-A)P + AX]PVp - rV + j(P-c) - 0 (24)
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with boundary conditions (16a) - (16d). The value of the investment option,

F(P), must satisfy:

(1/2)o2p2Fpp + [(r-p-A)P + AP]PFp - rF - 0 (25)

with boundary conditions (19a) - (19c). Eqns. (24) and (25) are ordinary

differential equations, so solution by numerical methods is straightforward.

5, Extensions.

The models presented in the previous two sections are fairly simple,

but illustrate how a project and an investment opportunity can be viewed as

a set of options, and valued accordingly. These insights have been extended

to a variety of problems involving investment and production decisions under

uncertainty. This section reviews some of them.

Sunk Costs and Hysteresis.

In Sections 3 and 4, we examined models in which the investment

expenditure is a sunk cost. Because the future value of the project is

uncertain, this creates an opportunity cost to investing, which drives a

wedge between the current value of the project and the direct cost of the

investment.

In general, there may be a variety of sunk costs. For example, there

may be a sunk cost of exiting an industry or abandoning a project. This

could include severance pay for workers, land reclamation in the case of a

mine, etc.19  This creates an opportunity cost of shutting down (the value

of the project might rise in the future). There may also be sunk costs

associated with the operation of the project. In Section 4, we assumed that

the firm could stop and restart production costlessly. For most projects,

however, there are likely to be substantial sunk costs involved in even

temporarily shutting down and restarting.
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The valuation of projects and the decision to invest when there are

sunk costs of this sort have been studied by Brennan and Schwartz (1985) and

Dixit (1989a). Brennan and Schwartz (1985) find the effects of sunk costs

on the decision to open and close (temporarily or permanently) a mine, when

the price of the resource follows eqn. (14). Their model accounts for the

fact that a mine is subject to cave-ins and flooding when not in use, and a

temporary shut-down requires expenditures to avoid these possibilities.

Likewise, re-opening a temporarily closed mine requires a substantial

expenditure. Finally, a mine can be permanently closed. This will involve

costs of land reclamation (but avoids the cost of a temporary shut-down).

Brennan and Schwartz obtained an analytical solution for the case of an

infinite resource stock. (Solutions can also be obtained when the resource

stock is finite, but then numerical methods are required.) Their solution

gives the value of the mine as a function of the resource price and the

current state of the mine (i.e., open or closed). It also gives the

decision rule for changing the state of the mine (i.e., opening a closed

mine or temporarily or permanently closing an open mine). Finally, given

the value of the mine, Brennan and Schwartz show how (in principle) an

option to invest in the mine can be valued and the optimal investment rule

determined, using a contingent claim approach like that of Section 4.20

By working through a realistic example of a copper mine, Brennan and

Schwartz showed how the methods discussed in this paper can be applied in

practice. But their work also shows how sunk costs of opening and closing a

mine can explain the "hysteresis" often observed in extractive resource

industries: During periods of low prices, managers often continue to

operate unprofitable mines that had been opened when prices were high; at

other times managers fail to re-open seemingly profitable ones that had been
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closed when prices were low. This insight is further developed in Dixit

(1989a), and is discussed below.

Dixit (1989a) studies a model with sunk costs k and 1, respectively, of

entry and exit. The project produces one unit of output per period, with

variable cost w. The output price, P, follows eqn. (14). If o - 0, the

standard result holds: enter (i.e., spend k) if P > w + pk, and exit if

P < w - pl, where p is the firm's discount rate.
21 However, if a > 0, there

are opportunity costs to entering or exiting. These opportunity costs raise

the critical price above which it is optimal to enter, and lower the

critical price below which it is optimal to exit. (Furthermore, o need not

be very large to induce a significant effect.)

These models help to explain the prevalence of hysteresis, i.e.,

effects that persist after the causes that brought them about have

disappeared. In Dixit's model, firms that entered an industry when price

was high may remain there for an extended period of time even though price

has fallen below variable cost, so they are losing money. (Price may rise

in the future, and to exit and later re-enter involves sunk costs.) And

firms that leave an industry after a protracted period of low prices may

hesitate to re-enter, even after prices have risen enough to make entry seem

profitable. Similarly, the Brennan and Schwartz model shows why many copper

mines built during the 1970's when copper prices were high, were kept open

during the mid-1980's when copper prices had fallen to their lowest levels

(in real terms) since the Great Depression.

Models like these can help to explain why exchange rate movements

during the 1980's left the U.S. with a persistent trade deficit. For

example, Dixit (1989b) considers entry by Japanese firms into a U.S. market

when the exchange rate follows a geometric Brownian motion. Again, there
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are sunk costs of entry and exit. The Japanese firms are ordered according

to their variable costs, and all firms are price takers. As with the models

discussed above, the sunk costs combined with exchange rate uncertainty

create opportunity costs of entering or exiting the U.S. market. As a

result, there will be an exchange rate band within which Japanese firms

neither enter nor exit, and the U.S. market price will not vary as long as

exchange rate fluctuations are within this band. This model, and others

like it, help to explain the low rate of exchange rate pass-through

observed during the 1980's, and the persistence of the U.S. trade deficit

even after the dollar depreciated.22

Sunk costs of entry and exit can also have hysteretic effects on the

exchange rate itself, and on prices. Baldwin and Krugman (1989), for

example, show how the entry and exit decisions described above feed back to

the exchange rate. In their model, a policy change (e.g., a reduction in

the money supply) that causes the currency to appreciate sharply can lead to

entry by foreign firms, which in turn leads to an equilibrium exchange rate

that is below the original one.23 Similar effects occur with prices. In

the case of copper, the reluctance of firms to close down mines during the

mid-1980's allowed the price to fall even more than it would have otherwise.

Finally, sunk costs may be important in explaining consumer spending on

durable goods. Most purchases of consumer durable are at least partly

irreversible. Lam (1989) developed a model that accounts for this, and

shows how irreversibility results in a sluggish adjustment of the stock of

durables to income changes.

Sequential Investment.

