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Abstract

Research interest in the use of adaptive experimentatismdiarned recently. This his-
toric technigque adapts and learns from each experimemabutirequires quick runs and
large dfects. The basis of this renewed interest is to improve exyarial response and it
is supported by fast, deterministic computer experimentstzetter post-experiment data
analysis. The unifying concept of this thesis is to presewt @valuate new ways of us-
ing adaptive experimentation combined with the traditlostatistical experiment. The
first application uses an adaptive experiment as a preliyisip to a more traditional
experimental design. This provides experimental reducylas well as greater model ro-
bustness. The number of extra runs is minimal because s@neoarmon and yet both
methods provide estimates of the best setting. The secandf@slaptive experimentation
is in evolutionary operation. During regular system ogerasmall, nearly unnoticeable,
variable changes can be used to improve production dyn#yitathese small changes
follow an adaptive procedure there is high likelihood of hayement and integrating into
the larger process development. Outside of the experiment&kamework the adaptive
procedure is shown to combine with other procedures and Yehefit. Two examples
used here are an unconstrained numerical optimizatioredtoe as well as classification
parameter selection.

The final area of new application is to create models that amvination of an adap-
tive experiment with a traditional statistical experimefivo distinct areas are examined,
first, the use of the adaptive experiment to determine thartavce structure, and second,
the direct incorporation of both data sets in an augmentetein&oth of these applications
are Bayesian with a heavy reliance on numerical computatahsimulation to determine



the combined model. The two experiments investigated cbelgerformed on the same
physical or analytical model but are also extended to sanatwith ditferent fidelity mod-
els. The potential for including non-analytical, even hamaodels is also discussed.

The evaluative portion of this thesis begins with an analfgundation that outlines the
usefulness as well as the limitations of the procedure. iEHslowed by a demonstration
using a simulated model and finally specific examples are mifaem the literature and
reworked using the method.

The utility of the final result is to provide a foundation taegrate adaptive experi-
mentation with traditional designed experiments. Givindustrial practitioners a solid
background and demonstrated foundation should help tdycthds integration. The final
procedures represent a minimal departure from currentipeabut represent significant
modeling and analysis improvement.

Thesis Supervisor: Daniel D. Frey
Title: Associate Professor
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Chapter 1

Introduction

Many experimental situations require a setup, tuning, @rable importance decision be-
fore running a designed experiment. If this other procedungn as an adaptive experiment
there can be additional benefit to the subsequent desigpedient. The adaptive experi-
ment of focus is the adaptive-One-Factor-at-a-Time (aQEXperiment described in Frey
et al. (2003), to be combined with a number dfelient statistically designed experiments
including fractional factorial, Box-Behnken, Plackettifthan, and D-Optimal as well as
other procedures including evolutionary operation, Ertitassification, and unconstrained
optimization. The hypothesis is that there is an appropréatd beneficial place within
designed experimentation to combine an adaptive expetimiém a traditional statistical

experiment.

Design-of-experiments (DOE) is a frequently used tool tdarstand and improve a
system. The experimental technique began as support fgrteym agricultural projects
that allowed the development of methods such as blockimglamization, replication, and
fractional factorial analysis (Box et al., 2005). Many ot#le practices are considered

fundamental to good experimentation, and are widely usddytoThe next advancement

1



2 Chapter 1. Introduction

to experimentation were achieved by industrial practeisn In the chemical and man-
ufacturing industries experiments ran more quickly, butensill expensive. Sequential
experimentation specifically designed for regressionyamabecame the standard. The ex-
periment was tied to a particular underlying physical madal could accurately estimate
the required model parameters with minumum excessive fansurrent experimentation
research design parameters are separated from noise parsmoeallow robustness tun-
ing, with the most popular technique being crossed arraysgid Hamada, 2000). These
methods rely on a single design paradigm, the statistiga®@xent. The previous method
of changing a one factor at a time (OFAT) (Daniel, 1973) haanldiscounted as lacking
the statistical power and requiring too many runs (Wu and &#an2000). The advantages
of learning from each run and approaching a maximum quickdyuader appreciated and
over criticized. This adaptive approach is also easy toam@nd implement and does not

require an extensive statistical background.

The literature on experimentation (Wu and Hamada, 2000;tytmnery, 1996; Box
et al., 2005) is primarily from a statistical viewpoint andtering in paradigm from the
previous one-factor approach, as Kuhn (1996) would sayjid®issions between the two
options may be incommensurable. The arguments for thetitatiapproach are based on
a language and perspective that does not exist with theawterfmethodology. Even with
a preponderance of evidence in support of the one-factaroapp in certain situations,
yielding slightly is tantamount to questioning the foundatfor a statistical approach.
The suggestion forwarded in this work is partially that apapunity exists to bridge the
paradigms of one-factor and statistical experiments.ribisto belittle the advancement of
statistical experiments but to expand the framework to idenghe system of application.
A parallel can be drawn to Newtonian and relativistic phgsiWhile it is accepted that for

high speed and short time applications the Einstein viewagermorrect, for the majority of



earth bound physics the Newtonian approach is more usahstdin (1919) also suggests
that his theory does not supersede Newtonian physics anddiagcessible situations to
measure any lierence is dticult. From a practical standpoint, accepting the validity o
Einstein does not reduce the ubiquitous utility of Newtonpdysics in daily engineering
activities. The same approach could be taken in experirtientaVhile acknowledging the
validity of statistical experimentation there are sitaa where one-factor methodologies
are more practical. Taking this openness even further tirerepportunities to benefit from
both a one-factor design as well as a statistical experinmgme analogy would be initial
predictions using Newtonian physics to be later refined wethtivistic calculations. For
many instruments and situations the initial method woulduicient but the confirmation

and refinement using a relativistic approach would suppertésults.

Although the statistical and adaptive approaches aretiwadily used in diferent sit-
uations this work will present opportunities to combine tesults from both types of ex-
periments into a complete testing framework. This comimemais challenging to accept
by both the academic as well as the industrial community. dt¢edemics question the
pragmatic utility while most practitioners are unwilling¢hallenge the foundation of their
six-sigma training. Although it may be impossible to bridhe incommensurate points of
view, this work is an attempt to present some specific exasrithlt demonstrate the utility

of using both methodologies.

The first situation of interest is reusing runs from a prioagti’e experiment. By
reusing runs the intent is to increase the number of commios between the two exper-
iments. The adaptive experiment cannot be preplanned atitegootential reuse in the
subsequent experiment is stochastic. The procedure igatsd begins with an aOFAT
experiment. The first follow-up experiment is a traditiofraktional factorial design. The

number of runs reused is dependent on the fraction useduthber of variables, and size
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of fraction. This number asymptotes to approximately twergrcent of the total adaptive
runs. This run reuse is demonstrated on a number of actuafiexgnts as well as surrogate
experiments. If the follow-up experiment is more flexibleasign, one option investigated
was the non-balanced D-optimal design. As suggested in WHamada (2000), a fully
orthogonal non-balanced D-optimal design is a good altem#o a fractional factorial.
This change dramatically improves run reuse to all but onealihough it requires design
planning after the initial aOFAT is complete. In additionsionulating the results of this
improvement the independence of the two resultant maximetngs is demonstrated.
Running an adaptive experiment before a statistical expri creates an opportunity for

run reuse while providing an independent maximum settitigheses.

This adaptive approach could also be used on the manufagtficor. The method
of evolutionary operation (EVOP) is revisited with a focus wtilizing adaptive experi-
mentation. The alignment of this continuous improvemeachméue with the sequential
maximization nature of an aOFAT provides a positive pairiigpe use of these adaptive
procedures was discussed by Box and Draper (1969) to théustorc that the methodology
was naive. This conclusion is challenged here by investigaictual system responses,
and showing a place for sequential adaptive experimerggedd of using small fractional
factorial experiments, repeated single steps in an adaptivcedure is shown to be more
robust to initial and subsequent variable selection. Beeai the stochastic nature of the
repeated procedure a modified Gibbs sampler is introducedhtionize the additional runs
while converging to a better variable setting. Affistioot of this procedure is the use of an
adaptive experiment in computational function maximizadti

The modified sequential simplex procedure was originallyettoed for evolutionary
operation (Spendley et al., 1962). This rank-based gemnetocedure was used fre-
qguently in the 1970’s and 1980’s although it languished & 1990’s for more complex



derivative-based methods. More recently it has returngebfularity with the increased
use of computer simulations. As a robust method it is ableattdle discontinuities and
noise at the cost of more function evaluations. There aréementations of the simplex
in most numerical programs for unconstrained optimizatidhe typical initial setup is

based on changing one variable at a time (Press et al., 20018 is improved by adding

an adaptive element and performing an aOFAT for the int#ion. The aOFAT procedure
is modified to align the geometric center of the starting f®ta that of the non-adaptive
method to permit equivalent comparisons. The adaptiveguha@ improves the overall
convergence and reduces the number of function evaluat@sbining the adaptive pro-
cedure with the simplex starts the geometric procedurertisshe maximum gradient for
improved convergence. The benefit of this change is denmairdton a test suite for nu-

merical optimization (Moré et al., 1981).

Outside of the optimization another issue addressed hes&rimble selection. Using
the Mahalanobis-Taguchi Strategy (MTS) from Taguchi argbllum (2002), data classifi-
cation is based on a statistical distance. One hurdle t@ukia system is in selecting the
best variables for classification. Traditionally orthogbarrays are used to select a subset
of variables. This method can be improved by using an aOFAE®ment combined with
the Mahalanobis distance. This procedure is specificaljieghto an image classification
system where the variables of interest are thefmments of a wavelet transform. In this
case the addition of variables adds to the computationdl ¢dahe classification system
reducing its performance. It is important to add the minimwmber of variables while
maximizing their usefulness. The superior peroformance@aOFAT combined approach

is demonstrated and has been published in Foster et al. 2009

In addition to dual results and as a starting procedure, dQféA be used as one ex-

periment that combines the results into a single model. Qoimdptwo different types of
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data was approached in a Bayesian framework. The use of @latedt gaussian random
variable to make a posterior prediction has been used ssfodlgdy Joseph (2006). Part
of this methodology is to use a correlation matrix for theutwariables. Instead of using a
larger experiment the information was divided between aly @ FAT experiment to cre-
ate the correlation matrix followed by a highly aliased R&tt-Burman design (Plackett
and Burman, 1946). The goal of this aspect of the work is tolinethe relative strengths
of both the aOFAT and traditional experimental procedurBise aOFAT can be used to
create a variable ranking while the aliased design is abbgficiently define the model.
A procedure to define the correlation matrix is created tleatelits from published data
regularities (Wu and Hamada, 2000) and variable distroufLi and Frey, 2005). This
methods performance is equivalent to using an uninformeeledion matrix and a larger
experimental design with equal total runs. The procedudeimsonstrated on a number of

published examples as well as surrogate functions.

The last aspect of combined model building is to use experisnef diferent accuracy
such as Qian and Wu (2008). Combining computational andigdlysxperiments is one
example of these ferent accuracies. The use of adaptive experiments usesi@umnimn
number of runs while increasing the likelihood of havingmisinear the maximum. A new
method of calculating convergence is presented as well asagure to maximize each
simulated markov chain. The result is a procedure that desva good model using both

data types that is more accurate at the maximum values.

The ultimate goal of this work is to create a foundation fa thtegration of adaptive
experimentation into statistical experiments. Simpléntégues are presented for using
setup runs and getting benefit from those runs. This condimmenanufacturing where
evolutionary operation (EVOP) can be improved and simplifith adaptive experiments.

A numerical maximization procedure is improved through @idvestarting approach, and



a classification procedure is shown to benefit from an adajparameter selection tech-
nique. The final area focused on using data from an adaptperiexent and a traditional
experiment to build a single model. First, the covariand¢eregion was improved to yield
more accurate and smaller models with the same number of @gsond, incorporating
data from two diferent accuracy sources is shown to benefit from making orfeeahtper-
iments adaptive. The overriding goal for all of these prared is to extend the framework
for combining adaptive techniques with traditional expents to reach a greater audience

and provide examples and tools necessary for their apiglicat
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Chapter 2

Experimental Background

2.1 Early Experimental Developments

The science and art of designed experimentation began @silagre experimentation by
Ronald A. Fisher (Figure 2-1) at the Rothamsted Experimé&ition in England where
he studied crop variation. The techniques that he develogee the basis to testftierent
seedsoil/and rotation parameters in a noisy field environment (Fish@21). This early
work cumulated in two important books on the use of staa$ticethods in scientific in-
vestigation (Fisher, 1925, 1935). A parallel developmeas Wweing made by William S.
Gosset (Figure 2-2), also in agriculture but this time edato small samples of barley
for beer production. These two early pioneers developecasuithe foundations of statis-
tics and experimentation including blocking, randomizatireplication, and orthogonality.
Another contribution that was made was progress on smalpkadistributions, thus for
smaller experiments the estimates of significance and eowid be calculated (Student,
1908).

The fundamentals of these early experiments were founatio further experimental

11



12 Chapter 2. Experimental Background

Figure 2-1: Ronald A. Fisher

Figure 2-2: William S. Gosset
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development and continue to be utilized today. Replicatitdizes repeated experiments at
identical settings, although not run sequentially but atlcan. The principle of replication
allows for an overall experimental error estimate. If thieis low compared with with
the experimental response, the confidence is high that theriexent is representative of
the population in general. The reverse is also true thahgivdesired error margin (or risk),
itis possible to estimate the required number of replicdRemdomization suggests that the
order of changes should vary randomly. By making adjuste@ntandom order, any sig-
nificance in the results is more likely due to the experimlerdeables and not some other
latent, or hidden, variable. A latent variable is somethimat changes throughout the ex-
periment but is not directly changed by the experimentees€lhvariables could be obvious
like the temperature of the room, to something more hiddenthe predilection of boys
to use their right foot. If the experimental changes areiadph a random fashion then
it is unlikely that these latent variables wilffact the result. The next aspect introduced
is if there are some uncontrolled variables that are tdidcdit or expensive randomize.
One method to deal with these variables is through blocKihgntical sets of experiments
can be run in blocks, and theflirent blocks can be run atfférent settings of these un-
controlled variables. An example of blocking would be twfielient manufacturing plants
that would each run an identical experiment. Although thEedénces between plants are
large, the changes within a plant should be similar. The gwablocked experiments is
for the within block variation to be low compared with theween block variation. The
last aspect of early experimentation was input variableagonality. If the variables in an
experiment are arranged such that there is zero correlbétween them they are consid-
ered orthogonal. Most designed experiments are arranggdatantee this property, which

simplifies analysis.

The experimental designs that were developed began witfefttbrial designs at two
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levels. These designs are complete enumerations of allbtarcombinations. The first
variable switches from the low to high setting every run, sikeond variable every two
runs, the third every four, etc. This led t&6 @umber of runs for each replication whare
is the number of factors or variables. The runs should beaiamzed, blocked if possible,
and replicated. These large designs hafiGgant runs to estimate the maiffects, and
all interactions, the main drawback was they were too langalf but the simplest experi-
ments. To reduce the number of runs fractions of these arpets were developed. The
fractional designs begin with a smaller full-factorial g@gsand to add additional factors
that are combinations of the existing factors are used. Esthr run is orthogonal to the
others so multiplying two or more factor runs together yseddnew run that is orthogonal
to those. The design of these is complicated in finding goothlbke combinations that
yield orthogonal results to the greatest number of othelofac The factors that are not
separable are called aliased. For example, given a three,fadl-factorial design, multi-
plying the first, second, and third facto®sEC) gives you a fifth factor@). This designis a
241 design with resolution IV, called so because the numberatbfa multiplied together
to get the identity is fourABCD = 1). In general, a resolution IV design has no n-way
interaction with any other (5 n)-way interaction. This design is obviously aliased in any
effects of ABC would not be distinguishable from mairtect D. There is a tremendous
research history on the fractional factorial concept an¥81935); Fisher (1935); Box
and Hunter (1961b,a) are some good starting points. Fradtfactorial designs are the
workhouse of designed experimentation. Today researalséscon incorporating noise
variables, identifying concomitant or lurking variablesid exploiting covariats, through
such things as highly fractioned, non-replicated, or remmdomized designs (Sitter, 2002).
There are other techniques for designing an experimentniogt industrial experiments

rely on the fractional factorial.
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One of the other techniques is called optimal design, it was diescribed by Smith
(1918) but the lack of computational power prevented itsupeity until later. The pri-
mary motivation of optimal design was to focus on the inféerpower of the design
versus the algebraic properties of its construction (ssalottability) (Kotz and Johnson,
1993). This work will be limited to linear models and so a coete definition of opti-
mal designs is unwarranted. The basics are the comparisdiffefent potential designs
against a criterion or calculation of merit. Numerical nueth search through potential

designs before selecting one with the best criterion. Gavinear model:

Y= X8 (2.1)

The best linear estimate gfis (X" = X)"1X™ « Y and a measure of the variance on this

estimate (given uncorrelated, homoscedastic noise withneeo) is:

o (X% X1 (2.2)

One measure of good design is the size of this matrix. Thare momplete metric for the
size of this matrix and so a number of alternatives have besmoged. One popular one
is the D-optimality condition that seeks to minimize theeatstinant of this matrix. Oth-
ers are the A-optimality for the trace of the matrix, or Etoplity minimizes the largest
eigenvalue of the matrix. There are a number of other pateopitimality conditions, here
the focus is on D-optimality because fters a clear interpretation, and is invariant to scale
transforms. It is not the only choice for optimal designs lhas been suggested as good
starting location by Kiefer and Wolfwitz (1959). The mainlityy of optimal designs as

stated in more recent texts Wu and Hamada (2000) is to augen&ribus runs. The draw-
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back of this approach is the dependency on the underlyingehibedore creating a design.
By limiting the cases to those where the linear-model datent is a global minimum it

forces orthogonal models.

2.1.1 Higher Order Models

The previous models limited the analysis to linear and adgon terms. If it is desirable
to estimate quadratidiects then one obvious extension would be to rufi fulB-factorial
experiment. The drawback of this large experiment is thattrabthe runs are used to es-
timate high order, improbable, interactions. Given thagple of hierarchy from Hamada
and Wu (1992) which states that lower ordéiieets are more important than higher order
effects and ffects of the same order are equal, most of these terms araificagt, and
so these runs are wasted. Ultilizing fractional factoriadiges has greater run economy
while normally yielding the same models. There are alsasibns where the number of
levels is a mixture of two and three level factors. This letads large number of potential
experimental designs withf@ierent resolution and confounding structure. A small, bgx si
nificant, change in approach is to view the experiment as aortynity to dficiently fit a
proposed model. If this alternative view is used then desgpuld be moreféicient and
much smaller. In an early advance, Box and Wilson (1951) ghiomow to overcome the
problem where the usual two-level factorial designs weimto find a ridge. These cen-
tral composite designs (CCD) wergiieient and rotatable (Box and Hunter, 1957), meaning
that the variance estimate was comparable in any directioa CCD consists of three ports
first the corner or cube points\%second the axial or star points{) and the center points
(» 3-5 Montgomery (1996)). With a defined goal of building a quéidnanodel these de-

signs are highly fiicient and are normally employed to search for more optimatatpng
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conditions. One selection that needs to be made by the expeteér is the distance of the
star points. These points are locatetimes further than the corner points. The selection
of @ = 1 is called the face centered cubic and has only three leweksaich variable. An-
other popular selection is to make the design rotatableaee la constant distance to the
center point, sa = /n. The last selection af makes the cube points and the star points

orthogonal blocks. This property is useful if they are gadiadpe run sequentially in this

casea = VK(1+ ny/ny)/(1+ ng/n), wheren, is the number of axial points, ant is
the axial center points ang andny is the same for the corner pointslofariables. One
drawback of the CCD design is that the corner points are rafl #te variable extremes,
and it is also not asficient as some other deigns. If the experiment is going to betu
only three levels an improvement is the Box-Behnken dedBpx @nd Behnken, 1960).
This design is slightly more compact than the traditionaDZ@nd does not have any of
the corner points. It was created by combining a number afrimalete block designs, and
so also has potential for orthogonal blocking. For four ajlales the Box-Behnken design
and CCD ¢ = +/n) are rotations of each other, one having points at the ceraed the

other not. This feature is not the case for more variables.

The Plackett-Burman designs are vefficent experimental designs. The metric of
redundancy factor (Box and Behnken, 1960) is going to be tesddscribe these designs.
If a designed experiment &ffactors is going to be used to fit a polynomial model of order
d then it has to be able to separably estim&te ¢)!/k!d! model factors. For example,

a full-factorial design ofp-levels (normally 2 or 3) can at most estimate a model of order
p—1. To estimate a quadratic model at least three points aeseary given a full-factorial
design hagX runs. The redundancy factor is the ratio of the number of tarise number

of parameters that can be separately estimated. For théabwdrial design it isp“(p —

1)!k!/(k+ p—1)!, which for a 2 design is 5.3 and for a3lesign is 11.6. The ratios for the
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N | Vector

12 | ++-+++--—+-

20 | ++-—++++-+-+-———++-

24 | +++++ -+ttt ———

36 | -+ttt — =

44 | +4- -ttt - - T 1

Table 2.1: Plackett-Burman Generating Row

full factorial designs are very large. For the PlackettsBan designs with the number of
variablek = 3,7,11,..., or4i—1, the two-level p = 2) require onlyr = 4,8,12 16,...,4i
runs. Thus their redundancy factor is unity. This minimaiedancy is normally not used
in practice as they have no residual data that can be useeat# de validity of the model.
The primary area of utility of this design is in screening estments. If it is known in
advance that a number of the variables will probably be unimamt then those extra runs
can be used for model validity checks.

The construction of a Plackett-Burman design is completedadyclic fashion. A gen-
erating row is used initially as in Table 2.1. This genemtiaw is then shifted one entry
to the right, and the last entry is placed first. This procedsrrepeated until the entire
generating row has been have cycled through. The final roW €f'siis added to complete
the design.

All of these designs and the general process of making degisions are described
in the original classic text on experimentation of Box et(a878) which has been updated

in Box et al. (2005).

2.2 Adaptive Designs

During the second world war a number of statisticians andrngisits were gathered by

the United States government to from the Scientific Rese@rciup (SRG). This group
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worked on pertinent war studies such as the mfisttve anti-aircraft ordinance size and
the settings for proximity fuses. One area of research #raedrom this group was the idea
of sequential analysis. Instead of running an entire erpanmt before analyzing the results
they considered the power of analyzing during the experirnffemedman and Friedman,
1999). Out of the early work of Wald (1947) further researsheave proposed ways to
not just analyze but to modify the experiment sequentiallyhsas yan Lin and xin Zhang
(2003). These methods are prominent in clinical trials saschsiatis and Mehta (2003) and
Chow and Chang (2006). One of the ideas is now termed resfaateg®ive randomization
(RAR) Hu and Rosenberger (2006) which was introduced asaalled 'play-the-winner’
by (Zelen, 1969). The idea is to bias the randomization ofisetjal trials by the preceding
results. This fundamental idea will be used in this thesitherchapter on evolutionary
operation (Chapter 4) and again in the chapter on aOFAT iated improvement (Chapter
7).

An additional area of research that began with the SRG wagjuspeated experiments
to find a maximum by Friedman and Savage (1947). This was otteedbundations for
Frey et al. (2003) and Frey and Jugulum (2003) work on theestibjin the work here
repeated experiments are run with each subsequent expeneadecing the variable range.

In the end the variable range spans the function maximumrfeat convex variables.

The statistical design approach has been used as a staoiimgiq optimization pro-
cesses. One example is the question posed by Box (1957} ttmukvolutionary opera-
tion statistical experimentation procedure be made auioreaough to be run on a digital
computer. This original question drove Spendley et al. 2)96 develop a geometric opti-
mization procedure called the sequential simplex. Thisgdare will be investigated here
because it has properties of interest. First the objectite maximize a few runs, an adap-

tive procedure will have the biggedtect. As the number of runs grow the ability of the
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statistical experiment to measure variable importancevgrarhe second reason that this
application is appropriate is the goal is to search for a manrn.

Those two areas will play an important role in this thesis arelthe motivation for
much the work. A simple definition of these two main systemeaspare those that first
use very few experimental runs and second desire functiotnnization. There are many
practical areas where these properties are desirableialip@athin the context of applied
industrial experimentation. Taken to an extreme the ldgjoal is to maximize the value
of each run and limit the total number of runs. As Daniel (19&8d Frey and Geitzer
(2004) point out, there are numerous experimental sitnatichere adaptation is desirable

and stopping the experiment early is a frequent occurrence.

