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ABSTRACT

Induction heating allows the generation of thermal energy in the
heated element itself thereby eliminating the thermal contact resistance
present in conventional heating methods. The induction heating of cir-
cular ferromagnetic plates is studied to predict power levels under
various a.c. magnetic excitation conditions.

A lumped parameter transformer model is developed with the non-
linear equivalent disk resistance expressed as a function of the terminal
variables in the system. The transformer model is effectively applied to
predict operating efficiencies and particularly the frequency response of
the system. A working model is built and tested to compare analytical
and experimental data. Extensive experimental results are presented to
justify the theoretical model.
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CHAPTER 1

INTRODUCTION

Heating methods without thermal contacts are based on the

phenomenon of electromagnetic induction. A.C. current is produced in

a conductor when placed in an alternating magnetic field which gives

rise to a heating effect within the conductor. This concept has been

successfully exploited in metallurgical processes for localized and

high-speed through-heating of various articles. These characteristics

of induction heating can be applied effectively to the development

of the induction range.

The basic arrangement for an induction range is that shown in

Figure 1.1(a) in which an alternating magnetic field is produced by an

exciting coil which in turn induces eddy-currents in a conducting

circular plate placed above the coil. As a consequence of the magnetic

coupling between the primary coil and secondary metallic body, eddy-

currents flow in circular paths giving rise to a heating effect and also

a body force acting on the disk as a result of the interaction between

the eddy-currents and radial magnetic field. To carry out a theoretical

study of the system a lumped-parameter transformer model is developed

as shown in Figure 1.1(b).

Induction heating allows the generation of thermal energy in the

cooking vessel itself, thereby eliminating the thermal contact resistance

between the heating element and the cooking vessel in a conventional

range. This causes the heating element to have a much higher temperature

than the vessel particularly when rough surfaces are present. An

inductively heated vessel would reduce the thermal inertia of the overall
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system allowing faster control of the operating temperatures. This would

reduce much of the energy dissipated in conventional ranges after the

power has been switched off while at the same time reducing air-

conditioning requirements in confined spaces. As a result of lower cook-

top temperatures safety is enhanced. Maintenance would be facilitated by

the construction in modules. The effects of electromagnetic radiation

emanating from an induction system have been studied and no harmful effects

1,2
have been detected. However, many technical problems exist with the

successful development of the induction range, this thesis undertakes a

study of these problems and implements proposed methods of solution.

Maxwell's Equations may be solved using the magnetic vector

potential to give the magnetic field distribution around a current-

carrying coil. Using the principle of superposition two concentric

coils with an axial separation may be considered and the mutual inductance

derived. In the coil-disk arrangement of Figure 1.1(a) the disk can be

decomposed into circular filaments and the above results used to find

the mutual inductance between the primary coil and each filament and

also between filaments of the disk. By superposition the inductance

terms in the transformer model may be found, Figure 1.1(b).

In order to create practical power levels it is necessary to use a

circular ferromagnetic plate. Because of its non-linear permeability

the modeling of the disk resistance becomes a difficult problem, since

its value behaves as a function of the current flowing in the primary

coil. As a result of the eddy-currents the magnetic field in the disk

decays exponentially from the surface. This decay is characterized by

the skin depth of the magnetic material. The eddy-current density has



a similar decay but using the Poynting Vector it is possible to take

the decomposed disk and characterize each circular segment with an

equivalent current and resistance and thus reducing the problem to that

of a current-carrying coil. However, the equivalent current and

resistance of each filament is a function of the non-linear permeability.

If each filament is characterized by its own permeability obtained from

an experimentally determined magnetization curve for the material, then

superposition can be used to determine the power generated in the disk

and the equivalent resistance, RD, of the disk. The resistance of the

primary coil can be determined from the conductor properties and

corrections made for high frequency operation. Using the complete

parameter model the effects of frequency of excitation and current

levels in the primary are studied for efficiency of operation.

The studies carried out using the lumped parameter model suggest

that high frequency operation is desirable from the point of view of

power levels and efficiency. Operation above 20 kHz eliminates the

problem of acoustic noise. However, the cost per watt increases

rapidly with frequency. The system constructed operates at 10 kHz

where acceptable power levels and efficiency are obtained at a reasonable

cost. Two induction ranges already built 1'3 operated at 22 kHz and

35 kHz.

In previous designs a major problem arose with the dissipation

of the energy due to copper losses in the primary coil. The hitherto

solution has been to use forced convection cooling by placing a fan

beneath the coil and allowing air to flow through the center of the coil

and between the top of the coil and range surface. There are two major



disadvantages with this scheme. Firstly, the levels of flow required,

meant "noisy" systems which offset the elimination of acoustic noise by

high frequency operation. Secondly, for such a system to operate a

clearance must exist between the coil and range surface, this is un-

desirable because the power generated in the disk falls off rapidly with

increasing axial separation due to the reduction in magnetizing flux

(Lm in the lumped parameter model). In the system studied here,

advantage is taken of skin depth by using a hollow conductor for the

exciting coil and removing heat by forced convection with fluid flow

through the hollow conductor. Not only does this mean a quieter system

but it enhances the coupling between the primary and secondary by

eliminating the clearance space. This allows a lower operating frequency

for the same magneto-motive force and power level requirements.

A block diagram of the complete induction system is shown in

Figure 1.1(c). Power is fed from the A.C. supply (60 Hz) to a rectifier

and filter circuit, the D.C. output is used to drive a 10 kHz inverter

circuit with a sinusoidal output supplied to the primary coil at the

working frequency. The lumped parameter model facilitates the design

and choice of system components since the inverter output voltage and

current are fixed by the coil and disk. A digital trigger circuit

is designed to pulse the SCR's such that the triggering of two thyristors

simultaneously resulting in a short circuit of the inverter is

eliminated.



CHAPTER 2

DEVELOPMENT OF THE TRANSFORMER MODEL

2.1 Field Theory Solution of the Electromagnetic Field

For a magnetoquasistatic system 4, the following forms of Maxwell's

equations hold in a linear homogenious isotropic medium

V x H = (2.1.1)

V * B = 0 (2.1.2)

V * j 0 (2.1.3)

Vx E- Dt (2.1.4)

B 0 (H + M) (2.1.5)

= pH (2.1.6)

B = V x A (2.1.7)

V * A = 0 (2.1.8)

Combining (2.1.1), (2.1.6), (2.1.7) and (2.1.8) we obtain

V2 A = - WJf (2.1.9)

A is the magnetic vector potential and in the case of cylindrical

symmetry where only the angular component exists (2.1.9) may be expanded

to give

aA 2A A
V2 A 1 a (r ) + - = - pJf (2.1.10)

4 A r a r z2  r2

If the current density Jf = 0, we obtain

aA D2A A
1 (r - + = 0 (2.1.11)
r r ar r 2a

for which we may assume a solution of the form
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A = R(r) * Z(z) (2.1.

where R is a function of r only and Z a function of z only, equation

(2.1.11) becomes

1 a aR 1 _ 1 a 2z 2
(2.1.

Rr 3r ar r Z z2

The left hand side of (2.1.13) is a function of z only and since R and

Z are independent then there exists a k such that

1 Z - k2  
(2.1.

Z az 2

Now equations (2.1.13) and (2.1.14) may be written in the form

r (r ) + (k2r2 - 1) R = 0
ar r

d2Z _ k2 Z = 0
dz2

Equation (2.1.15b) has solutions

Z(z) = Ek ek + Fk e- k z

= Ez + f

12)

13)

14)

(2.1.15a)

(2.1.15b)

(2.1 .16a)

(2.1.16b)

k 0

k= 0

Equation (2.1.15a) is the general Bessel Equation with n = 1 and so

has a solution of the form5

R(r) = AJ1(kr) + BNl(kr) k 0

= Ar + B

(2.1.17a)

(2.1.17b)k= 0

E, F, A, B are constants determined from boundary conditions, n, k

are real.



Jl(kr) is the Bessel Function of order 1 and argument 
kr.

Nl(kr) is the Neumann Function of order 1 and argument kr.

Note that the above solution only applies for the current density

if = 0.

Consider now a coil carrying a current i in a single plane loop

of radius a as shown in Figure 2.1 where the plane of the coil defines

z = 0. This is a case of cylindrical symmetry where the vector potential

has an angular component only so the solution derived above applies.

We divide the solution into two parts, that above the plane of the coil

(z > 0) and that below it, in these regions Jf = 0 only if the

conductivity a is zero (Jf = cE).

In equation (2.1.17) B is zero since a finite solution exists

at r = 0 and the Neumann function N1(r) has a singularity at the origin.

Thus combining (2.1.16) and (2.1.17) in (2.1.12) we obtain

A = f A+(k) J 1 (kr) e- kz dk z > 0

(2.1.18)

Aq = A-(k) J1(kr) ekz dk z < 0

Here the solution is in integral form since k is a continuous eigenvalue.

Equations (2.1.1) and (2.1.2) impose two boundary conditions at

the coil plane z = 0.

The first implies

n x (H- ) = k (2.1.19)

where n is the normal vector to the coil plane and kf is the surface

current density at the boundary which in this case is given by

kf = i 6 (r - a) (2.1.20)



r

Figure 2.1 Single Loop Plane Coil Carrying Current i
Showing Co-ordinate System

BT +S Hr r
_ t -- --BZ=

Figure 2.2 Conditions at the Boundary of Two Media
Characterized by Different Permeabilities



6(r-a) is the Dirac-delta function.

From (2.1.6) and (2.1.7) we obtain

Hr 1 A (2.1.21)
r - az

The second boundary condition arising from (2.1.2), i.e. V * B = 0 implies

++
A = A at z = 0 so that

A +(k) = A-(k) (2.1.22)

We shall now consider two cases, in the first we assume the coil is

in free space i.e. characterized by a permeability p 0 and conductivity

a= 0. In the second case we consider a medium in which the region above

the coil (z > 0) is characterized by a permeability V and the region

below (z < 0) by that of free space i . In this case we again assume

the total medium is characterized by zero conductivity to ensure that

the current density Jf is zero for the derived solution to apply and so

current is confined only to the coil creating the field. The necessity

for this refinement will become apparent later when in a physical

system the magnetic medium will have a finite conductivity.

Case One

Here the total medium has a permeability -o and zero conductivity.

Applying the first boundary condition (2.1.19) to (2.1.18) using

(2.1.20) and (2.1.21) we have

I--F A+(k)Jl(kr)e-kzkdk + A-(k)J 1 (kr)ekzkdk = i6(r-a) (2.1.23)
oo o z=O

Evaluating and rewriting using k' instead of k we obtain

-o [A+(k') + A-(k')] J1 (k'r)k'dk' = i6(r-a) (2.1.24)



Now multiply both sides by Jl(kr)r and integrate from r = 0 to r =

o (kr)rdr f[A+(k') + A(k') 1 (k'r)k'dk'

= o f i6(r-a)Jl(kr)rdr (2.1.25)

From the Fourier Bessel Integral6

f(k) = J (kr)rdr f f(k')J m(k'r)k'dk' (2.1.26)

We also have from the properties of the Dirac-delta function

o i6(r-a)J 1(kr)rdr = iJl(ka)a (2.1.27)

Substituting these two results in (2.1.25) we obtain

A+(k) + A-(k) = p i a J1(ka) (2.1.28)

Combining this with the second boundary condition (2.1.22) the complete

solution for (2.1.18) for case one is

A + (r,z) = ia (ka)(kr) e+kz dk (2.1.29)

Case Two

In this case the region z > 0 is characterized by a permeability i

while the region z < 0 is characterized by p . Both regions have zero

conductivity. Figure 2.2 illustrates the two regions as well as the

conditions at the boundary.