Many investments occur in stages that must be carried out in sequence,

and sometimes the payoffs from or costs of completing each stage are
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uncertain. For example, investing in a new line of aircraft begins with

engineering, and continues with prototype production, testing, and final

tooling stages. And an investment in a new drug by a pharmaceutical

company begins with research that (with some probability) leads to a new

compound, and continues with extensive testing until FDA approval is

obtained, and concludes with the contruction of a production facility and

marketing of the product.

Sequential investment programs like these can take substantial time to

complete -- five to ten years for the two examples mentioned above. In

addition, they can be temporarily or permanently abandoned mid-stream if the

value of the end product falls, or the expected cost of completing the

investment rises. Hence these investments can be viewed as compound

options; each stage completed (or dollar invested) gives the firm an option

to complete the next stage (or invest the next dollar). The problem is to

find a contingent plan for making these sequential (and irreversible)

expenditures.

Majd and Pindyck (1987) solve this problem for a model in which a firm

invests continuously (each dollar spent buys an option to spend the next

dollar) until the project is completed, investment can be stopped and later

restarted costlessly, and there is a maximum rate at which outlays and

construction can proceed (i.e., it takes "time to build"). The payoff to

the firm upon completion is V, the value of the operating project, which

follows the geometric Brownian motion of eqn. (1). Letting K be the total

remaining expenditure required to complete the project, the optimal rule is

to keep investing at the maximum rate as long as V exceeds a critical value

V *(K), with dV*/dK < 0. Using the methods of Sections 3 and 4, it is

straightforward to derive a partial differential equation for F(V,K), the
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value of the investment opportunity.24  Solutions to this equation and its

associated boundary conditions, which are obtained by numerical methods,

yield the optimal investment rule V (K).25

These solutions show how time to build magnifies the effects of

irreversibility and uncertainty. The lower the maximum rate of investment

(i.e., the longer it takes to complete the project), the higher is the

critical V *(K) required for construction to proceed. This is because there

is greater uncertainty about the project's value upon completion, and the

expected rate of growth of V over the construction period is less than p,

the risk adjusted rate of return (6 is positive). Also, unlike the model of

Section 3 where the critical value V* declines monotonically with 6, with

time to build, V* will increase with 6 when 6 is large. The reason is that

while a higher 6 increases the opportunity cost of waiting to begin

construction, it also reduces the expected rate of growth of V during the

construction period, so that the (risk-adjusted) expected payoff from

completing construction is reduced. Finally, by computing F(V,K) for

different values of k, one can value construction time flexibility, i.e.,

what one would pay to be able to build the project faster.
2 6

In the Majd-Pindyck model, investment occurs as a continuous flow,

i.e., each dollar spent gives the firm an option to spend another dollar,

up to the last dollar, which gives the firm a completed project.27  Often,

however, sequential investments occur in discrete stages, as with the

aircraft and pharmeceutical examples mentioned above. In these cases, the

optimal investment rule can be found by working backwards from the completed

project, as we did with the model of Section 4.

To see how this can be done, consider a two-stage investment in new oil

production capacity. First, reserves of oil must be obtained, through
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exploration or outright purchase, at a cost I1 . Second, development wells

(and possibly pipelines) must be built, at a cost 12. Let P be the price of

oil and assume it follows the geometric Brownian motion of eqn. (14). The

firm thus begins with an option, worth F1 (P), to invest in reserves. Doing

so buys an option, worth F2 (P), to invest in development wells. Making this

investment yields production capacity, worth V(P).

Working backwards to find the optimal investment rules, first note that

as in the model of Section 4, V(P) is the value of the firm's operating

options, and can be calculated accordingly. Next, F2 (P) can be found; it is

easy to show that it must satisfy eqn. (18) and boundary conditions (19a-c),

with 12 replacing I, and P* the critical price at which the firm should

invest in development wells. Finally, F1 (P) can be found. It also

satisfies (18) and (19a-c), but with F2 (P) replacing V(P) in (19b) and

(19c), Il replacing I, and P* replacing P*. (P** is the critical price at

which the firm should invest in reserves.) If marginal production cost is

constant and there is no cost to stopping or re-starting production, an

analytical solution can be obtained.28

In this example there is no time to build; each stage (obtaining

reserves, and building development wells) can be completed instantly. For

many projects each stage of the investment takes time, and the firm can stop

investing in the middle of a stage. Then the problem must be solved

numerically, using a method like the one in Majd and Pindyck (1987).

In all of the models discussed so far, no learning takes place, in the

sense that future prices (or project values, V) are always uncertain, and

the degree of uncertainty depends only on the time horizon. For some

sequential investments, however, early stages provide information about

costs or net payoffs in later stages. Synthetic fuels was a much debated
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example of this; oil companies argued that demonstration plants were needed

(and deserved funding by the government) to determine production costs. The

aircraft and pharmaceutical investments mentioned above also have these

characteristics. The engineering, prototype production, and testing stages

in the development of a new aircraft all provide information about the

ultimate cost of production (as well as the aircraft's flight characteris-

tics, which will help determine its market value). Likewise, the R&D and

testing stages of the development of a new drug determine the efficacy and

side effects of the drug, and hence its value.

Roberts and Weitzman (1981) developed a model of sequential investment

that stresses this role of information gathering. In their model, each

stage of investment yields information that reduces the uncertainty over the

value of the completed project. Since the project can be stopped in mid-

stream, it may pay to go ahead with the early stages of the investment even

though ex ante the net present value of the entire project is negative.

Hence the use of a simple net present value rule can reject projects that

should be undertaken. This result is just the opposite of our earlier

finding that a simple NPV rule can accept projects that should be rejected.

The crucial assumption in the Roberts-Weitzman model is that prices and

costs do not evolve stochastically. The value of the completed project may

not be known (at least until the early stages are completed), but that value

does not change over time, so there is no gain from waiting, and no

opportunity cost to investing now. Instead, information gathering adds a

shadow value to the early stages of the investment.29

This result applies whenever information gathering, rather than

waiting, yields information. The basic principle is easily seen by

modifying our simple two-period example from Section 2. Suppose that the
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widget factory can only be built this year, and at a cost of $1200.