2.3 Background for One-Factor-at-a-Time (OFAT)

While it is almost impossible to investigate the history loé intuitive OFAT (one-factor-
at-a-time) experiment more recent investigations into garative one-factor options is
available. Daniel (1973) was an early proponent of the teglenwithin the statistical
community. He discussed the opportunity and the requifBetiesize to make it worth-
while. His main concern was with changing each variable deoand the comparison to
a regular fractional factorial experiment. While the mation for each of these filerent
types of experiments is disparate the runs and analysisitasi Because of the risk of
time-trends and the inability to estimate interactions @swletermined that the ratio of
effect to noise had to be around four. This high resolution gafiécgent power to this
historic method. There were fiveftirent types of one-factor experiments presented by
Daniel (1973). These five types are strict, standard, pafred, and curved. Strict varies

each subsequent variable beginning with the previousigetti the experimenter was test-



2.3. Background for One-Factor-at-a-Time (OFAT) 21

ing a(where onlya is at the high setting) theab(with both a andb) thenabc this is an
example of a strict OFAT. The advantages to this arrangemehat it transverses the de-
sign space and can be easily augmented by starting at thenregeand removing factors,
the experiment above could be extended by addowndc. The standard OFAT runs each
variable in ordem, b, ¢, andd. This order focuses the runs on one corner of the experiment,
which increases knowledge around that area but does nobuaistimates of interactions.
The paired order is designed for runs that are typically nuparallel experimental setups.
Each setup completes a pair of runs that can estimate theeffiegts and separate the in-
teractions. The first two runs for the first setup couldal@nd(1)(all values low) while the
second would rumbcdandbcd These two standard OFAT experiments are combined to
yield variable information after two runs of each setup sthecisions can be made about
future experiments. The free OFAT is only touched on brietly lirings a level of adap-
tiveness. After a part of a traditional experiment is cortggleome response assumptions
are made to reduce the additional runs. If the initial higinhctioned experiment shows
A+BC is important then choose additional runs to separate dub BC assuming the
rest of the &ects are negligible. The final OFAT experiment is a curvedghesThis sep-
arates out easy to change fronffidult to change variables. The easy to change variables
are swept through their range of values while the othersirenmnstant. A subsequent set
would change all of the variables and run the sweep againselfiee represent the basic
set of publicized OFAT experiments. The practitioners @ #xperimentation technique
often wanted an easy way to gain factor importance in siinativhere the experimental

error was low and results were quickly obtained.
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2.4 Adaptive One-Factor-at-a-Time (aOFAT)

The one-factor-at-a-time (OFAT) experiment was once iigias the correct way to do
experiments, and is probably the default in many non-siegisframeworks. Inside the
statistical framework it is possible to view full-factor@esigns as a series of OFAT exper-
iments. Given a 2experiment in standard order runs 213, 5), (8 7, 6, 4) are two OFAT
experiments that yield the same runs as a full-factoriakérpent.

Daniel (1973) discusses this option and the utility benefit® FAT to experimenters.
It is possible to learn something after each experimentgland not require the entire set
of runs to be complete. The power of this analysis requiresdiect to be three or four
times as great as the noise, and in many situations theskeaoally dfects of interest.

The four basic issues brought up against OFAT experimentsrepeated in dierent

contexts are (Wu and Hamada, 2000):
e Requires more runs for samfext estimation precision
e Cannot estimate some interactions
e Conclusions are not general
e Can miss optimum settings

These are legitimate issues with the methodology but ffectein practice depends
significantly on the experimental purpose and scope. Tat@ulp of these points out of the
experimental context to blindly support a statistical lokeggproach ignores some situations
where this methodology has clear advantages.

These same negative arguments are repeated in (Czitror®) W@@re the author give

specific examples where the choice of a OFAT experiment &imfto a regular statistical
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experiment. First, the discussion does not address lieadisperimentation nor does it
discuss additional information sources. Both of these ipdsg®s are discussed in this
work (Chapter 3 and 7). To support the statistical experirttemauthor gives an example
of two variables where the experimenter wants to run an ORAliree points, temperature
and pressure. The number of replicas was decided in advaneelkas the variable range.
The first concern is around how that data was collected anditoauld be combined
with the experimental results. Second, the entirety oftedl éxperiments are planned in
advance, if the outcome is to search for a maximum, thereadteroptions (as discussed in
(Friedman and Savage, 1947)). There is no argument aghastajority of the examples
presented in (Czitrom, 1999) (examples two and three), hadstatistical experimental
framework is superior to a traditional OFAT approach. Thalitg that OFAT is inferior
in certain situations does not eliminate the possibiligt t@FAT has a useful place in the
experimental toolbox. This work explores a handful of thogportunities.

The uses forwarded in this work augment, instead of replaestatistical experimenta-
tion. There are many situations that benefit from an adaptweework, important example

situations include:

¢ Insuficient planning resources

e Immediate improvement needed

e Variable ranges andiect magnitude unknown

Although there may other specific situational examplesselare the situations described
in Frey and Geitzer (2004) and Daniel (1973).
If the resources to plan the experiment and layout and perfioe runs are not available

iS no experimentation possible? Some situations are lhfiyetime and resource pressure
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and only overhead-free experimentation, such as OFAT, ssipte. There are other sit-
uations that demand some immediate improvement to themgroundition. Additional,
and more complete, experiments can be run afterwards tothensystem but an initial
change needs to be made that has a high likelihood of sucgeésiich as adaptive-OFAT
(aOFAT)). Many experiments are run on processes and faatoese little is known. It
may not be possible to determine the variable ranges fordpereanent with a reasonable
degree of confidence. The only way to determine the possiiges is to experiment on
the system, and a OFAT framework can determine the maximuwmanimum settings.
These general situations have specific examples that hawadb benefit from the OFAT
approach. There are potentially many other situations ties technique may be benefi-
cial, but there has not yet been a serious inquiry. For exangple area may be to reduce
the number of variable changes. The OFAT and aOFAT expeticnd be compared to
options such as Gray codes (Gray, 1953). It is infeasibleddipt all the opportunities but

as the technique gains greater publication its use shoplanek

As the statistical approach is accepted, many authors (\888;1Box et al., 2005;
Myers and Montgomery, 2002) suggest an adaptive framewhbggeva sequence of exper-
iments is performed. These experiments could be changicauise of newly discovered
interactions or to change the variable ranges to searchifettar operating condition. The
minimum experimental process suggested is a two or threéerfaxperiment (in Box et al.
(2005), for example), but if this is reduced to the extrensmttiheir procedure also reduces
to an aOFAT sequential experimentation procedure. Theeggiure outlined in Myers and
Montgomery (2002) uses this sequential procedure and agathe nears a maxima, the
experiment is expanded to study more of the interactionsiadaatic &ects. This adaptive
sequential procedure is revisited in this work with theiahiéxperiment being the minimal

aOFAT followed by a statistically based procedure.
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There have been some recent comparisons between the aOfAddo®gy and more
traditional orthogonal arrays in Frey et al. (2003). Theyrid that for the same number of
runs, the aOFAT was able to discover the maximum setting lwgh probability. The suc-
cessful resultant of the procedure should be limited todlsitsiations where the maximum
number of runs is small (limited to the number of variablasspbne). Thus the compari-
son is normally between aOFAT and Resolution Il Fractidredtorials (later in this work
Plackett-Burman Designs will also be included). If there additional resources there is
limited information about what would be the next steps. # foal is to match a standard
factorial experiment, Daniel (1973) suggests running ees@&f OFAT experiments. These
experiments cover the runs for a reduced factorial desighsanan adaptive addition is
unnecessary. Friedman and Savage (1947) suggest thaka sEddaptive experiments
can be used to search for a maximum. More recently, Sudarsé2208) proposes run-
ning a number of aOFAT experiments and ensemble the reddist authors are silent on
the subject of additional runs and instedfeodirect comparisons to specific experimental
designs. One could conclude that the current methodolagyeiguential experimentation
could be utilized just replacing the fractional factoriakthn with an adaptive design. This
extension has yet to be demonstrated in practice and dogsew@nt methodologies that

combine aOFAT experiments and other experiments.

Frey et al. (2006); Frey and Sudarsanam (2008); Frey and \(20@pH) have looked
into the mechanism behind aOFAT that leads to improvemdnit rEsearch is empirically
based and shows that for low levels of experimental erroefatively high amounts of
interaction aOFAT is superior to Resolution Il Fractiorlctorial designs (Frey et al.,
2003). The comparative advantage with high interactiorgests that there might be a
complementary relationship between aOFAT and Fractioaatdfial designs. Given this

relationship are there other options for additional reses®? Some possibilities are inves-
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tigated in this work including, run reuse in another expemtand searching for a maxima
through a sequential simplex. The other area of investigatias utilizing the relation-
ships in Frey and Wang (2005) to apply a Bayesian frameworkagimize the utility of
the aOFAT experiment as a prior predictor.

The underlying system structure requires low noise for ga@iem estimates. Daniel
(1973) suggests that théfect magnitude should ber4while Frey et al. (2003) suggests
that 150 is suficient. These estimates are based dfedent data sets and may bédrient
for a particular experiment. The other requirement was pleed to collect data samples,
both Daniel (1973); Frey et al. (2003) suggest that sammimguld be quick. This re-
guirement limits the fect of drift or time seriesféects. It is possible to account for some
of these &ects by running multiple experiments, but the lack of randamon limits the
extent of this improvement.

There are many experimental techniques the two presente@direadaptive-one-factor-
at-a-time (aOFAT) and statistical experiments. Both h@wasons where they are superior
but due to an adversarial relationship there is limitedaegeon the combination of the
two methodologies. This research begins to bridge the OFAlTspecifically aOFAT ex-
periments with statistical experimental techniques. Tleasof application are run-reuse,
maxima seeking, variable selection, and applications imgeBian Framework including

prior prediction and dual data integration.

2.5 aOFAT Opportunities

The combination of statistical and adaptive experimensgen as a starting point that can
leverage the strengths of each technique. Instead of aimpbsitween the two techniques

the goal is to combine the two to improve the outcome. As roeetl previously the areas
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under investigation are for system maximization whereglelfittle risk of time trends af-
fecting the results. The initial approach is to improve tiaglitional industrial experiment.
These experiments are normally part of a six-sigma procesis as Breyfogle (2003).
Given some process variables, noise, and an output vajiatte-level engineers design
an experiment to improve their process. This has beenutetiin companies such as GE
with the green-belt and black-belt certification (GE, 200@jithin these experiments the
application areas are broad but the experiments of intexgatre some physical setup and
should have relatively low expected levels of time depehdemse. Many of these sys-
tems could be replaced completely with adaptive experiald¢athniques although there
are added benefits to look at experimental integration. Adapxperiments can augment
these traditional experiments to provide additional bémefh little experimental risk. This
integration is initially presented in Chapter 3 to run angn@ experiment during setup
or to initially test the system. This is then followed by aditeonal statistical experiment.
The integration of these two methods is presented as thiéyabileuse some of the runs
from the adaptive experiment in the subsequent statisigadriment. This combination
does not integrate the analysis but provides two experisneith fewer runs than both
separately. This technique is general enough to be applisthst experimental situations
without afecting the results of the designed experiment. It is alsgiptesto integrate the
results from both experiments into a single prediction. réhere two ares explored here
and both are Bayesian. The use of classical statistics wadypequipped because the
problem integrates two sources of data to estimate the méfdéle system knowledge is
suficient to choose a system of models then a traditional appnoey be used, although
the experimental setups wouldi@ir. Many others have also investigated this data integra-
tion including Qian et al. (2006); Kennedy and O’Hagan (20@oldstein and Rougier

(2004) who have looked at mostly empirical Bayesian apgrescThis technique will be
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employed here in using the initial prediction for the coaade matrix as in Chapter 8 well
as for the use of two étierent experimental costs in Chapter 9. The empirical agbroa
is one method, some of these models could also use a closadofmsterior distribution.
For academic implementation the empirical approach istflexand interpretable, further
industrial use could gain speed and computational flexyblily calculating the posterior
distributions. There are many other areas of applicatiorotabine two sources of data.
The goal in this work was to investigate the breadth of logkahadditional runs in an ex-
periment and combining multiple fierent experiments. One could investigate additional
models options outside of the linear models explored herae @ption is the kringing
models such as Joseph et al. (2008), or other patch modélasuadial basis functions in
Yang (2005). The general models used here should providelaykmund to drive greater
complexity and application specific model options. Out@iienodel building the oppor-
tunities extend to replacing the use of orthogonal arragteraextremely fractionated de-
signs. In Chapter 6 an investigation was made into a claggdit system that historically
used orthogonal arrays. Replacing the aOFAT in these mitgimproves the resolution
at minimal cost. The application of tuning a classificatigstem fits with the previous
requirements, there are few available runs compared watimtimber of variables, and the
goal is to maximize the ability of the classifier. This exaempmphasizes the strengths
of the aOFAT technique within a classification context. ldigidn to traditional response
model the classification model can also be helped with thptadeexperiments. There are
other classification techniques, such as Yang et al. (2@0&)could be investigated to use
an adaptive data collection approach. Outside of modedipgomising area of application

is in simple optimization.

The opportunity within the optimization field is around te@jues that are relatively

simple and do not use need to calculate derivatives. Offlgitiee investigation focused on
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optimization techniques that started as statistical enparts. Box (1957)’s evolutionary
operation (EVOP) procedure is a particularly good starppegnt. There are many op-
portunities within the optimization literature and somentlfied as statical optimization
techniques in Nocedal and Wright (1999). To demonstratetiagtive application a his-
torically related unconstrained optimization procedunewn as sequential simplex was
selected. This technique was originally developed fromBR®P procedure but is how
popular with computer simulations. This fundamental teghe is well publicized and

aligns well with an adaptive opportunity. Other opportiggthave not been investigated
although there may be a handful of possibilities outsidehef ihtersection of statistical

experimentation and numerical optimization.

2.6 Prediction Sum of Squares (PRESS)

When comparing dierent experimental model-building methods it iffidult to assess
‘better’. One model may be larger and more accurate, but tther aises fewer variables.
The predicted sum of squares (PRESS) from Allen (1971b), lkad®wn as the predicted
residual sum of squares (Liu etal., 1999), is a metric for ehwdriable selection. This met-
ric originated when Allen (1971a) improved upon the tramhal residual sum of squares
with a metric that would not always suggest additional regi@n variables improve ac-
curacy. The accuracy of a prediction point that was not inrdggession would decrease
as the model was over-fit. This metric would increase as thenpitoved at that point
and then decrease after it was over fit. This new approach tehtwilding focused on
prediction accuracy. The model was now sensitive to thetmbioice for this calculation.
His procedure was to take each point individually in the datafit the model without that

point, and check the error at that point. In the statistieathing community this is known
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as leave-one-out cross-validation. Tibshirani (1996, pj5) recommends the low-bias
and high variance properties for this method but warns tiectalculation burden could be
significant. The major motivation in using this method istthéime-saving shortcut exists

for linear models.

Given a model

Y=X-B+¢& (2.3)

with dataX of dimensionnxp andY of dimensionnxl, the least squares predictor ®f
would be

B=(XX")XTY (2.4)

soy; = x *3 and lets;, be the estimate ¢ with theith observation removed. The PRESS

is defined as

PRESS= > (yi - X'fp)? (2.5)

i=1

This would be computationally challenging without this piification.

n y _ y 2
PRESS= » -———— 2.6
; 1-H;j (2.6)
WhereH;;'s are the diagonals of thid, hat matrix (because it puts a ‘hat’ gh
H = X(XX")XT (2.7)

The diagonals are equal to the leverage of the observatidhis simplification requires
only a single calculation oH and then using the diagonals apd=" HY, the PRESS
statistic is a summation. To compare with other measuresydmetrror such as Root-Mean-

Square-Error (RMSE) and Standardized-RSME (SRSME) thikwaill frequently report
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the VPRES S

2.7 Empirical Bayesian Statistics

Given datax a goal is to determine the most probable underlying errdribigion that
would yield that data. In practice we assume that the formhefdistribution is known
but, based on some unknown paramei@r This distribution parameter is assumed to be a

random variable from a known distributi@h

The unconditional probability distribution onis given as:
P = [ P(xI0AGLY 2.8)

Our goal is to determinpostereridistribution ona given the data. This is accom-

plished by looking at the error to any given estimator fumcti(X).

EEIW() - V2]
|37 pexaytu 9 - e

EW() - )

>, [ et - adc 2.9)

for a fixedx we can solve for the minimum value if the expected value byisglfor

the interior equatiot(x)-

(4 = f PO (%) — 12dG() (2.10)

fixing x soy(X) = ¢ this equation can be expanded given a constant fungtign= y
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yzfpdG—wap/ldG+fp/12dG

~ [ padG, , ([ padG)?
and is at a minimum when
S0 = [(pl2)AdG(2) 2.12)
[ p(x)dG() '

This is the posterior estimate af This is the empirical Bayesian approach to estimate
the distribution parameter given the dataThe biggest challenge to this approach is to
determine a valid initial distributio® to yield a good estimate of the distribution param-
eter. Gelman et al. (2003) discourages the term empiricge8#or this method because
it implies that the full Bayesian approach is somehow notieogl although they both are

experimental.

2.8 Gaussian Process (GP)

The Gaussian Stochastic Processes, or Gaussian Procgss @$b known as a Gaussian
Random Function Model. Given a fixed input space that is gréhan a single variable, an
outputY is a GP if for any vectok in the input space the outpMthas a multivariate normal
distribution. In practice the GP correlation function isested to be non-singular. Thus
for any given input vector the covariance matrix as well asdhtput distribution is also
non-singular. The GP can be specified by a mean function andaaiance function. The

mean is typically constant and normally zero although fa process in this work it is one
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instead. The covariance function determines the relatiprizetween the input variables.
This is a stationary process and so only thi&egdence in the input values is needed. There
are two main choices for the correlation function, first cleois the Gaussian or power
exponential:

R(X1 — X2) = exp0 - (X — %2)?) (2.13)

The second correlation function changes the square to autdyalue and the resultant
GP is called a Ornstein-Uhlembeck process (Santner eO&l3)2Both of these correlation
functions will be used in this work. The Gaussian is infinjitdifferentiable at the origin

and is useful to represent smooth processes. The Orstéamwlbbck process has more

random fluctuations and is more representative of obseraedvwith random error.

2.9 Hierarchical Probability Model

A realistic and representative model generator will be usetgst the dierent method-
ologies presented in this thesis specifically in Chapterrddasing aOFAT runs as well
as Chapter 7 where the aOFAT in incorporated into a coraglatiatrix. This model, and
the codficients used here, come from Frey and Wang (2005). The basadsdaken from
Chipman et al. (1997) with the intent of generating a popoiedf models that exhibit data
regularities from Wu and Hamada (2000) suchfésat sparsity, hierarchy, and inheritance.
Using Equations 2.14 to 2.23 a large population of functicars be generated that mimic
actual experimental systems. The fiméents @, pij, Pijk, Bis Bij: Bijk: C ONy» Ty S1, S2)
come from an analysis of 113 full-factorial experiments gifes 2, 2%, 2°,and 2) that

come from published journals.
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Y4, X, - > Xn) = Bo + anﬁm + Zn: Zn:/o’imxj + Zn: Zn: Zn:/o’ijmxjxk +e
i=1

o S
X ~NID(,0%) i€l...m
x€f{+1,-1} iem+1...n
& ~ NID(0, o)
Prei=1)=p
Poo if 0i +5j =0
Prij = 161.6)) ={po; if 6 +6;=1
P11 if 0i +(5J =2
Pooo  if6i+6;+0k=0
Poo1 if(5i+5j+5k:1
Pr@ix = 116i, 0}, 0k) =
Po11 if5i+5j+5k:2
P111 if6i+6j+5k:3
N@,1) ifé =0
f(Bilo) =
N(,c?) iféi=1
1 [N(@©,1) ifg;=0
f(Bijloij) = —
S1 .
N(O, CZ) if 5”‘ =1

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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1 [N, 1) iféx=0
f(Bikloik) = — (2.23)
N©O,c?) ifsix=1

There are important attributes of this model that shoulddiedh The model encapsu-
lates the three data regularities published in Wu and Har(2@20); sparsity, or the fact
that only a few éects will be significant; hierarchy, or that the bigge$eets are main ef-
fects followed by two-way and then three-way interacticars] finally inheritance, or if a
variable has a significant maiiffect it is likely to be significant in a two and three-way in-
teractions. Next, theffects follow a normal distribution and so have an equal priibabf
being positive or negative. This model includes only mdteats and interactions, higher
order dfects and other model non-linearities are not present. Taeofia multi-variate
linear model is appropriate in this case because the expatahdesign under study is very
low order. The resulting experimental model is of lesser giexity than the model used to
create the HPM.

The HPM is going to be used in a number of studies in this thesest the &ectiveness
of different experimental routines. Along with the HPM analysis gfroposed method,
actual examples are pulled from the literature to demotesttee method. The use of the
HPM is designed to test a variety of models and determinedbestness of the fierent

methods, while the example is used to ground model in onafgpexample.

2.10 Opportunities

The use of adaptive experimentation has a long past, anotrikaty it was the only way
to experiment. After the current statistical movement alated nearly all adaptive exper-

iments, a new found place has been emerging for these exgrasrauch as in (Frey et al.,
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2003) and (Frey et al., 2006). This work focuses on the magmatic experimentalist that
finds a good place for the intuitive adaptive experiment @harth the statistical fractional
factorial, CCD, or Box-Behnken design. As the computatigmacessing techniques ad-
vance, the potential to use the Gaussian process in an Eal@ayes framework extends
the utility of these adaptive experiments combined witklitranal statistical experiments.
When comparing multiple experimental techniques the evatidated PRESS statistic will

be employed to help ffierentiate the models withfiérent numbers of factors.
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Chapter 3

Reusing Runs

3.1 Introduction

In many industrial and research experiments the expergnérgt tests a number of runs to
determine if the variable settings are correct and if thepset functional. These early runs
are then discarded and the designed experiment is completsttad of throwing away
these runs, is there potential for them to be reused in theabekperiment? This chapter
advocates one strategy for utilizing these early runs, hod teducing the length of the
overall experiment. If these early runs are arranged in aptac-One-Factor-at-a-Time
(aOFAT) experiment then in addition to the setup functioa &xperimenter can garner
information about the system maximum as well as reduce tlaériamber of runs. Early
screening experimentdgfer the best application to realize improvement. In otherdspr
when the experimenter is trying to determine the importaainnefects while accepting
an alias fect or an unbalanced design to reduce experimental runsese tsituations the
early set-up runs may be a significant fraction of the totakeexnental runs and potential

for reuse may be worthwhile. With so few runs there is a pddyilthat the experiment

41
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may be overly influenced by noise; a measure of this podsilsliavailable in the aOFAT
without completing a replicate and would be useful. Thisaptaawill focus on setting up
and running these two experiments. The analysis is focusettied number of runs that
could be reused and the interactions between the two asdyyss. This is one basic way
of combining the aOFAT experiment with a statistical expent. Later chapters (Chapters

7 and 8) will look at combining these data into a single, cstesit, model.

3.2 Background

The setup runs in an experiment normally consist of varyexghgyarameter separately to
the high and low experimental value. Although this procedarmot widely discussed in
the experimental design literature it has been observediimenous actual experiments.
These early runs are traditionally thrown out because theyat necessarily orthogonal
or balanced and could lead a traditional regression arsaigsncorrect model cdgcients.

If these early runs have slightly more structure, while geimtuitive for the operator, they
could be incorporated into some of the follow-up analysise €xperimental runs discussed
here are D-Optimal and fractional factorial designs. Thegdlimal designs are orthogo-
nal but, not necessarily balanced. The fractional factolesigns are both balanced and
orthogonal. An unbalanced design has fewer runs in onerfaetting, this could be prob-
lematic in systems with heteroscedastic noise. But in mostdscedastic early screening
designs the utility of balanced, un-replicated designs beynnecessary. With few runs,
there is insfficient data to estimate parameter variance and the biggesfibef repeated
high and low settings is a better mean estimate. It would lssipte to add balance to this
design by repeating necessary points as Parker et al. (200Wed in their analysis. The

biggest drawback to having unbalanced data is the inabdityse standard analysis tech-
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niques. There are some suggestions to utilize approximatkads (Montgomery, 1996),
but with modern computational resources it is assumed Heattcess to exact methods
using a general linear model (GLM) and distribution estesaMcCullagh and Nelder,
1989) is possible as in Chapter 7. If there is too little daentcreating a GLM has too

little resolution and a Gibbs sampler (Chapter 8) could lezedl.

3.3 Initialization

The process for setting up an experiment is usually left tecarician who prepares for
useful, accurate data through an iterative trial procesartiSg the experimental process
with an adaptive experiment is straightforward to the tézhn as well as useful in esti-
mating the maximum experimental setting. After initiallgrmecting all of the hardware
and testing the data collection, the system is run at a fetimgetto be sure that everything
is functioning correctly. These setup runs are not preWyguianned and serve as a baseline
to check the functionality of the system. The suggestiohis ¢hapter is to run though all
of the variables that will be used in the experiment and clteek high and low settings.
The purpose is two-fold, first it is good to validate that tlagiables are responding and to
check that the range is appropriate for the experiment. rf&ettos practice allows one to
reevaluate the planned experiment to make sure that edtigsstachievable and measur-
able. There are a two major historical choices for runnirnggbtup; a one-factor-at-a-time
(OFAT) approach or a fractional factorial approach. Thetinal factorial is balanced,
orthogonal, and could possible measure interactions,thi@ésprimary suggestion of any
statistician. A major drawback is that it obfuscates theltego the technician. Multiple
variables are changed with each run and so a problem witlntiie dr with the hardware,

is difficult to diagnose; it also requires the whole experiment tadyapleted before any
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analysis. Another option is to run an adaptive OFAT (aOFAi) sequentially change

each variable between the high and low settings. The ragutiperiment is not balanced
or orthogonal; and it is impossible to identify interactienms. The benefits are simple im-
plementation for the technician and allows real-time dasgig of problems or mismatched
variable settings. The non-adaptive OFAT can be plannedarece but cannot identify

the maximal settings nor benefit from interactions.

Running an adaptive experiment also has the benefit thasiahagh probability of
achieving the highest setting for the system. This will halpesting the extremes of the
system settings and validating the hiighv settings of the variables. If this added exper-
imental step of an initialization aOFAT is used, one impotteoncern is the number of
additional runs required. Some of the aOFAT runs can be porated into the subsequent

design although determining the number of reused runs istraightforward.

3.4 Reusing aOFAT runs in a Fractional Factorial

To reuse the runs from this setup aOFAT experiment (L runs) in a fractional factorial
experiment (279 runs), the choice of the selected fraction as well as the Z0FAnpor-
tant. If the aOFAT starts with a set of conditions that is véifferent from the final set
the multiple changes will increase the number of runs thaldcbe reused in the factorial
experiment. The drawback of this starting set is that theAdO#as so far from the best
setting, it was probably unable to take advantage of intenas and would be less likely to
achieve the maximum setting.