As in case one we apply the first boundary condition (2.1.19) to

(2.1.18) using (2.1.20) and (2.1.21) now taking account of the

different permeabilities to obtain
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1 o A+(k)Jl(kr)e-kZkdk] + o A-(k)J 1 (kr)ekzkdk] = (r-a)

(2.1.30)

Proceeding with the solution as before using the Fourier Bessel Integral

we obtain

1 A (k) + 1 A-(k) = iaJl (ka) (2.1.31)
P 110

The same boundary condition on the magnetic flux density applies so that

A +(k) = A-(k) and

A (k) = o aiJ (ka) (2.1.32)

1+0

For a ferro-magnetic material p >> 1o0 so

A+(k) =- 1j aiJ 1 (ka) (2.1.33)

This is a factor of 2 greater than that obtained for case one with a non-

magnetic medium. Thus in this case the complete solution for A is

A + (r,z) = ai o 1 ( ka ) J1 ( k r ) e +kz dk (2.1.34)

2.2 Eddy-Current Density Distribution in the Disk

The basic arrangement for an induction heating system is shown in

Figure 2.3 where the alternating magnetic field is produced by an

exciting primary coil which produces eddy currents in the disk. As

stated in the introduction the magnetic coupling between the primary

coil and secondary conducting body, characterized by a permeability 1

and conductivity a, gives rise to eddy-currents which flow in coaxial

circular paths and produce secondary vector potential fields. The eddy

currents will be in the opposite direction to that of the primary coil



Secondary Disk

a ry
ii

bI'" c

Figure 2.3 Coil and Disk Arrangement in an Induction
Heating System

Js (P)

Figure 2.4 Axial Decay of Eddy Current Density in a
Disk Placed in an Alternating Magnetic
Field.



current. The solutions we have already derived for the vector potential

field due to a current carrying coil will apply here for the primary

coil. If we now decompose the secondary disk into circular filaments

carrying eddy currents then the derived solutions also apply provided

we can satisfy the conditions under which those solutions hold. By

superimposing the two solutions we can find the total vector potential

and from this the eddy current density distribution and the flux density

distribution. Since the vector potential has angular components only

then they may be added algebraically. To simplify the solution of the

governing integral equations we shall assume in the analysis that follows

that the disk is infinite in the radial direction and semi-infinite in the

axial direction. In practice these assumptions are reasonable to predict

the quantities of interest such as power absorbed and equivalent

resistance provided the disk radius is greater than 1.5 times that of

the primary coil radius and that the skin depth of the disk is less than

one fifth of the disk thickness.

The two properties of interest in the disk are its magnetic per-

meability and electrical conductivity a. The permeability p is a non

linear function of the flux level, however, if we assign permeabilities

in accordance with flux levels in each filament of the decomposed disk

then we can apply the principle of superposition. The solutions for the

magnetic vector potential in equation (2.1.18) assume the coil to be

placed in a medium of zero conductivity and later we distinguished

between magnetic and non-magnetic media but still assuming no

conductivity. To account for the finite disk conductivity we shall

assume the coil is situated in a medium with one region having a



permeability p (case two) and utilizing the Poynting Vector reduce

the eddy currents in the disk to equivalent currents flowing in a thick-

ness 6, the skin depth in the disk and then apply case two to the

equivalent currents.

Applying case two to the coil neglects the coil-disk separation,

which is reasonable provided there is close coupling as would be the

case in a physical system. From equation (2.1.34) for an N turn primary

carrying a magnetizing current of complex amplitude Im then the complex

amplitude of the vector potential is

-k
As(r,z) = NIma Jl(ka)Jl(kr)e-k zdk (2.2.1)

Equation (2.2.1) assumes all the turns are concentrated at a radius a.

We drop the suffix 4 since we are interested in the angular component

only. We will write As for As etc. By considering Maxwell's Equations

it can be easily shown that the eddy-currents and magnetic flux density

decay exponentially into the disk where the decay is characterized by

the skin depth 6 as shown in Figure 2.4, where Js(p) is the complex

amplitude of the eddy-current density at the surface of the disk and

radius p. The skin depth 6 is given by the formula

: 2 (2.2.2)

where w is the exciting frequency. Further consideration of the Poynting

Vector at the disk surface shows that an equivalent rms current

Js(p)/2 6dp flowing in an annular segment of width dp and thickness 6

at a radius p gives rise to the same absorbed power in the disk [an

extensive discussion on the concept of equivalent current for eddy



currents is given by Ryder, reference [7] pages (437-442)].

Since we have already assumed that disk to be semi-infinite in the

axial direction, which is justified by assuming disks where the skin

depth is a factor of five less than the disk thickness, then case two

applies to the eddy currents. The amplitude of the vector potential

at the disk surface due to the equivalent current in an annular

segment at a radius p is, from (2.1.34)

Js(p)
dA (r,z) = p P V7 2 6dp Jl(kp)J(kr)dk (2.2.3)
e oo

Equation (2.1.34) is evaluated for z = 0. The amplitude of the
Js(P)

equivalent current in a segment is v2 x s2 Since we are interested

in the conditions at the disk surface, the origin of z is now taken at

the plane of the primary coil and interpreted as the coil disk separation.

Thus dAe(r,z) is the vector potential at the disk surface, a distance z from

the primary coil, at a radius r due to eddy-currents in a segment at a

radius p in the disk.

Combining (2.2.1) and (2.2.3) using the principle of superposition

the complex amplitude of the angular component of the magnetic vector

potential at the disk surface due to the primary coil current and disk

eddy-currents is

A(r,z) = oNI ma Jl(ka)Jl(kr)e -kdk

+ J sJ(p)pdp Jl(kp)J 1 (kr)dk (2.2.4)

Also combining (2.1.4) and (2.1.7) we have

V x E = - V x (2.2.5)



Also

jf = aE (2.2.6)

aA

Now for

A(r,z,t) = A(r,z)ejwt (2.2.7)

then

Js(r,z) = - jwa A(r,z) (2.2.8)

Where A(r,z) is given by (2.2.4) thus

Js(r,z) = - jwp 0a {NIma J' Jl(ka)Jl(kr)e-kZ dk
0

+ Js(p)pdp o J1 (kp)J(kr)dk} (2.2.9)

We now solve for Js(r) at the disk surface using the Fourier-Bessel

Integral. We drop z from Js(r,z) since z is interpreted as the coil-

disk separation. Multiply both sides of (2.2.9) by Jl(kr)rdr and

inegrate from r = 0 to r = c. Using the Fourier-Bessel Integral

(2.2.26) the right-hand side of equation (2.2.9) can be manipulated

as follows

SJ1(kr)rdr 
{ & 1(k'a)e-} Jlk 1 (k'r)k'dk'

S l z(ka)e-kz (2.2.10)

o J1 (kr)rdr o{ -fo s()J(k'p)pdp} Jl(k'r)k'dk'

= J 5 ()J1(kp)pdp
= OJ



= o s(r)J1(kr)rdr (2.2.11)

Now equation (2.2.9) becomes

Js(r)J 1 (kr)rdr = - j NIm 1 J (ka)e-kZ

J0 F Js(r)J(kr)rdr (2.2.12)

Rearranging (2.2.12) we obtain

oILd -JUIJoNlmar s(r)J 1(kr)rdr = jml ~ a6 1l(ka)e-kz (2.2.13)
k[1l+ ]

V2 k

Again multiply both sides by J1 (kr)kdk and integrate from k = 0 to

k = o and simplify using the Fourier-Bessel Integral (2.1.26)

J s (r) = o l(kr)kdk o Js(r')J 1 (kr')r'dr' (2.2.14)

Js(r) = - jwIoo NI a j dk (2.2.15)
[1 + - ]

v2 k

This is the final expression for the complex amplitude of the eddy

current density at the surface of a disk at a radius r and a distance

z above the plane of a coil carrying a magnetizing current of

amplitude Im.

2.3 Magnetic Flux Density Distribution in the Disk

Mathematically it is not strictly correct to use a field dependent

non-linear permeability in a linear theory. However using the segment

approach, where each annular segment is assigned its own characteristic

permeability and then carrying out integration over all the segments does
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approach the true solution. The mathematical derivation of the current

density distribution at the disk surface included p, in the form of 6

the skin depth, as a function of the variable of integration r in

(2.2.15), we shall see later that the formulae for the power dissipated

in the disk and the disk equivalent resistance also incorporate this

dependence of i on the variable of integration. Only if this dependence

is strictly adhered to can the principle of superposition of linear

system theory be applied. To determine the characteristic permeability

of each segment we must first calculate the flux density distribution

in the disk.

Combining equations (2.1.4) and (2.2.6) we have

a 1 (VxJs) (2.3.1)

Since the eddy current density has an angular component only then the

complex amplitudes of the axial and radial components of the magnetic

flux density at the disk surface are given by

1 J J
Bz - + (2.3.2)

jwY ar r

Br = 1 -  --- ) (2.3.3)

where J is the angular component of eddy current at the disk surface

i.e. Js(r,z).

Substituting (2.2.15) int(2.3.2) noting the relation we obtain

d Jn(x) = Jn- 1 (x) ndx n n-(X) - Jn(x)



B (r) = p Na J(ka(ka(ka)e kdk (2.3.4)
z m jP 6

S[1 + -- ]

Sl(ka)d1(k/ k

Br (r) = pN Ima I J dk (2.3.5)

o [1 + i ]
V#k

To find the total flux density at a radius r we take the vector sum of

the complex amplitudes of the axial and radial components

B(r) = Br(r) + jBz(r) (2.3.6)

Using the amplitude of this the distribution p(r) of the permeability is

found from the normalized magnetization curve for the disk material.

B(r) gives the radial distribution of flux at the disk surface.

The axial variation of flux density follows the same exponential decay

as the eddy-current density Figure 2.4. A further refinement could be

made on the permeability due to the axial variation of flux. However

we are mainly interested in the equivalent skin depth region where the

power is absorbed. As a first approximation we could define an

equivalent flux corresponding to the equivalent current (section 2.2)

having an equivalent rms value 1/2 B(r) where B(r) is the complex

amplitude at the surface. The amplitude of the equivalent flux density

would be 1/V B(r) or 0.707B(r). We shall see later on the magnetization

curve for cold rolled steel that over wide ranges of flux the permeability

Ip remains essentially constant. Thus refining p using 0.707 B(r) instead

of B(r) is rendered meaningless by the small change in p and also by the

errors accumulated in experimental data and numerical integration.
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1
Note also 6 a c-which is the quantity of interest.

2.4 Transformer Model Parameters

With the current and flux distributions derived in sections (2.2)

and (2.3) we are in a position to derive expressions for the parameters

of the transformer model in terms of these distributions. In deriving

the expressions we made two assumptions, i.e. the disk is infinite in its

radial dimension and semi-infinite in the axial direction. The latter

assumption allows the use of the Pounting Vector to form an equivalent

secondary disk current flowing in an equivalent resistance, the lumped

parameter secondary disk resitance RD.  The resistance of the primary

coil RC, can be calculated from the physical dimensions and electrical

properties of the coil conductor with corrections made for high

frequencies where skin depth phenomena are prominent. The inductance

terms can be found from the flux distribution by dividing the disk into

annular segments and setting up inductance matrices to represent the

mutual inductance of the segments and from these the magnetizing and

leakage inductance terms are found.