However, by first spending $50 to research the widget market, one could

determine whether widget prices will rise or fall next year. Clearly one

should spend this $50, even though the NPV of the entire project (the

research plus the construction of the factory) is negative. One would then

build the factory only if the research showed that widget prices will rise.

Incremental Investment and Capacity Choice.

So far we have examined decisions to invest in single, discrete

projects; e.g., the decision to build a new factory or develop a new

aircraft. Much of the economics literature on investment, however, focuses

on incremental investment; firms invest to the point that the cost of the

marginal unit of capital just equals the present value of the revenues it is

expected to generate. The cost of the unit can include adjustment costs

(reflecting the time and expense of installing and learning to use new

capital) in addition to the purchase cost.
30

Except for Arrow's (1968) original work, this literature generally

ignores the irreversibility of investment. As with discrete projects,

irreversibility and the ability to delay investment decisions change the

fundamental rule for investing. The firm must include as part of the total

cost of an incremental unit of capital the opportunity cost of investing in

that unit now rather than waiting.

Bertola (1988) and Pindyck (1988) developed models of incremental

investment and capacity choice that account for irreversibility. In

Pindyck's model, the firm faces a linear inverse demand function, P - 0(t) -

yQ, where 0 follows a geometric Brownian motion, and has a Leontief

production technology. The firm can invest at any time at a cost k per unit

of capital, and each unit of capital gives it the capacity to produce up to
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one unit of output per period. The investment problem is solved by first

determining the value of an incremental unit of capital, given 0 and an

existing capital stock, K, and then finding the value of the option to

invest in this unit and the optimal exercise rule. This rule is a function

K *() (invest whenever K < K*(8)), which determines the firm's optimal

capital stock. Pindyck shows that an increase in the variance of 0

increases the value of an incremental unit of capital (that unit represents

a set of call options on future production), but increases the value of the

option to invest in the unit even more, so that investment requires a higher

value of 6. Hence a more volatile demand implies that a firm should hold

less capital, but have a higher market value. 31

In Bertola's model, the firm's net revenue function is of the form

AK1-Z, with 0 < f < 1. (This would follow from a Cobb-Douglas production

function and an isoelastic demand curve.) The demand shift variable Z and

the purchase price of capital following correlated geometric Brownian

motions. Bertola solves for the optimal investment rule, and shows that the

marginal profitability of capital that triggers investment is higher than

the user cost of capital as conventionally measured. The capital stock, K,

is nonstationary, but Bertola finds the steady-state distribution for the

ratio of the marginal profitability of capital to its price. Irreversi-

bility and uncertainty reduce the mean of this ratio, i.e., on average

capital intensity is higher. Although the firm has a higher threshold for

investment, this is outweighed on average by low outcomes for Z.

The finding that uncertainty over future demand can increase the value

of a marginal unit of capital is not new. All that is required is that the

marginal revenue product of capital be convex in price. This is the case

when the unit of capital can go unutilized (so that it represents a set of
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operating options). But as Hartman (1972) pointed out, it is also the case

for a competitive firm that combines capital and labor with a linear

homogeneous production function. Hartman shows that as a result, price

uncertainty increases the firm's investment and capital stock.

Abel (1983) extends Hartman's result to a dynamic model in which price

follows a geometric Brownian motion and there are convex costs of adjusting

the capital stock, and again shows that uncertainty increases the firm's

rate of investment. Finally, Caballero (1989) introduces asymmetric costs

of adjustment to allow for irreversibility (it can be costlier to reduce K

than to increase it), and shows that again price uncertainty increases the

rate of investment. However, the Abel and Caballero results hinge on the

assumptions of constant returns and perfect competition, which make the

marginal revenue product of capital independent of the capital stock. Then

the firm can ignore its future capital stock (and hence irreversibility)

when deciding how much to invest today. As Caballero shows, decreasing

returns or imperfect competition will link the marginal revenue products of

capital across time, so that the basic result in Pindyck (1988) and Bertola

(1988) holds.32

The assumption that the firm can invest incrementally is extreme. In

most industries, capacity additions are lumpy, and there are scale economies

(a 400 room hotel usually costs less to build and operate than two 200 room

hotels). Hence firms must decide when to add capacity, and how large an

addition to make. This problem was first studied in a stochastic setting by

Manne (1961). He considered a firm that must always have enough capacity to

satisfy demand, which grows according to a simple Brownian motion with

drift. The cost of adding an amount of capacity x is kxa, with 0 < a < 1;

the firm must choose x to minimize the present value of expected capital
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costs. Manne shows that with scale economies, uncertainty over demand

growth leads the firm to add capacity in larger increments, and increases

the present value of expected costs.

In Manne's model (which might apply to an electric utility that must

always satisfy demand) the firm does not choose when to invest, only how

much. Most firms must choose both. Pindyck (1988) determined the effects

of uncertainty on these decisions when there are no scale economies in

construction by extending his model to a firm that must decide when to build

a single plant and how large it should be. 33  As with Manne's model,

uncertainty increases the optimal plant size. However, it also raises the

critical demand threshold at which the plant is built. Thus demand

uncertainty should lead firms to delay capacity additions, but make those

additions larger when they occur.

Sometimes capacity choice is accompanied by a technology choice.

Consider a firm that produces two products, A and B, with interdependent

demands that vary stochastically. It can produce these products by

(irreversibly) installing and utilizing product specific capital, or by

(irreversibly) installing a more costly flexible type of capital that can be

used to produce either or both products. The problem is to decide which

type and how much capital to install. He and Pindyck (1989) solve this for

a model with linear demands by first valuing incremental units of capital

(output-specific and flexible), and then finding the optimal investment

rule, and hence optimal amounts of capacity. By integrating the value of

incremental units of specific and flexible capital, one can determine the

preferred type of capital, as well as the value (if any) of flexibility.

In all of the studies cited so far, the stochastic state variable (the

value of project, the price of the firm's output, or a demand or cost shift
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variable) is specified exogenously. In a competitive equilibrium, firms'

investment and output decisions are dependent on the price process, but also

collectively generate that process. Hence we would like to know whether

firms' decisions are consistent with the price processes we specify.