If the choice of the fraction is made in advance then for aseua experiment, on
average, 10% of the aOFAT runs can be reused with an equdlfsastion. This estimate

depends on how far the random starting location was frommiaérin location, the number
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AOFAT Reuse In Seven Variable Experiment
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+  Average Fraction Common Runs;
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Figure 3-1: Fractional Factorial Run Reuse

of runs exhibits an asymptote as the size of the fractioresmsxs to use of then + 1 runs.

If there is no fraction preference and any fraction is acelet then for a seven run
experiment, nearly 20% of the runs can be reused with an eiged fraction. Again, as
the size of the fraction increases, the reuse runs asynsgtmemaximum oh runs. This
maximum, and not + 1, is due to the fact that the variable combinations in theAdQian
never be completely independent, and thus cannot fit intathwgonal fractional factorial

experiment.

The analysis of the subsequent fractions that were procaftexdan aOFAT experiment
were analyzed using the HPM. This model is well suited toysdifterent fractional fac-
torial designs and the analysis reflects the reality of itrialsexperiments. Analyzing the
results from this model, two fractional-factorial desighat reuse an equal subset of aO-
FAT runs have no dierence in the performance of those fractions to select thennuen
setting. The determination of the maximum setting was cotetluthrough an ANOVA
analysis of these experiments to select the highest varsditing (Montgomery, 1996). A

full linear model was not created because the goal was totgbke maximum setting from
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the possible experimental points.

Including the aOFAT experimental runs did not influence taeome of the fractional
experiment. There are a couple of potential problems wheluding the aOFAT experi-
ment in the fractional experiment. First, the aOFAT may lithe selection of fractions to
a certain set; and second the non-random run order coultthmiexperiment to lurking
variables. In comparing the results of the best reuse naatiith the remaining fractions
using the HPM, there was noftkrence between the results. This statistical comparison
was completed on the’Z, 2'-3, and Z-2, fractions; the results are in Table 3.1. It should
be noted that reused aOFAT runs were rarely sequential addaation in the fraction also
varied. So while the aOFAT runs are ordered their use in #eirn comes from a random,
non-adjacent subset that is used iffetient locations in the fraction. Although the runs in
the fractional factorial experiment are not truly randohet are not ordered and should
minimize the &ect of lurking variables.

Differences -

Difference= mu (Lv4MaxFrac) - mu (Lv4MinFrac)

Estimate for diference: 0.001455

95% ClI for diterence: (-0.003278, 0.006187)

T-Test of diterence= 0 (vs not=): T-Value= 0.61 P-Value= 0.543 DF= 85
Difference= mu (Lv3MaxFrac) - mu (Lv3MinFrac)

Estimate for diference: 0.008909

95% Cl for diference: (-0.012706, 0.030525)

T-Test of diterence= 0 (vs not=): T-Value= 0.82 P-Value= 0.415 DF= 85
Difference= mu (Lv2MaxFrac) - mu (Lv2MinFrac)

Estimate for diference: 0.012955

95% ClI for diference: (-0.083642, 0.109551)

T-Test of diference= 0 (vs not=): T-Value= 0.27 P-Value= 0.790 DF= 85

Table 3.1: aOFAT Reuse Comparison

The number of runs that can be reused is dependent on thefdize fsaction. The
relationship is best described by a power function Reysggd= o — 81 * 1.1 @RS The

asymptote was at 20% and 30% for the average fraction ancestdraction, respectively.
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Figure 3-2: Asymptotic Runs Function

To reach 95% of the possible number of reused runs it reqd®ezhd 20 runs for a seven
variable experiment.

For reference th@ parameters for this model wefly = 0.1962,8; = 0.2930 for
the average fraction angh = 0.3304,3; = 0.3360 for the best fraction. The number of
runs that are needed to reach an asymptote can be calculatedhis equation. So given
to use twenty percent of the best fraction would require I dbecause Reusgglen: =

0.3304- 0.3360+ 1.171° = 0.20

3.5 D-Optimal Augmentation

Another augmentation scheme is to use a D-Optimal desigmdorans to an aOFAT.
Runs are added to a subset of the aOFAT runs that maximizeestkeninant (hence the
D) of the X"X matrix. We restrict the selections to be orthogonal D-Optintesigns.
The use of orthogonal runs minimizes the cross-correldigtween variables and greatly
aids in interpretation by allowing for more parsimoniousdais to be constructed. A big

difference is that the D-Optimal design is not balanced and soergeANOVA analysis
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can not be used and a regression approach is normally enapbloye

The orthogonality requirement is particulary appropriatearly screening designs be-
cause common aliasing could make creating a follow-up éxy@et impossible. The se-
lection of the additional D-Optimal designs is done by adé@ba algorithm. There is no
exhaustive search over all of the potential runs as thisastfmally impossible once there
are more than a few variables (approximately seven). A deatdge to this procedure is
similar to the random choice of fractional factorial desigms not possible for the practi-
tioner to make choices about a desirable aliasing structure

If the variables have unknown relationships and there isgelaumber$ 10) of them
this aliasing may not be problematic. This is frequentlydase for computer experiments.
The procedure outlined here is most appropriate for largesiphl experiments such as
turbofan engines, where a screening run is desired. Anaibkon to consider, a space
filling design, is not addressed here because it is primasghd to build more complex
models, and not for screening experiments.

The selection of a D-Optimal design may not be unique andethee a number of
choices for diferent subsets of the aOFAT experiment. One suggestion isgm lthe
selection with the latten runs in the aOFAT and progress forward eliminating the earli
runs. This attempts to include as many of the higher valueAdQ@&ns as possible. There
are other criteria to select the best D-Optimal experimentife situation and the selection
is left to the experimenter.

A final warning is necessary around the use of D-Optimal daesigrhe creation of
these designs is algorithm dependent as in OPTEX progranA$ (Bistitute, 2000) or
cordexch in MATLAB (Math Works, 2007). Because the desigacspis potentially large
an exhaustive search is impossible, or at least imprac#indlthese algorithms usdi@irent

sequential optimizers to look for the best points. The rgkthose methods are that they
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AOFAT Reuse In Seven Variable Experiment
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Figure 3-3: D-Optimal Run Reuse

get trapped in local minima or reach a divergent set of péssifaxima. Although here the
procedure is limited to sets of orthogonal designs there Ineayultiple solutions for each
candidate set. Each of the potential, and equivalent, datelisets may lead toftkrent
system models. As with any experiment it is good practiceotlmd the guidelines of a
experimental statistics book in analyzing the results aewhiing as necessary (Wu and
Hamada, 2000; Montgomery, 1996; Box et al., 2005).

With this non-balanced procedure, the number of runs fobH@ptimal runs increases
the percentage of reusable runs over the fractional fadtdtiote that the runs still asymp-

tote ton, the number of variables.

3.6 Maximum Value Choice

One of the benefits from using two experimental methods (aC&#d a designed exper-
iment) is having two ways of determining the maximum expertal point. The aOFAT
model selects the best point based on the last or second taihasThis can be compared

with the best predicted experimental point for the fraciidiactorial model. The analysis



50 Chapter 3. Reusing Runs

for the fraction can be completed with a traditional ANOVApedure. Analyzing the D-

Optimal experiment requires a regression analysis bedhassxperiment is not balanced.

The Fractional Factorial, D-Optimal, and AOFAT methods ev@grdged on the per-
centage of times that the maximum experimental value wadiqgiezl out of a thousand
simulations. The experiment was conducted with seven basaand fractions of 22,
24, and Z-° runs, the results are averaged over all simulations. Thetiral exper-
iment used the same number of runs as these fractions. Iri tilese runs the number
of reused runs were maximized. This means that the fractitmtive largest number of
reused runs was selected; as expected the orthogonal atemebd, D-Optimal design had

the largest number of common aOFAT runs.

To accurately portray real experiments noise was addeddartbdel as a 0, 5, or 10
times the averagefiect magnitude times a random number between zero and onisThi
a significant amount of variance that accounts for the podopaance of the prediction
capabilities of these experiments. It should also be ndtatithe ability of each of these
experiments to predict the maximum is limited because th®liH®del has two-way and

three-way interactions that cannot be modeled by theseeedwn designs.

The results are shown in Figure 3-4. A couple of interestawyd are initially obvious.
First the overall performance is quite low, between 20 angé&@ent in predicting the
maximum. Again, these are extremely reduced fractionaggdesand this low performance
is expected, but as screening experiments they are stithizéd. The second interesting fact
is the performance of the aOFAT is comparable to that of tkeively larger fractional
factorial and D-Optimal designs. These results are cardistith the previous work on

aOFAT also using the HPM model (Frey and Wang, 2005).
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3.7 Sheet Metal Spinning

A specific example was run to demonstrate the run reuse. Xaim@e of a sheet-metal
spinning process has been used numerous times in the exp¢girterature; the original
data is available in Gobel et al. (2001). The same procedarerun on this data; and the
number of reused runs fits the trend seen before. In adddilmoking at the number of runs
that could be reused, the resulting prediction of the maksating was also calculated.
This example resulted in an average of only three to five percerrect predictions of
the maximum setting. This low fraction is slightly misleagibecause the values do not
change much at the peak. Figure 3-6 shows the average rastiiefpercent of maximum
that the experiment predicts. All three predictions ardalsigd make good estimates of the
maximum value. As expected, the aOFAT is not dependent onuh®er of runs in the

follow-up experiment.
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AOFAT Reuse — Sheet Metal Spinning
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3.8 Using Both Models

In addition to being a good practice during experimentalgetihere are additional reasons
to run both of these experiments. The simplest reason ig¥e a8 insurance. If the exper-
iment fails to run correctly or there are problems such agnam cancelation, equipment
breakage, or resource limitations then there still exigie@d estimate of the best setting.
It would also be possible to make a good estimate of the ali@ariables by looking at the
progression of the aOFAT. By looking at the change for eacialile and making a correc-
tion for possible two-way and three-way interactions, fiassible to get a good estimate of
variable €fects. This method will be utilized in a later chapter to gateen better variable
covariance matrix. In this situation those variabfieets could be used to plan follow-up
experiments if the first experiment failed.

If this is a production related experiment, a short term iovpment could be made
by using this setting while waiting for the remainder of tixperiment and analysis to be
completed. These two flierent estimates of the maximum have been achievedtfiereint

manners and could strengthen or weaken the case for theaagarirthe final model.

3.9 Conclusion

Setting up an experiment through an aOFAT procedure stilhal for system understand-
ing while creating potential for run reuse and an indepehdshmate of the maximum
setting. If the maximum number of runs is reused then thisaexfort will only cost be-
tween.2n and.5n additional runs, depending on the experimental methodatatiiumber
of runs. The final result is an additional estimate of the mmaxn that can serve as a tem-

porary stop-gap, insurance to other experimental problemas a metric of confidence in
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the final model estimates.

This procedure is straight-forward to implement, and selgahe optimal fractional
factorial experiment only involves a lookup table. The cleoof the cordexch algorithm
for finding an orthogonal D-Optimal design is currently velgw and in the cases here took
an hour per aOFAT. In applied practice this may be prohibind alternative algorithms

should be investigated.
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Chapter 4

Evolutionary Operation

4.1 Introduction

Evolutionary operation (EVOP) was introduced in the 195@spularized by Box and
Draper (1969) and grew in use well into the 1980’s. The nurnbacademic papers around
EVOP has dropped dramatically in recent years although sdthe inspired optimization
methods continue to flourish. Using recent research on taerdgularities in experimental
data by Li et al. (2006), the distinction between empiriaad acientific improvement will
be updated to show that repeated runs are not as detrimerted $ystem cost and EVOP
still has a place in the experimental framework

A suggested framework of single-factor repeated expertiatiem runs is presented
based on computer modeling advances as well as results fitaptige-One-Factor-At-a-
Time (aOFAT) experiments (Frey et al., 2003). The methocgydo implement; delivers
significant improvement; and incorporates system levesicamations. The use of adap-
tive experiments fits nicely into the overall EVOP procesakiilg a larger system view

the EVOP is either preceded by, or precedes a traditionéétital experiment. Using an

57
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aOFAT fits well into the framework of the larger system and ptements the traditional
statistical experiment. If the statistical experimenus first then the variable order can be
selected to maximize the aOFAT result as discussed in Figt\\amg (2005). If the aOFAT
precedes the experiment the runs can be reused as shownpte€CBar used to generate
a combined model as in Chapters 7 or 8. Using the aOFAT in th@fEprocess provides
a good method to improve the response while providing a cemeht to the preceding or

proceeding statistical experiment.

4.2 Background

The evolutionary operation procedure was introduced adugtion improvement tool
that can extend pre-production improvemeffibegs onto the production floor. The proce-
dure consists of making small variable changes that do gatfgantly influence product
quality. With a stficient number of these changes, statistical evidence btolgisstify
making a permanent variable change. This procedure candoglh of as supplying a
square-wave between the current and proposed setting afcag® variable, or a num-
ber of process variables. Although the output remains wigdrformance criteria, given
enough time, evidence may accumulate to justify the chafge. change justification is
based upon a significance test (in most cases a t-test).

The original method defined the goal as searching for séieriedback to under-
stand the underlying system physics. Although Box and Dré#69) discussed empirical
feedback, their emphasis was on scientific feedback andgtibe reference used here.
Experimental designs of one to three variables were useshtegly to drive down the
error and improve the manufacturing performance. The nteghsimple enough to be im-

plemented by manufacturing personnel and accomplishdwuiitthe need for computer
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resources. The process variables under considerationllessiiee determination of future
experiments is determined by an EVOP committee (Box and étuh957).

The scientific feedback methodfidirs from optimization or an empirical approach.
The goal of scientific feedback is to gatheffimient evidence to be confident in a system
model. For empirical evidence the goal is to maximize théesgsmprovement, this could
be in terms of profit or another performance metric. THédence in execution of these
two goals is the need for run replication.

In implementation, the aOFAT method discussed by Frey €2a03) is the same as
repeated empirical feedback experiments. Using repeatediretween the settings aligns
with the Box and Draper (1969) EVOP procedure for a singlofatt may also be possible
to incorporate other models with these single factor EVOPeernents to improve the
scientific model while allowing for simple implementatiofthe use of repeated aOFAT
runs is similar to the use of inner noise arrays in Frey anda&aham (2008) when they

added a goal of robustness to the experiment.

4.3 Other Models

The traditional EVOP procedure does not use prior systernwlaage in the analysis and
only requires a variance estimate. There is a suggestioneiremnd of Box and Draper
(1969) that the system knowledge could be used to deternariable transformations.
Determining the appropriate variables is part of the resjmlity of a committee that orga-
nizes the EVOP and they should be aware of the variables nskvelopment. Besides the
variable transforms, this near zero starting knowledgeefmh experiment has the advan-
tage of not making any damaging assumptions but, if the gostientific understanding,

then the experiments may be ffieient for model exploration. The advantage to scientific
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feedback is the general applicability of the knowledge.&dtroduct lines and future de-
velopments can draw upon that knowledge to begin with bséttings and understanding.
The implementation of scientific feedback allows for modslmement in generic man-
ufacturing models and thus better prediction of perforneand/hen the original method
was developed in the 1960’s these models resided largeheimeéads of engineers. The
manufacturing advances since then have brought about aymfchange in the use of
computational power and ubiquity. It is rare to find a mantufang floor today without a

computer, computer controlled operations, and manufagfsimulations.

The goal of EVOP should fit into the larger picture of model moyement and refined
understanding of the manufacturing process. Ideally thlimexperiments would be per-
formed on a system simulation before being run on the actoagsses. These simulations
would provide knowledge of the important variables and eigx improvement, which
would be validated on the actual system. This i§edlent than the initial process set-up
with fewer factors investigated and smaller magnitude @ihges. When the manufactur-
ing line is initially ‘tuned’ to run the new product there ismally some experimentation
and adjustment to get an acceptable setting. With few rueiethre many factors that
are insignificant over the noise. These less significanbfaatould represent significant

improvement given greater experimental replication.

Additional models complicate the analysis. Running a lasyg@erimental design in
the computer model could then be validated by a final EVOP raxgait. There are tech-
niques to merge these computational and physical expetasanh as Qian and Wu (2008)
which will be explored in later chapters. The complexity @awdpe of the EVOP exper-
iment should take into account these additional resourResning a two or three factor
experiment as suggested in Box and Draper (1969) may besxeemd a single factor

experiment such as Box et al. (2005) may be just as informativhe single factor ex-



4.4. Run Size 61

periment is suggested here for the simplicity in executidiievproviding information to
more complete computer models. While the single factor exynt is not able to predict
interactions Frey and Wang (2005) showed that it has a higibgtnility of benefiting from

them.

4.4 Run Size

The criteria for selecting the run size is dependent on tre af the éect and the amount
that the variable is changed. The normal test for detectiagd diferences is the student-t
statistic (Box et al., 2005). In Box and Draper (1969) the ofsthe normal significance
tests is preferred based on a standard deviation from a rmuofle/OP cycles £ 15).
Another perspective is that the run size will be dependenthenamount of acceptable
variance that can be introduced into the system withoutrdetit to the output. Taking the
approach of a system view, determining the run number basétemcceptable increase in

variance seems most appropriate (a similar analysis isqeefd in Box and Draper (1969,

pg. 211)).

Giveng as the estimate of thetect at iteration then the ratio of that to the variance,
& /05 x5 follows a Chi-Squared distribution. Given the actual vallg and assuming no
interactions then this follows a non-central Chi-Squarsttitutiony5(X(E?/03)). Given
the probability of type-I error (incorrectly including agsiificant €fect) ata and the type-
Il error (missing a significantféect) atB, these probabilities can be used to solve for the

sample size.

The overall variance can be estimatedds 1/4 3 (E?). If the standard deviation is set

to change by - o- and using the fact that2 = 4 x 0-2/n2P, then the non-central parameter
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can be calculated as:

D (BP/o?) = n2°(¢ - 1) (4.1)

Setting the two errors equal to each other it is possible liedor the minimum number

of samples.

X271 - @) = ¥3(n2P(% - 1)) (B) (4.2)

This estimate is accurate if the interactions are insigmificand will provide a good
estimate of the required runs. The result is shown in Figute he number of runs de-
creases dramatically as the acceptable standard deviati@ases. With two variables the

number of points repeated decreases by 40 percent due toafrexls/ariance estimate.

Run randomization is implicit in these results. Sets of toesveen the two settings are
conducted with random order. The suggestion in Box and Drg@69) that the random-
ization is not critical is proven in Box (1954) for serial celation. The foundation of that
paper is a correlation between runs and a wide variance tooseuns. Generalizing those

results is cautioned as the tri-diagonal correlation masria full matrix for two settings.
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The serial correlation from run to run alséfects the correlation between sets of runs.
Before using a regular repeating experimental pattern searaption that the sets of runs
are independent needs to be verified. Additionally, latemiables could complicate the
experiment and may even lead to erroneous conclusions. akamam inferential power

requires run randomization.

Ideally the knowledge gained from the EVOP is utilized to rn@ a manufacturing
model. If there is no model to improve, or the knowledge gaimél not be reused, an
empirical feedback, or an optimization goal is more appeder If the EVOP commit-
tee wants to use scientific feedback the experiments shaplicitly take advantage of,
and benefit from, any current manufacturing model. The ptapoommittee should min-
imally utilize variable sensitivity analysis along withyaprevious tuning results. Further,
these models could assist in variable selection, intemaastimation, range and variance
prediction, and output estimation. Arfieient method of extracting useful data out of a
computer model is through computer experimentation for @mmple methodology see
Santner et al. (2003). The result should be a candidateflidgtaty important parameters.
This list should be augmented by the practitioners knowdexfgpotential opportunities and
non-optimal parameters. Running a scientific EVOP on thesanpeters may reveal sur-
prising interactions and improve thé&ect precision. In addition to improving production,
this information is used to improve and update the modes theése model improvements

that are the most valuable to continually improving the perfance of the organization.

There are also many methods to incorporate the computerlraadethe experimen-
tal data to make a dual predictive model for that particujetem. The best known are
Kennedy and O’Hagan (2001); Qian et al. (2006), if the corapotodel is also stochastic
then the approach of Qian and Wu (2008) works well. These odsthely on a Bayesian
approach of combining both types of data to produce bettstigtion. Although specific
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to a particular production line, these models can be usedggest better operating condi-

tions, and quantify model deviations.

4.5 Comparison to Optimization

Production improvement fiers from true numerical optimization in a number of impor-
tant ways. The terms improvement and optimization have beed loosely here but the
difference is important. In production improvement, the objedtinction is unknown and
changing, the number of input variables is not fixed, and @imge of input variables is not
fixed. Optimization requires an objective metric over whiohmaximize (or minimize),
using a fixed, known, set of variables. In the production ddinke precise objective func-
tion can change periodically as the production rate, matenst, overhead burden, and
corporate profit needs change. Thus for each cycle of the ENidErent criteria may be
used to measure success. The number of input variables fixedtand given a desirable
improvement direction it may be feasible to add variables tan help with that improve-
ment. For example if a particular temperature increaseongw performance then it may
be deduced to add other temperatures from a range of othegtidos. Finally, it may be
possible to change the range of each of the variables if aromement is noted. This could
be as simple as changing a process sensor (with a higher natugerating) to changing
the mechanics of the system (inductive heaters from cejartee diference to an opti-
mization procedure is evident in the details of the impletagon, and the complete system
is critical to the improvement. This reinforces the impada of an EVOP committee to

have a system perspective and continually monitor and tedbe changing environment.
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4.6 Empirical Improvement

Empirical based improvement or feedback has also beenedfey as ‘idiot’ feedback by
Box and Draper (1969). The negative connotation about thggévement methodology is
that afterwards, although it may yield an improved settihgre is no additional knowledge
about the system model. The experimenter must decide ifffbd & get a more complete
model outweighs the cost of experimentation or delayingrif@ementation of improve-
ments. The models that are generated maybe limited in tirdesenpe to the particular
problem at hand and may or may not be valid in a more genenadefygroblem. Only if
the model has general utility could it be reused and the tiaguinprovement could have
multiplicative benefit to the organization. An experimergkould also consider the risks

of following an empirical feedback plan where many of therdes are detrimental.

There are two general methods for gathering feedback. gétshg multiple data points
for any change, and thus gaining statistical confidencearsthentific foundation of that
change; or second reacting to every data point to make as wvaaiaple changes as possi-
ble, thus making many more changes. Box and Draper (1969¢prhat the most prof-
itable method is to utilize a single data point to make a degien a variable setting. This
analysis is aligned with the published aOFAT technique eyfet al. (2003), although with
differences for the amount of noise in the system. The origiraiais does not consider
other costs associated with making a production changedirgj retraining, updating man-
uals, or changing production drawings. The final cost mag mlslude some of the risks
that occur during a transition such as extra scrap or lonaymtivity. The suggestion here
is to utilize scientific feedback to improve production miscend gain greater benefit to the
organization. This section attempts to show the poterdgd for using scientific feedback

versus empirical or optimization feedback. The surprisiogclusion, using more accurate
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effect distribution is that the incremental cost of replicagesmall. If a validation run is
made for the other system considerations before implemgetnpirical feedback then the
cost of continuing on to statistical significance is minipthé mathematical details follow.

Given that &ects have an exponential probability distribution (Li amdy; 2005) and
that the ability to detect theffect follows a normal distribution a monetary loss can be
calculated for switching one variable. In choosing a lossfion the calculation is not
dependent on the number of variables examined or on thertotaber of experiments.

The frequently used cumulative normal distribution is dnitally used to estimate the

probability of detection:
=1 ~22/2
F(g):f —e?/%dz (4.3)
. N2n

Research into variable distribution points to an expomdistribution withA ~ 0.007,
from Li and Frey (2005):
f(£;2) = e (4.4)

Given experimental noise, along with a cuté value,& andn runs an estimate of the
loss in delaying any variable change can be determined.nGiarge possible number of

change«.

K 0
L= Zn+i-f uf(|u|;.007f(@) (4.5)

This summation can be expanded, and the value cdn be approximated ag1l2 - A,

as determined by Box and Draper (1969) as a large variaratg/eeto the variable changes.

2
L—K.ns 2K

M) (4.6)
a

. fw uf(ul; .007)(

Depending on the value &f this loss increases as the number of samples increases; this
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can be seenin Figure 4-2. Both the traditional and this nelyars show monotonically in-
creasing loss with additional runs. This result led to thectasion that the fewest possible
number of runs before switching maximizes the profit or miaans the loss. The major as-
sumption built into this analysis is that the expected improent is centered around zero.
This means that any change has equal probability of makingharovement or causing

a detriment, this seems like the most pragmatic situatisrB@x and Draper (1969) also
concluded. In this analysis thievalue was chosen to minimize the loss given any number

of runs, in this casel(= .007,0 = 1/1.2 - 2) the value is close to zero.

If no runs are repeated a large number of the changes will d@rrect, this is out-
weighed by the correct changes, and will minimize the totpketed loss. The fierence
from the original analysis is the exponential distributstiows a faster asymptote towards a
fixed loss. The exponential distribution has mofteets near zero; these benefit from a few
additional runs. The normal distribution has enough weigttie tails that the best strategy
is to get through as many as possible to find these figges. In general, both results show

that the strategy to achieve the greatest gain in a fixed gh@fitime is to get through as
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many variables as possible. However, there istiednce in the benefit of a few repeated
runs in selecting the winner. Most pragmatic managers arevitiing to make frequent
changes to their operation without some evidence that theflte would outweigh the
risk. There are additional risks with the single run strgtefyseeing a nonlinear response,

a change in variance, or an uncontrollable condition.