(a) Disk Resistance RD

For an annular segment at a radius r of width dr then from the

Poynting Vector 7 we can find the equivalent rms current as in equation

(2.2.3) which is

J (r)
dl 6dr (2.4.1)2

where Js(r) is the amplitude of the eddy current density at the disk

surface given by (2.2.15).

This equivalent current flows in a thickness 6, the skin depth,

so the equivalent resistnce of the segment is



dR = 2r (2.4.2)a6ddR r

where 6 which is a function of i (equation 2.2.2) is evaluated at the

radius r, a is the disk conductivity.

The average power flowing into the segment is then given by

dP = [dleq] 2dR

=- [Js(r)]2 6rdr (2.4.3)

Integrating equations (2.4.1) and (2.4.3) over the whole disk we obtain

I = 6dr (2.4.4)0

P T J [o s(r)] 2 rdR (2.4.5)

and the equivalent resistance of the disk is

P0  P (2.4.6)

eq

(b) Coil Resistance RC

Since we are using a hollow conductor to provide forced convection

cooling we assume that at the operating frequencies the thickness of

the conductor A is greater than the skin depth.

The d.c. resistance is

N2ra
RC d.c. =  2Ta A

where a is the mean coil radius ac is the mean conductor radius and ac

is the electrical conductivity of the conductor, N is the number of turns.



R= N2Ta (2.4.8)
C a.c. c27ac

SO

RC a.c. _ A 
(2.4.9)

RC d.c.

(c) Coil Self-Inductance Ls

Many formulae are available for coil self-inductance a suitable

formula for the present case is

Ls = oN2a {n (12 + 3C - 15 C2 +...)-(2 + C - C +...)}04 8
(2.4.10)

C R

16a 2

R = 0.2235 (b + c')

R is the geometric mean distance of the coil cross-section, this equation

is given in reference [8], b and c' are the dimensions of the coil cross-

section, Figure 1.3(a).

(d) Magnetizing Inductance Lm

The self inductance of the primary coil is given by the sum of the

magnetizing and leakage components

Ls = Lm + L (2.4.11)

If L2 is the secondary inductance then the mutual inductance is

M =  ]i 2T (2.4.12)

the coupling co-efficient is unity since by definition Lm excludes the

leakage flux L . We may write



Lm M2  (2.4.13)

To evaluate the magnetizing inductance Lm we divide the disk into

segments and find the mutual inductance between the primary coil and

each segment to form a mutual inductance matrix [M]. We also find the

self inductance of each secondary segment using (2.4.10) and also the

mutual inductance between the various segments of the disk to give the

secondary inductance matrix [L2] with the self inductance terms on the

main diagonal. Rewriting (2.4.13) in matrix form we have

Lm = [M]T [L21-I [M] (2.4.14)

From the definition of mutual inductance

"2
12 Il

= N Bzl(r)2rdr (2.4.15)
1 o

We can easily drive formulae for mutual inductance terms in (2.4.14)

using the equation for flux density distribution in section (2.3). For

the disk segments N2 = 1, A will be the radius of a particular segment.

(e) Leakage Inductance Lk

From equation (2.4.11) we have

Lt = Ls - Lm

with Ls given by (2.4.10) and Lm by (2.4.14).

2.5 Terminal Variables and Efficiency

In the last section we derived expressions for each of the model

parameters in Figure 2.5(a). An expression was also found for the
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equivalent load current I . Both RD and Ieq are functions of the

current Im flowing in the magnetizing branch of the model as expressed

by equations (2.4.4) and (2.2.15), we reflect both of these quantities

into the primary to give the equivalent circuit of Figure 2.5(b). With

the aid of the equivalent circuit the phasor diagram of Figure 2.5(c)

is set up from which the terminal voltage and current of the coil-disk

arrangement are found.

The efficiency of the system can be found from the transformer model

with knowledge of the various parameters. The current in the reflected

resistance RR from Figure 2.5(b) is

jXmI 
m

eq RR+jXm Ip (2.5.1)

where Xm is the reactance of the magnetizing branch. The efficiency is

out
nCD = inin

jXm  2

RR+jXm P 2 RR

jX m  2

RCIp2 RR+jXm Ip RR

RR

C (2.5.2)
R R 2

1 + + (--)C m



CHAPTER 3

ANALYTICAL ANALYSIS AND DESIGN

3.1 The Non-Interaction Approximation

In Chapter 2 we derived expressions for all the quantities of

interest in the transformer model. All the expressions involve either

the current or flux density distributions (equations 2.2.15, 2.3.4, and

2.3.5), i.e.

Jl (ka)J 1(kr)e-kZ

Js(r) = - jmWooNIma o* dk (2.2.15)
o [1+ ]

/2 k

-kz

JZ(ka)J P(kr)e
Bz(r) = Nlma _jo k * dk (2.3.4)

o [i + ]

- kz
BroJ 1 (ka)J 1 (kr)e

Br(r) = p oNI a poJ k * dk (2.3.5)
o [ + ]

v- k

The denominator of the integrand is the same in all cases and evaluated

with the properties of cold-rolled steel at 10 kHz gives

1 + o6 + 0.300/k (3.1.1)
v2 k

Thus for large k the denominator approaches unity, while for small k

the numerator approaches zero. Physically the denominator represents

the effect of the eddy-currents in the disk in reducing the field.

Cold-Rolled Steel: a = 6.7x10 6 (m)-I1; lir = 600 (typical)

6 =0.08 mm = 3 mils at 10 kHz.



We derived the source field using case two i.e. with a magnetic

half-plane and a consequent doubling of the source field. The presence

of a separation between the coil and disk would reduce this factor.

Actual measurements of inductance at 1 kHz show that the inductance

increases from 92.5 pH to 94.0 pH or 1.6% with a magnetic disk of cold-

rolled steel and 2 cm separation. The factor of two is reduced by the

presence of the separation and the eddy currents in the disk.

Thus there are two opposing effects, on the one hand the field is

augmented by the presence of the magnetic disk and on the other-hand

reduced by the induced eddy-currents, the effects of the eddy-currents

increasing with frequency(3.1.1). The overall effect must be to increase

the field. On the basis of experimental observation it is reasonable to

approximate the flux distributions as those due to the source alone and

then derive the eddy-current distribution from this flux distribution

using (2.2.8). Now case one applies and the magnetic field is from

(2.1.7) and (2.1.29).

Bz(r) = I2 m l(ka)Jo(kr)e-kZ kdk (3.1.2)

Br(r) 2= NIma Jl(ka)Jl(kr)e kz kdk (3.1.3)

and from (2.2.8) and (2.1.29) we obtain

jw°oNlma -k
Ss(r) = - 2  m (ka)J 1(kr)e- Zdk (3.1.4)
s r  2 0

In the numerical analysis these expressions are used to determine the

transformer model parameters as derived in sections (2.4) and (2.5).



We can interpret the approximation in terms of the transformer

model. In accordance with Lenz's Law the induced secondary ampere

turns tend to reduce the flux set up by the primary ampere turns.

However the magnetic circuit under no load is different from that

under load (case one and case two respectively) so that the increase

in flux due to the presence of the magnetic medium is offset by the

necessary reduction due to secondary ampere turns which in turn allows

the primary current to increase from Im under no-load to Ip under full

load, Figure 2.5(c). Therefore the non-interaction approximation assumes

the magnetizing current Im remains constant between no-load and full-

load thus maintaining the main flux (due to the source alone) constant

for both load conditions and that the magnetic affect of the secondary

current is neutralized by a corresponding component of the primary

current Ieq ' as shown in Figure 2.5(c) for which

N1Ieq' = N21eq (3.1.5)

Here N1 = N the number of turns in the primary coil and N2 = 1.

3.2 Numerical Solution of the Transformer Model Parameters

With the approximation introduced in section (2.1) we can reduce

all the quantitites of interest to the evaluation of two Bessel

Integrals for which convergent series are available 9. As outlined in

the introduction the disk is divided into a given number of segments

and numerical integration then carried out over these segments.

The following series is available ,

o 1 1p)Jl (Xy)e-p
u dp



40

_ 1 [(1 + 3C - C2 + 3 C +...)ln 2 -(2 + C 31 C2

1/2 4 4 C- 8

+ 247 +...)] (3.2.1)
24

Where

P2 + (1-x)2
16\

Differentiating (3.2.1) with respect to P we obtain

SJl (P)J (x a)e-PUlJpd

P
8X 3 2 [(-3 +
8r3/2

15 105 c
2 4

+ 141 C2 +...)]
4

The series converge for p < 2.

Using the substitutions

y = ka; P = z/a, X = a,a

z 2 + (a-r)
C= 16ar

We obtain from the above analysis

BII(r,a,z) =

1 [(1x/a-

J, (ka)Jl (kr)e-kzdk

+ 3C 15 C2 + 35 C3 +...)1n 2
4 4

8 24

B12(r,a,z) = Jl (ka)Jl(kr)e-kz kdk

2
+...)ln -- +

JC
1 5
2C 2

77 C
8

(3.2.2)

and

(3.2.3)



(ar)3/2 [(-3 +
8Tr(ar)

15 C 10 C2 +...)ln 2-
2 4 "

+ 1 5 77 C+ 141 C
2C 2 8 4

Finally we want an expression for the integral

BI3(r,a,z) = Jl(ka)J o (kr)e-kz kdk

We can reduce the integral to that of BIl by integrating BI3 between

r and r + Ar and then average BI3 over Ar so

BI3(r,a,z) =

r+Ar
r B13(r)27r dr

2rr Ar

_ 1 [(r+Ar)BIl(r+Ar,a,z) - rBIl(r,a,z)]

Thus the current and flux distributions become

Japo NI a
Js ( r ) = - m BIl(r,a,z)

I NIm a
Br(r) = 2 B12(r,a,z)

B(r) = 2r m [(r+Ar)BIl(r+Ar,a,z) - rBIl(r,a,z)]
Bz(r) = 2rAr

B(r) = ViBr(r) 2 + B (r)2r z

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

These expressions evaluate the complex amplitudes of the phasors at the

disk surface with Im the magnitude of the magnetizing current.

d [Xn Jn(X)] = Xn  ).
dx n Jn-I (X).

(3.2.4)+...)]



Evaluating the mutual inductance formula in (2.4.15) using the

flux distribution given by (3.2.8) we find

M12 oN1 N2 va [(1 + 3C +...)ln - (2 + C +...)] (3.2.10)

This result appears in reference [8]. It is also very similar to the self-

inductance expression (2.4.10) except C is defined differently (see

equations 2.4.10 and 3.2.1 ).

We are now in a position to evaluate the transformer model parameters

for which expressions were derived in Chapter 2 (2.4).

(a) Disk Resistance RD

From (2.4.4), (2.4.5), (2.4.6) and (3.2.6) we have

o s (r)
I s 6dreq j 2

= woaNIa R BIl(r,a,z) 6dr (3.2.11)
4 o

In the numerical integration, the flux density (3.2.9) is evaluated at r

and from the magnetization curve -l(r) is found and 6 the skin depth

evaluated. R the upper limit of integration is chosen greater than

1.5 times the primary coil radius since outside this radius the current

density falls off rapidly and makes little contribution to the integral.