At least two studies have addressed this issue. Lippman and Rumelt

(1985) model a competitive industry where firms face sunk costs of entry and

exit, and the market demand curve fluctuates stochastically. They find an

equilibrium consisting of optimal investment and production rules for firms

(with uncertainty, they hold less capacity), and a corresponding process for

market price. Leahy (1989) extends Dixit's (1989a) model of entry and exit

to an industry setting in which price is endogenous. He shows that price

will be driven by demand shocks until an entry or exit barrier is reached,

and then entry or exit prevent it from moving further. Hence price follows

a regulated Brownian motion. Surprisingly, it makes no difference whether

firms take entry and exit into account, or simply assume that price will

follow a geometric Brownian motion; the same entry and exit barriers result.

This suggests that models in which price is exogenous may provide a

reasonable description of industry investment and capacity.

6. Investment Behavior and Economic Policy.

Non-diversifiable risk plays a role in event the simplest models of

investment, by affecting the cost of capital. But the findings summarized

in this paper suggest that risk may be a more crucial determinant of

investment. This is likely to have implications for the explanation and

prediction of investment behavior at the industry- or economy-wide level,

and for the design of policy.
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The role of interest rates and interest rate stability in determining

investment is a good example of this. Ingersoll and Ross (1988) have

examined irreversible investment decisions when the interest rate evolves

stochastically, but future cash flows are known with certainty. As with

uncertainty over future cash flows, this creates an opportunity cost of

investing, so that the traditional NPV rule will accept too many projects.

Instead, an investment should be made only when the interest rate is below a

critical rate, r , which is lower than the internal rate of return, ro

which makes the NPV zero. Furthermore, the difference between r and ro

grows as the volatility of interest rates grows.

Ingersoll and Ross also show that for long-lived projects, a decrease

in expected interest rates for all future periods need not accelerate

investment. The reason is that such a change also lowers the cost of

waiting, and thus can have an ambiguous effect on investment. This suggests

that the level of interest rates may be of only secondary importance as a

determinant of aggregate investment spending; interest rate volatility may

be more important.

In fact, investment spending on an aggregate level may be highly

sensitive to risk in various forms: uncertainties over future product

prices and input costs that directly determine cash flows, uncertainty over

exchange rates, and uncertainty over future tax and regulatory policy. This

means that if a goal of macroeconomic policy is to stimulate investment,

stability and credibility may be more important than tax incentives or

interest rates. Or put another way, if uncertainty over the economic

environment is high, tax and related incentives may have to be very large to

have any significant impact on investment.
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Similarly, a major cost of political and economic instability may be

its depressing effect on investment. This is likely to be particularly

important for the developing economies. For many LDC's, investment as a

fraction of GDP has fallen dramatically during the 1980's, despite moderate

economic growth. Yet the success of macroeconomic policy in these countries

requires increases in private investment. This has created a Catch-22 that

makes the social value of investment higher than its private value. The

reason is that if firms do not have confidence that macro policies will

succeed and growth trajectories will be maintained, they are afraid to

invest, but if they do not invest, macro policies are indeed doomed to fail.

It is therefore important to understand how investment might depend on risk

factors that are at least partly under government control, e.g., price,

wage, and exchange rate stability, the threat of price controls or

expropriation, and changes in trade regimes.34

The irreversibility of investment also helps to explain why trade

reforms can turn out to be counterproductive, with a liberalization leading

to a decrease in aggregate investment. As Dornbusch (1987) and Van

Wijnbergen (1985) have noted, uncertainty over future tariff structures, and

hence over future factor returns, creates an opportunity cost to committing

capital to new physical plant. Foreign exchange and liquid assets held

abroad involve no such commitment, and so may be preferable even though the

expected rate of return is lower.35  Likewise, it may be difficult to stem

or reverse capital flight if there is a perception that it may become more

difficult to take capital out of the country than to bring it in.

Irreversibility is also likely to have policy implications for specific

industries. The energy industry is an example. There, the issue of

stability and credibility arises with the possibility of price controls,
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"windfall" profit taxes, or related policies that might be imposed should

prices rise substantially. Investment decisions must be made taking into

account that price is evolving stochastically, but also the probability

that price may be capped at some level, or otherwise regulated.

A more fundamental problem is the volatility of market prices

themselves. For many raw commodities (oil is an example), price volatility

rose substantially in the early 1970's, and has been high since. Other

things equal, we would expect this to increase the value of land and other

resources needed to produce the commodity, but have a depressing effect on

construction expenditures and production capacity. Most studies of the

gains from price stabilization focus on adjustment costs and the curvature

of demand and (static) supply curves. (See Newbery and Stiglitz (1981) for

an overview.) The irreversibility of investment creates an additional gain

which must be accounted for.

The existing literature on these effects of uncertainty and instability

is a largely theoretical one. This may reflect the fact that models of

irreversible investment under uncertainty are relatively complicated, and so

are difficult to translate into well-specified empirical models. In any

case, the gap here between theory and empiricism is disturbing. While it is

clear from the theory that increases in the volatility of, say, interest

rates or exchange rates should depress investment, it is not at all clear

how large these effects should be. Nor is it clear how important these

factors have been as explanators of investment across countries and over

time. Most econometric models of aggregate economic activity ignore the

role of risk, or deal with it only implicitly. A more explicit treatment of

risk may help to better explain economic fluctuations, and especially

36investment spending. But substantial empirical work is needed to
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determine whether the theoretical models discussed in this paper have

37
predictive power.

Simulation models may provide a vehicle for testing the implications of

irreversibility and uncertainty. The structure of such a model might be

similar to the model presented in Section 4, and parameterized it so that it

"fits" a particular industry. One could then calculate predicted effects of

observed changes in, say, price volatility, and compare them to the

predicted effects of changes in interest rates or tax rate. Models of this

sort could likewise be used to predict the effect of a perceived possible

shift in the tax regime, the imposition of price controls, etc. Such models

may also be a good way to study uncertainty of the "peso problem" sort.