As a practical suggestion for empirical improvement, th&t o making small change
in profit should be compared with the confidence with addéalonns as shown in Figure
4-3. If the cost and probability of negativéiects is minimal then the single run strategy
might be best. If the costs may be significant or the profitedence is not practically

significant then additional runs should be considered.

The ability of empirical improvement to reach a better soluivith exponentially dis-
tributed variables and a normally distributed confidencelieen shown. Adding a second
run increases the loss (or reduces the profit) by 7.4%, thisgdshould be weighed against
reducing the probability of an incorrect variable by 20.7¢the variance is the same, this
compares with the original method which increases the fibss to 15.5%; and it reduces

the probability of an incorrect variable by 21.6%. Deterimgithe number of repeated runs
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should be based on the manufacturing environment as welleamanagerial tolerance of
risk. The empirical feedback remains the best strategyhaesae the greatest gain in min-
imal time and these results show that the cost of repeatingjisunot as severe as initially
proposed. If the acceptable system standard deviatioeaseris high enough, the loss due
to the repeated runs is minimal as seen in Figure 4-4. If tise@eone standard deviation
acceptable increase then the loss is comparable to ondedpea. Considering the orga-
nizational risk tolerance and the acceptable amount oamag, the empirical and scientific

feedback may overlap.

4.7 Additional Runs

Box and Draper (1969) suggests experimental sizes of twhréetvariables, that are re-
peated until achievingfiect significance. There are conflicting ideas when considehe
amount of noise in an experiment. Reducing noise calls fditiahal runs, this is tradi-

tionally viewed as a reduction of/ v/n in the standard deviation. In the experimental case
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of 2 — 3 variables, to reduce the variance by half requife$ &xtra runs while the aOFAT
only requires 2: (n + 1), optimally. This number of extra runs indicates homosaséid
conditions that are rarely seen in actual experiments. dotfme, there is series correlation
between the variables when deciding on the number of runs.v@y to capitalize on the
improvement and stay close to the minimum number of vargaisleo adjust stochastically.
A procedure might be arranged like this:

1. Choose between two-variable settings (High and Low) sarig with probability

1-— Num. High Points
Total Points  *

based on the number of points that already epigh =
2. Run the experiment
3. Complete a paired t-test between the two settings.

4. At probability equal to t-valug) run another experiment changing the next variable,

with the current variables at their current expected maxmsetting.

5. Choose a thresholdd) over which the value is significant and the experiment is

advanced to the next variable.

This procedure is similar to a Gibbs sampler on a uniformstributed random vari-
able. Gelman et al. (2003) gives a good description of why ginocedure generates a
long term stationary distribution that mirrors the var@bhportance probability. A key
difference in the usual Gibbs implementation is the short ruataur. In this case we only
run for the number of variables, in most Gibbs conditionsdhmple number approaches
the thousands. In the limit of very few runs Tanner and Wor887) has shown that the
direction of the runs is still correct.

When this procedure is run against the traditional fack@xgeriment the results are

similar for resolution and power. For example, when thicpdure was run against a half-
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fractional factorial to get the same resolution for six ahtes, each experiment required
the same number of runs. Afterwards the adaptive procedadeah estimate of the maxi-
mum but the fractional experiment could also create a moidileosystem. The situation
changed when a series of experiments were made in a typic@aPEvamework. In this
case two sequential full-factorial experiments of threealdes were compared with a sta-
tistically significant aOFAT experiment. Both of these exipents required approximately
the same number of runs (12 — 16). For this comparison both procedures considered
predictions for each variable of high, low, or unknown. Targknown prediction utilized

the t-test for the aOFAT and variable significance (F-test}tie factorial experiment.

The results of the experiment forftérent levels of noise are shown in Figure 4-5.
These results are consistent with the work of Frey et al. 320@t low levels of noise the
aOFAT procedure has a higher likelihood of selecting the &etting. At higher levels of

noise the procedures are comparable.
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Figure 4-6: Number of modeled variables, aOFAT is blue onl¢fieand the Fractional
Factorial red on the right.

The reason for the disparity in performance is due to theesgitpl nature of the experi-
ment. As suggested in Box and Draper (1969) deciding on tkieseguence of runs should
be made by committee. If the probability of interaction ighhfor variables between fac-
torial experiments then this procedure does a poor job ahasihg the maximum. While
the number of runs was comparable, a committee may have itlaoetter arrangement
given the six variables under investigation. Using the nhddéding approach by result
significance led to fewer important variables in the faebaxperiment compared with
the aOFAT t-test approach. The reduction in the number o&bles is dependent on the
amount of noise added to the system. This can be seen in Hgbiras the amount of

noise increases the number of significant variables deeseas

The aOFAT methodologyfters a less intensive approach to determining improved
manufacturing conditions. Through sequential measuré&rard straight forward t-tests,
there is a high likelihood of selecting the best operatingditions. This result is better
than running a series of factorial experiments on the samablas. The best situation

is to rely on the accumulated experience to make good varsddections and implement
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them through an EVOP committee. In this well run situatiom@¥AT is also the quickest
way to the preferred conditions. As Frey and Wang (2005) glowt the variable order is
known then an aOFAT will benefit from interactions anftees the quickest path to check

every variable.

4.8 Conclusion

Evolutionary operation (EVOP) is a statistical method foogess improvement during
manufacturing. Utilizing small repeated experiments tperating condition can reach
more preferred conditions. The foundation for this methioautd be to refine the manu-
facturing models and system understanding. With the iseré@acomputational and simu-
lation power more manufacturing processes have accuratielsthat assist in the design
and parameter settings. The validation and verificatiome$é¢ models is challenging and
run size limitations may yield unacceptable meta-modeizafiry et al., 2001).

Evolutionary operation can improve these models while owprg the current manu-
facturing system. The cost of this improvement strategyigharease in short-term pro-
duction variation. A six-sigma production facility is dgeed for a 1.5 sigma long-term
shift. If a fraction of this margin is used to improve the pges it can result in better future
models, cost savings and quality improvement.

The suggested feedback mechanism here is empirical aOFR#drienents that are sta-
tistically significant. With more accuratedtect distribution information, gathering statis-
tically significant feedback increased the loss by 7.4%viar tuns versus one, compared
with 15.5% with the historic normal distribution. Additiahrepeated runs have an even
smaller profit reduction and should be used in context withdlganizational risk toler-

ance and change cost. The smaffelience between empirical and optimization feedback
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drives model based experimentation that cardong term corporate wide benefit at little
increased cost. It has been shown that running repeatemtitdaxperiments has poten-
tial accuracy and variable size drawbacks compared withbds3ased aOFAT sampling
technique.

The use of evolutionary operation has a place in the manufagtenvironment to im-
prove production as well as validate models. Sequentiab&himsed aOFAT experiments

offer a practical andf&cient way to implement empirically-based EVOP.
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Chapter 5

Sequential Simplex Initialization

5.1 Introduction

An improved sequential simplex starting routine is preseiased on adaptive-One-Factor-
at-a-Time (aOFAT) experimentation (Frey et al., 2003). B&daptivek + 1 points as a
starting simplex improves convergence as well as redu@sumber of iterations. The
proposed method generates an initial simplex by adjustueh parameter by a small delta
sequentially and leaving any parameter change that briveggihction closer to its target.
This initialization is permitted in the original Nelder-ié procedure (Nelder and Mead,
1965) with the only limitation that any initial simplex is nalegenerate. In addition to the
change in the starting simplex, the delta is adjusted towrddor an increased distance be-
tween experimental points and the centroid. The proposka adustment is based on the
probabilistic variable selection which sets the step etu#iat of the old routine. A suite
of 35 test routines provided by Moré et al. (1981) is usedaimadnstrate thefgectiveness

of this change in improving convergence and reducing thebsurof iterations.
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5.2 Background

The original simplex procedure is from Spendley et al. ()96rovided a sequential
unconstrained optimization procedure that is geometyidadsed. This procedure was
limited by a fixed step size and was quickly replaced by th&tée step size procedure of
Nelder and Mead (1965). Although the procedure is now ovay feears old, it still is seen
in numerous applications. Both MATLAB and Mathematica userbutine in fminsearch

and NMinimize, respectively. The routine is also preseimatie book Numerical Recipes

as the amoeba routine (Press et al., 2007).

The exact details of the numerical procedure and its coevesgis not discussed here
because there are many good references available (Prds2€0&; Walters et al., 1991,
Lagarias et al., 1998) although, a short outline of the ptaoe is provided for familiarity.
The sequential simplex starts with+ 1 initial data points arranged in a geometric simplex
pattern, and the function evaluation at those points. Tlaegefive steps to iterate the

procedure, in this case given for a function minimization:

1. Order. Put thek + 1 points in descending order of their function valdgsTies may

be broken by looking at the index value (Lagarias et al., 1998

2. Reflect. Compute a reflection poin¢ = (1 + a)X — aX1. Note thatx only includes
points up tok. If the new value falls within the current valueg, < f, < fi, then

iterate. Nelder and Mead use= 1

3. Expand. If f, < f;, thus itis a new minimum, expand the simplex by calculating a
expansion poink. = yX + (1 — y)x. If fo > f, then accept the expansion point and

iterate otherwise, accefitand iterate. Nelder and Mead useé 2.

4. Contract. If f, > fi,q, itis the worst pointX. = BX1 + (1 = B)X, if fi < fi < fius



5.3. Initializing the Simplex 79

thenx. = Bx + (1 — B)X. Nelder and Mead usegi= .5. If f. < fi,; then accepf,

and iterate.

5. Shrink. If f. > f.; then the contraction failed and all points exceptX¥pshould be
replaced byx, < 6% + (1 — 6)x;. Nelder and Mead usetl = .5, but other authors
suggest = .9 (Barton and Ivey, 1996).

This procedure is gradient free and determines future painty based on the rank
order of the values. It has been shown that this procedurs ditienately converge to
a minimizer for general (non-convex) functions of one disien (Lagarias et al., 1998).
There is still work remaining as to why this procedure workswll in practice. For
example, there is no known function R? for which the procedure always converges
to a minimizer. A number of degenerate situations have besnodstrated where this
algorithm does not converge, which may be dependent onahingt simplex (McKinnon,

1998).

5.3 Initializing the Simplex

In previous work on this iterative procedure an initial slexpis often assumed and the
generation of those initial points has not been very welligd in the literature. Spendley
et al. (1962) begin the procedure with a regledtimensional simplex. A simplex of
dimensionk can be defined as the convex hull of a sek-et affine independent points in
Euclidean space of dimensidror higher. The regular simplex is a regular polytrope, and
so all points are separated by a common edge length. Althilwegelder-Mead algorithm
nominally starts with a regular simplex successive singslido not remain regular due to

the Expand and Contract steps.
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In the algorithmic implementation the suggestion for geftihe initial simplex points
begins with a single starting poiy ande unit vectors. The remaining initial points
just represent small orthogonal deviations from that paialculated from Equation 5.1 as
suggested by Press et al. (2007).

P, = Py + Ag (5.1)

The A’s could either be a single value for all variables or spediéitues for each di-
rection. The MATLAB (Math Works, 2007) implementation onlges this freedom when
Py, = 0 and setd = .00025, and for all other valugs= 6§ - Po-e,-T andé = 0.05, or a change
of 5% of the current variable value. This is noted in the cosla auggestion of L.Pfier

at Stanford (further reference could not be found).

This widely used starting procedure does not generate daregjmplex. This can be
shown in two dimensions when three points form a right triarand not the regular 2-
simplex of an equilateral triangle, this is also true forhtegdimensions. Having a regular
simplex is not required because given any non-degeneralienfe~0) starting simplex all
following simplicies are also non-degenerate; for the pea® Lagarias et al. (1998). This
implies that any non-degenerate simplex may be a startiing pad will not &fect the

algorithms degeneracy.

5.4 Proposed Improvement

The method proposed here to improve this initializationsists of first, a better choice of
starting conditions and second, choosing the step-siasdasthe distance to the reflected
point. Initially, the variables are changed in order, aobef but, if a change yields an

improvement then the remaining variable changes progressthis point. This procedure
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is identical to performing an aOFAT experiment (Frey et2003). Thes&+ 1 runs would
‘aim’ the simplex in the most likely direction of improventenGiven that this is a hill-
climbing algorithm, this would ideally decrease the numieadditional runs. An added
benefit may be that a directed starting simplex will move adayn cyclic, or stalling
points. There are essentially no theoretical results festguential simplex in dimensions
greater than two, and so better initialization may help étbe problems pointed out by
McKinnon (1998) and Hall and McKinnon (2004).

The simplex procedure is geometric, and the next trial pigittased on the distance
from the current worst point to the centroid of the remairpogts. To match the traditional

algorithm’s distance the increagewould have to be set dependent on the number of x-

1 / 1
- 24 Z_
Aock k+k 1 (5.2)

The traditional procedure is not a regular simplex and soualue is the weighted average

variablesk as follows:

of the origin and the orthogonal points. This distance agsgteg to one, or towards the
desired delta. With the aOFAT procedure this distance ctiom is more probabilistic. If
the probability of any variable making a positive change iliominally assumed to be

0.5), and giverk variables, then the expected distance value can be givarelfpilowing.

k3 .
Aoc%\/p3k—p-k2—p—;(+p+k2+%—l (5.3)

This is the weighted distance for the largest and smalleéstpo the simplex. For each
variable change there isgprobability for making a change and moving the centroidp as
goes to zero the results are the same as in Equation 5.2.

The original method asymptotes while the modified approassdot. Most imple-

mentations do not include this asymptote based on the nuoflvariables. The reasoning
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Figure 5-1: Distance to Centroid

can be seen in Figure 5-1; after about five variables the widae not change substantially.
The modified approach will have to take into account the nurobeariables as the delta
continues to grow without asymptote.

The starting step-size will be modified before the algorithims based on the number of
variables. The step-size could be modifiegitu based on the acceptance of a variable but,
if we only want to run each setting once it could only modifg 8ubsequent variables. This
would add a dependency to the algorithm based on the ordeeafariables, something to

avoid for this generic solver.

5.5 Improvement Considerations

It is possible to say very little about this procedure witheame assumptions about the
function over which it is applied. Given a strictly convexfttion in two dimensions with
bounded level sets and déeientsa = 1, y = 2, andB = 1/2, Lagarias et al. (1998)
showed that given simpliciea() generated at the" iteration of the algorithm the limits

are as follows:
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lim vol(A) = 0 (5.4)

and

lim diam(Ap) =0 (5.5)

n—oo

The convergence is dependent on the volume and diametegelarach step. Itis not
possible to determine if a greater or lesser volume or dianvétl improve convergence at

each step but that the overall convergence is sensitiveltonesand diameter changes.

For both starting simplicies the ratio of the volume chargthe same, it is only de-
pendent o, y andB. This is true because the amount that a point changes is ipiae
on the distance between that point and the centroid, whilgmbas out the smaller volume
change for points further from the centroid. Although tharmde in volume is the same
and thus the rate of convergence at that point, the volumleeotwto initial simplicies are
both proportional ta\¥. The volumes are similar until theftiirence in the delta’s becomes
large. As seen in Figure 5-2, the modified starting simplexdeaeduced starting volume
that may increase the number of iterations although theofatelume change is the same
and so this should nofi&ct the convergence.

This smaller volume is a trad&do keep the distance of the initial simplex move the
same as the original routine. Each move, either expand draminis dependent on the
distance from the centroid to the reflection point. The orgalgorithm had two possible
values for that distance either the origin or any other pdimthe proposed algorithm we
used the final point and the middle point in the aOFAT simptexdlculate an average
delta. This is a simplification, although the smallest p@nh the middle, the largest step
may also be one of the first two points. If the first few variatilanges are accepted versus

the final few, then the centroid is far from the start and climsthe end, and the biggest
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Figure 5-2: Volume of Simplex

step is in the first point. On the other hand the final variablerily changed once and so
the final point is the furthest from the centroid of #i8 variable. These two counteracting
effects are compared by the percentage of times this pointagegréhan the last point, and
the amount that it is greater. The relationship between éregmtage of other points as
well as the error is shown in Figure 5-3. This gives a weiglgedr between 0.7% and
3.7%, for the proposed method depending on the number athias. The second problem
is taking a weighted average of the middle (smallest) paiat last (largest) point does
not reflect the distribution of these variables. If the begig point is larger than the final
point the weighted average is too small and underestimagaverage distance. Because
these two errors are both small and occur in opposite dinestihey are not included in the

proposed model.

5.6 TestCases

The aOFAT starting condition as well as the step-size charege implemented in MAT-

LAB by changing the current fminsearch routine and run agjdime standard test suite by
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Moré et al. (1981). These 35 functions were designed tdahestxtremes of unconstrained
optimization and have been used as a metric for changes tddluer-Mead procedure a
number of times (Nazareth and Tseng, 2002; Price et al.,)2000% procedure was run
with a maximum number of iterations of 3,0a maximum of 18 function evaluations, a
tolerance of 10'2 on the output and a tolerance of 2®n thex values, the results are

shown in Table 5.1.

These results show a benefit for the new method. One propasegdacison metric
has been the lod(- f) (Barton and Ivey, 1996). The original method was -13.3%hwit
the proposed method -14.46. Although the change was onlernmathe startingk + 1
simplex points, this yielded an improvement to the accudddiie final results. Two of the
test problems that originally did not converge now convdrgerrectly with the modified

procedure.

Looking at the runs with a similar metric lag)(shows the improvement with the new
procedure. For this calculation the two problems that rehehmaximum number of iter-

ations were left out (10 and 16). When the procedures readiféstent local minima or
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failed to converge those problems were also not countedeimih metric (problems 18,
20, 21, 25, and 26). Removing these problems favored thénatigoutine because there
is no penalty for not converging or using the maximum numléecations. The original
routine had a log-run value of 2.73 and the modified routi@ 2Iln the test problems this
represents a 2% savings in runs or an average of nine fewatidies.

In this difficult test suite of functions the improved convergence idevi to a greater
degree than the iteration decrease. This is attributedetchlallenge of this problem set,
and the fact that without a good starting direction it is éagyet trapped in cyclic or stalling
situations. In the majority of smoother, and more realjsgtfuplications it is predicted that
the decrease inruns may be larger. The proposed routin@tlielad to any major decreases
in performance. The modified routine sacrificed some of thesibde run reduction by
making the initial step sizes similar. If instead, the voksnwere maintained, the step size
would have increased lowering the number of iterations.

The code for this modified routine is available from the Matfiite exchange website

(httpy/www.mathworks.copmatlabcentrdfileexchangg.

5.7 Conclusion

An improved sequential simplex starting routine based @aptde-One-Factor-at-a-Time
(aOFAT) experimentation was proposed. Starting with tres/ rsimplex improved the
eventual convergence (on two of the 35 test cases) as weddaged the total number
of iterations by 2%. The proposed method generates anlisitiglex by adjusting each
parameter sequentially and leaving any parameter chaagjerbught the function closer
to its target. This starting simplex is permitted in the oréd Nelder-Mead as long as it is

non-degenerate. In addition to the change in the startmglex the delta is adjusted to
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account for an increased distance between experimentakpand the centroid. This delta
adjustment based on the probabilistic variable selectidecreases the initial volume of
the simplex. A suite of 35 test routines provided by Moréle{E981) is used to demon-
strate the ffectiveness of this change in improving convergence andcreguhe number

of iterations.
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Minimum Function Value Total lterations
Nurm Name Orde Actual fminval Modified | Original | Modified
1 | Rosenbrock 2 0 8.85E-20 6.85E-20 123 130
2 | Freudenstein and Roth 2 48.984% 48.98425 48.98425 95 96
3 | Powell 2 0 1.03E-27 2.07E-27 419 379
4 | Brown 2 0 3.43E-19 9.30E-20 183 208
5 | Beale 2 0 8.72E-21 1.52E-20 91 88
6 | Jennrich and Sampson 2 124.362 124.3622, 124.3622 78 71
7 | Helical valley 3 0 1.84E-19 5.74E-19 205 177
8 | Bard 3 | 8.21487E-03 8.214877E-03 8.214877E-03 182 178
9 | Gaussian 3 | 1.12793E-0§ 1.127933E-08 1.127933E-08 130 124
10 | Meyer 3 87.9458 87.94586 87.94586| 10000G: | 10000G:
11 | Gulf 3 0 3.64E-29 4.21E-29 1806 1513
12 | Box 3 .0755887 | 7.558874E-02 7.558874E-02 307 226
13 | Powell 4 0 1.29E-34 5.09E-35 670 660
14 | Wood 4 0 1.41E-18 7.22E-19 405 526
15 | Kowalik and Osbhorne| 4 || 3.07506E-04 3.075056E-04 3.075056E-04 247 259
16 | Brown and Dennis 4 85822.2 85822.20 85822.20|| 10000G: 354
17 | Osborne 1 5 | 5.46489E-05 5.464895E-05 5.464895E-05 696 531
18 | Biggs 6 0 5.66E-03 2.455E-22 705 1100
19 | Osborne 2 11 | 4.01377E-02 4.013774E-02 4.013774E-02 3534 3014
20 | Watson 20 0 3.98E-03 3.22E-03 2214 2404
21 | Extended Rosenbrock 10 0 5.3% 3.63E-18 9103 17466
22 | Extended Powell 10 0 1.29E-34 5.09E-35 670 660
23| Penalty 4 | 2.24997E-05 2.249978E-05 2.249978E-05 826 623
24 | Penalty Il 4 | 9.37629E-06 9.376293E-06 9.376293E-06 2299 2433
25 | Variably Dimensioned| 10 0 1.25¢ 1.1« 4861 5523
26 | Trigonometric 10 0 2.80E-05% 4.22E-0% 2187 2188
27 | Brown Almost Linear | 10 0 1.73E-20 5.62E-20 3730 4897
28 | Discrete BV 10 0 1.91E-19 6.93E-20 1355 1150
29 | Discrete Integral 10 0 7.11E-18 7.09E-18 1320 1518
30 | Broyden Tridiagonal | 10 0 1.94E-17 2.00E-17 1350 1277
31 | Broyden Banded 10 0 2.68E-17 1.32E-16 1388 1513
32 | Linear Full Rank 10 10 10.0 10.0 1679 1958
33| Linear Rank 1 10 || 4.634146341 4.63E+00 4.63E+00 386 389
34 | Linear Rank 1 with 0’'s 10 | 6.135135135 6.14E+00 6.14E+00 378 409
35 | Chebyquad 9 0 3.06E-19 1.13E-18 2494 1801

+ Solution converged to local minima
* Solution failed to converge
1 Maximum iterations reached

Table 5.1: Unconstrained Optimization Test Functions






Chapter 6

Mahalanobis Taguchi Classification

System

The use of adaptive experimentation can be extended beheridaditional experimental
domains. In this situation, historic use of highly fractéded orthogonal arrays created
an opportunity to benefit from adaptive variable selectidhe goal of this chapter is to
present a classification system that incorporates adagtperimentation for variable se-
lection. The probable exploiting of interactions and veaw fruns make up for an inability
to build a model and accommodate potential non-randfieces. Analyzing images, or
other data processing and statistical learning technigresde unique challenges, as well
as numerous tools. The background, techniques, and dineztithis area of research will
not be discussed here and the interested reader should seeé¢tal. (2001). The idea pre-
sented in this chapter has been expanded with an additivad@e and further discussion

in Foster et al. (2009).
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6.1 Introduction

The Mahalanobis Taguchi System (MTS) is a pattern analgsisnique, which is used to
make accurate predictions in multidimensional systemgs frtethodology has continu-
ously evolved through the researdtiogt led by Genichi Taguchi. This system has found
industrial use as a data analytic approach that can be usddssify multiple systems.
Examples have been given in medical diagnostics, inspestistems, sensor syetms, and

even marketing applications (Taguchi and Jugulum, 2002).

The Mahalanobis distance (MD), which was introduced by d-lwebwn Indian statis-
tician P.C. Mahalanobis, measures distances of points itidimiensional spaces. The
Mahalanobis distance has been extensively used in sevegd,dike spectrographic and
agricultural applications. This distance is proved to begesior to other multidimensional
distances like Euclidean distance because it takes cbomgabetween the variables into
account. In MTS the Mahalanobis distance (actually, a medliiorm of the original dis-
tance) is used to representfdrences between point and pattern groups in quantitative
terms. It can also be used to classifyféient objects in multidimensional systems. If
this distance is above a certain threshold then the datd [onmot part of that data set
that belongs to normal or reference group. The Mahalanabiartte is a multiple of the
Hotelling T2 that has been used in the statistics literature for manysyeais frequently
used to identify statistical outliers as in Hawkins (198Hgre , the signal-to-noise [S)
ratios are used to determine the accuracy of the Mahaladdatiance with respect to pre-

dictions or classification.

To compute the distance one first has to calculate the me#or\{grand the covariance

matrix (K) of the training population (this is usually referred to asmal or reference
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group). The distance for any sample in the sp&res(given by a scalar:
1 Ty -1
D= —(f —p) K —p) (6.1)

The sample vectorf) is comprised of a number of features or variables that aportant
to the classification.

To begin with all the features or variables that may be ingodrfor pattern analysis
are included. Usually, the number of features is large sméx¢ step is to use orthogonal
arrays (OAs) and /8l ratios to determine the reduced set of important featurgarables.

The basic steps in MTS can be summarized as follows:

Stage I: Construction of a Measurement Scale

e Select a Normal group or reference group with suitable feator variables

and observations that are as uniform as possible.

e Use this group as a base or reference point of the scale.
Stage Il: Validation of the Measurement Scale

¢ |dentify the conditions outside the reference group.

e Compute the Mahalanobis distances of these conditionsteetkdf they match

with decision-maker’s judgment.

e Calculate $N ratios to determine accuracy of the MTS system.
Stage llI: Identify the Useful Variables (Developing Stag¢
¢ Find out the useful set of variables using Orthogonal areangs 3N ratios.