Similarly from (2.4.5)

P= f- j [Js(r)]2 6r dr
S o I R

g ( oNI a)2 o BIl(r,a,z) 2 Sr dr (3.2.12)
8 0 m 0

and so



RD _ D (3.2.13)
D 2

eq

(b) Coil Resistance RC

As described earlier the d.c. resistance of the coil may be

calculated from the physical dimensions of the coil and conductor

(2.4.7) and a correction applied for a.c.

RC a.c. _ _ 
(2.4.9)

RC d.c.

where A is the wall thickness of the hollow conductor.

(c) Coil Self Inductance Ls

We use the formula cited in (2.4.10)

Ls = PoN2a [(l + 3C - 15 C2 +...)ln (2 + C C2 +...)]

(3.2.14)

C = R ; R = 0.2235 (b + c')
16a2

where a is the coil radius, b, c' are the cross-sectional dimensions

of the coil, Figure 1.3(a).

(d) Magnetizing Inductance Lm

Lm = [M]T [L21-1 [M] (3.2.15)

We set up inductance matrices for the segments of the disk. The separate

matrices are described in (2.4d).

The mutual inductance Mi between the primary coil and the ith

segment is given by (3.2.10) with N1 = N the primary coil turns and

N2 = 1.



Mi oN aFi [(1 + 3C -- C2

4 +...)Iln (2 + C -
Ac-

Z2 + (a-ri) 2

C : 16ar i

where ri is the radius of the ith segment.

The self inductance of the ith segment is given by

L2 = pori[(l + 3C - 15 C2 +..)n01 4 •

RC R
16ri2

(3.2.17)

(2 + C - C +. )]
8

R = 0.2235(Ar+6)

Ar is the width of the ith segment and in keeping with the Poynting

Vector theory of section (2.2) the thickness of the segment is taken

as 6 the skin depth.

Finally the mutual inductance between the ith and jth segments

from (3.2.10)

L2 ij = po v. [(1 + 3C- 15 C2 +...)ln
2 i o 1 4

2
(2 + C 31 C +...)]8

(r i - r.)2

16 rir.

here z the separation is zero.

(e) Leakage Inductance Lk

As before

L = Ls - Lm
(3.2.20)

The computer program used to evaluate the various parameters is described

in Appendix D.

3 C2
8



CHAPTER 4

EXPERIMENTAL ANALYSIS

4.1 The Experimental System

In Chapter 3 analytical expressions were obtained for the parameters

of interest in the transformer model, developed in Chapter 2. We now

wish to study a practical system so that a comparison may be made between

experimental and analytical analysis.

The primary coil consists of twenty turns of hollow conductor for

cooling purposes. The physical dimensions are shown in Figure 4.1.

There are two layers of conductor with ten turns per layer. The conductor

is insulated with polyimide film electrical tape which has a high

insulation resistance of class 1800.

The block diagram of the test system is shown in Figure 4.2(b)

and Figure 4.2(a) shows the actual system. The 60 Hz a.c. supply is

rectified and filtered and the d.c. output is fed to a high-frequency

Mapham Inverter10 which in turn supplies the coil and disk. The inverter

is designed to handle 1500W at 10 kHz, however, provision is made in the

trigger circuit logic to operate at frequencies in the range 7.5-20 kHz

to make frequency studies of the system. The design of the various

components of the system is described in Appendix A. The cooling system

is described in Appendix B. Appendix A also describes the circuit used

to determine the normalized permeability curve used in the computer

calculations.

4.2 Eddy-Current Density and Flux Density Distributions

The analytical expressions for the eddy-current density and flux

density distributions at the disk surface are given by equations (3.2.6),
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(3.2.7), (3.2.8) and (3.2.9). These equations are evaluated for the

experimental conditions at 10 kHz and 2 cm coil-disk separation with the

computer program described in Appendix D. The results are plotted in

Figure 4.4 for a primary coil magnetizing current of 30A peak or a power

of 1000W absorbed in the disk. The flux distribution due to the source

alone under the same conditions is experimentally determined to compare

the non-interaction approximation developed in chapter 3. Both density

distributions are plotted for their respective amplitudes.

It is clear from the current density distribution that our basic

assumption of infinite radial dimension in the mathematical model, is

valid for disk radii greater than 1.5 times the primary coil mean radius,

since the eddy-current density falls off rapidly outside this radius.

The power absorbed in the disk is proportional to the integral of the

square of the eddy-current density (equation (2.4.5)) and so very little

power is absorbed beyond 1.5 times the primary radius.

In Figure 4.4 the total flux density is plotted which is the vector

sum of the radial and axial components. Figure 4.3 shows the variation

in the axial and radial components. At small radii some error was

introduced in the axial component evaluation due to the trapezoidal

integration interval used to solve equation (2.2.8) which was chosen for

convenience to be one segment wide. Otherwise the distribution is as

expected, falling from a maximum at the center of the disk to zero

directly over the primary coil, then increasing in magnitude in the

negative axial direction to another maximum and finally falling off

beyond the coil. The radial component is zero at the center of the coil

reaching a maximum over the coil and then falling off beyond the coil
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radius. The resultant field has its maximum inside the coil radius.

The theoretical curve assumes all the conductors in the primary coil to

be concentrated at a mean radius and so we would expect a sharper peak

than for the experimental curve of the distributed coil. The actual

coil shows a smoother distribution however it is clear that the effect of

concentrating the coil is not greatly in error.

The theoretical curve is based on the non-interaction approximation

of chapter 3. The experimental curve in Figure 4.4 is measured on no-load,

it wasn't possible to measure the flux at the disk surface, however the

validity of the approximation is well illustrated by inductance measure-

ments carried out at 1 kHz which showed an increase of 1.6% in the field

distribution with the disk placed in the field. The source field was

measured at 60 Hz however the source field is independent of frequency.

The approximation does depend on frequency since the effect of the eddy-

currents increases with frequency.

The amplitude of the total flux density is used to interpolate

the relative permeability from the normal magnetization and relative

permeability curve of Figure 4.5, the experimental determination of this

curve is described in Appendix A3. Table Cl summarizes the data in

Figures 4.3 and 4.4.

4.3 Transformer Model Parameters

With the aid of the techniques and expressions described in

Chapter 3 the lumped parameters in the transformer model were calculated.

Figure 4.6 shows the equivalent model of Figure 2.5 with the calculated

values inserted. The value of the equivalent disk resistance is that

corresponding to a primary coil current of 30A, it is described in the
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next section. The values correspond to a coil-disk separation of 2 cm.

The inductance terms were measured at 1 kHz. An aluminum disk, which

has a high conductivity or low resistance effectively shorts the

magnetizing reactance and so allows the leakage inductance to be

measured. The following results were obtained.

Coil-disk separation: Z = 2 cm

Self-inductance Ls: calculated = 86.9 pH
measured = 92.5 pH

Leakage inductance L : calculated = 43.1 pH
measured = 50.5 -pH

Magnetizing inductance Lm: calculated = 43.8 -pH
measured = 42.0 pH

Coil resistance Rc dc: calculated = 0.020Q
measured = 0.0250

The values are calculated assuming the disk is infinite in the

radial direction. The discrepancy in the leakage inductance is partly

due to the non-ideal short-circuit presented by an aluminum disk. Other-

wise there is very good agreement between measured and calculated values.

The transformer model with the calculated parameters is used in Appendix

A for the inverter design.

4.4 Equivalent Disk Resistance

By specifying the peak magnetization current Im in equations

(3.2.11) and (3.2.12) then the equivalent resistance RD of the disk may

be found. With the aid of the phasor diagram of Figure 4.6(c), the

resistance may be plotted as a function of coil current Ip. Table C2

in Appendix C summarizes the data for the test coil, the power dissipated

in the disk is also given for 10 kHz operation. The data is plotted in

Figure 4.7. The non-linear nature of the disk equivalent resistance is
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illustrated, reflecting the nature of the permeability curve Figure 4.4.

Equation (2.5.2) is used to plot an efficiency versus frequency

curve for the coil disk arrangement. It is shown in equation (2.4.2)

that the disk resistance is proportional to the square root of frequency.

The inductive reactances are directly proportional to frequency. Figure

4.8 plots the data in Table C3. The plot clearly shows that the

efficiency of the system falls off rapidly at low frequencies due to the

dissipation in the coil resistance RC and the shunting effect of the

magnetizing reactance Xm. In plotting the curve the d.c. resistance

of the primary coil is used at low frequencies when the thickness of the

hollow conductor becomes less than the skin depth. The correction for

a.c. is applied using equation (2.4.9) which for the coil of Figure 4.1

is

RC d.c. = 0.020

RC a.c. = 2.32 x 104 4IF

where f is the frequency in Hz.

4.5 Power Absorbed in the Disk

The power absorbed in the disk is given by equation (3.2.12)

PD = - (wlJoNIma) 2 I BIl(r,a,z)2 6r dr (3.2.12)

It is obvious from this equation that the power absorbed in the disk

depends on three variables, the magnetizing current Im , the coil-disk

separation z, and the excitation frequency w or f. The variation with

magnetizing current Im is reflected in the primary coil terminal

current Ip which accounts for the effect of the eddy-currents. The test



system was studied for variation in these parameters with each parameter

studied separately while the other two are constant. Two disks are

studied one having a radius 1.53 timesthe primary coil radius and another

with a radius 1.2 times the primary radius. The larger coil satisfies

the radial infinite dimension assumption.

Figure 4.9 shows the predicted and experimental power absorbed for

both disks, from the data of tables C4 and C5, for a coil-disk separation

of 2 cm at 10 kHz. To determine the experimental power absorbed in the

disk the voltage, current and phase angle must be measured using a non-

inductive sampling resistor having a value RS = 0.049Q. To determine the

phase angle,the current and voltage are displayed on an oscilloscope

(see Figure A.1.2(b) and (c)). 20 is the greatest accuracy at 10 kHz

and with the range of phase angles met in the experiments this could lead

to errors as great as 10%. To find the actual power absorbed in the disk

the following formula is used:

P V I cos - R I2
D pp C a.c. p

From equation (2.4.9) RC a.c. = 0.023Q (calculated) or 0.0290 (measured).

The agreement between the experimental and theoretical curves is

quite good. Much of the error can be ascribed to the method used to

determine the phase angle. At high power levels the temperature of the

disk rose significantly and the resulting change in resistance was not

taken into account in the mathematical model. In the boiling test

described in the next section large changes in temperatures were not

encountered and better agreement was obtained.

It was shown in section 3.1 that the eddy-current distribution

could be found directly from the flux distribution using equation (2.2.8).
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This assumes the eddy-currents induced in the disk do not affect the

field. Thus if we confine the upper limit of integration to the

physical limit of the disk it should be possible to determine the power

absorbed. This was done for the smaller disk and the agreement was

close. Effectively the non-interaction approximation does not assume

infinite radial dimensions whereas the original exact solutions do.

The results are plotted in Figure 4.9(b) from the data of Table C5.