7. Conclusions.

I have focused largely on investment in capital goods, but the

principles illustrated here apply to a broad variety of problems involving

irreversibility. An important set of applications arise in the context of

natural resources and the environment. If future values of wilderness areas

and parking lots are uncertain, it may be better to wait before irreversibly

paving over a wilderness area. Here, the option value of waiting creates an

opportunity cost, and this must be added to the current direct cost of

destroying the wilderness area when doing a cost-benefit analysis of the

parking lot. This point was first made by Arrow and Fisher (1974) and Henry

(1974), and has since been elaborated upon in the environmental economics

literature. 38  It has become especially germaine in recent years because of

concern over possible irreversible long-term environmental changes such as

ozone depletion and global warming.
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While this insight is important, actually measuring these opportunity

costs can be difficult. In the case of a well defined project (a widget

factory), one can construct a model like the one in Section 4. But it is

not always clear what the correct stochastic process is for, say, the output

price. Even if one accepts eqn. (14), the opportunity cost of investing now

(and the investment rule) will depend on parameters, such as a and a, that

may not be easy to measure. The problem is much greater when applying these

methods to investment decisions involving resources and the environment.

Then one must model, for example, the stochastic evolution of society's

valuation of wilderness areas.

On the other hand, models like the ones discussed in this paper can be

solved (by numerical methods) with alternative stochastic processes for the

relevant state variables, and it is easy to determine the sensitivity of the

solution to parameter values, as we did in Sections 3 and 4. These models

at least provide some insight into the importance of irreversibility, and

the ranges of opportunity costs that might be implied. Obtaining such

insight is clearly better than ignoring irreversibility.
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APPENDIX

This appendix provides a brief introduction to the tools of stochastic

calculus and dynamic programming that are used in Sections 3 and 4. (For

more detailed introductory discussions, see Merton (1971), Chow (1979),

Malliaris and Brock (1982), or Hull (1989). For a rigorous treatment, see

Kushner (1967).) I first discuss the Wiener process, then Ito's Lemma, and

finally stochastic dynamic programming.

Wiener Processes.

A Wiener process (also called a Brownian motion) is a continuous-time

Markov stochastic process whose increments are independent, no matter how

small the time interval. Specifically, if z(t) is a Wiener process, then

any change in z, Az, corresponding to a time interval At, satisfies the

following conditions:

(i) The relationship between Az and At is given by:

Az - ftxE

where et is a normally distributed random variable with a mean of

zero and a standard deviation of 1.

(ii) et is serially uncorrelated, i.e., E[et1s] - 0 for t 7 s. Thus

the values of Az for any two different intervals of time are

independent (so z(t) follows a Markov process).

Let us examine what these two conditions imply for the change in z over

some finite interval of time T. We can break this interval up into n units

of length At each, with n - T/At. Then the change in z over this interval

is given by:

n
z(s+T) - z(s) - Z ei(At) /

i-1
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Since the ci's are independent of each other, the change z(s+T) - z(s) is

normally distributed with mean 0, and variance nAt - T. This last point,

which follows from the fact that Az depends on /S and not on At, is

particulary important; the variance of the change in a Wiener process grows

linearly with the time interval.

Letting the At's become infinitesimally small, we write the increment

of the Wiener process as dz - e(t)(dt)1/2 . Then E(dz) - 0, and E[(dz)2] -

dt. Finally, consider two Wiener processes, zl(t) and z2 (t). Then we can

write E(dzldz2) - P12dt, where pl2 is the coefficient of correlation between

the two processes.

We often work with the following generalization of the Wiener process:

dx - a(x,t)dt + b(x,t)dz (A.1)

The continuous-time stochastic process x(t) represented by eqn. (A.1) is

called an Ito process. Consider the mean and variance of the increments of

this process. Since E(dz) - 0, E(dx) - a(x,t)dt. The variance of dx is

equal to E([dx - E(dx)] 2 ) - b2 (x,t)dt. Hence we refer to a(x,t) as the

expected drift rate of the Ito process, and we refer to b2(x,t) as the

variance rate.

An important special case of (A.1) is the geometric Brownian motion

with drift. Here a(x,t) - ax, and b(x,t) - ox, where a and a are constants.

Then (A.1) becomes:

dx - axdt + axdz (A.2)

(This is eqn. (1) in Section 3, with V replaced by x.) From our discussion

of the Wiener process, we know that over any finite interval of time,

percentage changes in x, Ax/x, are normally distributed. Hence absolute

changes in x, Ax, are lognormally distributed. We will derive the expected

value of Ax shortly.
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An important property of the Ito process (A.1) is that while it is

continuous in time, it is not differentiable. To see this, note that dx/dt

includes a term with dz/dt - e(t)(dt)-1 / 2 , which becomes infinitely large as

dt becomes infinitesimally small. However, we will often want to work with

functions of x (or z), and we will need to find the differentials of such

functions. To do this, we make use of Ito's Lemma.

Ito's Lemma.

Ito's Lemma is mostly easily understood as a Taylor series expansion.

Suppose x follows the Ito process (A.1), and consider a function F(x,t) that

is at least twice differentiable. We want to find the total differential of

this function, dF. The usual rules of calculus define this differential in

terms of first-order changes in x and t: dF - Fxdx + Ftdt, where subscripts

denote partial derivatives, i.e., Fx - 8F/ax, etc. But suppose that we also

include higher order terms for changes in x:

dF - Fxdx + Ftdt + (1/2)Fxx(dx)2 + (1/6)Fxxx(dx)
3 + ... (A.3)

In ordinary calculus, these higher order terms all vanish in the limit.

To see whether that is the case here, expand the third and fourth terms on

the right-hand side of (A.3). First, substitute (A.1) for dx to determine

(dx)2:

(dx)2 - a2 (x,t)(dt)2 + 2a(x,t)b(x,t)(dt) 3/ 2 + b2 (x,t)dt

Terms in (dt) 3/ 2 and (dt)2 vanish as dt becomes infinitesimal, so we can

ignore these terms and write (dx)2 - ib2 (x,t)dt. As for the fourth term on

the right-hand side of (A.3), every term in the expansion of (dx)3 will

include dt raised to a power greater than 1, and so will vanish in the
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limit. This is likewise the case for any higher order terms in (A.3).