Stage IV: Future Diagnosis with Useful Variables
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Select Reference/Normal Group

*Define Features/Variables
Development of *Define base or reference point
Measurement _—" «Calculate MDs

scale = 202090|

reference group

*Calculate MDs

Validate Scale —> «Validate accuracy of scale in terms
of separation.

«Select a suitable orthogonal array.

Assign variables to the columns

of OA

" [eCalculate MDs of abnormals
*Obtain SN Ratios
*Select useful variables based on SN
Ratios
Future diagnosis Perform confirmation run

Optimize the scale

Perform future diagnosis
With useful variables

Figure 6-1: Steps in MTS

e Monitor the conditions using the scale, which is developét the help of the
useful set of variables. Based on the values of Mahalanasiartes, appro-

priate corrective actions can be taken.

Figure 6-1 is another presentation of théelient steps in MTS (Foster et al., 2009).
From the steps it is clear that role of orthogonal arrays aoenment in MTS analysis.
Each experimental run in the orthogonal array design mas®s a subset of variables; the
resulting $N ratios of these subsets are calculated using the distérmaghe reference
group and BN ratios are then used to determine the best variables.

The selection procedure using the OA is to run the entireixnad then use a variable
addition procedure to determine if any variable should unhed. At the end of the
procedure the appropriate subset of variables has beearexktbat give the maximunyiS
ratio. Typically in MTS, either larger-the-better type gmadmic type ¥\ ratios are used.

But this work is restricted to the larger-the-better typhijch is given by:
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(6.2)

Where the sampld);) is the Mahalanobis distance to classificaiiétom a population
n for each of thej classifications. This [l ratio maximizes the distance between the
different classifications. Givepclassifications the distances for all of the permutations
are added together to form a composithl $atio for the choice of variables and the test
population. For complete identification all permutatioreed to be considered, and thus
are added together.

The comparison of an orthogonal array (OA) search methddeinade with adaptive

One-Factor-At-a-Time (aOFAT) and forward search selagbiecedure.

6.1.1 Description of Experimentation Methodology

Each string of variables can be between 10-50 individuaabées long. Thus a complete
run of all variable combinations yieldg%2to 2°° experimental runs, excessive for all but
the simplest of simulations. To overcome this limitatiodueed factor experimentation is
normally used.

The OA is a fractional factorial experimental design teqgei where for the entire
experiment, any two variables will have each possible coatimn run an equal number
of times. Only symmetrical designs of strength two are atergd. An orthogonal array
OA(N, 2N-1) is the same as a Level-11K2 fractional factorial design.

aOFAT is compared with two-level, strength 2 symmetric#thogonal arrays, and with
a forward selection algorithm. The forward selection allfpon was proposed by Abraham
and Variyath (2003) as an alternative to the OA in an attemplecrease the computation

time in variable selection.
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In the forward selection algorithm, each individual vateis arranged by its contribu-
tion to the output. Then each variable is combined in desogratder of importance until

the change in the/8 ratio is insignificant.

6.1.2 Image Classification System

In many contexts, it is necessary to classify an image intoadrseveral categories despite

noise and distortion of the image. Some applications of sucdpability include:

e Target recognition in autonomous military applications

Matching evidence from a crime scene with a database

Searching image databases via samples of images rathedeynanrds

Classifying medical diagnostic scans

The system here classifies gray-stapresentations of fine art prints. Given a small
bitmap, the goal is to classify it from a comprehensive dasab For purposes of this study,
four well known portraits were chosen: Da Vinci’s ‘Mona Lis@/histler’s ‘Portrait of the
Artist’s Mother’, Peale’s ‘Thomas Jierson’, and Van Gogh'’s ‘Self Portrait with Bandaged
Ear’. The low resolution bitmaps (32 X 32) used in the studydepicted in the top row of
Figure 6-2.

In practice, if one were given an image to identify, it woulely be dfected by various
types of noise. The image may have been taken by a camera arnmbs$libility exists
that the image will be out of focus. The image may have beeadwast and so there

may exist some degree of either white noise or ‘snow’ supsosed upon it. The image

*In gray-scale, a value of zero represents black while a vall&55 represents white. All the integers
between are smoothly varying shades of gray between thosees
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may have been scanned into a computer and therefore it ishfoésr the image to be
framed df-center. Further, it may be desirable to correctly identifg image without
prior knowledge of whether the image is a negative or a prifd.simulate such noise
conditions, the following operations in the following ordeere performed on each image

to be classified:

1. The image was blurred by convolving the image with a pixerture whose size

varies randomly among 3, 4, and 5 pixels square.

2. The image was superposed with ‘snow’ by switching eachlpoxwhite with prob-

ability 0.75.

3. The position of the image in the ‘frame’ was shifted by eitt2, -1, 0, 1, or 2 pixels
with equal probability. The shift was made both horizogtalhd vertically but the

amount of the shift in the x and y directions were probabdaty independent.

4. The images were transformed into a negative with proiabils.

Examples of thef@ects of these noises are depicted in Figure 6-2. The first oodams
bitmaps of all four portraits without noise. Below each paittare three noisy versions of
the same portrait. The degree of noise is intended to beeseweugh to make classification

of the images diicult.

6.2 Feature Extraction Using Wavelets

Wavelets were chosen for this application to extract festdrom the images and create
the variables. The goal of this section is to provide enowagkfround to allow the reader
to understand the case study. The treatment will therefergualitative. For a more de-

tailed mathematical introduction to wavelets in enginsgrithe reader may wish to read
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Figure 6-2: Fine art images before and after applicatiorotden

Williams and Amaratunga (1994), or specifically concernimgges Williams and Ama-
ratunga (1993).

A wavelet transform is a tool that cuts-up data, functiomgperators into dierent fre-
guency components with a resolution matched to its scalal{fehies, 1992). Therefore,
wavelets are useful in many applications in which it is cangat to analyze or process
data hierarchically on the basis of scaling.

To demonstrate that the wavelet’s property of cutting up detsed on scale is useful
in image processing, let us consider tHeeet of wavelet transforms on the image of the
Mona Lisa. Wavelet cd&cients from a 32 X 32 gray-scale bitmap of the Mona Lisa (on
the left in Figure 6-3) were extracted using a two dimendiaravelet transform based on
the Daubechies four céiicient wave filter. These wavelet dGieients are represented by
a 32X32 matrix. The entire set of ddieients was used to reconstruct the image using an
inverse wavelet transformation (the image second froméhen Figure 6-3). One can
see that this reconstruction preserves essentially afleofietail of the original bitmap. To

generate the next image, we discarded all but the 16 X 1fficieats in the upper left then
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4X4 2X2

Original 32X32 16X 16 8X8

Figure 6-3: The Mona Lisa reconstructed from its wavelatgfarm after all but the N X
N coarsest levels of scale have been discarded

padded the matrix with zeros back to 32 X 32, and reconsulubieimage. The resulting
image (third from the left in Figure 6-3) reveals that thetfit6 X 16 elements contain
information describing the rough features of the originahge. This process was repeated
by removing more elements of the wavelet fméents resulting in successively coarser
images.

The ability of wavelets to cut up an image on the basis of scalemade them very
useful in image compression. By discarding waveletitaents below a certain threshold,
the amount of information to be stored or transmitted canidpaficantly reduced without
significantly degrading the perceived quality of the imagleis strategy succeeds because
the features that allow people to identify an image tend tohagacterized by length scales.
The overall proportion and balance of Van Gogh'’s portraieisy different from that of the
Mona Lisa. Thus, the two portraits can be distinguished @nltasis of features with
medium length scales. However, it is also quite possiblestingjuish the two paintings on
the basis of features on a much smaller scale. The style dirtlsh strokes in Van Gogh's
portrait is very diferent from that of the Mona Lisa; most people could distisguhe two
paintings with only a one inch square sample of the origiaahfings.

The properties of wavelets that make them useful for consprgamages also make
them useful for recognizing images in the presence of nddeen snow is superimposed
on an image, it will tend to disrupt the finest details so that information at that scale

may actually hamper recognition. Similarly, the coarsesgeéls of resolution may contain
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very little information useful for image recognition. Theage on the right in Figure 6-3 is
uniformly gray. This shows that the painting has uniformistdbuted patterns of dark and
light at the coarsest level, but this is a property of most éirtdbecause people appreciate
paintings that appear balanced. Therefore, the coarseds lef wavelet cogicients may
not be useful in distinguishing the Mona Lisa from other paits. It is possible that the fea-
tures that best allow one to distinguish the Mona Lisa frohepfine art prints (especially
in the presence of noise) are found at intermediate scales.

Given the power of wavelets in extracting key features ofraage based on a hierar-
chy of scales, they were selected for this image recognsystem. The matrix of wavelet
codficients were used to construct the Mahalanobis distances@ngare the three ex-
perimentation routines. Each image was 32 X 32 the wavelastorm was also 32 X 32.
To reduce the vector size and, considering that the art meiumore interesting at larger
scales, only the first 8 X 8 matrix were used and the rest zetdgzhbefore the inversion.
This vector was then 64 bytes long, the last byte was alsovethto give a convenient

length of 63 bytes, the same length as a traditional orthalgmay.

6.3 Comparing Results of the Diferent Methods

Each method was trained with a set of noisy pictures. Aftertthining routine each of
the three routines produced a vector of the ideal varialdeglentification. These ideal
vectors were then applied to another set of noisy picturebtlae results compared.

The aOFAT performed with the highest average identificgtiercentage, and utilized
an average training time. It was able to take advantage dinbdactor and higher inter-
actions and the noise was notistient to éfect the results. The aOFAT scaled well with a

reduction in the number of training images.



6.3. Comparing Results of the Diferent Methods 101

20 T T T T

Largest observed value of 77

150 ’L_%—“—‘—E =1 1

100r

soF - f il

Mean value of 7 across all design options

Signal to noise ratio attained, 7 (dB)

0 ) 1 1 1 |
0 20 40 60 80

Number of individuals used in stage IIT of MTS

Figure 6-4: Results of the three search methods for the irdlagsification

In the OA they were able to utilize the first and second ord@ractions but not take
advantage of higher level interactions. The OA chose a pghbaitwas less optimal than
the aOFAT because it did not include anything greater thanléwel interactions. Even
though the OA was run with multiple arrays it might prove todolyantageous to run some

that focus on the two- and greater level interactions bexatitheir importance.

The third method, the forward search, was the mé#tient to run, and proved to be
equal to the OA when the number of individual was greater fifan This method was
highly dependent on a strong hierarchy @feets that was not as evident in this problem.

In situations with a large hierarchical bias it would perfiowvell at low computational cost.

As the number of classifications grow the routine should shawmprovement of a
similar magnitude to that shown in the reduction of the fragrpopulation. It may be pos-
sible, using non-wavelet routines, to reduce the deperdemthe higher level interactions,
but the current experimentation shows that realistic sl have higher level interactions,

and low noise. This situation is the ideal application of @FAT experiment.
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6.4 Conclusion

There is an appropriate place for an adaptive experimenboued with classification tech-
niques, here the Mahanalobis-Taguchi Strategy (MTS). Whemumber of classification
variables are too numerous to enumerate all possibilitlespsing the best sub-set is simi-
lar to the maximum seeking experiment that aOFAT has demadssttutility. This adaptive
experiment is used as a variable screening procedure asfpartomplete classification
framework. Within published classification procedureshsas linear regression, logistic
regression, and discriminate analysis the use of an adagpdlection experiment can im-
prove results and reduce the computational burden.

Compared with the other available methodologies such as IGérevard search, aO-
FAT is shown to yield a better result. aOFAT produceghl atios that are significantly
greater than the other routines while incurring similarexkpental cost. As Daniel (1973),
and other experimentalists agree; in most experiment&mmuch time is spent on unim-
portant and uninteresting regions, aOFAT is a techniqueftitaises interest into the im-
portant and interesting areas and then allows for sub-s¢ysia. More information about

this particular application including more examples isilade in Foster et al. (2009).
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Chapter 7

aOFAT Integrated Model Improvement

An overall purpose to the procedures discussed in thisgleg increase the overall utility
of experimentation by combining statistical methods willagtive experiments. One goal
may be to utilize the aOFAT experiment combined with futuxpezimental data to build
a composite model. There is one specific method that will kestigated here and will
benefit from our prior knowledge within the aOFAT. A subsetjughapter will investigate
a general method that can build models from adaptive exgatisrwithout assistance from
data regularities or other application specific inform@atiotilizing the aOFAT experiment,
outside of superficially comparing the results, is impariarieveraging the experimental

cost to improve the system and enhance resultant models.

7.1 Introduction

Experiments can be used for a variety of purposes includmignization, model develop-
ment, factor identification, and robustness exploratiohe &cademic approach is to use

experiments to build a model followed by model optimizatéomd validation as in Wu and

105
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Hamada (2000). This contrasts the stated objective of mdsistrial optimization exper-
iments as in Montgomery (1996) or Myers and Montgomery (200the purpose here
is to combine these two activities with two specific experiseto achieve an optimum,
followed by the creation of a parametric model. Both of theskvidual experiments have
numerous approaches andfdient techniques, the challenge is to benefit from the first ac
tivity in completing the second. Providing both the optimaswell a parametric model is
pragmatic in that many times the optimum is found to be fifisient in some unforeseen
aspect and a more complete model is needed. Finding an aptionunear-optimum ini-
tially is also desirable as many designed experiments #ranénished when equipment
fails, priorities change, or budgetary limits are met. ldliéidn to the precautionary, de-
signing an experiment to seek out an optimal point initiatigy create savings by using
that point while the remainder of the experiment is run. Tédrgys could be substantial
and with high likelihood, no further changes may be needédx Use of designed experi-
mentation has been championed by a few firms although théajeuent of the techniques
comes from the statistical community. This combined tegheibridges the gap between

the intuition of the practitioner and the statistical framoek.

7.2 Background

The traditional classification of the féerent types of experiments by Wu and Hamada
(2000) are: treatment comparisons, variable screeniggorese surface exploration, sys-
tem optimization, and system robustness. These clasgifisadire based on developed
techniques while, in practice, industrial experimentsrareto meet a specific objective,
perhaps to improve a product or to eliminate a defect. Thbgtives normally requires

a number of traditional experiments, first a variable sdregexperiment may be used to
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determine the important factors, followed by a rough syst@timization experiment to

move around in the design space and a final response surfpegregnt for higher order

effects. The noise variables may need to be addressed thropgkificsrobustness experi-
ment to finalize the setting. If there is financial or schedylressure an initial experiment
may be used to determine an immediate setting that can thadjbsted when the larger
experiment is complete. It is also possible that there vélbldecision to end the experi-
ment early if a satisfactory setting is found in the initimahs. Experiments may also end
early if the test unit fails, or the project has budgetary aresluling problems. Getting

useful knowledge out of those incomplete experimentsficdit and may be impossible.

The procedure outlined here is targeted for a dual targeptimization with a goal
of building a system model for alternative setting optionsabustness studies. The first
stage of traditional optimization is to decide on an experital design. The number of
runs determines the number of parameters that can be estinfet described in Chapter2,
givenn+1 experimental runs it is possible to, at most, estimatedel parameters. Larger
experiments are frequently used to estimate two-way iotienas X; - X, or three-way in-
teractionsX; - X, - X3 as well as to understand system noise and error. Most exgetsm
are design to be balanced with equal number of high and Iaimgst orthogonal between
the different variables, and finally, run in a random order to try amuimize time depen-
dent noise ffects. Because of the sensitivity of noise, most designeererpnts are much
larger than necessary compared with the maximum parantbtdrsan be estimated, some

alternatives to this iniciency will be addressed.
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7.3 Procedure

To begin the initial optimization search an adaptive OnetéiaAt-a-Time (aOFAT) ex-
periment is performed. This is an adaptive optimizatiorcpdure that has been recently
described in the literature by Frey and Sudarsanam (2008Feey et al. (2006). This
procedure utilized here is as follows, an initial randomialale setting is run. Then se-
guentially through each variable a single change is madetatchew setting run. If the
result is improved then the new variable setting remainspfif it is returned to its original
value. This experimentation technique requimedl runs, one for the initial setting and one
for each variable. Although this procedure has been digeolin a number of books such
as Wu and Hamada (2000), it has shown to fieative in achieving an optimum under
normal levels of noise and a typical ratio of interactionstain dfects. If the noise is too
high or if there are too many significant interactions, themae traditional approach may
be more &ective. The other potential problem is an absence of runorainchtion and any
time or order dependency could lead to poor results. In aysbid 13 published experi-
ments, this method had a very high likelihood of producing dptimal setting compared

with other alternative procedures using a similar numbeuo$ (Frey et al., 2006).

To quantify this improvement we will use a hierarchical pablity model (HPM) that
was constructed by Li and Frey (2005) using the aforemeetidil3 industrial experi-
ments, and described in detail in Chapter 2. This HPM createssponse that mimics
one of the 113 original experiments; it can be used to gaugenitial improvement of
an aOFAT experiment over the best possible variable seflihg biggest influence to this
response is in the pure error which is defined here as a ratetiactor &ects (FE). Even
with large amounts of experimental error an aOFAT experimgids 90% of the possible

improvement as shown in Figure 7-1. A ratio of 0.2 is typig&tlund in experiments.



7.3. Procedure 109

o

Pl

i

R aan

H—H—KX
e
X%

Percent of Optimum
o o N o o o o ¢
N w »~ 5 o ~ =<}

o
[

‘ ‘

. . .
0.2 0.4 0.6 0.8 1
elFE

o

o

Figure 7-1. aOFAT Percentage Improvement

This technique requires + 1 experimental runs and provides a good method for de-
termining the optimal variable settings. In addition torseag for an optima the other
outcome of this experiment is an estimate of each variabig®rtance. The challenge
with using aOFAT results is the significant probability ofpéoiting interactions as well
as main #ects, which are not possible to estimate with omly 1 runs. To make a more
accurate estimate of the importance of each variable, ptebateraction &ects will be

removed.

Using these 113 experiments Frey and Wang (2005) have loatkéeb expected im-
provement for each variabbg for completing an aOFAT experiment; this expected value

givennruns is shown in Equation 7.1
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Where the standard deviation of the maiteets, interaction terms, and the error are
given byo e, ont, @ando, respectively. Some assumptions are made about the size of
the diferent défects, which are based on the results seen in the industieriexents.
Assumingo Nt = ome/3, 0 = ome/4, and because we are only interested in the relative
influence of each variableye = 1. This reduction leads to a reduced form shown in

Equation 7.2.
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This expected improvement information can be used in thartavce matrix of a
Gaussian process that will model the follow-up experiméftte interaction information
is needed in addition to the response because the lateblesiare more likely to bene-
fit from interaction &ects than earlier ones. The complexity of this equation rsnadly
unnecessary with a small number of runs, and a linear appadion will be used instead.

With seven variables and thus eight experimental runs thea®d improvement of a linear
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Figure 7-2: Expected Improvement Comparison

estimate is compared with the equation as shown in Figure 7-2

This linear approximation is described by the slope of tiis.lIncreasing the variables
decreases the slope I6}(n?) and thus approaches zero rapidly with a large number of
variables. To predict the slope for a specific number of \wesn, the log-log plot yields
this relationshipS = 0.081- n"1842 as can be seen in Figure 7-3. Now, after running
the aOFAT experiment, an optimal or near optimal point isvimas well as the relative

contribution of each variable with the interactions igrtbre

The second, follow-up, experiment used here is an orthdgaonay (OA) based ex-
periment that was introduced in Chapter 2 and also used ipt€h&. An OA is a set
of linearly independent run columns for each variable. Ezmbhmn is orthogonal to the
other columns in the set and so can estimate the nféécte easily. Depending on the
design and the size of the OA it can also estimate a number@faictions. The choice
of designs are Plackett and Burman (1946) designs, and dr&mwesvn in the statistical
literature and introduced in Chapter 2. The designs can diéyemnstructed and are of

lengthN = 4k, k = 1,2,... whereN is not a power of 2. The Plackett-Burman designs
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have a useful property - if there are only a few significanntethe remaining columns can
estimate interactions. This design property along withpther information available from
the aOFAT will be useful in the Bayesian analysis.

After completing the aOFAT experiment followed by the PleitilBurman experiment
the data collection procedure is complete. At this pointhibidd be noted that there
are other experimental methodologies to collect the datlding running repeated aO-
FAT experiments, or other types of designed experimentsidimay fractional-factorial,
D-Optimal, A-Optimal, and minimum abberation designs. S&henethodologies may be
more appropriate given a particular area of applicationnoteustanding of the underlying
physics. The following analysis is more general than thek&#-Burman design and any

experimental design could be substituted.

7.4 Analysis

The Plackett-Burman OA design will create the foundationdamodel estimate. It is

not possible to use traditional analysis by combining betls sf experimental runs into a
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large matrix, because this matrix would be singular. Thidus to the fact that the aOFAT
matrix is singular. Removing the singularity can be accoshgd by removing runs from
the aOFAT, but this normally requires removing half of theguand then leads to little

improvement.

The analysis method used here is a Bayesian procedure thatigied from the pro-
cedure of Joseph (2006), that is based on what is referred tomna@mpirical Bayesian
analysis. Additional information on the mathematics bdrempirical Bayesian analysis

are available in Chapter 2.

Given a linear estimaté = X' - u + €(X) whereX consists of thék most important
variables, and the error is a Gaussian process GP(0, o2¥) without loss of generality
we can sayF = X" -u+ X' -Bwheres ~ GP(0, 02¥). The'¥ term is the correlation matrix.

The most frequent correlation functions are product or egptial correlations.
P
W(Xy, X2) = l—[ Wi (Xai, Xai) (7.3)
i=1

This correlation function looks more simple than the triadial exponential function be-
cause the experimental values here are assumed to be onl{ -Inathis functionp is the
number of runs for a full factorial experiment. Here it is@s®ed that¥ is stationary for
all p and that our variables are (-1, 1), so%¥;(X1, Xo) = ¥i(IXs — X2l/2) that has only
two values?;(0) = 1 and¥;(1). This difers from the traditional empirical analysis but, is
consistent with the approach. In Chapter 8 the full expaakoorrelation function will be

employed because the data is not from a designed experiment.
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The expected values and variances can be determined free dieénitions.

E(f)=u (7.4)
Var(f) = o2, (7.5)

and
E(B) = E(X,' - (F - X - p)) (7.6)

=0

Var(B) = Var(X;*' - (F — Xu))
= X o 2W (X hT

= o2X"¥X (7.7)

This last expression can be simplified using the structurthefproduct correlation
function. A full-factorial experiment can be defined in auesive fashion wher&, = 0
and additional terms defined by:

Xion —Xi-
X, = i-1 i-1 (7.8)
X X
And noting that the last column is half negative followed Iafipositive, with the remain-

ing columns identical between the halves, both haves arelated by theF(1) value. The
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entire product correlation equation can be expressed as:

¥ Vi1 Y)Y (7.9)

Y(Q)¥ii. Wi

Substituting these into the varianceff

ol X Wi X, 0
RXTWE = 5 L+ w)-| e (7.10)
0 Mp- Xg_lq’i_lxp_l
wherer, = %) and definingr? = —,; we know thatXT‘I’oXO =1so0

1+¥ (1) [T;_, (L+ri)

Var(8) = * - R (7.11)

whereR is the diagonal matrix for the variablesjm

ri

R = | (7.12)

r-1o

This matrix from the product correlation function, has twogerties hierarchy and
heredity from Wu and Hamada (2000), that are often discusstte experimental liter-
ature. Hierarchy is defined as having largest factors as etffgnts, followed by smaller

two-way interactions, and smaller three-way interactidnghis matrixr; < 1 and so this
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property holds true for the covariance matrix. Heredity e$imed as a property where a
significant main #&ect is more likely to have interactions that are also sigaific This
property is also apparent in this matrixrifis large then interactions with will also be

large.

Given that we are estimating the parameters in this model &eeduced run set, there
are too many parametersiin Here we will reduce the model by including a predetermined
weight vectorw.

r=rsw (7.13)

This still makes[](1 + r;) unique and not reducible, and if we have fixedsuch that
max{;) = 1 thenitis necessary to only determine a single parameteitfie original work
Joseph (2006) used a single vatue R, thus the properties of hierarchy and heredity hold
but the variables are all weighed equally. The experimengdtix was used as a posterior
to this information to create a model. One drawback to thigr@agch is that all of the
variables are weighted equally and so the data has tofieisat for the posterior estimate
to change. In the experimental work by Li and Frey (2005) isvi@und that variables
are exponentially distributed and so a uniform assumptfaloseph (2006) would require

substantially more data to reach the same posterior agcurac

Taking the approach of Robbins (1956) that greaffareused to create a better prior
model will benefit the overall performance of the resultisgjreate. The aOFAT experi-
ment was used to estimate the variable ranking (as well amastthe maximum). This is
incorporated into thev, weight variable is from Equation 7.2 wheng is set to the mean
value ofw;. There is no estimate of the error of the aOFAT variable wisigso the error
around thew’s is unknown. To control thisféectw; is reduced as arg may 1) approaches

1.0. The influence of they;’s drivesr — 1.0 then thew;’s are iteratively reduced, by setting
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w = wP®. This can be justified by noting that largevalues are driven by large disparities
between the weights and the experimental values. This iemea shrinkage maintains the
hierarchical and heredity variable properties while reédgcindue influence of the aOFAT

error.