The variation in power due to axial separation is shown in Figure

4.10. Both curves show the fall off in power with increased separation.

To reduce the current flowing in the primary for a given power level

and frequency, the coupling should be as close as possible. In terms of

the transformer model this has the effect of reducing the leakage term

or increasing the magnetizing term thus reducing its shunting effect on

RD

The frequency variation in Figure 4.11 again shows that the

shunting effect of the magnetizing branch in the transformer model is

reduced at higher frequencies so that a larger fraction of the primary

current is reflected in the disk. The primary coil resistance also

increases with frequency but this is offset by the increased magnetizing

reactance. The data for Figures 4.10 and 4.11 is extrapolated from

Table C4 for the larger disk for fixed primary current. The extrapolated

data is summarized in TablesC6 and C7. Consequently the experimental

curves are subject to the same error source as described previously for

the separation curves.

As was mentioned in the introduction, water cooling was introduced

to improve the coupling between the coil and disk since a fan placed



beneath the coil necessitates a clearance space. The closer coupling

allows lower frequencies and currents for the same power. This reduces

the switching requirements for the inverter SCR's giving lower component

costs.

The overall efficiency of the system can be determined from the

data of Table C4. In making the calculation the power absorbed in the

sampling resistor must be subtracted so

P = P. - R Ia.c. in s p

no  PD /Pa.c.

V I cose - R IV
Vpp COS C a.c. p

Pin - R I 2

in sp

For 1500W input the overall efficiency between a.c. input and absorbed

disk power is 75%. The efficiency does not increase with frequency

despite increased nCD. The reduced efficiency is mainly due to increased

switching losses at higher frequencies.

4.6 Time of Boil Test

The practical application of induction heating to the induction

range was described in the introduction. The boiling test is conducted

to demonstrate the advantages of the range over conventional devices. A

comparison is made between the induction range and a conventional

resistance heating element hot-plate. Both units are tested under the

same experimental conditions.

Two liters of water are boiled on the induction range using a

vessel whose base has the same material as used in previous experiments

i.e. cold-rolled steel. The a.c. power input was 1500W with 1100W

at the primary coil terminals. The test was carried out at 10 kHz with



a coil-disk separation of 2 cm. Figure 4.12 shows the temperature rise

of the water as a function of time. We define the effective heating rate

PE as

P mCE p dt

where m is the mass of the water and Cp is its specific heat. The

temperature derivative is taken in the linear region of the boiling

characteristic. We define the load efficiency as

P

L PCD

where PCD is the electric power at the coil terminals. Finally we

define our overall efficiency as

o PEa.c.

where Pa.c. is the a.c. power input from the supply.

The test was now repeated for the electric ring at both 1500W and

1100OW input. It is difficult to specify exactly when boiling occurred

but for comparison purposes we will define it here as the time taken to

reach 90% of the final temperature.

Table 4.1 summarizes the results for the three tests.

The load and overall efficiencies are equal for the electricring

since we assume all the a.c. power goes directly to the terminals of the

ring. In the induction range the difference between nL and no reflects

the power loss in the inverter and rectifier circuit. From the terminal

view nL shows the induction range is far more efficient in transferring

Water at 600 C: density p = 985.4 Kg/m 3 , Cp = 4184 J/kg oC.
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Table 4.1

Time to Boil Test for the Induction and Conventional Ranges

Type Pa.c. (W) PE(W) nL no Time to Boil (min)

Induction 1500 893 81.2% 59.5 12.6

Electric ring 1500 962 64.1% 64.1 11.2

Electric ring 1100 722 65.6% 65.6 14.2

energy from the primary element to the heated element. In terms of a.c.

input the induction range is slightly less efficient but this situation

can be improved by better inverter design. In terms of time to boil the

induction range is faster for the same power at the primary element

terminals and marginally slower with the same a.c. supply input due to

the circuit losses not present in the conventional stove.

Figure 4.12 illustrates the effect of thermal inertia on the

response of the respective stoves. For the induction range the load

temperaure increases immediately when the power is switched on whereas

the ring has a delay due to thermal capacity and cannot transfer heat to

the load until it has first heated itself. After the initial delay the

effective heating rated is higher for the same a.c. input. The curve

for the induction appliance seems to be much slower that the electric

range near boiling. This is due to heat being convected from the hot disk

back to the cool coil, not present in the conventional range. This

tends to offset the advantage gained at starting. Improved design would

eliminate this effect by thermally insulating the cooking vessel from the

exciting coil. It is interesting to note that when the load was removed

from the induction range the coil was near room temperature whereas the
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electric ring was in excess of 1000C, reflecting the effect of a thermal

contact resistance not present in the induction range. More elaborate

and extensive comparisons are made in references (1) and (3).



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The coil-disk arrangement studied here is a relatively simple

geometry where the solutions to the field equations could be reduced to

one dimension or in some cases two. However, the development of the

lumped-parameter transformer model is a powerful tool whereby more

complicated geometries could be handled, adopting the same techniques

developed here. In general, the correlation between experimental and

analytical analysis was quite good over a very wide range of experiments.

The non-interaction approximation described in Chapter 3 proved to be

a very useful method in simplifying the complex field and current density

equations without greatly affecting the integrity of the analysis.

The model could be refined to eliminate a number of error sources.

The variation of the disk equivalent resistance with temperature should be

included as should the distributed nature of the exciting coil by adopting

the segment technique used for the disk. This would be useful for the

design of coils with uniform fields. Hysteresis loss which has a greater

effect at high frequencies should also be included. All these refine-

ments would tend to increase the absorbed disk power reducing the error

in Figure 4.9. The experimental errors were largely attributed to the

phase angle measurement at the coil terminals. It should be possible to

build a high frequency phase detector using phase-lock loop techniques

and digital counters.

In the analysis presented here, one material was studied. The

computer program developed in Appendix D could be used to study any

material for which a B-H curve is available and its conductivity.
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The application to the induction range was mentioned in the

Introduction. Much development is needed. The introduction of an

insulator between the coil and disk would eliminate "back heat" (section

4.6) and perhaps forced convection cooling would not be required.

Temperature sensing elements would be needed to give control of operating

temperatures. This could be achieved by coupling to the logic circuit

to vary frequency or using phase controlled rectifiers with the firing

angle determined by temperature.



APPENDIX A

CIRCUIT DESIGN

Al High Frequency Inverter

The circuit diagram of the SCR sine-wave inverter used in the test

system is shown in Figure Al.l. A detailed description of the operation

and design of the circuit is given in reference [10]. The 60 Hz a.c.

supply is rectified using a center-tapped transformer and a bi-phase

half-wave rectifier. The rectifier output is filtered to eliminate inter-

modulation distortion at the output of the inverter feeding the coil and

disk. The filter output is shown in Figure A1.2(a) for one half of the

center tapped capacitor with a load corresponding to 1100W disk power or

1500 at the a.c. input. The waveform indicates less than 5% ripple. The

circuit is designed to handle 1500W at 10 kHz with provision made for

frequency variation.

Each half of the center-tapped capacitor is charged to a d.c.

voltage E. When SCR1 is triggered current flows from the top capacitor

to the load capacitor C charging it to a voltage approaching 2E. The

current then reverses flow back to the supply voltage E via diode D1 and

the load capacitor discharges. The reverse current flow presents

turn-off to the SCR. Now SCR 2 is triggered and a similar cycle occurs

for the lower half of the center-tapped capacitor. SCR1 is again

triggered and the complete cycle repeats. Figure A1.2(d) shows the

current through SCR 1 and D1. The output voltage and current waveforms

and trigger pulses are also shown. The waveforms apply for 10 kHz

operation with an a.c. input of 1500W and z = 2cm. There is some

distortion present in the output current waveform due to the switching
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Figure A1.2(a) Filter Output Voltage

Scales: Horizontal: 5ps/div.
Vertical: 50V/div.

Figure A1.2(b) Inverter Output Voltage

Scales: Horizontal: 20-s/div.
Vertical: 400V/div.

Fig. Al.2(c) Inverter Output Current

Scales: Horizontal: 20ps/div.
Vertical: 40A/div.



Figure A1.2(d) SCR and Diode Current

Scales: Horizontal: 20ps/div.
Vertical: 20A/div.

Figure A1.2(e) SCR Anode-Cathode Voltage

Scales: Horizontal: 20ps/div.
Vertical: 200V/div.

Figure Al.2(f) SCR Gate Voltage

Scales: Horizontal: 20s/div.

Vertical: 1V/div.



of the SCR's in the resonant LC circuit. Figure A1.2(d) shows the damp-

ing effect of the load resistance.

To optimize the design of the inverter as described by Mapham10

the transformer model is extremely useful. Figure A1.3 shows the equivalent

transformer circuit and an equivalent parallel circuit. The reflected

disk resistance RR corresponds to 1000W absorbed in the disk and is

taken as a representative .alue. The equivalent parallel inductance of

Figure A1.3(b) is combined with the inverter inductance and capacitance C

to give a resonant frequency approximately 1.35 times the output

frequency which is the optimum value for minimum output waveform

distortion. The load inductance chosen for the design corresponds to

z = 2cm. The transformer model predicts the terminal voltage and current,

using these values in conjunction with the design tables calculated by

Mapham the device ratings are found.

For the values indicated in Figure A1.3 the following information

is extracted from the design tables and compared with the results in

Figure A1.2, which apply to the design conditions. All values are rms

unless otherwise stated.

Input power Pin = 1500W

Output frequency fo = 10 kHz

Coil-disk separation z = 2 cm

Resonant inductance L = 35.5 pH (731169)

Resonant capacitance C = 4.47 F

Resonant frequency fr = 12.6 kHz

D.C. supply voltage E = 100V

D.C. supply current Idc = 7.5A (Pin)
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Load resistance R = 12.1Q

fr o = 1.26; R//c= 4.3.

Maximum load voltage = 200V
(Fig. A1.2(b) - 200V)

Maximum SCR voltage = 360V
(Fig. Al.2(e) - 280V)

Peak SCR current = 50A
(Fig. A1.2(d) - 28A)

Worst case SCR turn-off time = 15.8 ps
(Fig. Al.2(d) = 16 ps)

Thus the circuit was driven almost to its limits at 1500W. The

d.c. filter output 2E = 200V gives 70.7V rms at the transformer primary

for a 1:2 turns ratio. The transformer turns (86 in primary) are

chosen to give a maximum flux density in the core of 1.3 Wb/m 2 with

120V rms impressed on the primary. The transformer is wound on a 12 mil

selectron C core AA 526, the inductors are wound on Arnold cores A126040-2

with 41 turns each. The snubber circuits11are included to prevent SCR

turn on due to the large dV/dt introduced by oscillations when the free-

wheeling diode turns off.

The circuit is basically a parallel resonant circuit with the load

capacitance C in parallel with the resonant inductance and the equivalent

parallel resistance Rp of Figure A1.3. The SCR current must be under-

damped with a resonant frequency greater than theoutput frequency so

that when the oscillating current reverses diode D1 conducts to turn-off

SCR1 before SCR2 is triggered. To improve the oscillation the Q-factor

(mRC) should be as large as possible. Since the resistance is fixed by

the disk, improvement can be accomplished by increasing C. C was chosen

to ensure underdamped oscillations while at the same time maintaining



turn-off time for the SCR and keeping the maximum SCR voltage within the

rated limit.

A2 Trigger Logic Circuit

The trigger circuit and associated timing waveforms are shown in

Figures A2.1 and A2.2. An astable multivibrator with an external

variable resistance and capacitance is used to generate a clock pulse.