Hence Ito's Lemma gives the differential dF as:

dF - Fxdx + Ftdt + (1/2)Fxx(dx)2, (A.4)

or, substituting from (A.1) for dx,

dF - [Ft + a(x,t)Fx + ~b2 (x,t)Fxx]dt + b(x,t)Fxdz (A.5)

We can easily extend this to functions of several Ito processes.

Suppose F - F(x 1 ,.... m,xt) is a function of time and the m Ito processes,

Xl, ..., Xm, where

dx i - ai(x 1 ... xm,t)dt + bi(xI,...,xm,t)dzi (A.6)

and E(dzidzj) - Pijdt. Then, letting Fi denote 8F/axi and Fij denote

82F/8xi8xj, Ito's Lemma gives the differential dF as:

dF - Ftdt + ZFidxi + ½=Fijdxidxj (A.7)
i ij

or, substituting for dxi:

dF - [Ft + Zai(x ... ,t)F i + iZb2i(x 1 ... ,t)Fii +
i i

Z Pijbi(Xl,... ,t)bj(xI ,....t)Fij]dt + Ebi(x1 ,...,t)Fidzi (A.8)
i j i

Example: Geometric Brownian Motion. Let us return to the process given

by eqn. (A.2). We will use Ito's Lemma to find the process followed by F(x)

- log x. Since Ft - O, Fx - l/x, and Fxx - -I/x2 , we have from (A.4):

dF - (1/x)dx - (1/2x 2)(dx) 2

- adt + odz - ao2dt - (a - ha2 )dt + odz (A.9)
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Hence, over any finite time interval T, the change in log x is normally

distributed with mean (a - ho2)T and variance o2T.

The geometric Brownian motion is often used to model the prices of

stocks and other assets. It says returns are normally distributed, with a

standard deviation the grows with the square root of the holding period.

Example: Correlated Brownian Motions. As a second example of the use

of Ito's Lemma, consider a function F(x,y) - xy, where x and y each follow

geometric Brownian motions:

dx - axxdt + axxdz x

dy - ayydt + oyydzy

with E(dzxdzy) - p. We will find the process followed by F(x,y), and the

process followed by G - log F.

Since Fxx - F - 0 and Fxy - 1, we have from (A.7):

dF - xdy + ydx + (dx)(dy) (A.10)

Now substitute for dx and dy and rearrange:

dF - (ax + ay + paxay)Fdt + (oxdzx + oydZy)F (A.11)

Hence F also follows a geometric Brownian motion. What about G - log F?

Going through the same steps as in the previous example, we find that:

dG - (ax +y - oC - 4o2)dt + oxdZx + oydzy (A.12)

From (A.12) we see that over any time interval T, the change in log F is

2 ' 2 )T variance 2 2
normally distributed with mean (ax +a - o )T and variance 2 + +

2pOoxoy)T.

Stochastic Dynamic Programming.

Ito's Lemma also allows us to apply dynamic programming to optimization

problems in which one or more of the state variables follow Ito processes.
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Consider the following problem of choosing u(t) over time to maximize the

value of an asset that yields a flow of income II:

o0

max EO fII[x(t)u(t)]e-Ot dt (A.13)
u 0

where x(t) follows the Ito process given by:

dx - a(x,u)dt + b(x,u)dz (A.14)

Let J be the value of the asset assuming u(t) is chosen optimally, i.e.

J(x) - max Et ffI[x(r),u(r)]e-' T dr (A.15)
u t

Since time appears in the maximand only through the discount factor, the

Bellman equation (the fundamental equation of optimality) for this problem

can be written as:

pJ - max (H(x,u) + (1/dt)EtdJ) (A.16)
u

Eq. (A.16) says that the total return on this asset, pJ, has two components,

the income flow H(x,u), and the expected rate of capital gain, (1/dt)EtdJ.

(Note that in writing the expected capital gain, we apply the expectation

operator Et, which eliminates terms in dz, before taking the time

derivative.) The optimal u(t) balances current income against expected

capital gains to maximize the sum of the two components.

To solve this problem, we need to take the differential dJ. Since J is

a function of the Ito process x(t), we apply Ito's Lemma. Using eqn. (A.4),

dJ - J xdx + hJxx(dx) 2  (A.17)

Now substitute (A.14) for dx into (A.17):

dJ - [a(x,u)Jx + hb2(x,u)Jxx]dt + b(x,u)Jxdz (A.18)

Using this expression for dJ, and noting that E(dz) - 0, we can rewrite the

Bellman equation (A.16) as:
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pJ - max (l(x,u) + a(x,u)Jx + hb
2 (x,u)Jxx) (A.19)

u

In principle, a solution can be obtained by going through the following

steps. First, maximize the expression in curly brackets with respect to u

to obtain an optimal u - u (x,Jxxx). Second, substitute this u back

into (A.19) to eliminate u. The resulting differential equation can then be

solved for the value function J(x), from which the optimal feedback rule

u* (x) can be found.

Example: Bellman Equation for Investment Problem. In Section 3 we

examined an investment timing problem in which a firm had to decide when it

should pay a sunk cost I to receive a project worth V, given that V follows

the geometric Brownian motion of eqn. (1). To apply dynamic programming, we

wrote the maximization problem as eqn. (11), in which F(V) is the value

function, i.e., the value of the investment opportunity, assuming it is

optimally exercised.

It should now be clear why the Bellman equation for this problem is

given by eqn. (12). Since the investment opportunity yields no cash flow,

the only return from holding it is its expected capital appreciation,

(l/dt)EtdF, which must equal the total return pF, from which (12) follows.

Expanding dF using Ito's Lemma results in eqn. (13), a differential equation

for F(V). This equation is quite general, and could apply to a variety of

different problems. To get a solution F(V) and investment rule V* for our

problem, we also apply the boundary conditions (6a) - (6c).