Giveny|8 ~ N (Xi + XB, o) and without enough information we consideto be small
compared with thgs variance-8 ~ N(0,7°R). By applying the properties of the normal

distribution we can determinge

y ~ N(XiZ, o2¥) (7.14)

The log-likelihood of this distribution can be used to detarer from Sargan (1964):

| = constant- % log det@2¥)-
) (7.15)
E(Y - Xi0) (o ¥) (Y - Xid)

which yields:r"= arg maxeo |

A stepwise addition procedure is used to add variablgs faind from the distributions

aboves can be estimated:

2
PBlY) ~NRXTW XY - 3i0)—.
, Tk (7.16)
2R - LRXTYIXR))
Ok

To determine the variables to add we can look at the intefyal ®he interval is given
byBi + ®71(1 - a/2) whered 1 is the inverse normal distribution, if this interval doeg no

contain 0 then it would be a credible addition. This can als@kpressed such that the
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absolute value of the normalized score must be greaterdhfd — a/2).

t = A - (7.17)
diag(+/Var(aly))

After choosing the most probable variable to addando need to be found by sub-
stituting the new value:

= (XTI Tty (7.18)

and

62 = r—11(y— Xmy ¥y - X (7.19)

There is another stopping condition used in literaturefrtditionalR? value (multiple

correlation co#icient).

G-
Ri=1 =7 (7.20)

Thet; values are criticized as underestimating the variancelamldverestimating the
confidence, and including too many variables. This is bex#uss predictor is a biased
estimate of the true mean squared prediction error. Rrhestimate has another criticism
that it always increases with added variables, and thusiatdodes too many variables.
There is a correction fdr (Zimmerman and Cressie, 1992) but it is not used here because
for the general linear model, this error has been shown tespmptotically insignificant
(Prasad and Rao, 1990). The use of an adjuBfed-also not used here because the over-
fitting estimate based solely on the number of predictorsusethe number of data points is
misleading by not including the influence of the covarian@rir. The forward selection

procedure is a frequently used method for variable additither options include a back-
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ward elimination, stepwise, all subsets (fok 7), or other algorithmic best subsets. The
C, statistic was not used because iterating all possible avatibns was not possible with
n = 11. There are many good procedures available to determénenbortant variables, in
the examples selected here we were limited by our imposedeauof runs. The number
of codficients was maximum for the number of runs and so less deptendehe adding
criteria. These routines were developed to limit the exéndables suggested important by
a predicted residual sum of squares (PRESS) approach. da th@mples we are limited

by the maximum amount of information and so that limit is noplecable.

To summarize: the procedure initially has no variablesstistimate,"determine the
largest significant;, add that to the model by finding ands?. Repeat this procedure as
long as the new is significant, the°PRES Sstatistic is decreasing, or the maximum number

of variables is reached.

7.5 Results

Three examples of this augmented method are presentedyshedes the Hierarchical
Probability Model (HPM) introduced in Chapter 2. This moldas a significant probability
of two and three-way interactions, and stretches the ugeedPlackett-Burman designs in
detecting interactions. The second example is drawn froanaitytic model presented by
Wu and Hamada (2000) to show the challenge in identifyindamamded variables. The
third example is a physical experiment of a wet-clutch degigesented originally in Lloyd

(1974). For each of these examples the primary focus is opadng the results in model

building, and not the optimization search.
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7.5.1 Hierarchical Probability Model (HPM)

Using the HPM generated model, a dual approach with an aOBkawfed by a 12 run
Plackett-Burman design was compared with a 24 Run Plagketian design. Both of
these designs had 11 variables of interest and were run 2@3 tiotal with four dierent
randomly generated HPM models. The PRESS (Prediction SuBgoéres from Chap-
ter 2) statistic was used to compare the selected modelsreBds of both methods are
shown in Figure 7-4. The larger experiment is able to geeesbghtly smaller PRESS
values while the dual method uses fewer variables. The cosgpastatistic was run on
all of the points in the full factorial experiment. This exjpeent was run with both thg
significance criteria as well as tfi& criteria and they both gave similar results. Because
these models are so limited, the performance limitatiohesiumber of experimental runs.
Given the limited number of runs the dual method performd e@hnpared to the larger
method. There are two additional cases that will be invagtig, first adding runs to both
experiments and second, running the same sized secondregperAs the PRESS statis-
tic shows in Figure 7-4, the run limitation indicates morarte are necessary to fit the
model. The experiment lacks figient resolution to completely fit the best model. The
runs could be increased either through a fractional-fatexperiment or larger Plackett-
Burman design. Although they both yield similar resultgghielackett-Burman designs of
32 and 48 runs were used. In total the dual method has four fewe. The result with
these larger run matrices is shown in Figure 7-5. The usee&@®FAT runs reduces the
runs in the model while still achieving a similar PRESS stati It is expected that there
is a limitation to adding more variables through the covazeamatrix. This forced ranking
of the inputs limits the number that can be added to the médeihe number of runs grow

areduced correlation matrix can increase the influencessg&tifiew runs on the final result.
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Weighing the prior experiments is used to reduce the infla@mcthe runs as a ratio of the

number of initial runk + 1 to the runs in the experiment

W = - (721)

The result from this weighing is shown in Figure 7-6; the duaithod has a reduced
variance but a dierence in the number of terms is still seen due to tifemince in exper-
iment size. The goal behind this methodology is for scregeixperiments and not large
run experimentation. The weights influence the entire taticen matrix and lacks <fi-
cient support for this rank in the entire experiment. As #iterof data that determines the
correlation structure is small compared to the run inforamathe assumption of accuracy
is no longer valid. The covariance matrix with a singles justified in Joseph (2006) for
a constant correlation cfigient; he indicates that assignindfdrent weights can only be
justified by knowing the relative weight of soméexts. It is not assumed here that we
‘know’ the relative weights only that the guess is apprder@iven the data. As the relative

amount of data grows the weightfiirences are reduced.

In practice there are many initial or set-up runs that arenadly discarded before the
screening experimentis run. These runs can be used to liekprioe the covariance matrix
that is followed by the actual experiment. If the run sizesidentical then the covariance
matrix will improve the outcome. The result of using a 24 rdacRett-Burman design
for both systems is shown in Figure 7-7. The dual method resltite PRESS using the
same number of variables. This higher performance for tla ohethod is expected and
has utilized runs that are normally discarded. One cautizenmsing these methods is that
the extra runs need to reflect the correlation between the irgsiables for the experiment.

Different variable ranges and locations should be correctetcssary.
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Figure 7-4: Hierarchical Probability Model (HPM) Compais

| I 2OFAT(12) +Plackett Burman(32)
o I Fractional Factorial (48)

w
o
/

o o NN
o o o
/ / /

Count out of 200 Runs

o
)

800
600

200

Number of Variables PRESS?

Figure 7-5: HPM Large Experiment
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Figure 7-6: HPM Weighted Large Experiment
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Figure 7-7: HPM Same Second Experiment Size
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7.5.2 Analytic Example

The second example attempts to identify an analytic modsgnted by Wu and Hamada
(2000, pg. 362). This analytic example is used to demomstaatificulty in evaluating
experiments with complex aliasing. The modeYis 2A + 4C + 2BC — 4CD + € where

€ ~ N(0,.5). The objective is to correctly identify this four variabhodel in an experiment
with 11 variables (A-K). In the original analysis the mod@sCD,A) and (C,CD,BC), both
which contain three of the four correct variables, and noirect variables were found to
explain the data well. They also identified three other tivagable models that only have
one correct variable, and three two-variable models witly one correct variable. The
conclusion was that the analyst may find many equally plésiodels. Here a more au-
tomatic procedure is presented based on Bayesian prionsnilasmodel to this was also
used by Joseph (2006) to demonstrate his approach to Bayasidysis. The objective is
to match the performance of both of these previous methadg addual approach consist-
ing of an aOFAT and a 12-run Plackett-Burman experiment. depkthe number of runs

comparable a comparison will use a 24-run Plackett-Burmxaem@ment.

A comparison of the Bayesian analysis to the procedure givéWu and Hamada
(2000) is presented in Joseph (2006) and will not be repdstesl Each procedure was
run two hundred times onfilerent random sets of data. All of the variables were permuted
before each run, so variable order was not significant. Titerier for adding variables is
critical to the performance. The PRESS statistic was usegl had as long as it decreased

variables were added.

There were two main competing models, these two areas caadpeiis Figure 7-8.
The goal is to have a small PRESS statistic with few modekbes. The dual method

was able to leverage the correlation information to addatdeis that resulted in a better
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Figure 7-8: Wu and Hamada (2000) Analytical Experiment

model. The high aliasing in this experiment led to many dguwaimpelling model options.
A more informed covariance structure improved the proligtithat the correct selections

were being made.

One complicating aspect of this selection is that models ait average of two ex-
tra variables better fit the data compared with models witvefevariables. The complete
model would have beef, B, C, D, BC, CD, whereB andD are extraneous variables. These
additional variables are used to reduce the noise compotemneal systems there is ob-
served a regularity of inheritance where a significant atBon component normally has
significant main #&ect. In this situation adding those components, even if fuoels,
reduces the cross-validated PRESS error. This performarsomilar to the predicted per-
formance by Wu and Hamada (2000) while automatically selg¢he model. If the mod-
eler would like to actively participate in model selectidre trelative choice of important

variables could be done outside of the physical experiment.
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Figure 7-9: Wet Clutch Example

7.5.3 Wet Clutch Experiment

The final experiment used the results from a full-factoriataglutch experiment for analy-
sis from Lloyd (1974). A wet clutch is used to disengage twaftsh an example is shown
in Figure 7-9. For this particular experiment there wereesexariables of interest, oil flow
(A), pack clearance (B), spacer plate flatness (C), friatnaterial grooving (D), oil viscos-
ity (E), material friction (F), and rotation speed (G). Thi#gmal experiment was created
to optimize and improve the design of wet clutches.

Because this was an actual experiment there is no exact gresveethe true model is
unknown. One “solution” was generated by using a Bayesiafyais on all of the runs
from the full-factorial experiment. The significance leeéthe Bayesian analysis is set to
1%. This gives the model of A, C, D, E, F, G, BC, BD, BG, CE, CF,, @&, EF, FG.

For this non-replicated experiment another method of @iy Lenth’s method (Lenth,
1989). The main fects and important two-way interactions was provided bytlLale
(2006) as A, B, C, E, G, AD, AG, BD, BG, CD, CG, DE, and EG. Th&atence is pri-

marily in the fact that Li et al. (2006) included three-wayddour-way interactions in his
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Figure 7-10: Wet Clutch Comparison

analysis, although the model only includes main and two-wtgractions.

The results for this system are similar to the two previowswgxes. The dual approach
is able to perform well against the larger model althoughtduke experiment size it iden-
tifies fewer terms as shown in Figure 7.5.3. The number ofifsigmt terms is surprising
and followup experiments would have to decide on the numbpammeters to include.
The larger model was able to predict a greater percentadpe ahiportant variables and did
not show the typical bimodal characteristic of the dual apph. In addition to the PRESS
statistic,3 significance and thB? procedure, an adjuste®calculation was also used and

did not change the results.

7.6 Conclusion

In this chapter a method to augment current experimentaéioinniques through a dual
approach was demonstrated. The initial experiment is aptagaOne-Factor-At-a-Time
(aOFAT) search for the preferred setting followed by a ssg@ierrated designed experiment.

The initial aOFAT procedure finds the optimum result with 96&ffidence and provides
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covariance information. This experiment is followed by ghty saturated two-level ex-
periment, in this case a Plackett-Burman design. The twalteeare combined through
an empirical Bayesian procedure that utilizes hierardlsiod heredity system characteris-
tics. An adjustment improves the results when the two erpanis difer in size. When
faced with an industrial problem that requires both an optimdetermination as well as
a parametric model this dual approach can maximize theyutifieach experimental run
while accurately meeting both requirements. It is not neassto select a optimum seeking

experiment at the expense of a model building experiment.
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Chapter 8

Combining Data

This chapter expands the utility of adaptive experimeatato situations where two ex-
periments are run on fllerent systems. The two systems under experimentation nvay ha
different costs, timing, or quality. A frequent application isem one system is a computer
experiment and the other a physical model. Finite elemealyais (FEA) and computa-
tional fluid dynamics (CFD) are two examples of computensgafe that have good rela-
tive comparative value but havefliiculty predicting absolute values. A small number of
physical experiments are needed to correctly place the soal bias of these computer
estimates. These situations create unique challengepévimenters, in selecting the best
experiment for both conditions, as well as appropriate walogies for combining the
data. Here the focus will be on situations where the goal msdgimize the response while

building the best model of the physical system.

131
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8.1 Background

The foundation for this work is the ability to combine expeents from diferent sources.
This is an area of active research and the procedure usedshee@ayesian Hierarchical
Gaussian Process model similar to the one described in @i&MMal (2008). This pro-
cedure was started in Kennedy and O’Hagan (2000), when tduiet at combining two
deterministic computer models. The real world experimemée could not be included.
In Kennedy and O’Hagan (2001) an extension was made to iaghinysical models in
addition to the computer models. These activities are knoyvdifferent names including
computer model calibration and surrogate model buildirfte most recent additions have
been a model combination in a Bayesian framework (Qian €2@06; Reese et al., 2004).
The Qian and Wu (2008) approach is generally applicable anliide applied to two com-
puter models, a physical and computer model, or two physicalels. The investigation
here will focus on one physical model and one computer mdded.only diference to two

computer models is the inclusion of a noise term in the lowityuaodel.

With the diferent costs of the low-quality and high-quality processgbal is to min-
imize the number of high-quality runs while getting the masturacy in the combined
model. Two diferent procedures will be used to create the set of hightyualh points-
a standard all-variable procedure and an adaptive metladitiizes the results from the
previous runs. The process used to combine the two data detsevwcovered in detalil

before getting to the procedure specifics.
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8.2 Process

The output of this technique is a conversion from a lower esxucomputer model with
a bias and scale error to a higher accuracy physical mode.ehl result is a combined
model that is tuned to that particular physical model. Theegalization of this model
to other physical instances should be evaluated carefliig. assumption behind this ap-
proach is that the computer model captures the general gg@tearacteristics but may be
inaccurate for particular values or scale. Correcting thraguter model based on physical
points could be done by standard regression, however th#gmnais complicated by the
disparate size of the computer experiment compared witphisical model. The underly-
ing physics also may have complex interactions and few datdag One popular approach

is to view the model as a hierarchical Gaussian random fieldieino

Ye(X) = FT %8 + e(X) (8.1)

Wheree(:) is a Gaussian random process with zero mean and varianaétegtf and
correlation functiorR(-|6;). WhereF is the input matrix, either a column of ones for an
intercept model or a matrix ¢¥(x) = (1, X1, X2, . .., Xk), 1 = 1...nfor alinear model. The
inclusion of the linearfects assists in estimating the correlationfioents as the number

of runs grow. The reason behind this is clarified by lookinthatlikelihood estimate:

I = —%[nlogof +log(detR) + (y — f8) 'Ry - f8)/c?] (8.2)

As the number of runs grows the<{ f3) term dominates the likelihood and the estima-
tion of the codicients ofRis proportionally less accurate. Adding the linear terntuices

this error making the calculation significantly easier.ejset al. (2008) found that many
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physical systems follow this lineaftfect property between the inputs and outputs.

The last consideration here is the correlation function.b@aable to draw statistical
conclusions from the gathered data some assumptions nbedrtade about the underlying
process. Here it is assumed that the random process isnstatighus for any time and
spatial dfset the cumulative distribution function (CDF) remains hereged. Given the
particular underlying function sei from the population of possible functiofsthe output

Y can be expressed as a function:
Y(x,w) = Y(x e R we Q) (8.3)

Specifically, the assumption of second-order stationaryd@ntical CDF’s) is used to es-
timate the model. Second-order or strong stationary reguirat the first and second mo-
ments are time (and spatially) invariant. This resultsias a particular realization of an
outcome inQ, that givesE(Y(x)) = u for all x € R. This condition requires that, for some

functionC(:), the covariance matrix satisfies:
CoMY(x1), Y(X2)} = C(X1 — %) (8.4)

In the implementations here, the function is also isotrapid is only dependent gix; —Xo||.
Given the process stationary requirement is a popular etaicorrelation functions is the
Gaussian correlation function. Bochner (1955) shows thatcarrelation function can be

written in the form:

R(h) = fRd cosf' w)dF(w) (8.5)

whereF is a finite, positive, symmetric function. If the Gaussiastdbution (N(0, 26?)) is
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used forF then the following can be shown:

I 1 W2 R
R(h) = [w coshw)tq@\/zexp W2/ 6%4dw (8.6)
= exp(-(/6)°) (8.7)

This function is a specific implementation of a larger fanafyorrelation functions known

as the power exponential correlation functions:
R(h) = exp(—Ih/6I°) (8.8)

The choice ofp = 2 gives the Gaussian function, although= 1 has also been well-
studied. The main choice of a correlation function corresisdo the desirable smoothness.
Deciding between the flerent options should be made based on the underlying process
There are numerous definitions of continuity or smoothnesshe general view is that as

p — 2 and the scale parameter~ 1.0 the smoothness increases. Here, becpuse, the

only changes in smoothness will be due to changes in thelabar parameters. There

is one other correlation function that should be mentiomedcdmpleteness. The Matérn
correlation function was introduced by Matérn (1960). Theice of the t-distribution as

F leads to the Matérn family of correlation functions.

1 24
F(V)Z"‘l( 0

ZWIhI)

R(h) = -

)'Ky( (8.9)

WhereK, is the modified Bessel function of order As v — o the Matérn correlation
function becomes the Gaussian correlation function. Thigtiadal parametey gives this
correlation function tremendous flexibility in adjustifgetsmoothness. This parameter is

specifically called the smoothness because the functicmmisrziously diferentiable up to
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ordery — 1.

The choice of high smoothness is a conservative choice utihdditional information

about the system under investigation, and is popular inittature (Santner et al., 2003).

8.3 Hierarchical Two-Phase Gaussian Process Model

This implementation of a Gaussian process model begins avithw accuracy (and low
resource) modeY, from the previous section. The output of this model is theutrip the
second phase.

Yo = p()¥e(¥) + 6(x) + €(¥) (8.10)

This model takes in th&, model and makes a correction for scah &nd for bias §).
Both of these parameters are also Gaussian pro&Bg p = GP(oo, 0'5, 6,) ands =
GP(60, 02, 05). The hierarchical aspect of this model is in selecting tis&ithutions for the
model parameterg, o2, andd for each Gaussian Process. The choice of a prior distributio
is important in the final sampling procedure. As pointed gu3elman et al. (2003) the
improper choice of priors can lead to misleading results piors that are used here are
of a standard class. With a known mean and an unknown varideckkelihood for a

n-vector ofy observations is given asN(ylu, o?):

PYior?) o o expms > (i~ ) ®11)
i=1

I, n
= (09 /zexp(—ﬁv) (8.12)
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wherev is the known parameter:

V=) 813)
i=1

The unknown parameters follow a conjugate prior distrinutf the inverse gamma:

pe?) o« (@)D expBlo?) (8.14)
. %(02)*“1) expB/?) (8.15)

WhereTI'() is the Gamma function. The andp parameters are known as the hyper-
parameters, and this is what leads to the hierarchical dasan. These hyper-parameters
will be chosen before running the simulation, and are igedibsen with some knowledge
of the system. After the variance is determined the meampeteas are drawn from a
normal distribution. If the assumed mean is incorrect thenrior is no longer valid, and

a different model is required.

The final parameters that must be determined are the coorejgarameters. To deter-

mine the final distribution all of the individual probabiés are combined:

P, 0%, 6) = p(B, ) p(6) = p(Blo?)p(c*) p(6) (8.16)

Determining thep(0) is challenging as it is independent of the scale and longiarame-

ters. The first choice is to integrate directly given infotima ong ando?.

p(Y]Y) = f f f p(3, o2, 6|Y)dBdo2dg (8.17)

Drawing samples from a distribution of that complexity wadyofound feasible if the
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priors fors ando? were uninformed and improper. That direction led to prolsiesith
improper posterior distributions. As computational powereases sampling from this
complex distribution may be feasible, but at nearly doubéeresources there may be some
alternative options. Handcock and Stein (1993); Santnat. €2003) both looked at this
integration for systems of dimension two and found that g{tupredictor has about 90%

of the variance of this full Bayesian approach.

A plug-in estimate of is, in most cases, a Maximum Likelihood Estimate (MLE)
of 6 given the data. Zimmerman and Cressie (1992) showed forngikg surface (or
any Gaussian process) that the plug-in predictor underasts the true variance. This
situation is most problematic whers small. The amount of the underestimation is shown
by Prasad and Rao (1990) to be asymptotically negligibleyéareral linear models. The
plug-in procedure is used here and caution is due when netigng the variance estimates.
If variance estimates are critical, Zimmerman and Cred98Z) provide a correction that

reduces the bias of the estimator.

In the situation here the following likelihood estimate reyided:

p(HC’ Hp’ 95|YC’ Yp’B’ p’ 6) & p(907 Gp’ 05) : f

(o

2 2 2
§.0ho6? f,&Po,do P(B. po, do. ¢ Tps 06%) -
p(YC’ Yplﬁ’ Lo, 50’ 0-(2;’ 0-§’ O-(%’ 0C7 Gp’ 05)

d(8, po. 60)d(03, 073, 07%) (8.18)

Instead of expanding this into the full MLE form and then takithe integrals the
reader is referred to the Appendix of Qian and Wu (2008). Befetting to the details of
the MLE the prior distribution fop still needs to be determined. The previous priors were
determined to yield a proper posterior distribution, buttfeese variables the MLE makes

that difficult. With the Gaussian correlation function used here utilenown parametet
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follows a Gaussian distribution so a proper prior is an isgggamma distribution. With
the MLE the prior distribution may be informative and doma&he results. The MLE
results are always checked for a dominate prior and thenaeiaf the prior distribution
is increased as needed. Another approach is to use an unedaqgrior,p(6) = c, this is

discouraged as the resulting MLE may result in improperqrast estimates.

The lists of prior distributions include:

p(o2) ~ 1G(ac, yc) (8.19)

p(o2) ~ 1G(a;,7,) (8.20)

p(3) ~ 1G(as, 7s) (8.21)
P(BIo2) ~ N(Ue, vel 102 (8.22)
Ploolo?) ~ N(U,, v,02) (8.23)
P(Solos) ~ N(Us, vod) (8.24)

0. ~ 1G(ag, be) (8.25)

6, ~ 1G(a,, b,) (8.26)

0, ~ 1G(as, bs) (8.27)

Becausg includes linear terms itis of lengit+ 1, wherek is the number ok variables.
The power exponential correlation function requiketerms sod, 6,, andé,. are all of
lengthk. These are all of the hyper-parameters that need to be suktifi the model.

Using these hyper-parameters we can determine the comalitidstribution.
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Given the general modeY. = F - 3, andp(B|o’) ~ N(u, vo) solving for p(8]Y):

Py = PIYIB)P(D) 8.29)
expi(Y - FOTR Yy~ FB) - expG—(u-p7)  (829)

exp(% + (BT (FTRIF + 1/V)B + (u/v+ FTRy)pB)) (8.30)

¢

¢

This is a multivariate normal distribution, substituting:

o= (FTR-1F+1/v)(;i_ (8.31)
p = (u/v+ FTR‘lY)é (8.32)

The final distribution ig8 ~ N(Zp, X). This will be used for the distributions @f oo, and
0o-

p@Bl) ~ N((g! + FTRAFI ™ (u/v+ FTRYY),

[+ + FTR'F] o)) (8.33)

WhereR; is the power exponential correlation matrix usiighat is found by a maxi-

mum likelihood estimate later in this section.

To simplify the equations the convention of Qian and Wu (2008 be used. r =
os/o, andM = AR,A+ 7R; whereA is a diagonal matrix with?c(xp) on the diagonals and

R, andR; are the correlation matrices 6f andé;.
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Up/Vp"'?c(xp)M_l(Yp_éoll"lp)
Plool-) ( /v, + 90 M Ye(xp)

orho? )
1/vp+Ye(Xp) TM~1Yc(Xp)

(8.34)

Us/(vs™)+1np M_l(Yp—Po?c(xp))
p((SOl) ~ N( 1/(V67)+11n—pM711np s

2

s ) (8.35)

1/(r57)+ 1, M~11n,

The conditional distributions on the remaining terms camelan inverse gamma and a
normal distribution. Given an inverse gamnpég?) ~ 1G(a, y), and a normap(ylu, o) ~

N(ylu, o?), with the continuing assumption thais known, then:

POIr) o (o) " expls (Y )" (Y 1)

p(e?) o« (o) Vexply/o?) (8.36)

Combining these:

PYIoDP(e?) o (D) D explt - MZ)L(ZY =

o IG(@+n/2,y+ (Y =)' (Y-p/2) (8.37)

+y/0?)
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Applying this to the remaining variables the conditionatdbutions are:

ne k+1
pE) ~ 1G(5 + —5 +a

(Be = U) (B~ Ue) | (Yo = FA)TRMYc—FB)
2v 2 v

) (8.38)

n 1
poll) ~ IG(?p+§+ap+a5,

(pO - up)z
2v,
(Yo - pOQc(Xp) - 501np)T M_l(Yp - po?C(Xp) — 60ln,)/2) (8.39)

+Ypt+Yst

The last conditional distribution is for, the simplification £ = os/0,) leads to an

irregular form:

1
p(rl:) o g

ﬁ + (50 - U§)2 )) 1
o3 2vs0°2 \det(M)
expE(Yp — poYe(Xe) — Soln,) " M7H(Yp — poYe(Xc) — Soln,)/207)  (8.40)

1
exp(—;

After expanding all of the integrals and substituting thaifications, the final likeli-
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hood equations is:
L P(bc, 6, 65) f 77@+321/  [det(A)
1 1 1
vdetR.) vdetM) +DE
4C - B'A1B
(),C + 3 )—(a|+nc/2)
4% EG-F?2
(o + sl + Ty e ©41)
8E
where:
A = vl +FR'F, (8.42)
B —2v 2By - 2F R1Y, (8.43)
1
C 7/3’550 + YcR(:ch (8.44)
|
D vl + Yo(Xp) T MHYe(Xp) (8.45)
T (7" + Ye(Xp) "MTY06) (L5 MM ,,) —
(Ye(xp)"M711, )2 (8.46)
U =207, + YoM Ye(Xp)) (10, MY,) —
(UY, "+ Ye(Xp) "M YR ) (Ye(Xp)M 1, (8.47)
V (v, + Yo(Xp) T M=1Ye (X)) (U2v,  +
YIMTY) = Uyt + Yo(Xp) T MLY)? (8.48)
E (vsT)1+TD™? (8.49)
F —2us(vsT) 1+ UD™! (8.50)
G W(vsr) t+ VD! (8.51)
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This problem can be separated fgrand @, 6;).