The resistance is varied so that the clock frequency is double the

desired output frequency in the SCR's. A T flip-flop is used with both

inputs of a J-K flip-flop connected high. The output changes state with

the arrival of the positive-going edge of each clock pulse. The clock

is then ANDed with the outputs Q and Q of the flip-flop. The timing

diagram shows the outputs of the AND gates with two pulse trains each

having a frequency of half the clock frequency. This scheme was chosen

to ensure that the two pulse trains which supply the SCR gates would not

have two pulses occurring simultaneously, switching both SCR's and short-

ing the power supply. The clock is delayed through two inverters and a

0.01 -F capacitor to off-set the propagation delay in the flip-flop.

The two pulse trains of Figure A2.2 are buffered and inverted for

compatability between CMOS logic in the train generation and the TTL used

for amplification. A hex inverter with open collector connects the train

to the input of an optical isolator. The output of the isolator is

connected to the supply through a 270 resistor to give a photo-darlington

connection. The base of the first transistor is connected through a

2.7k resistor to ground which helps remove space charge from the base

of the second transistor to speed up turn-off. The output of the optical

isolator drives an emitter follower and the resultant output is connected
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to the gate of the SCR. The 1k resistor in the emitter follower de-

sensitizes the gate to stray charges and shunts dv/dt currents which

may turn on the SCR. The output of the emitter follower is simply an

amplified version of the AND gate output shown in Figure A2.2. The

current gain of the optical isolator is typically 700 while the emitter

follower transistor is also high gain (hFE " 400). This reduces the

drive requirement at the input of the isolator. For convenience a five

volt supply was used for all parts of the circuit.

A3 Experimental Determination of the Normal Magnetization Curve for a
Ferromagnetic Material

In order to determine the magnetization curve and the incremental

permeability, the hysteresis loop of the material is displayed on an

oscilloscope.

Consider the test specimen shown in Figure A3.1 with a terminal

voltage v and current i. The test piece consists of toroidal

laminations with a winding of N turns.

Equation (1.1.1) in integral form becomes

H'ds = { Jf * n da (A3.1)

So the magnetic field intensity in the core is

H (A3.2)
m

where 9m is the mean length of the magnetic path in the specimen.

The flux linking the coil is

X = N B. da
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= NB AC (A3.3)

where B is the magnetic flux density in the core of cross sectional area

AC.

From Faraday's Law, assuming negligible winding resistance

S= d (A3.4)
Sdt

we obtain the flux density

B = 1 vdt (A3.5)

NAC f
Thus it is necessary to integrate the voltage at the terminals of the

coil.

The ideal closed loop gain of the inverting integrator shown in

Figure A3.2(a) is12

o _ 1 (A3.6)
Vi  R1R1CS + R

If R2 >> R1

o _ 1 (A3.7)
V i R1 CS

R2 is present to prevent voltage build-up on the capacitor, it is chosen

large enough so that integrator behavior is unaffected.

The practical circuit is shown in Figure A3.2(b). There is a 100:1

attenuator at the input so that large signals may be handled by the

integrator operational amplifier. A buffer is included to increase the

input impedance of the integrator so that ideal conditions are approached.

Offset and balance circuits are also included. The resistor and capacitor
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values for the integrator are chosen so that the singularities of the

loop transmission are well removed from the test frequency 60 Hz.

(With the values shown, the singularities occur at 7.2 Hz and 720 Hz).

With the dimensions shown for the test piece and the circuit values

in the integrator (A3.2) becomes

H = 2.958 x 103i At/m

where i is measured in amperes.

From (A3.5) and (A3.7) we have

B = 0.63 vo Wb/m 2

where vo is the output voltage of the integrator in volts.

The current and voltage can be displayed on an oscilloscope.

Figure A3.3 shows a hysteresis loop for cold rolled steel with

appropriate scale factor applied. The incremental permeability is got

by dividing the maximum values of B and H at the tip of the hysteresis

loop. Table C9 summarizes the results for cold rolled steel and the

results are plotted in Figure 4.5. The relative incremental permeability

is also plotted.

The conductivity of the disk material is found from d.c. voltage

and current measurements made on a bar of the material of known length (k)

and cross-section (Ab).

1 X
-R Ab

where R is the resistance.

For cold-rolled steel it was found to be, from the data in Table

Cl0

a = 6.7 x 106 (m) -l 1



Figure A3.3 Hysteresis Loop for Cold Rolled Steel

Scales: Horizontal: 2366 At-m - /div.
Vertical: 1.26 Wb-m-2/div.



APPENDIX B

COOLING SYSTEM DESIGN

The dissipation due to 12R losses in the primary coil on full load

is approximately 25W which could be naturally convected from the coil.

However "back heat" convected from the hot disk to the coil is much

greater. The cooling system is designed assuming 90% efficiency on

full load with 1500W input to include copper and "back heat" losses. The

total loss is then 150W or 512 BTU/hr.

For turbulent flow inside a cricular tube the heat transfer co-

efficient is given by13

k 0023 R 0.8 0.4hi = -_ 0.023 R Pi D e r

pvDi
where R - i

e 11

k is the thermal conductivity of the fluid, p is the density, v the

velocity, -i the viscosity and Pr the Prandtl number, Di is the inside

diameter.

For a velocity flow rate of 6 ft/s and the dimensions of the tube

given in Figure 4.1(a) and the properties of water at 140 0 F we obtain

Re = 10,672; hi = 2300 BTU/ft2 hr°F.

The mass flow rate is

m = pv - = 112.3 lbm/hr

Water at 1400F (600C)13; p = 61 lbm/ft3; Cp = 1 BTU/lb m F;

K = 0.38 BTU/hr ftoF; a = 1.286 lbm/hr ft; Pr = 3.46.



The log mean temperature difference is found from

Q = hiAhAT m

Ah= rDiL

= 512 BTU/hr. Ah is the area for heat transfer found from the coil

dimensions, L is the coil length. Thus gives

ATkm = 0.18 0F

So essentially the coil wall temperature is at the fluid temperature.

The temperature rise between inlet and outlet is derived from

Q = mC ATL

which implies ATL = 4.60F.

During the experiments this temperature rise was 4.50F at full load.

In the boiling test the rise was smaller since the disk temperature never

exceeded the boiling temperature of water 212 0F.

The friction factor in the tube is

f = .0791 0.0078
0.25

The pressure drop due to friction is now

AP = 4fI PV
D 2g

gc = 32.17 Ibm - ft/s 2 lbf. This gives

AP = 26.2 psi

During the experiments cooling achieved by connecting the coil to

the main supply with the flow regulated to 6 ft/s. To form a closed



system a heat exchanger would be necessary. The design of such an

exchanger is included.

The dimensions of the heat exchanger surface are shown in Figure

B.1. For natural convection with vertical fins the heat transfer co-

efficient on the outside is estimated to be ho = 2 BTU/ft2 hroF from

manufacturer's data for the Wakefield 489 finned surface.

The fin efficiency is13

tanh BL
= BL

B=

with the parameters defined in Figure B.1.

The flow inside the exchanger is laminar so the heat transfer

co-efficient on the inside is

k
hfi = 8.33 De

where De = 2W (Figure B.1).

The overall efficiency of the finned exchanger is

Af + Au
A A

The overall heat transfer co-efficient referred to the inside wall

area A is given by

1 1 d A A
U ch0  kf Aw  hfiAw

For a mass flow rate of 112.3 lbm/hr the separation between the

walls was chosen W = 0.25" to increase hfi.



O

Fin material aluminum kf =

Fins: One Plate (Average)

Number of fins Nf =

Fin height H =

width Y =

length Lf =

thickness d =

perimeter P =

cross-
section s =

Finned surface
area (all fins)Af =

Unfinned surface
area Au =

Total heat
transfer area A =

Plate wall area Aw =

Figure B.1 Heat

Lf

d

118 BTU/hr ft 'F.

9

6.25 in.

9.00 in.

2.0 in.

0.08 in.

1.5 ft

0.72 in.

2.25 ft2

0.34 ft2

2.60 ft2

0.39 ft2

Exchanger Finned Surface



For the dimensions in Figure B.1 we obtain

B = 2.25; n = 0.95; E = 0.95; Re = 60;

h = 72 BTU/ft2hroF; U = 1.62 BTU/ft2 hr°F

The temperature difference between the fluid and ambient is found

from

Q = 2 E AU ATf

Where Q = 512 BTU/hr as before. A factor of 2 is included to account for

finned surfaces at each side of the exchanger.

The fluid mean temperature and consequently the coil wall

temperature is now

T Tf = Ta + 640F

Where Ta is the ambient temperature. Assuming an ambient temperature

of 60F the coil wall temperature will be 124°F.

The pressure drops due to friction in the exchanger and due to

sudden enlargement and contraction at the inlet and outlet of the

exchanger are negligible compared with the friction drop in the coil.

The pump power is then

P = mAP - 8.9 BTU/hrP



APPENDIX C

EXPERIMENTAL AND NUMERICAL DATA

Table Cl

Flux Density and Eddy Current Density Distributions

Disk 1: a2 
=

Theoretical

r_ Js (A/m2)

a 5

0.18 1.42x10 7

0.32 2.42x10 7

0.46 3.61x10 7

0.60 4.93x10 7

0.75 6.40x10 7

0.89 7.78x10 7

1.03 8.06x10 7

1.17 6.83x10 7

1.32 5.41x10 7

1.46 4.30x10 7

1.53 3.87x10 7

1.53a, z = 2
f =

Br
(Gauss)

2.24

4.57

8.18

14.36

26.36

47.41

55.08

32.18

15.61

8.14

6.10

cm, I =m
10 kHz

Bz
(Gauss)

46.06

46.22

48.18

51.41

52.70

37.53

0.61

13.84

12.35

9.15

7.82

30A peak = 21.1A rms,

Experimental

B
(Gauss)

46.11

46.45

48.87

53.38

58.93

60.46

55.08

35.03

19.90

12.25

9.92

TJr

220

220

221

223

225

226

224

215

209

205

204

a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.5

B
(Gauss)

41.0

42.4

45.3

47.4

50.9

35.4

21.2

7.1

4.2



Table C2

Disk Equivalent Current and Resistance as a Function
of Primary Coil Current

Im(A peak)

5

10

15

20

25

30

35

40

45

50

Disk 1: a2

I p(A rms)

5.1

10.2

15.2

20.2

25.1

30.0

34.9

39.8

44.6

49.4

= 1.53a, z = 2cm, f = 10 kHz

RD(mQ)

5.57

5.61

5.65

5.70

5.74

5.78

5.83

5.87

5.91

5.95

leq(A)

73.6

146.0

217.3

287.6

356.8

425.1

492.5

559.0

624.8

689.7

PD(W)

30

120

267

471

731

1046

1413

1834

2306

2829



Table C3

Coil-Disk Efficiency as a Function of Frequency

The equivalent disk resistance is that corresponding to 1000W

disk power at 10 kHz and z = 2cm, the inductive terms also apply for

these conditions.

f(kHz) x (() Xm(Q) RD(mQ) RR(Q) RC() nCD %

0.5 0.14 0.14 1.3 0.52 0.020 63.7

1.0 0.27 0.28 1.8 0.72 0.020 82.4

5.0 1.35 1.38 4.1 1.64 0.020 97.1

7.5 2.03 2.06 5.0 2.00 0.020 98.1

10.0 2.71 2.75 5.78 2.31 0.023 98.3



Table

Absorbed Disk Power

Disk 1: a2

Experimental

C4

Data for Disk 1

= 1.53a

Theoretical

(a) z = 2 cm, f = 10 kHz

Vp(V) I (A)Pin
(W)