Example: Value of a Project. In Section 4 we examined a model of

investment in which we first had to value the project as a function of the

output price P. We derived a differential equation (15) for V(P) by
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treating the project as a contingent claim. Let us re-derive this equation

using dynamic programming.

The dynamic programming problem is to choose an operating policy (j - 0

or 1) to maximize the expected sum of discounted profits. If the firm is

risk-neutral, the problem is:

max Egfj[P(t) - c]e-rtdt , (A.20)
j-0,1 0

given that P follows the geometric Brownian motion of eqn. (14). The

Bellman equation for the value function V(P) is then:

rV - max (j(P - c) + (1/dt)EtdV) (A.21)
j-O, 1

By Ito's Lemma, (1/dt)EtdV - ao2p 2 Vpp + aPVp. Maximizing with respect to j

gives the optimal operating policy, J - 1 if P > c, and j - 0 otherwise.

Substituting a - r - 6 and rearranging gives eqn. (15).
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FOOTNOTES

1. I will focus mostly on investment in capital equipment, but the same
issues also arise in labor markets, as Dornbusch (1987) has pointed
out. For a model that describes how hiring and firing costs affect
employment decisions, see Bentolila and Bertola (1988).

2. For an overview of the literature on strategic investment, see Gilbert
(1989).

3. The importance of growth options as a source of firm value is
discussed in Myers (1977). Also, see Kester (1984) and Pindyck (1988).

4. See, for example, McDonald and Siegel (1986), Brennan and Schwartz
(1985), Majd and Pindyck (1987), and Pindyck (1988). Bernanke (1983)
and Cukierman (1980) have developed related models in which firms have
an incentive to postpone irreversible investments so that they can wait
for new information to arrive. However, in their models, this
information makes the future value of an investment less uncertain; we
will focus on situations in which information arrives over time, but
the future is always uncertain.

5. In this example, the futures price would equal the expected future
price because we assumed that the risk is fully diversifiable. (If the
price of widgets were positively correlated with the market portfolio,
the futures price would be less than the expected future spot price.)
Note that if widgets were storable and aggregate storage is positive,
the marginal convenience yield from holding inventory would then be 10
percent. The reason is that since the futures price equals the current
spot price, the net holding cost (the interest cost of 10 percent less
the marginal convenience yield) must be zero.

6. This is analogous to selling short a dividend-paying stock. The short
position requires payment of the dividend, because no rational investor
will hold the offsetting long position without receiving that dividend.

7. This is the basis for the binomial option pricing model. See Cox,
Ross, and Rubinstein (1979) and Cox and Rubinstein (1985) for detailed
discussions.

8. An introduction to these tools can also be found in Merton (1971), Chow
(1979), Hull (1989), and Malliaris and Brock (1982).

9. For an overview of contingent claims methods and their application,
see Cox and Rubinstein (1985), Hull (1989), and Mason and Merton (1985).

10. A dynamic portfolio is a portfolio whose holdings are adjusted
continuously as asset prices change.

11. A constant payout rate, 6, and required return, p, imply an infinite
project life. Letting CF denote the cash flow from the project:
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V0 -f oCFte -
tdt - T 6V0e(p-

6 )te-Ptdt,

which implies T - e. If the project has a finite life, eq. (1) cannot

represent the evolution of V during the operating period. However, it
can represent its evolution prior to construction of the project, which

is all that matters for the investment decision. See Majd and Pindyck

(1987), pp. 11 - 13, for a detailed discussion of this point.

12. An investor holding a long position in the project will demand the

risk-adjusted return pV, which includes the capital gain pRiu the

dividend stream 6V. Since the short position includes FV units of the

project, it will require paying out 6VFV.

13. Dixit (1988) provides a heuristic derivation of this condition.

14. The general solution to eqn. (5) is

F(V) - alfvl + a2Vf2 ,

where p1 - 1/2 - (r-6)/a 2 + ([(r-6)/a 2 - 1/2] 2 + 2r/2 1/2 > 1,

and 02 - 1/2 - (r-6)/o - ([(r-6)/o 2 - 1/2] 2 + 2r/o2 1/2 < 0.

Boundary condition (6a) implies that a2 - 0, so the solution can be

written as in eqn. (7).

15. This result was first demonstrated by Cox and Ross (1976). Also, note

that eqn. (5) is the Bellman equation for the maximization of the net

payoff to the hedge portfolio that we constructed. Since the portfolio

is risk-free, the Bellman equation for that problem is:

rP - - 6VFV + (1/dt)EtdP (1)

i.e., the return on the portfolio, rP, equals the per period cash flow

that it pays out (which is negative, since 6VFV must be paid in to

maintain the short position), plus the expected rate of capital gain.

By substituting P - F - FvV and expanding dF as before, one can see

that (5) follows from (i).

16. This point and its implications are discussed in detail in McDonald

and Siegel (1985).

17. Note that the option to invest is an option to purchase a package of
call options (because the project is just a set of options to pay c and

receive P at each future time t). Hence we are valuing a compound

option. For examples of the valuation of compound financial options,
see Geske (1979) and Carr (1988). Our problem can be treated in a

simpler manner.

18. By substituting (17) for V(P) into (15), the reader can check that 01
and $2 are the solutions to the following quadratic equation:
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(1/2)ao2P 1(C 1 -) + (r-6)f 1 - r - 0

Since V(O) - 0, the positive solution (,1 > 1) must apply when P < c,
and the negative solution (02 < 0) must apply when P > c. Note that f1
is the same as P in eqn. (8).

19. Of course the scrap value of the project might exceed these costs. In
this case, the owner of the project holds a put ootion (an option to
"sell" the project for the net scrap value), and this raises the
project's value. This has been analyzed by Myers and Majd (1985).

20. MacKie-Mason (1988) developed a related model of a mine that shows how
nonlinear tax rules (such as a percentage depletion allowance) affect
the value of the operating options as well as the investment decision.

21. As Dixit points out, one would find hysteresis if, for example, the
price began at a level between w and w + pk, rose above w + pk so that
entry occured, but then fell to its original level which is too high to
induce exit. However, the firm's price expectations would then be
irrational (since the price is in fact varying stochastically).