N 1 1 4C - BTA'B
fo = maxp(6o) (ro+ =2

—(act+nc/2)
VdetR,) Vdet@) g (8:52)

This equation can be solved using a standard nonlinear matiion algorithm. Due to the
sensitivity of the prior distribution and the discontinggaroperties near zero a log trans-
form is normally performed oh. The robust Nelder and Mead (1965) sequential simplex
was found to provide good convergence although it was m@®@uree intense compared
with the quasi-Newton Broyden (1970); Fletcher (1970);d&aib (1970); Shanno (1970)
(BFGS) method.

The the second part still has the integration:

60 = max f p(6,) P(6s)

1 1 4% EG- F?
~(as+3/2) (v +ys )T A ——— Y (@prastme/D gy (g 53
\/W(M) \/ﬁ (7p Ys/ SE ) X )

There are a number of ways to solve this integration, the otetlsed here and by Qian
and Wu (2008) is the Sample Average Approximation (SAA) radtbf Ruszczynski and
Shapiro (2003). The procedure is used to determine the tegbgalue of a function by
drawing values from a specific distribution. The goal is tgibeby finding a suitable

distribution forr—(@s+3/2):

2(a+1/2)

—(a+1/2+1) s - s
—F(a) T exp2/1) = exp(2/1) (8.54)

= p(r) =exp(2/1) (8.55)

T—(a’o‘ +3/2) oc



8.4. Simulation Procedure 145

Givent ~ IG(a + 1/2, 2) then using the SAA method:

S
f p(r) f(7) ~ éz f(7) (8.56)
T s=1

And the functionf (r) for this summation is:

1 y; 4+EG-F?

1 —(a,+as+
V@ voE Tt T e ) e (8.57)

f(7) = p(6,) p(6s) exp(2/7)

and putting everything together:

S
N N _ 1 <S>
6.6, = max D) (8.58)

0,05

where <% is a vector ofs independent draws from the inverse gamma distribution -
IG(as+1/2, 2). This method has been shown to be is asymptotically ateur&hapiro and
Nemirovski (2005). To solve this equation the Nelder and #/@£65) sequential simplex
was used, since the BFGS quasi-Newton method failed fretlyuehen the determinant

was close to zero.

8.4 Simulation Procedure

The procedure under evaluation is the use of the statigticadedure outlined above to
combine two data sets. The first low quality data set is drawmfa space-filling Latin
hypercube. The second data set is either a adaptive-Ornierfed@a-Time (aOFAT) or a
traditional star pattern run from a high-quality experimedoth of these procedures min-
imizes the number of runs to adjust every variable. Eachehigh-quality points is also

run in the low-quality model, this improves the convergebgeequiring fewer augmented
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points. The procedure is as follows:

1. Create Atrtificial Response Surface (Krigifed Surface)

2. Generate Gibbs Draws from Conditional Distributions

3. Generate Metropolis Draws for the irregular distribogo

4. Generate Metropolis Draws from predicted distributidaté augmentation)

5. Check Convergence and repeat if necessary

The details of the krigified Surface and the convergencekshare provided in a sub-
sequent section. In this section the details of the Gibbggag) the Metropolis-within-
Gibbs and the data augmentation approach will be discussed.

The Gibbs algorithm (Geman and Geman, 1984; Casella and)&el$92) is a method
to implement Markov Chain Monte Carlo (MCMC) sampling. MCM@mpling requires
sequential draws from an approximate distribution thabrsected as the chain progresses.
Each sampling step is only dependent on the previous steinghd a Markov Chain.
Each draw is designed to get the distribution closer to tiggetalistribution. The Gibbs al-
gorithm divides the update into a sampling vector, in thsega= (8, po, 6o, 0c, 0, T, \?p).
This vector is updated in random order using the currentegbf the vector until the
update is made. As the length of this chain grows it appraathe desired stationary
distribution. Two variables; and\?p cannot be sampled from a conditional posterior distri-
bution. These two variables will be sampled through a Metdlisglraw. This algorithm is
an acceptangeejection method based on a random walk. A random draw is rasmend
the current point from a select¢dmping distribution The probability of both the new
point and the current point are calculated and if the ratigresater than a uniform ran-

dom draw on [01] then the new point is accepted. The target acceptanceésrateund



8.4. Simulation Procedure 147

0.44 in one dimension, for, and 023 in multiple dimensions, fonp. The reasoning
behind these acceptance rates and further informationtdbeusibbs, Metropolis, and

Metropolis-within-Gibbs can be found in Gelman et al. (2D03

The points for thé(p predictions are calculated through data augmentationnigtbod
used here was presented by Tanner and Wong (1987) for detegtine posterior distribu-
tion when the parameter distributions are still being deteed. Although they claim that
the parameters posterior modes could be used, the highiglatad structure in this situa-
tion required continued sampling of the parameters front deaverged distribution. This
approach has advantages over the first method in Qian and QU8)ih that the predicted
values are available at the end of the simulation withoutfartirer calculation. A question
arises for this method- should it be included in the Gibbglopin a subsequent calcula-
tion? At any point in a Gibbs update there are some paramatees that are correct and
some that are incorrect. Because the updated values argawtruany other parameter of
the Gibbs process this update can be made at any time, inglafterwards or before. If
these values are used in any other step then this would hdeeremdomized to guarantee

a reversible chain and convergence towards the statiomstrjbdtion

There is a probability that the Gibbs and metropolis altpong may not reach the sta-
tionary distribution. This is problematic if there are twisghrate regions of the distribution
with similar probabilities. To detect these issues and rodm®malies Gelman and Rubin
(1992) suggests that running multiple sequences from andispersed starting condition

and measuring convergence is critical.
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8.5 Convergence

Convergence of the MCMC algorithm is challenging to assBssoks and Gelman (1998a)
describe many methods and problems in measuring convexgélifee historic choice is
to monitor the the trend of a single simulation. Althoughitadly congruent, Gelman
et al. (2003) shows that it is extremelyfitGult to distinguish convergence if the trend
is extremely slow. Another method that is less ambiguous isoimpare many parallel
MCMC simulations. Gelman et al. (2003) propose taking aratithe total variance to the
within simulation variance. Givem parallel simulations each with lengtithe simulation
draws areyij (i = 1,...,n; j = 1,...,m). The betweenR) and within (V) variances can

be calculated.

= " N A i
B_m—lé(n iy ~¥) (8.59)
- 1
V= D D v (8.60)
i
1 N gy
W_mn—ljZ::J(l//” i) (8.61)
— 1
vi=o Zkﬁij (8.62)

The posterior variance estimate is a weighted avera§® ahdB, and the ratio of that to

the within variance gives the monitoring factor.

R= 1| n— (8.63)

This is referred to as the Gelman-Rubin statistic (GelmahRurbin, 1992) or the Potential

Scale Reduction Factor (PSRF). The convergence of thistitab 1.0 avoids the pitfalls of
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Simulation Convergence
20 Augmented Y Values
Two Chain MCMC

Gelman-Rubin Statistic

e**Q
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Figure 8-1: MCMC Convergence

visual techniques. The drawback is the convergence is arheilimit (n — ). A sample
of this convergence can be seen in Figure 8-1. NoteRhgnhot monotonically decreasing
with additional simulations. This is not unexpected but esichble, and the particular
simulation used here is prone to that situation. First, tlegrbpolis-within algorithm has
a variance adjustment parameter. As that parameter istadjube acceptance rate of the
Metropolis algorithm changes and the variance changesonfledalf of our parameters
have an inverse gamma distribution. The MCMC chains may isitthe tails enough, so

a small visit to the tail increases the between variancetaobally.

To improve the convergence a number of options exist. Fiestbnvergence properties
could be measured from the model parameters and not the atephraata. These parame-
ters converge faster and then posterior sampling for thenanted data could be performed
at the mode. There are a couple of problems with this firshgugie mode would eliminate
the complex scale and bias transitions, decreasing theamycaf the model. Second, the
posterior distribution of the augmented data given thegrastmode of an earlier param-
eter simulation assumes that the distribution is degemevdh mass located at its mode.

This assumption is very significant by reducing the corietainfluence and variance esti-
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Continued Convergence
20 Augmented Y Values
Two Chain MCMC
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Figure 8-2: MCMC Convergence Continued

mates.

Given the general Gaussian process model:

Y = fo- B+ iRy - FB) (8.64)

B=(FR¥F)FRYy (8.65)

In this situation the/'s are the predicted points from another model that is degeinoh
the distributions otr. andg. o is a random variable with an Inverse Gamma distribution,
andp has a normal distribution. Reducing these to point estimdtes not reflect the
long tail of o or 8 making both inaccurate. Gibbs (1997) goes into greateilaetahis

influence.

Another way to demonstrate this problem. When the model guré 8-1 is run for
an additional 120,000 simulations with the Gelman statisticulated, the results are not
consistent. The result of this is shown in Figure 8-2, andtiese additional 120,000 runs

the Metropolis-within algorithms had fixed variance partene

For this simulation, the lack of convergence can be addde$seugh a number of



8.5. Convergence 151

methods. First the initial sample needs to be disperseds iEhinore challenging than
initially expected. If the samples are too dispersed therfitlst Gibbs sample drives all
values toward the distribution mean and now everything éeudispersed. Another way of
viewing this is that the autocorrelation for thefdrent Markov chainsféects the location

of the point estimates while the correlation between chairy particular location better

reflects the final distribution.

Because of this autocorrelated walk, each chain may visivgorobability location for
a disproportionate amount of time. This increases the batwariation and not the within
variation, and can explain the divergence. The utility a$ ttatistic is highly dependent
on the dispersion of the initial chains. Originally the plesh was an inability to diagnose
convergence, that has now been substituted for a problesttafgup disperse enough ini-
tial conditions. The use of the PSRF has been criticized mmarmal conditions. Brooks
and Gelman (1998b) presents a number of alternative mewitis the main suggestion
a range metric, but other order metrics were suggested. 3@y that an average range
metric can have too large a variance within chain, yieldingaer-optimistic convergence
statistic. The proposed method in this work extends thia idewo directions. First in-
stead of using a range or standard deviation estimate, anoloust statistic of the Median
Absolute Deviations (MAD) o6, or Q, (Rousseeuw and Croux, 1993) is used and second
the predicted values will substitute for additional chailsbig disadvantage of using a
variance or range estimate is when the distributions areymtnetric; the estimate is bias
and can be influenced by a few low probability points. MAD isad metric that has a
50% breakdown point (i.e. 50% of the data could be incorrecrbitrarily large before
the MAD metric was influenced), but it is symmetric and has scaitinuous influence
function (the amount of change given a change in a single plaitet). S,, and Q,, both

are more appropriate with non-symmetric distributions@lighQ,, has a smooth influence
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Simulation Convergence
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Figure 8-3: MCMC Convergende

function.

.. h
Qn =d{lx — xjl;i < jlpk = ( ) ~ (2)/4h =[n/2] +1 (8.66)

2

The Q, statistic is thek" order statistic of th¢}) inter-point distances, wheieis ap-
proximately the number of half of the data points. This carctabined as Brooks and

Gelman (1998b) did with other values into an order P$Rfalue.

. = Qn(i € mn)

T Qe em

(8.67)

A comparison of the two metrics is shown in Figures 8-3 and Bigte that both show
an artificial convergence at the same number of runs. The regwais an improvement as
it does not have a centered parameter and is solely a disper&asure. It is better suited
to non-symmetric distributions, like the ones here. Unfoately, the computation time of
the two metrics dfers. The Rousseeuw and Croux (1993) algorithn@fptakesO(nlogn)

(an algorithmic improvement over expect®¢h?)) versus the variance calculation@n).

An extension was suggested in Brooks and Gelman (1998b)diaceethe multiple
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Simulation Convergence
20 Augmented Y Values
Five Chain MCMC
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Figure 8-4: MCMC Convergende,

PSRF metrics to a single number. This was not used here l@easiope characteristic
could be used to determine convergence. The suggestioBithaks and Gelman (1998b)
gave was to be sure that the variances (both within and bejwesl settled down. They
complete this through a graph of the variances. In the nariite case shown here, if con-
vergence has not been reached if one PSRF is increasingui@. Velis statement suggests
a relationship between the number of estimated values @&wlimber of simulated chains

in identifying convergence.

The benefit of the methodology used here is the compariseveketthe variance ratios
of within chains to between chains. This is a useful statistijudging convergence as
long as the starting points are over-dispersed. The nunfbegaired chains is an open
problem. Gelman (1995) suggests that they should fegnt ¢ 10). The number used
here is three but, the convergence of multiple predictedesincreases the actual number
of unique starting points. The convergence of each of thesetgproceeds uniquely;
and although not exactly equivalent to separate chains pheyide a useful additional
criteria. The biggest dlierence is that each predicted value uses the same valudefor t

other parameters. The overall location in that parametess the same but each point is
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in a unique part of that space.

The criteria for convergence is twofold. First each preztigparameter has to have a
Ro < 1.2; and second, the direction for each predicted value mustdse. Thus there
are 60 unique starting locations that must all be near cgevee and continuing on a
convergent path. An indication of convergence for this metffers sificiency in all test
cases. This was tested on 1@feient krigified surfaces by doubling the final number of
runs to check for any lack of convergence and non was foundhéiuinvestigation may
show that this metric is too conservative and requires exeesuns, that issue will not be

dealt with here.

8.6 Kirigifier (Trosset, 1999)

Generating test cases to compare thedent methodologies is flicult. The previous

Hierarchical Probability Model (HPM) methodology that wased in other chapters only
includes linear and interaction terms. This methodologgiasigned to work outside of
the linear framework and is better suited to space fillinggies Data from real-world

deterministic processes are noisy. This noise originaiea fnany sources including the
data-collection process, lurking variables, numericahdxff, and process instability. This
correlated deterministic signal could be approximated ksgoghastic correlated signal.
The process selected to generate these much less inteokastio signals is the kringing
procedure. This method was first developed by geostatisgdior interpolating a number
of data points with a specific stochastic process (Wackein&§02). The parameters
for the stochastic process are first estimated and then osidhe observed data. This
process is extremely flexible, which is convenient to fit aewdriety of data but can have

a frustrating number of parameters. To simplify the pro¢ese the underlying function is
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a general second-order linear function. This was chosenoige a maximum location,
or a ridge, as suggested as a frequent function seen in mgm@al design (Myers and
Montgomery, 2002). The noise was created using a statioBanyssian process. The
correlation function was a power-type function wkh= 1; this yields the absolute value
of the diferences. This was selected over the more traditibzal because the surfaces
were noisier and Trosset (1999) suggests more realistic.

The procedure comes from Trosset (1999):
1. Create underlying quadratic trend
2. Create stationary Gaussian Process

3. Use Latin Hypercube to generate random poixts,. ., X,

SN

. Generatgy, ..., Y, from the quadratic function

(62

. Interpolateys, . .., Yy, from the Gaussian Process to generate the noise
6. Sum the noise and trend terms to get the final. ., y, values

This process is used twice, once to generate the low accaratya second time to
create the high accuracy data. The noise is zero for the lowracy data versus a third of

the signal for the high accuracy experiment.

8.7 Results

Both methods were run 250 times witHfdrent random krigified surfaces. Twenty random
low accuracy points were generated fQrusing a latin-hypercube sampling method in

seven dimensions. The eight high accuracy pojptere generated with either method
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and then also fit with the low accuracy points . This simplebpgm in seven dimensions
took approximately 60 minutes on an Amazon-EC2 High-CPU iM@adnstance machine

from Amazon Web Services (2008). Further parallelizat®passible as the chains are
currently run in series, but the computing resources woalaho be increased.

After the chains converged for all of thyg values the mode was used as the predicted
value. The final results were normalized and the absolute eslculated. Each surface
was randomly generated and so some had greater variance gaedter range than others.
Additionally, the star runs were started at a random poitiictv may have been close to
the maximum point already.

To compare the results between the two starting conditioregeession line was fit
to the data. A robust regression procedure was employedibea# the large variance
between the dierent krigified surfaces. The advantage of a robust fit waseaatace for
outliers. The robust fit procedure was an iteratively reghitad least squares method using
a bi-square weighing function.

The results are shown in Figure 8-5. The general outcome éxpected, there is a
more negative slope for the aOFAT method compared with thie the star initialization.
On average the aOFAT procedure moved to conditions of grealige, and thus made more
accurate predictions around the maximum. If the aOFAT extiaatt a ridge or peak then the
runs were identical to a star procedure at that same locatidhe diference between the
lines should not be too extreme.

If only the maximum for each run is compared, and not all ofrtines, then this ect
is highlighted even more in Figure 8-6. The star procedugabén a random location and
so had a probability of starting at the maximum value andlti@spin a lower error than
the aOFAT.

This procedure could be used in situations where two comgetbjectives of system
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maximization and model parametrization are desired. THeAdO@nethod would build the

model with a bias towards finding optimal points. Runs beytheinitial aOFAT runs

presented here could be determined using a number of preeduch as Williams et al.
(2000), Santner et al. (2003), or Currin et al. (1991). Thprapriate total number of
runs has been identified by both of these authors as an araarehtresearch. There
are few arguments that the minimum number of runs shoulddsetlan the total number
of variables and this experiment is an appropriate methadit@alize an experiment to

prepare for further runs.

The procedure did not use a pairwise comparison as a timagsatd implement the
procedure on a number offtBrent machines simultaneously, and thus required more runs
Future studies could compare some additional methodadog@ne procedure could be
to use a highly fractionated designed experiment. This wasaddressed in this case
because previous chapters of this thesis and Frey et al3)206ked at that comparison.
Future challenges exist to define a subsequent experinmarddhtinues to build the model
after then + 1 runs are complete. One direction that Currin et al. (19t3¥yoed is for
each additional run to be selected to maximize the expectedpmy reduction. A simple

modification to get this result would be to change the entgigulation from:

H(X) = E(-log p(x)) — logdx (8.68)

to:

H(X) = E(-log(y(x) = p(x))) — logdx (8.69)

which would be the same as maximizing the selectiofy efc||. Currin et al. (1991)

states this is the same as minimizing the weighted posteai@aince of the unknowns.
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8.8 Conclusion

Combining the experimental results from twdtfdrent systems is a new and critical prob-
lem. In this work a method was presented to use aOFAT expatsrfer physical ex-
periments combined with latin hypercube computer expertmeA new metric of conver-
gence was presented, as well as a technique for using vadiepons instead of additional
chains. It was shown that the aOFAT methodology creates ahtlodt is biased towards
accuracy at the maximum values. This methodiisative in creating a good model around
the system values of interest. The implementation potierainges from physical and ana-
lytical models to diferent computer models or even human expert opinions. Thedtay
technique presented in this chapter is one method that lmaempuseful in a number of
previous problems. There arefidirent approaches to combine two experiments but, all
methods require some initial high-cost experimental goivttere the aOFAT methodology

provides good experimental value while focusing on the maxn.
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Chapter 9

Conclusions

This work focused on combining adaptive experiments withigleed statistical experi-
ments. Each of the techniques involved using adaptivefexwter-at-a-Time (aOFAT)
experiments, as well as other standard statistical metbgés. Run reuse from a prior
adaptive experimentation was the initial area addressed. atlaptive experiment cannot
be preplanned and so the potential run reuse in the subgespmeriment is stochastic. A
number follow-up experimental options were investigatédast, the use of a traditional
fractional factorial design in the follow-up experimentavk the fraction was pre-selected
or based on the greatest reuse. Depending on the numberiablearand size of frac-
tion, the number of runs reused asymptotes to approximatapty percent of the total
aOFAT runs. This run reuse was demonstrated on a numberwadlaotperiments as well
as surrogate experiments. The second area of investigaiemon-balanced D-optimal
designs to increase run reuse. As suggested in Wu and Har2@d@)( a fully orthog-
onal non-balanced D-optimal design is a good alternative fi@ctional factorial design.
This change dramatically improved run reuse to fifty percant fits in the framework of

planning the design after an initial aOFAT is complete.
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In addition to investigating the number of reused runs, tidependence of the resultant
maximum estimates was also demonstrated. Running an aglapperiment before a
statistical experiment creates an opportunity for runeeusile providing an independent

maxima estimate and some response information.

The adaptive experimental approach could also be used onahefacturing floor. The
method of evolutionary operation (EVOP) was revisited vattocus on utilizing adaptive
experimentation. The alignment of this continuous improgat technique with the se-
guential maximization nature of an aOFAT provides a usefuailsination. Box and Draper
(1969) concluded that the use of this methodology was naTes conclusion is chal-
lenged by investigating actual system responses and sp@mitace for sequential adap-
tive experiments. Instead of using small fractional faeloexperiments, repeated single
steps in an adaptive procedure was shown to be more robadiaband continued variable
selection. Because of the stochastic nature of the reppateddure a modified Gibbs sam-
pler was introduced to minimize the additional runs whilewerging to a better variable
setting. An dfshoot of this procedure is the use of an adaptive experimammputational

unconstrained function maximization.

The modified sequential simplex procedure was originallyetigped for evolutionary
operation. Although, this ranked-based geometric proeedas used frequently in the
1970’s and 1980's, it was replaced by more complex derigabased methods. More re-
cently it has returned to popularity with the increased useomputer simulations. As a
robust method it is able to handle discontinuities and natséne cost of more function
evaluations. There are implementations of the simplex istrmamerical programs for
unconstrained optimization. The typical initial setup esbd on changing one variable
at a time. This was improved by adding an adaptive elemenfaniwrming an aOFAT

initially. In this situation the aOFAT procedure was chamhge align the geometric cen-
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ter to that of the non-adaptive method. Through the adaptiveedure and the step-size
improvement, the overall convergence is increased andutmar of function evaluations

was reduced. The adaptive procedure is aiming the simpheiktiaus reducing the distance
to the improved operating conditions. This improvement dasonstrated on a test suite

for numerical optimization.

Outside of the optimization another issue faced in comprtat methods is variable
selection. Using the Mahalanobis-Taguchi Strategy (M@8)a classification is based on
a statistical distance. One hurdle to using this system ielacting the best variables
for classification. Traditionally orthogonal arrays areedigo select the best variables.
This method can be improved by using an aOFAT experimentdaakile selection. This
procedure was specifically applied to an image classifioaystem where the variables of
interest are the cdiécients of a wavelet transform. In this case the addition aades adds
to the computational load of the classification system. iitnigortant to add the minimum

number of variables while maximizing their usefulness.

To further the benefit of running an aOFAT experiment alonth\ai statistical exper-
iment, methods to combine both data are investigated. Guntbiwo diferent types of
data was approached in a Bayesian framework. The use of @lated Gaussian random
variable to make a posterior prediction has been used ssfodlgdy Joseph (2006). Part
of this methodology is to use a correlation matrix for theunyariables. Instead of using
a larger experiment the information was divided betweenaly @OFAT experiment to
create the correlation matrix followed by a highly aliasddcRett-Burman design. This
goal is to combine the relative strengths of both of theseguares. The aOFAT can be
used to create a variable ranking while the aliased desigblesto dficiently define the
model. A procedure to define the correlation matrix was eck#hat benefits from pub-

lished data regularities and variable distributions. Thisthod performs equivalently to
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using an uninformed correlation matrix and a larger expental design. The procedure

was demonstrated on a number of published examples as wall@gate functions.

The last aspect of adaptive experiments was to combine iexgets of diterent accu-
racy. Combining computational and physical experimentmesexample of thesefierent
accuracies. The use of an adaptive experiment uses a minimonboer of runs while likely
having points near the maximum. A new method of calculatomgergence was presented
as well as a procedure to maximize each simulated Markownchiie result was a pro-
cedure that provides a good model using both data typesdhabre accurate near the

maximum values.

9.1 Future Work

Demonstrating the potential of applied adaptive experismehould open up greater op-
portunities for their application in the overall experinterprocess. This work specifically
focused on aOFAT experiments but, there are other adapttbadologies which could

be investigated. One area of investigation is to find an agaptocedure that can also be
used outside of solely function maximization. Modifyingl®b (1990) sequences to be

adaptive from the previous information may be one possgjbili

The use of the Bayesian framework to combine multiple motde&s current area of
investigation. The application is slow and incompatiblé@arger data sets, finding faster
methods for data combination would leverage greater oppiies for the method in indus-
trial practice. Creating an application as a web-basedeseivone possibility to overcome

the computational limitations.
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9.2 Summary

The goal of this work was to create a foundation for the irdégn of adaptive experimen-
tation and statistical experimentation in practice. Semgglchniques were presented for
running the setup experiment and getting some benefit frasethuns. This continues to
the factory floor where evolutionary operation was improaad simplified with adaptive
experiments. A numerical maximization procedure was im@ddhrough a better starting
approach, and a classification procedure was shown to béwoefitan adaptive parameter
selection technique. The final area focused on using datad&radaptive experiment and
a traditional experiment. First, the covariance calcalatvas improved to yield more ac-
curate and smaller models with the same number of runs. Seoworporating data from
two different sources was shown to benefit from one adaptive exparimbe overriding
goal for all of these procedures is to extend the frameworlattaptive techniques to a

greater audience and provide tools necessary for applicati
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Appendix A

Adaptive Human Experimentation

The ability to understand the variance of an engineeringesyss historically done in a
design, build and test cycle (Pahl and Beitz, 1995). Newehnrtelogy has pushed the
envelope with computer simulation and virtual experimBaig but state-of-the-art vari-
ance prediction is limited due to necessary simplifying patational and mathematical
assumptions and by model inadequacy (Petroski, 1994) eldsssimptions limit the model
fidelity and can lead to unforseen, and early, product fadurThere have been improve-
ments in greater statistical experimentation (the sixasigprocess (Creveling et al., 2003)
and designed experimentation (Wu and Hamada, 2000)), amé complex mathemati-
cal modeling. Even with these methods, predicting failady in the design process is
challenging. First, mathematical or computer models areriplete, leading to underlying
assumptions that cannot test the true variance of the sysSewond, early in the process
there are no physical prototypes to validate the computeletsar conduct robustness ex-
periments. Moveover, the adequacy of any initial protosymereflecting the final design
as made is a large unknown. The current best method is to depeexpert estimates and

historic data to predict the future potential of alternatilesigns. This extrapolation has its

169
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limitations as Petroski (1994) discusses.