200

400

600

800

1000

1200

1400

1600

1700

1900

(b) z

200

400

600

800

1000

1200

1400

1600

9.5

13.8

17.0

20.0

22.2

24.1

26.2

28.2

29.2

29.5

54.4

76.1

93.1

108.3

119.9

125.7

138.5

149.2

155.2

158.0

= 2.5

58.0

80.0

97.5

112.3

126.3

135.5

147.2

158.0

e0 PD
(W)

73.8 143

73.8 288

73.8 433

73.8 592

73.8 732

73.8 831

73.8 995

73.8 1155

73.8 1244

73.8 1280

10 kHz

73.8 163

73.8 322

73.8 485

73.8 650

73.8 822

73.8 985

73.8 1161

73.8 1336

Im
(A peak)

5

10

15

20

25

30

35

40

Vp(V) I p(A)

21.8

43.3

65.1

86.6

108.1

129.5

150.9

172.3

21.7

43.4

65.0

86.5

108.0

129.5

150.9

172.2

5.1

10.1

15.2

20.2

25.1

30.0

34.9

39.8

4.9

9.7

14.6

19.4

24.1

28.9

33.6

38.3

00 PD(W)

70.8

70.9

70.9

71.0

71.0

71.1

71.1

71.2

73.2

73.2

73.3

73.3

73.4

73.4

73.4

73.5

30

120

267

471

731

1046

1413

1834

25

97

220

389

605

866

1171

1521

cm, f =

10.2

14.7

18.1

21.1

23.7

26.5

28.8

30.9



(c) z = 3.0 cm, f = 10 kHz

200

400

600

800

1000

1200

1400

1600

(d) z

200

400

600

800

1000

1200

1400

1500

(e) z

200

400

600

800

1000

60.3

84.4

102.7

119.1

134.3

147.7

160.6

173.0

= 3.5 ci

65.6

91.6

111.9

129.9

145.5

156.6

170.0

176.0

= 4 cm,

68.8

96.3

118.1

136.6

153.0

11.0

16.0

19.6

22.8

25.6

28.6

31.2

33.5

m, f

12.1

17.3

21.4

25.0

28.1

31.1

33.6

34.8

f = 10 kHz

12.2 77.4

17.5 77.4

21.7 77.4

25.3 77.4

28.4 77.4

182

368

552

745

840

1031

1144

1327

73.8

73.8

73.8

73.8

75.6

75.6

76.5

76.5

10 kHz

75.6

75.6

75.6

75.6

75.6

75.6

75.6

75.6

194

387

584

791

996

1187

1393

1491

21.8

43.4

65.3

87.0

108.6

130.1

151.6

173.1

22.0

43.9

65.8

87.6

109.4

131.2

152.9

174.5

191.1

22.0

43.9

87.5

131.1

174.4

4.7

9.4

14.0

18.6

23.2

27.8

32.4

36.9

4.5

9.0

13.5

18.0

22.5

26.9

31.3

35.7

40.1

4.4

8.8

17.4

26.1

34.7

76.2

76.3

76.3

76.3

76.4

76.4

76.4

76.5

79.6

79.6

79.6

79.7

79.7

79.7

79.7

79.7

79.8

81.9

81.9

81.9

82.0

82.0

21

82

183

323

502

720

975

1267

17

68

152

269

419

600

814

1058

1333

14

57

225

503

887

180

360

547

737

927



(f) z = 2 cm, f = 7.5 kHz

100

200

300

400

500

600

34.6

47.9

57.8

65.9

73.8

82.1

7.7

11.0

13.6

15.8

17.6

19.5

76.95

76.95

76.95

76.95

76.95

76.95

60

117

175

230

286

351

15.9

31.7

47.5

63.3

79.0

94.7

4.8

9.5

14.2

18.8

23.5

28.1

(g) z = 2 cm, f = 15 kHz

200

400

600

800

1000

64.4

88.9

107.5

123.8

139.2

7.7

11.2

13.9

16.2

18.3

72.9

72.9

72.9

72.9

72.4

RC = 0.030

144

289

435

584

739

34.3

68.5

102.5

136.3

170.1

5.7

11.4

17.0

22.6

28.1

(h) z = 2 cm, f = 20 kHz

200

400

600

800

1000

1200

1400

1500

69.3

96.1

117.5

135.5

151.5

167.5

182.5

189.9

6.5

9.4

11.8

13.8

15.5

17.1

18.5

19.3

73.8

73.8

73.8

73.8

73.8

73.8

73.8

73.8

RC = 0.0360

124

249

384

515

646

789

932

1011

49.7

95.5

142.8

189.9

6.3

12.5

18.7

24.9

71.7

71.8

71.8

71.9

71.9

72.0

20

78

174

306

475

679

70.2

70.2

70.2

70.2

70.2

55

220

491

866

1343

70.1

70.1

70.1

70.1

85

338

755

1333

RC = 0.025Q



Table C5

Absorbed Disk Power Data for Disk 2

Disk 2: a2 = 1.2a

Experimental

(a) z = 2 cm, f = 10 kHz

Theoretical

Vp (V) I (A)Pin
(W)

200

400

600

800

1000

1200

1400

1600

1700

(b) z

200

400

600

800

1000

1200

1400

1600

11.0

15.5

19.3

22.5

25.4

27.4

29.7

32.0

33.1

57.3

79.2

97.4

116.2

131.5

140.9

152.3

164.6

171.0

= 2.5

63.0

88.1

108.4

126.3

142.2

152.3

165.0

178.0

eO PD
(W)

75.6 153

75.6 300

75.6 457

75.6 637

75.6 813

75.6 943

75.6 1103

75.6 1286

75.6 1380

10 kHz

75.6 183

75.6 365

75.6 554

75.6 751

76.5 892

76.5 1037

77.4 1135

77.4 1320

I
m

(A peak)

5

10

15

20

25

30

35

40

45

Vp(V) I p(A)

20.9

41.7

62.5

83.3

104.0

124.6

145.2

165.8

186.3

20.8

41.6

62.3

83.0

103.7

124.3

144.7

165.4

4.5

9.0

13.5

17.9

22.3

26.7

31.0

35.4

39.7

4.4

8.7

13.0

17.3

21.6

25.9

30.1

34.3

eo PD(W)

73.4

73.5

73.6

73.7

73.7

73.8

73.9

73.9

74.0

75.6

75.7

75.8

75.8

75.9

75.9

76.0

76.0

22

86

192

339

525

749

1012

1311

1646

17

69

154

272

422

604

816

1059

cm, f=

11.9

17.0

21.0

24.4

27.4

29.8

32.3

34.7



(c) z = 3.0 cm, f = 10 kHz

200 66.6 12.8 77.4 181

400

600

800

1000

1200

1400

1600

(d) z

200

400

600

800

1000

1200

1400

1500

(e) z

200

400

600

800

1000

92.8

113.5

131.9

150.0

163.4

178.2

192.0

= 3.5

72.9

102.3

125.3

144.6

162.7

175.0

190.0

197.7

= 4.0

76.0

106.0

130.0

150.9

170.0

18.1

22.4

26.0

29.3

32.3

34.9

37.5

cm, f=

13.3

18.9

23.4

27.1

30.4

33.6

37.0

38.5

cm, f

13.9

19.7

24.3

28.2

31.8

77.4

77.4

77.4

78.3

78.3

78.3

78.3

10 kHz

79.2

79.2

79.2

79.2

79.2

79.2

79.2

79.2

10 kHz

79.2

79.2

79.2

79.2

79.2

359

542

733

870

1044

1230

1427

177

354

535

717

905

1075

1285

1390

5 20.9 4.2 78.4 14

41.7

62.4

83.2

103.9

124.6

145.2

165.8

41.9

83.6

104.4

125.1

145.9

166.6

187.3

207.9

41.8

83.4

125.0

166.4

187.0

193

381

578

780

988

8.5

12.7

16.8

21.0

25.2

29.3

33.4

8.2

16.4

20.5

24.5

28.6

32.6

36.7

40.7

8.0

16.1

24.0

32.0

35.9

78.5

78.5

78.6

78.6

78.7

78.7

78.8

81.6

81.6

81.7

81.7

81.7

81.7

81.8

81.8

83.6

83.7

83.7

83.7

83.8

56

125

221

343

490

663

861

46

180

280

400

542

704

886

1088

37

147

329

578

729



Table C6

Disk Power as a Function of Coil-Disk Separation

Disk 1: a 2 
= 1.53a, Ip = 30A rms, f = 10 kHz

PD(W) expt.

1320

1261

1092

1116

1020

PD(W) theor.

1046

937

842

750

680

Table C7

Disk Power as a Function of Frequency

Disk 1: a2 = 1.53a, z = 2cm, I 20A rms
2 P

PD(W) expt. PD(W) theor.

360

592

890

1060

350

465

700

880

z(cm)

2.0

2.5

3.0

3.5

4.0

f (kHz)

7.5

10.0

15.0

20.0



Table C8

Boiling Test Data

2 liter, z = 2cm

T(Induction,
1500W) oC

20.0

34.0

47.5

60.0

75.5

79.8

87.0

91.0

(induction range)

T(Conventional
1500W

21.0

23.0

29.0

44.0

58.5

72.0

83.5

91.0

95.0

94.5

t(min.)

0

1

2

4

6

8

9

10

12

14

16

)oC
1100W

23.0

25.0

29.5

40.0

51.0

61.5

71.5

79.0

85.0

88.0

90.0

91.0
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Vmax (V)

0.1

0.2

0.4

0.6

0.8

1.2

1.4

2.0

2.4

2.6

2.8

Table C9

Test Results for Normalized Magnetization
and Incremental Permeability Curves

Imax (A) Bmax (Wb/m2) Hmax(At/m)

0.040

0.065

0.096

0.132

0.182

0.320

0.540

1.240

1.600

3.000

4.200

0.063

0.126

0.252

0.378

0.504

0.756

0.882

1.260

1.512

1.638

1.764

118.7

192.2

284.0

390.0

538.4

946.6

1597.0

3667.0

4732.0

8874.0

12424.0

424

522

707

770

745

636

439

273

254

147

113

Table C10

Test Results for Disk Conductivity

The test was made on a bar of uniform cross-section with the

following dimensions:

length £ = 56.5cm; cross-section Ab = 0.485cm2

resistance R = 1.734x10-3Q; conductivity a = 6.7x106(Qm)-1

V(mV)

1.70

3.45

5.21

6.98

8.74

10.50

I(A)

1.0

2.0

3.0

4.0

8.0

6.0

R(mQ)

1.700

1.725

1.737

1.745

1.748

1.750
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APPENDIX D

COMPUTER ANALYSIS

In Chapter 3 numerical expressions were derived for the trans-

former model parameters and terminal variables. The attached computer

program is used to evaluate these expressions.

The geometric dimensions of the coil and disk of Figure 4.1 are

read in and also N points on the normalized permeability curve Figure

4.5. The following subprograms are set up to evaluate repeated

calculations.

BINTI and BINT2 evaluate BI1 and B12 of equations (3.2.3) and

(3.2.4) respectively.

HENRYL and HENRYM evaluate the self and mutual inductances of

equations (3.214) and (3.2.10) respectively.

HENRYT is a refinement on HENRYM. Strictly speaking the mutual

inductance formula is correct for filaments only and in order to take

finite cross-sections into account Rayleigh's formula 8 is used. With

The central filament, four other filaments are chosen on each edge of

the coil cross-section as shown in Figure D1.1.

