

Introduction.

In connection rith high spead omputing devicos it in semotimes nocessary to have precise informetion bout the position of a rotatre shaft and to have this information cor inuousiy apenaile in the form OR a puise wave-Form numbers The shat mav be required bo tian in either direction at irsegular interval: and speeds.

The position of a shat having undirgeticnei motion Prequently has been indicated by the use of a congenticnail 3caing (ry counting) circuit. A slotted dise is attached to the shaft am an optices system used to produce Inght pulses on a phototube when the sheft roetatos. The resulting electrical pulsss are then countod or the scaing sircuit. The number of ccuncs so recorded is a measure of the total angular motion of the shaft from an initial zero position.

The same type of approach can be made to the solution of the prosent problem. The requirementa in block diegram form are as shown in Figure 1 . Two phototubes are necessary in orcier to allow the system to recognfize direction of shart rotation. The puise generator produces forward for adaing pulses for Tosward rotailon of the shaft and bachward (or subtracting) pulses for backwarc rotation of the shaft, One pulse is to be produced per dise slot and the zhape of the pulse is to be independent of the speed of rotation (up to a maximum of 60,000 pulses per aecond). The reversible counter differs from an

 sheft postition with respect to an initian aoro position, The courcer must also control a reading cirouit. Who reader receives "clockn prases from the gyachroniaing aystan of the computer (at perhape mioromenood intorvais) and must produco a codec puise move-fora nubler corresponding to tho ineduation of the cowtrar. The maverom number is recetved by the storace gystem of the computer and is repiaced materover the counter tratication chenges.

Hechajice? witical sysum.

Trformation with rocpoct to diraction ofrotation of the thaft is sotained by phasing the sliti apanggs of the two phototuhes with respect to sach other as ahowfochanaticeliy in Figure 2 , it the instant indicated in the sigure, phototibe A is in transition fren non-191umno tion to illumination for clochovise rotation of the aisc, am phototube B is rarts. Tith tinis condition the pulae generatcr produesa a formerd pulse. With counterclockice rotetion a cianges from aight to daris, E carls, and a bectward pulas is podeced the puise generatar gives no puises for A trabe trancitions eccuring ot the upp occge of the sinots
 the oxtrout.

For experimontal tost puroses for this reseerch the arro Leboratory has constructed a smelfeise nith 250 slote mountad on a shait which can be turned mennelly, togother with heusings for two 931 phototubes. cir, C. R. Riciar is invostigeting the posstinity of

 proctical lines cen be pleced, the sesonioted bertia of the disc sysiem, snd the accelerotion to which it met reapont. Possibly 500 to 1000 lines per ineh can be obtoined by the use of sound track techaiques. Mo invostigation has icen :ande as to whethor the sensitivity of she 921 vill io suf?ictont sor such errongenonte.

Yuiso Gomorator:

The essenticl roatures of a setisfactory pulise gencrator are shom in Figure 3. A campcte echometic (differing slightly from
 direct coupied mitiyibratorfinet is stablo only when one tube is complotely cut onf. The circuit constants havo bean chosen so that the high transition (VI chenging suddeniy from non-conducting to cone ducting! occuss as the potential of Gl increases above 60 volts, while the lon trancitioz (TI ohanging zudenty from conducting to zon-conducting) occurs as the potention of GI decreases belor 50 volts. The sucieden rise of plate potential of vi at tho lon transition (phototube A dark to light) couses a positivo pulse on the grid oir $V 5$, which (is a is dark) produces a positive pulse in the "Sormard" 70 obm lino output. A similier rise of the plate potential of V2 at the high trensition cousos a positite pulse on the grid of V6 and (for B dark) a positive pulse in the "backrard" 70 onn lime output. Phototube B contiols a multivibrator $\mathrm{V}-\mathrm{V} / 4$ identical to $\mathrm{V}-\mathrm{V} 2$. V 5 and V 6 can transmit pulses only if $V \cdot\}$ is non-conducting.

The Eiferential of 10 volts bstwoen the kigh and lon trensition points ingures that the multivibratars remain stable oven if the disc fitters across a transition point．NC coupleng is required betreen the phototubss and G1，G⿳亠二口欠，in order to take care of very siow spesd disc motion． 55 volts is a convanient DC level for the 931 platas． Their 思eris voltage must be above 65 volts and their＂light＂voltago below 45 volits．

When the disc turns at constant epeed the voltages applied to gride Gl and 63 gill yarg approcimately sinusoidaily about 55 volta． For fomard rotaition the Gl voltage leacs the fig voitage by about 90 degrees，while for backward rotation the Gl voltage lage 63 by about 90 degrees．The pulae generator has been tested by applylng sinusoidal voltages form an oscilletor to Gl and G3 with eppropriate phase dirference．Setisfactory operation was observed at 60 cyoles and at 250 icilocyclea，as mell as for DC transitions．The uppar frequency limit con be entendec if necebsary．The generstor has not yet bean tested with phototubes and a rotating disc．Apprezinately 15 ，yolt pulses of 0.7 mero－seconds duration are obtained in the 70 ohn line outputs．

Reversible Counter．

Figure 4 shows the design of a revarisible binary counter．Tho stages only have been drawn．In each stage，a and bubes are direct coupled multivibrator components similer to those of a conventional scaling circuit．Each atage is designed to respond to negative pulses and the same pulse is applisd to both a and b grids．Conduction by an a tube，non－conduction by a b tube represente a zero for the corresponding binary digit．During addition a carry－over pulse to the next atage occurs

 are incetivated by reeson of the positive square -wave applied to the grid of BA. On the other hazd, for subtraction a carry-over pulee oceurs or the tranition a conductirg to non-conducting (0 to 1) by mena of the d tubo. During subtraction a positive square-nave is appliad so the grid of DS and all c tubes inectivated.

Tho fto aicro-gecond dolzur mitivibrators for a self-restoring tfoc) cre naceadmy to allor time for the add or subtract gatos to be scjuoted provarly iestore the counting pula is received. Since nocessary carry-orer-for all atages nast tallo place in the time intorval botwoen puises it is lesirabla that succosire trigearing ocur rapidy. The 5 micro-secom duration fnifated for the edd and subtract gatec 2roknbly will be auficient for s 14 stage countey.

Circuit constants for the counteri have been determined and two stages constructed and operated (with only a, $\underline{\underline{m}}$, $\underline{\text { a tubs active). It }}$ responds satisfactorily to pulses at 2.5 micro-second intervals and the speed of response aan be increased if necessary. Camry-over time Sor tmo stages is of the order of 0.1 ricro-second. A few more bread board stages are being assembled and tested before specifications are drawn mp for a 14 stage system. The latior must also await final design of the reader.

Reader.

A tentative design of the reader has been dramn up but no circuit constants have been decided and no tests yet mads;

figure 1

Figure 2.

$-53=$
FIGURE 3

V. B. Electroafechanical Computers
; Staif: Mr。R.M。Rodncissar
Dosign of an olectrominechanical computor for solving certein types
of integral oquations appearing in antenna radiation pattern problems has bean completad. This wark was started in Group 5d of the Radiation Laboratoxy. Mr. Kylin, now with the Navel Research Laboratory Fiold Station, is responsible for the mechanical desien, and a comput or probably will be congtructed by the Naval Research Leboratory.

A tontative design of a device for following an unpropared curve, with a method of removing dincontinuities in the orror voltage, has been mado.