Humans are superior to computers in creative solutions,imgakose associations,
thinking dynamically, and bringing in unique perspectiv€smputers are better at organi-
zation, statistical computation, data storage and retkiend mechanistic processing. This
chapter discusses the possibility of combining the benefitsoth of these systems and

apply them to early process mechanical design and simulptiablems.

A.1l Layout

It may be possible to improve the value, and quality, of prage models in accurate system
estimation by using distributed human knowledge combingh statistical data analysis
techniques. Combining the tacit knowledge of a significamhber of diferent viewpoints
is known to yield better estimates in other disciplines Buecki, 2004) this has not been
applied to systematically exploring system charactessthdditionally, correct use of de-
signed experiments within this distributed knowledge @adlto more powerful statistical
estimates. A similar approach, although to business pmadylbas been explored in a recent
MIT thesis by Tang (2006).

There are three levels of models for this combined systest thie model of the actual
mechanical system under investigation, second the comirelel that has been created
from the lower fidelity models (using one of the previous noeffhimentioned in this thesis)
and third the model of the interactions of the individualsl éimeir interpretation, biases,
and previous knowledge. The most challenging for futureaesh is this third model,
it is needed to explore the important aspects of combiningdmuknowledge. Ideally,
the fidelity of this model should be ficient to understand group cognitive ability when

solving these problems. A number offdirent model types could be explored to find one
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that best represents this situation. To validate this masgderiments could be created
that are based on academic environments and industriadgeettThe long term research
benefit of this combined human performance model will be tdeustand the potential

of this technique as a tool to improve robustness, discasepplication limitations, and

create guidelines for use.

The experiments need to be built in a manner consistent witleot research in human
psychology, expert and leadership studies, and designestiexentation. It is important to
be able to distinguish able users, identify problems andsgjung, and provide reasonable
judgment bases.

Research should focus onfldirent aggregation techniques to deliver a capable model
based on distributed knowledge. There are many optionsrticee opinions and create
accurate models of the system variation with respect todhiance in opinions. Questions
of interest include how to weigh theftirent opinions, how to create an accurate model of
variance, and how to disassociate the system from the adrseaxiance and to what degree
does the model represent the system versus human varianeagedult of this model can
then be used as a surrogate system model, be used to plamexpst and to validate
existing results.

It will be necessary to create a tool that interacts with sigeerforms the calculations
and returns these combined opinion models. The output fndsridol will be used to train

the combined human knowledge model.

A.2 Background

Combining the distributed power of human computation hanlwkemonstrated in numer-

ous applications (Barr and Cabrera, 2006; Westphal etG05;25entry et al., 2005). Some
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applications include games, like the ESP Game (Ahn and BhAbB0D05), others are fo-
cused on scientific knowledge, like the Stardust@Home (pHadet al., 2005) while others

are interested in making money, like Amazon’s MechanicakTu

There have been initial investigations into the statistical game theoretic aspects of
these interactions (Gentry et al., 2005). This previouskwocused on the comparison
to distributed computing and secuyityyptology issues. There has been little progress in
exploring the statistical nature of these systems (othem ttheater detection) and better

incorporation of human psychological and physiologicalesss.

Group interactions have been modeled as cooperative oetoRgatimum, non-cooperative
or Nash formulations, or supervigsubordinate or Stackelberg formulations. In early de-
sign modeling influences can include educational backgtpcorporate reporting depart-
ment, interest area, or other motivation such as recentecsations, fatigue, or even at-
titude. It is not feasible to understand all of the influencksach individual but, ideally
the aggregation techniques filter these out and reach aemherodel that predicts the
human model performance. The results from these models maptpared to the per-
formance of quality teams. Teams debate the merits fééréint models and frame the
problem correctly and deliver quality predictions. Thelgeon with this ideal behavior is
that it is dificult to see in much of the corporate bureaucracy (Schon,)19Bse more
anonymous method proposed here is more congruent with i@epperformance metrics
but cannot be used on the breadth of problems that a diveedifunctioning team could.
The objective is targeted to frameworks where DOE’s wouldpgplicable. (Shih et al.,
2006) argues that decision making through confrontaticarad not individual cognition,
yields high value through discussion and competition. Bttq and Wood, 2001) argue
that the drawbacks to this confrontation not encounterdvicually (or in the low pres-

sure on-line environment) include theftiulties with team decisions including individual
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dominance, misdirected focus, or a rushed time-frame. Tétboals proposed here ideally
address these issues Wyaving an alternative modeling technique that is predicatethe
idea that the general population is correct.

There has been research utilizing humans in a supervisl@yroomputer experiments
and less as the subject of the experimentation. These ectimés utilize important super-
visor aspects of humans along with computer and analytaggnts’ the majority of this
literature is in the Al community (Khosla et al., 2004). THiffers from the research here
as the role of the human is as a computational unit, not aseraspr.

There is a large literature around emergent intelligenanéBeau et al., 1999), and
while it may be possible that the group solves problems imsiptessfor each individual, thus
exhibiting collective intelligence, the group interactsoin this case are not as important as
seen in swarm intelligence. This could be investigated bkilg at the importance of the
aggregation process as well as when individuals are pregerith alternative opinions. It
will be critical to determine the decision making structweigther by simple voting (as seen
in most collective intelligence systems) or through a maraglex aggregation mechanism

(Torra and Narukawa, 2007).

A.3 Potential Research

The research could extend the modern computational angissalesign paradigm to in-
clude the human as an integrated part of the system. A modleisofiew system could be
created and validated through human experimentation. $oepossible models include
agent based modeling and decision field theory (Busemeyef@annsend, 1993).

The experiments are an integral part of this research. figag®ns should focus on

the methodology to create valid distributed experimenés #re able to utilize the best
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of human expertise, psychology, and designed experimental hese experiments will
require the creation of a tool that can generate validataa ds well as benefit the company
and user to entice participation. To ensure that this metlogy is valid across potential
design information users both academic and industrial @k@swill be sought.

Building on the foundations of statistical experimentadidas (Wu and Hamada, 2000)
and expertise tests (Klein, 1998) an experimental systambeacreated with checks for
consistency and accuracy. Insight from the experimentatgelf may also be possible,
there may be additional biases explored and some unforséaitspliscovered.

The experiments focus on designer, or human, intuitions Tmection faces a num-
ber of obstacles including understanding the problem, labs@r comparative analysis,
reaching conclusions for multi-attributes, and tiffteets of teamwork.

During these experiments attempts will be made to invegtid@signer biases, inconsis-
tency, and feedback delay. Some of the$eats are well documented but others, especially

when dealing with distributed teams, have not been studied.

A.4 Work

The research could be initiated though a number of humarriexgets. The best options
are computer, or web, based studies to solicit the input fdesigners in a number of
problems. Three proposed studies are presented hereibus, jthst a suggested layout and
there are many other options.

The first study could investigate variable choices for expental design, this area is
called intuition and variable decision. Choosing varigbier a designed experiment is
difficult and the result could determine thi@eetiveness of the experimental run. Ideally

variables are important, independent and inexpensiver €tmces lead to experiments
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that are challenging to run, excessively large, and neampossible to interpret. This study
will focus on understanding the variables of interest byiraglka number of individuals.
The variables discovered could be classified into one of §poups: those that are every-
one agrees to being important, those that are agreed to beingportant, those that are
disputed but are unimportant, and finally those that areutiéspand important. Creating
an experiment that is able benefit from this knowledge willuee time and féort while
producing rich data and useful results. These data will lkegad through the web and
combined using some expert based hierarchy. The expeoiigbd users will be deter-
mined through a combination of known answers as well as sdustec analysis. The
individuals fall into specific groups and are classed togethhis classification along with
some known questions will be used to grade the classes agth ¢ individual inputs.

The second study could investigaté&dring expert rankings. This would be an attempt
to self-regulate and learn about the participant expertigeis study will maximize the
natural cognitive ability through pairwise comparisond ample evaluation.

The third and final implementation of these experiments béllextended to greater
design evaluation. These designs will not just be evalubdésed on performance but also
in robustness and originality. Problems that can be predantthis manner are fiicult to
test, complex, or from a variety of domains, as in mechatrprmblems.

This system will use standard experimentation formulatiom Montgomery (1996);
Wu and Hamada (2000) to pose the problem to the human comgudethen return the
result. By using the humans the result should be creativginat, and intelligent and the
computer should help maintain that the response is unbiageck, and universal. The
result will directly benefit from the participant diversiyd create a network of users eager
to experiment with their new designs and see the designshefst To help include the

participants in the process there will be some visual cuéglpthem realize the status of
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each of the projects.

A.5 Previous Work

In addition to the articles and books mentioned above thearebers listed here are also

active in this area -

Gerd Gigerenzer - Adaptive Behavior and Cognition - Max Rlarstitute - He ex-
plores the simple heuristics that are used every day to leekuaceed. There are certain
inherent biases when dealing with human intuition that nedze understood and avoided

to achieve maximum results.

Norman Johnson - LANL - Symbiotic Intelligence Project. Heated a system that
uses internet and human actors to solve complex problemseayirng networks of these
simple actors. He uses the theory of evolutionary biologgdweance individual solutions
and kill off under performing solutions. They use the self-organiziayre of the agents

to create these networks and organize solutions.

Luis von Ahn - Human Computation - He created CAPTCHA's andimber of games
that are based on the idea of an underlying computation detgame environment (espgame
and peekaboom). The idea that computers can do certainai#bais that cannot be com-

pleted easily (or ever) by a computer.



A.6. Potential Contribution 177

A.6 Potential Contribution

Utilizing distributed human knowledge to tackle designipeons will create early models
that are quick to create and give an accurate system penfaerestimate. This technology
will foster greater creativity, earlier design iterati@md a greater confidence in the result.

Feedback from a diversity of sources, all witltdrent opinions provide powerful po-
tential to improve designs and validate opinions. This bee#f, combined with an appro-
priate statistical methodology can improve the designgss@nd increase thiectiveness
of the designer.

The algorithms presented in the previous chapters focusedilizing an adaptive ex-
periment in addition to a traditional experiment. One pt&tradaptive experiment is to
use human knowledge to determine variable importancetecoesariance matrices, or to
create composite models of a more expensive or complex iexpet, all three of these

methods are presented in previous chapters of this thesis.
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Appendix B

Replacing Human Classifiers: A Bagged

Classification System

This application of human classifiers demonstrates an dréaman computation and a
method for aggregation. This early research method couléfiifrom individual adap-
tive experiments and a broad overall aggregation technigjbes initial study focuses on
automating a human classification process. The goals alienfwove classification con-
sistency, assign confidence level for each automated fitad®in, and have no increase in
workload throughout the implementation. The proposed otetises multiple bagged clas-
sification trees, initially for the individual classificatis and then applied to the combined
group.

Each human classifier trains a separate bagged classificeti® An estimate of the
classifier confidence is created and shown to be accuratseTingividually trained classi-
fiers are combined through a group decision algorithm. TRé mluction in work allows
the workers to train an additional classification tree onrttosst dificult cases. This addi-

tional tree is used in a weighted combination with the pregimees to improve the estimate

181
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and reduce the workload.

This procedure is straight-forward and the results, diassion plus confidence, are
easily explainable to the human classifiers. This proceudemonstrated on U.S. Post
Office zip-code data, showing the ease of implementation antbirament, but could be

used on a variety of classification problems.

B.1 Introduction

In most classification schemes the training data is assuoisel¢orrect, and the goal of the
classifier is to emulate that data, in many situations thaectness assumption is invalid.
A more realistic case is when humans are classifying imagethis case numerical zip
codes, and are only about 85% accurate. There are a numbamains performing this
task in parallel, with each zip code being read once and eaatah ditering in their
accuracy.

With the same number of person-hours, the goal is to impl¢@a@automated system
that improves throughput while maintaining classificatamturacy. The procedure starts
with training a bagged tree classifier for each individudlisTindividually trained tree will
then be used to reduce that individual’'s work load. To mantiae current accuracy a
confidence estimate is created for the classifier and alldomfidence images are reviewed
by the individual. The confidence estimate is created utygioe each classifier and is
based on that specific human trainer.

After separate individual classifier systems are createcg&sh human classifier the
predictions are then compared and integrated in a decitgonitam. The low confidence
predictions are returned to the human classifiers for aba#sesification. These returned

and reclassified images are used to train an additionalifttessventually to be added to
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the decision algorithm.

In this demonstration some of the typical classificationbpgms are not present. All
of the training and validation cases come from a unifornritistion of zip code numbers.
The training is done in a short time period and the noise isipdriven by a forced short,
and random, cycle time.

This final process is straight-forward, and easy to explaité human classifiers, and
allows them to focus on devising better, and more consisfassification rules or proce-

dures, for the dficult cases.

B.2 Classifier Approach

These handwritten images were from LeCun and Cortes (200&)set used here consists
of 10,000 testimages that are 24x24 pixels in size exampéesh@wn in Figure B-1. All of
the test cases were randomized (in the set they are in omgg amall subset of 100 used
for each of the human classifiers. As with most real world huiassification systems
each person has affiirent level of ability and a flierent training set.

The image inputs to this system were translated to inpuakes through a 2D discrete
wavelet transform. To avoid some of complexities with cating images to wavelets a
simple Haar wavelet was used (Hubbard (1998)). All of the i&ilting cofficients are
used as variables for the discrimination. There are manyemomplex transforms that
have been used on this data set with success as in LeCun #9@8)( A more complex,
and accurate, transform is unnecessary because the bafiggeston the accuracy is the
ability of the human classifiers. The benefits of using a wetvebansform include the
quick speed, tolerance for noise, and general applicabilit

A classification tree is a method that consists of making kangions in a variable to
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Figure B-1: Four Example Zip Codes. Five number images frben 10,000 possible
images

maximize the purity of each final branch. For each variabldiawill be made that creates
a division where each of the branches is more similar, indhse has more similar zip code
numbers are grouped together. This iterative process $égirtrying every variable and
then selecting the variable that makes the biggest impreménifter a selection is made
then the process is repeated on each of the sub-trees. T¢espris stopped when each of

the final decision nodes is of the same class (purity) or ha$etw cases.

Because there are 784 variables it igfiogent and inaccurate to build one large tree, so
a large number of smaller trees were combined in a technigileddagging. Bagging has
been discussed in numerousfdient areas such as Breiman (1996a) and Breiman (1996b)
and Tibshirani (1996). The individual trees were prunedimaily to avoid singular nodes

but, as suggested in the literature, full optimal pruning wat used.

Individual trees were built with a small number of randomunypariables chosen from
the 784 available wavelet variables. Five Variables wascsetl as a good starting point and
used throughout the selection process. By choosing les®ti@percent of the input values

the cross-correlations would be minimized which is impatrtaonsidering the nature of the
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Figure B-2: Variables Per Tree. Given 5, 10, 15, and 20 véesdor each tree the accuracy
in percent correct is compared with the logistic probapilit the top panel. The bottom
panel shows the percent of data less than the logistic pililgab

wavelet transform. For other situations this may have beeri@w. Figure B-2 shows the
changes in accuracy as the number of variables changesgingla human model) there is
an increase until 15 variables per tree. With the unknoufiedince in the dierent humans
and the fact that the number of trees will not be fixed, five watemiined to be gficient
here although future investigations could search for a roptenal number of variables.
Each individual tree is created from a bootstrap sampleléqube original data size,
100 in this case. The number of individual trees was not fixgddbtermined based on an
estimate of error. This estimate was a smoothed out-of-©&j érror as given by Breiman
(1996b). The remaining data points that we not used in théstrap &37%) are fit using
the classification tree, and added to a running tally for éaelye. The guess for any image
is the mode of all of the guesses, or if there is a tie it is thatmecent guess. The error
for that run,ry, is given by the sum of the errors for all of the images. Withyansmall
number of training images this error may be quite erraticanig smoothed. The function

used to smooth i, = p*e,; + (1 - p) = r, wherep is a variable, in this case 0.75.
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Additional trees were added or ‘bagged’ as long as this elecreases.

In addition to providing a stopping condition the OB samplesge also used to fit a
logistic regression model. This is a new technique to egértiee confidence of that partic-
ular classification tree. The choice of logistic regresgimovides a probability that can be
easily understood by the classifier in the final analysis. émynclassification methods it
is not straightforward to make accurate confidence estsn&tdiN, Naive Bayes, Neural
Networks, and SVM all provide misleading numbers (Delangle{2005)). Because en-
semble techniques (with the right functions) are unbiaséhdeir limit, they can accurately
estimate confidence to the prediction as shown by Breima®6dP In the tree methodol-
ogy the margin parameter has been found to be an accurataiarkdcqnfidence estimate.
The margin is the dierence between the top vote receiving class and the next cis
after all of the trees vote in a particular classifier, thenmalized diference between the
top two is the margin. As compared with a range, standardatieni, median absolute
difference or squared error, it has been found to be extrenfielgtiee and very easy to

calculate.

Using this margin parameter from the OB samples a logisticassion model was
fit to the error. With the small training sets, a minimum of fimeorrect images were
required to estimate the two logistic parametggsand;. To reach a better estimate of
these parameters, they were based on 10-fold run over theeruwh trees. The logistic
model confidence estimate had low discrimination agairestrdining data as can be seen
in Figure B-3 but, worked very well against the true valuesas be seen in Figure B-2
and Figure B-4. The margin is able tdi@girentiate good variable choices from guesses, or
erroneous choices, accurately. There are two metrics toaeghese confidence estimates.
First, if the confidence estimate is 80%, then it should refleat it is correct on 80% of the

images. The second metric is the ability for the confidentienese to accurately predict
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Figure B-3: Confidence Estimate on Training Data. The rehethip between the error on
the training data and the logistic probability is given i tiop panel. The percentage of
the data less than the logistic probability is given in thédio panel.

the greatest percent of the population, the greater pexgertf accurate values the better,
and the fewer images that needs to be re-evaluated.

To demonstrate this property more clearly the entire datafs&€0,000 numbers was
passed through the trees for a particular classifier andethdts are compared with the
logistic confidence estimate. The accuracy of the prolgsbtimate is within 2% until
p=65%.

This procedure was run with thredfi@dirent individuals, and their results compared. In-
dividually, each human classifier performed evaluationg @eparate subset of the data,
and, as indicated above, five random X’s were chosen for ananumber of trees. In-
dividually, the classifiers were all very similar perforrgiat accuracies of 85.1%, 85.4%,
and 94.3%. All evaluators are using the same input systenmhawe similar distractions
and time pressures. If a subset of data from the thrferdnt human classifiers is ran-
domly combined and used to train a classifier, that clasdiéer the expected combined

performance.
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B.3 Combining Classifiers

Using the individual logistic confidence estimates, eactnéu evaluator would be able
reduce the number of evaluations necessary (at their sarf@mpance) byp, = 55.0%,
38.9%, and 36.2%. This can be seen in Figure B-4 at 85.1%%@%Ad 94.3% for Chad,
Helen, and Jon respectively. Without decreasing perfoomatte individual could reduce
their work load by this number of evaluations using theisslfier but, because this is a
group process some additional reductions can be made theodgcision algorithm. First
if all three automated classifiers are in agreement therettas be classified with very high
probability. In a sample case of 1000 never seen beforerexjas, we had 26% of the
total in this category, at an accuracy of 96%. This high paiage of cases in agreement is
due to the marginal probabilities near 91%. Givarlassifiers the number falling into this
first class isp; « .91°. This is a higher percentage, and a higher marginal prabathian
initially expected but, can be explained by the fact that semages are easily classified,

and agreed upon.

The second decision method to combine the classificatidhsaagh confidence based
voting. Due to the fact that the human classifiers do not haualeperformance prob-
abilities, this voting is done sequentially and the besssifger gets the final vote. The
probability of each individual classifier contributingps = pr — pm * pi*, assuming iden-
tical reduction probabilities andljudges. If two other classifiers agree then the combined
probability is calculated and may outweigh the other cfassiAs the individual reduction
probability, p, increases it reduces the group load but, if the individedlction increases
too much the group is not able to benefit from other memberdtamithe actually work-
load increases, as shown in Figure B-5. The range preseateddismall because as the

ability of each classifier changes it is expected that thegmal probability also changes.
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Figure B-4: Diterent Human Classifiers. The relationship between thetiogisobability
and the accuracy for all 10,000 images is given in the toplganthree ditferent classifiers
and their combined estimate. The bottom panel shows theipige of the population less
than the logistic probability
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Figure B-5: Percentage Rework. This plot is based on a margiobability for the lo-
gistic parameter of 0.85 and three judges. The individualgrgage reductiop is on the
horizontal axis and the percentage rework is on the verdicial
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This combined classification system is explained as a wethht a voting method.
Each automated classifier has a class vote and a confideneele€ision is to go with the
highest confidence, either in a single classifier, or if mbentone agree, it could be the

combination. FoB classifiers, this combination can be expressed as:

class= arg Erggs(z Py)

Using this equation, it is possible to scale up the classifiery easily. Each individual
classifier is developed to the nuances of their human tranéronly combined in a final
group decision algorithm or ‘meeting’. This parallels dfeetive human process, with

more objective confidence measures.

After the group decision meeting, the 24% of the originalgesremain. The human
classifiers have their workload reduced by 76%. The totakisad for the three here,
requires less than one of the original workers. These anfditihuman resources could be

used to re-evaluate some of the images and to improve thegsoc

To improve the overall process with these extra resourceatiatical technique called
boosting introduced by Shapire (1990) is used here. Gdwnetiaé concept is to run the
points through an initial classifier, and then those poingt are incorrectly identified are
used to train an additional classifier with increased weightis weighted training can
extend many levels. There are a number of algorithms tha Baown this can be more
effective than general bagging approaches that are emploiytedlyn The drawback of
boosting is in this re-weighted training, it mayfir from over-fitting, or extreme weight-
ing. This image recognition problem had high, and incoesisthuman image recognition
error and over-fitting was deemed problematic. Each humaadelassifier was built us-

ing the more robust bagged classification technique, whfelining these classification
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trees was found to benefit from a boosting approach.

After all of the automated classifiers were complete and #oéstbns made, the humans
completed the final classifications on the remaining 24% eifrtages. With three human
classifiers it was possible to have each human read each amagereate a classification.
This additional data was then combined into another auteanelassifier. Thus this final
classifier was trained with cases that had low-confidendeaimther classifiers. It was also

the first to use redundancy in the trainers to improve theityuathe training set.

This final classifier is considered as a boosted classifieoffeas an exponential weight
that is combined with the other base classifiers. This dlasss combined in a slightly
different manner than the previous ones. Because it is exdysramed on the errors
of the other classifiers it has a greater weight to settleutésp The added weight was
a = (1 - err)/err, this is the same weighting technique as the popular AdaBoaosine
(Hastie et al. (2001)). In this cagse~ 1.2, and is low mostly due to the few training runs
after only one round image analysis. Future runs would bd teseontinue to advance the

training of this classifier, and increase its weight.

Even in this early stage of improvement this classifier candrebined with the other
three. This classifier is added first in the sequence, andubeads near one it has almost
the same weight as the other classifiers. The classificationracy remained near 81%
although the percentage rework dropped from 24% to 20%.r&utuns would continue to
refine this classifier until the number of runs equaled therothassifiers. After this point
the additional runs would be targeted at creating anotlassdier for improvement. This

is aligned with the literature on the boosting methodology.
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B.4 Conclusion

This work focused on automating a human classification g®es demonstrated through
U.S. Post @ice zip-code data. The goals were to: improve classificatimisistency, as-

sign confidence level for each automated classification hawed no increase in workload
throughout the implementation. The method used multiptggbd classification trees, ini-
tially for the individual classifications and then appliedthe combined group. The scope
of the classifier is increased by the use of a margin basedtiogegression confidence
parameter. Individual tree confidence parameters acdyrptedicted the performance

against the population and could be combined accurately.

The individual classifiers use bagged classification tresedt on five random variables
in a standard Haar wavelet transform of the images. EacheskEthuman based classifiers
is aggregated through a voting with confidence procedurectald the classification. The
accuracy was selected to be at 80% and the automated classafieiced the workload by

76%.

After the individual classifiers were complete, additiodalssifications were made on
the remaining 24% of the images. These modidilt images had new classifications
performed by all of the human classifiers. The results ard tsduild another bagged
classification tree, this classification tree was combimeal weighted manner similar to a
statistical boosting method. The results with this new métimaintained the accuracy at

80% and reduced the workload by 78%

This procedure was clear and straight-forward to implenagnt the results reduced
the workload greater than expected, the classificationqg@dufdence concept was easy to
explain to the human classifiers, as well as solidly foundedirrent statistical procedures.

The use of a voting decision system mimicked the current musgatem and was found to
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enhance the total understandability afi@etiveness of the system.
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