22. Related studies include those of Baldwin (1988) and Baldwin and
Krugman (1989). Baldwin (1988) also provides empirical evidence that
the overvaluation of the dollar during the early 1980's was a
hysteresis-inducing shock.

23. These ideas are also discussed in Krugman (1989).

24. Letting k be the maximum rate of investment, this equation is:

402 V2 Fw + (r-6)VFV - rF - x(kFK + k) - 0

where x - 1 when the firm is investing and 0 otherwise. F(V,K) must
also satisfy the following boundary conditions:

F(V,0) -V,

limv, FV(V,K) - e-6K/k,

F(0,K) - 0

and F(V,K) and FV(V,K) continuous at the boundary V *(K).

25. For an overview of numerical methods for solving partial differential
equations of this kind, see Geske and Shastri (1985).

26. In a related paper, Baldwin (1982) analyzes sequential investment
decisions when investment opportunities arrive randomly. She values
the sequence of opportunities, and shows that a simple NPV rule will
lead to over-investment.
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27. The production decisions of a firm facing a learning curve and
stochastically shifting demand is another example of this kind of
sequential investment. Here, part of the firm's cost of production is
actually an (irreversible) investment, which yields a reduction in
future costs. Majd and Pindyck (1989) solve for the optimal production
rule, and show how uncertainty over future demand reduces the shadow
value of cumulative production generated by learning, and thereby
raises the critical price (or level of marginal revenue) at which it is
optimal for the firm to produce.

28. Paddock, Siegel, and Smith (1988) value oil reserves as options to
produce oil, but ignore the development stage. Tourinho (1979) first
suggested that natural resource reserves can be valued as options.

29. Weitzman, Newey, and Rabin (1981) used this model to evaluate the case
for building demonstration plants for synthetic fuel production, and
found that learning about costs could justify these early investments.
Much of the debate over synthetic fuels has had to do with the role of
government, and in particular whether subsidies (for demonstration
plants or for actual production) could be justified. These issues are
discussed in Joskow and Pindyck (1979) and Schmalensee (1980).

30. For an overview of this literature, see Nickell (1978).

31. This means that the ratio of a firm's market value to the value of its
capital in place should always exceed one (because part of its market
value is the value of its growth options), and this ratio should be
higher for firms selling in more volatile markets. Kester's (1984)
study suggests that this is indeed the case.

32. Abel, Bertola, Caballero, and Pindyck examine the effects of increased
demand or price uncertainty holding the discount rate fixed. As Craine
(1989) points out, an increase in demand uncertainty is likely to be
accompanied by an increase in the systematic riskiness of the firm's
capital, and hence an increase in its risk-adjusted discount rate.

33. The firm has an option, worth G(K,8), to build a plant of arbitrary
size K. Once built, the plant has a value V(K,0) (the value of the
firm's operating options), which can be found using the methods of
Section 4. .G(,,0) will satisfy eqn. (l1),, but wilh *boundary
crnditions G(K ,e ) - V(K ,0 ) - kK and Ge(K ,0 ) - VO(K ,0 , where
0 is the critical 0 at which the plant should be built, and K is its
optimal size. See the Appendix to Pindyck (1988).

34. Caballero and Corbo (1988), for example, have shown how uncertainty
over future real exchange rates can depress exports.

35. Van Wijnbergen is incorrect, however, when he claims (p. 369) that
"there is only a gain to be obtained by deferring commitment if
uncertainty decreases over time so that information can be acquired
about future factor returns as time goes by." Van Wijnbergen bases his
analysis on the models of Bernanke (1983) and Cukierman (1980), in
which there is indeed a reduction in uncertainty over time. But as we
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have seen from the models discussed in Sections 3 and 4 of this paper,
there is no need for uncertainty over future conditions to fall over
time. In those models, the future value of the project or price of
output is always uncertain, but there is nonetheless an opportunity
cost to committing resources.

36. The sharp jumps in energy prices in 1974 and 1979-80 clearly contri-
buted to the 1975 and 1980-82 recessions. They reduced the real
incomes of oil importing countries, and had "adjustment effects" --
inflation and further drops in real income and output due to rigidities
that prevented wages and non-energy prices from quickly equilibrating.
But energy shocks also raised uncertainty over future economic condi-
tions; it was unclear whether energy prices would fall or keep rising,
what impact higher energy prices would have on the marginal products of
various types of capital, how long-lived the inflationary impact of the
shocks would be, etc. Much more volatile exchange rates and interest
rates also made the economic environment more uncertain, especially in
1979-82. This may have contributed to the decline in investment
spending that occurred, a point made by Bernanke (1983) with respect to
changes in oil prices. Also, see Evans (1984) and Tatom (1984) for a
discussion of the effects of increased interest rate volatility.

37. See Pindyck (1990) for a more detailed discussion of this issue.

38. Recent examples are Fisher and Hanemann (1987) and Hanemann (1989).
This concept of option value should be distinguished from that of
Schmalensee (1972), which is more like a risk premium that is needed to
compensate risk-averse consumers because of uncertainty over future
valuations of an environmental amenity. For a recent discussion of
this latter concept, see Plummer and Hartman (1986).

39. For a more detailed discussion of dynamic programming, see Chow
(1979), Dreyfus (1965), and Fleming and Rishel (1975).



Figure I - Price of Widgets
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Figure 3
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Figure 4 F(V) for 8= 0.04,0.08
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Figure 5 V os ao Function of 8
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Figure 6 V (P) for ao = O, 0.2, 0.4
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7 V (P) for 8 = 0.02, 0.04,0.08
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Figure 8 V(P)-I, F(P) for o = 0.2, 8 = 0.04
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Figure 9 V(P)-I,
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Figure 10 V(P)-I, F(P) for S=0.04, 0.08

2

NOTE ; r =.04, o =:.2, c = 10,
P P8 =.0 4

=238
I = 100

P =.08" 292

500

400

300

> 200

SI00

0

-I00
C

F(P) for o = 0.0, 02, 0.4
mA,•.

a..

La-

" P =.= 23.8

c



P vs. ao for 8 = 0.04, 0.08Figure II
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