The mutual inductance is then

M =  (M1 + M2 + M3 + M4 + M5 + M6 + M7 + M8 - 2Mo) (01.1)

and each Mi is the mutual inductance between the filament at i and the

center filament of the other coil. M. is evaluated with HENRYM.

SUBROUTINE LAGR interpolates the incremental permeability for a

given flux density from the supplied data points on the magnetization

curve. The Lagrangian Interpolation Formula is used.
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7

3 8 40 6

2 5

Figure D.1 Rayleigh's Formula for Mutual Inductance

K+m-l K+m-l
x - x.

y = Yi y (x i  J) (D1.2)
i = k j=k 1 j

jii

An mth degree polynomial is passed through (m+l) points to the left and

right of x, the point at which y is being interpolated.

The Trapezoid Rule is used to carry out integration in the equivalent

current and power formula, equations (3.2.11) and (3.2.12) respectively.

bh
a f(x)dx ~ [f(a) + 2f(a+h) + 2f(a+2h) + 2f(a+(n-l)h) + f(b)]
a

(D01.3)

h b-a (Dl.4)
n

where n is the number of trapezoids. In the program the number of

trapezoids is equal to the number of disk segments for convenience. It

was found that 20 segments gave sufficient accuracy to two decimal places.

SUBROUTINE RMINV inverts a real matrix by the standard Gauss-Jordon

Method.

The peak magnetizing current is specified and for a given coil-disk

separation the transformer model parameters and terminals variables are
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calculated. The flux density and eddy-current density distributions

are also printed.



A=PRIMARY COIL RADIUS
B1=PRIMARY COIL WIDTH
CI=PRIMARY COIL HEIGHT
T=PRIMARY COIL TURNS
S=MAGNETISATION CURRENT (PEAK)
Z=COTL-DISK SEPARATICN
M=NO. OF DISK SEGMENTS
HZ= F.QU ENCY
SIGMA=DISK CONDUCTIVITY
N=NO. PCINTS ON B-UR CURVE
SD=SKIN DEPTH
RCAC=A.C. PRIMARY RESISTANCE
INDUCTANCE IN MICROHENRIES
ALL LENGTHS IN CMS.

C ~EQUIVALENT RESISTANCE
REAL*4 B(1O), (10) ,BR

120) ,S
COMPLEX SP,VP,CMPLX,7
E XTERNAL HENRYM

CALCULATION
(20) ,BZ (20) ,BC

1,Z2,Z3,Z4,Z5

(20) ,UC(20) ,SJ(20) ,F 1 (20) ,FX2(

4

REAL L1,LL,LM,L(20,20) ,M1(20),P(20),C(20)
INTEGFR*4 IWORK(20,2),IFRR
INTEGER*4 KK,II
READ(5, 1) N,MAZTHZSIGMA, (B (J) ,U(J) , J=1 ,N)
READ5, 10) C1,B1
FCRMAT(213/4F10.4,E10.2/(8F10.4))
FORMAT(' ',6E14.4)
FORMAT (2F10.4)
S1=0. 75*A
A2=1.53*A
DE= (A2-A i) / (N-I .)
DO 18 KK=4,8
Z=KK/2.
DC 19 II=5,50,5
S=II
G:2.*3. 1416F-09*T*S*A



D=2.*3. 1416*HZ*SIGMA*G
DC 12 J=1,M
P (J)=A1+(J-1.)*DR
R=P (J)
ER (J) =G*EINT2(RA,Z) *1.f 04
BZ (J) -G*ABS ( (R+DR) *BINT1 (R+DR,
BC (J) =SQFT (BR (J) **2 +EZ (0) **2)
SJ (J)=D*BINT1(RA,Z) *1.F 04

A,Z)-R*BINT1(R, A,Z))/R/DR*1.E

C LAGRANGIAN INTERPOLATTCN
CALL LAGR(B, U,BC(J),UC(3),N,5,K)

12 CCNTINUE
APS=o0.
WATTS=O.
DO 13 J= 1,M
FXI (J)=SJ (J) **2/SQRT(39.478E-9*HZ*SIGlA*UC(J) )*P (J)/2.
7X2 (J)=SJ (J)/SQRT(39.478E-09*HZ*SIGMA*UC(J))/2.
WATTS=WATTS+FX1 (J)
AMPS=AMES+FX2 (J)

13 CONTINUE
AMPS=(2 .*AMPS-FX2 (1) -FX2 (M) ) *D/2.* 1.-04
WATTS=(2.*WATTS-FX1(1)-FX1(M))*ER/2.*1.E-08*3.1416/SIGMA
OHMS=WATTS/AMPS**2
IF(S.N.30.) GO TO 25
PRINT 14

14 FORMAT(' '' RADIUS R BR(R) BZ(R)
1 UR (F) 3s(F) ')

PRINT 2, (P(J)
PRINT 15

,BR (J) ,EZ (J),BC(J) ,UC(J) ,SJ (J) ,3=1,M)

FCRMAT(' ',' I EQ. (A)
RADIUS A Z(CM)')

PRINT 2,AMPS, WATTS,OHMS,S,A,Z

PD (W) RD (OHMS)

IF(S.GT.6.) GO TO 20
EQUIVALENT INDUCTANCE CALCULATIONS
E2=DR

BC (R)

IM (PEAK)



C2= 1./SQRT (39.478E-O9*HZ*SIGMA*fC (M))
LT, =HEN Y (A,C 1 , B1)
GC 5 I=1,M

L (I,I) =HENRYL (P (I) ,C2,B2)
K=:I+ 1
IF(K.GT. ?) GO TO 5
DO 4 J=K,M
L (I,J) =HENRYM (P(I) ,P(J) ,0.)

4 L(J,r)=L(I,J)
5 Ml(I)=HENRYT(A,P(I) ,Bi,C1,B2,C2,Z)

CALL RMINV(20,M ,L,DETERM,IWORK,TERR)
DC 6 I=1,M
C (T) =0.
DO 6 K=1,M

Sc(I)=C (I) +L(1,K)*M1(K)
C3=0.
DC 7 I=1,M

7 C3=C3+M I(T) *C ()
L L=L 1 -C 3 o
L1=L1*(T**2)
IL=LL* (T**2)
LM=C3* (T**2)
PRTNT 16

16 F4CORMAT(' ',' LS LL LM SD
1 Sr FARATION FREQUENCY')
PRINT 2,1 1,LL,LM,C2,Z,HZ

C TEPINAL VARIABLES CALCULATIONS
20 SD=C2

RCAC=2.32E-04*SQRT(HZ)
SRMS=S/SQRT (2.)
AMPSP=AMPS/T
XLM=2.*3.142*HZ*LM*1.E-06
XLL=2. *3. 142*HZ*LL* 1. E-06
EP=XLM*SRMS
Z1=CMPLX (SRMS,0.)



Z2=CIPLX (0., AMPSP)
Z3=CiPLX (0. ,EP)
Z4=CMPLX (0. ,XLL)
Z5=CMPLX (FCAC,0.)
SP=Z 1+Z2
CP=CABS(SP)
VP=Z3+Z5*SP+Z4*SP
PRINT 17

17 FORMAT(' ',' VP: REAL , IM
1Y IM (EMS) CP')

PRINT 2,VP,SP,SRMS,CP
AVP=ATAN (AIMAG (VP) /REAL (VP))
ASP=ATAN (AIMAG (SP)/RPAL (SP))
THETA=(AVP-ASP) *180./3. 14 159+180.
VPM=CABS (VP)
PRINT 19,THETA,VPM ,CP

19 FCRMAT(' ','THETA= ' ,10.4, 'VPM=',

18 CCNTINUE
9 PRINT 17

STOP
END

AGINARY IP: REAL

F10.O,'CP=',FIO.4)

FUNCTION HENRYL (A,C,f)
R=0.2235*(B+C)
HENRYL=0.01256637*A* (ALOG (8.*A/R) (1.+(3./16.) ((R/A) **2))- (2.+ ((R
1/A) **2) / 16.))
RETURN
END
FUNCTION ENRYI (AI,A2,S)
C=((Al-A2)**2+S**2)/(16.*A *A2)
HENRYM=C.C1256637*SQPT(A1A2)*(ALOG(2./SQ r(C))*(1.+3.*C-3.75*(C**

12) ) - (2.+C-3.875* (C *2) 2) )
RETUT N
END
FUNCTION HENRYT (AI,A2,B1,CI t,B2,C2,S)

HREAL*4 M(8) ,MO
MC=HENRYM(A1,A 2 ,S)

IM AGIN A



M(1)HIN YM
Ml (2) -HE NRY M
M (3)=HENBYM
M (4) = HENR YM
M (5) =H ENRYM
M(6)=HENRYM
M (7) =HENRYM
M (8)=HENRYi
HENRYT=0.
DO 1 I=1,8

(AI-C1/2. ,A2,S)
(A 1 , A2 ,S-B 1/ 2.)
(Al+CI/2.,A2 ,S)
(A , A2,S+Bl/2.)
(A1, A2-C2/2. ,S)
(A1, A2,S+E2/2.)
(A1, A2+C2/2. ,S)
(A 1, A 2,S- 2/2.)

1 HNYT=HENRYT+ M (I)
HENRYT= (HENRYT-MO*2.)/6.
RETURN
END
FUNCTION BINTI (R,A,Z)
C= ((A-R) **2+Z**2)/(16.*A*R)
BINT1=((1.+3.*C-3.75*C**2+8.75*C**3) *ALOG (2./SQRT (C))- (2.+C-3.875*

1C** 210. 292*C**3) ) / (3.1416*SQRT (A*R))
RETURN
END
FUNCTION EINT2(RA,Z)
C=((A-R) **2+**2)/(16.*A*R)
3INT2=Z*((- 3. +7.5*C-26.25*C**2)*ALOG(2./SQRT(C)) + (./(2.*C)+2.5-9.

1625*C+35.25'*C**2))/(8.*3.1416* ((A*R)**1.5))
RETURN
END
SUBROUTINE LAGR (XC,YCX,YY,N,MI,J)
REAL*4 XC(10),YC(10)
IF(X-XC(1)) 1,2,2

1 J=l

RETURN
IF (X-XC(N))
J = 0
DO 4 1=2,N
IF(XC (M) -X)

3, ,1

4,5,5



4 CONTINUE
5 JE=M+M1/2

JS=JE-M1
IF (JS) 6,6,7

6 JS= 1
J E= 1 + M 1
O0 TO 8

7 IF(JE-N) 8,8,9
9 J E=N

JS=JE-MI
3 Y=0.

DO 10 I=JS,JE

DO 11 J=JS,JE
IF (J-I) 12, 11, 12

2 SUM=SUM* (X-XC(J))/(XC(I)-XC (J))

1 CCNTINUE

0 Y=Y+SUM*YC(I)
RETURN
END

C D AT A
C N SEGMENTS

10 20
C RADIUS SEPAR ATION TURNS
9.0 2.0 20.
C FLUX DFNSITY(WB/M SQ,)
0. 200. 0.05
0.2 610. 0.3
0.6 720. 0.7
C HEIGHT WIDTH
1.0 5.5

FREQUENCY CCNDUCTIVITY
10000. 6.7E 04

REIATIVE PERMEABILITY
370. 0.1 470.
700.
670.

0.4 745.
0.15
0. 5

542.
740.
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