
p- %'IK- _'^





PROBLEM-SOLVING STRATEGIES

IN

A SYSTEM FOR COMPUTER-AIDED DIAGNOSIS

268-67

George Anthony Gorry

June 1967



RECEIVED

JUN 26 1967



Abstract

A system consisting of a diagnostic program and a variety of

support routines is described. The diagnostic program differs from
ones previously reported in several important aspects. The program
is based on a model diagnostic problem which subsumes the principal
features of a number of real diagnostic problems. The user
specializes the program to a specific area by providing information
derived from past experience in the area. The program operates in

an interactive mode. It performs sequential diagnosis^ obtaining
additional information from tests which it selects for the user to

perform. In evaluating tests^ the program considers both the cost

of tests and the seriousness of possible misdiagnoses. The infer-
ence function employs Bayesian analysis of observed attributes,
and can accomodate a variety of inter-attribute dependencies. The
system facilitates the study of a variety of heuristics for various
program functions. Some results from the application of th pro-
gram to a problem in medical diagnosis are presented.





A SYSTEM FOR COMPUTER-AIDED DIAGNOSIS

I. Introduction

A diagnostic system consisting of a diagnostic program and a

variety of support programs has been implemented for use on the time-

sharing system at Project MAC, M.I.T. The diagnostic system serves

two purposes. First, it was designed in such a way that it can

perform diagnosis in a number of different problem areas. Although

the information used by the system changes from area to area, the

programs of the system remain the same. Second, the environment

provided by the support routines facilitates the development and

testing of new strategies for the diagnostic program.

This paper discusses the considerations which influenced the

design of the diagnostic system and the basic strategies incorpor-

ated in the current version of the system. Although some results

obtained with the system are presented, the emphasis throughout is

on the structure and operation of the system.

The diagnostic system was designed to deal with a certain class

of diagnostic problems. In a typical problem from this class, one

wishes to determine the state of a system. For example, the problem

may be to determine the disease-state of a patient or it may be to

determine the failure-state of a piece of electronic equipment. It

is assumed that the unknown state is one of a finite number of possi-





ble characteristic states. Presumably, if one can identify the cur-

rent state of the system, one can improve some subsequent decision

regarding the given system. For example, if a doctor can identify

a patient's disease as pneumonia, he is much better prepared to be-

gin treatment.

In general, a diagnostician employs two different sources of

information in solving a problem. First, he draws on his experience

with similar diagnostic problems. Often this experience is derived

mainly from actual problems which confronted him in the past, but

it may be augmented by training and study. To a large extent, this

experience will dictate how the diagnostician will deal with the cur-

rent problem. His second source of information is the particular

system under consideration. Through the use of various tests , the

diagnostician can obtain this information. The results of these

tests provide new information which he can use in coming to a de-

cision about the state of the system. The manner in which the di-

agnostician employs his experience in the interpretation of test

results, here termed the inference function , is a basic determinant

of diagnostic skill.

In choosing a test to perform on the given system, the diagnos-

tician should consider the cost of the test as well as its poten-

tial usefulness. Some tests may be very costly. For example, cer-

tain medical tests may be costly in terms of discomfort or even

danger to the patient, the time of skilled people, or money. Such





tests should be employed only if their use can be justified by the

gain in information about the system expected to result from per-

forming them. This additional information is valuable^ because

there is a cost associated with a misdiagnosis. The more informa-

tion he can obtain about the current problem, the less apt he is to

make a misdiagnosis. Thus, the value of additional information

about the system is that it tends to reduce the uncertainty about

the unknown state, and hence tends to reduce the expected cost of

misdiagnosis. Thus, the diagnostician is confronted with the prob-

lem of balancing two conflicting objectives: 1) to perform rela-

tively few tests and incur only a limited testing cost, and 2) to

perform many tests to obtain much information and hence reduce the

expected cost of misdiagnosis.

This suggests that the diagnostician might employ sequential

diagnosis to advantage in such a situation. In sequential diagno-

sis he performs some small number of tests and uses the results to

update his view of the problem. He then evaluates the relevant al-

ternatives available to him based on this new view of the problem.

For example, one alternative is to make a terminal decision about

the current state of the system. Also, there is an alternative

corresponding to the performance of each potentially useful ^est.

Because decision alternatives are evaluated dynamically, tests are

performed only as they are needed. Hence the cost of an unneeded

test is avoided. The manner in which the diagnostician dynamically

evaluates decision alternatives is called the test-selection function.





This description of a diagnostic problem with emphasis on the

inference and test-selection functions seems to characterize a

number of actual diagnostic problems such as the diagnosis of ma-

chine failure and medical diagnosis. It suggests that it might be

possible to develop diagnostic strategies which would be applica-

ble to a number of different diagnostic problems. In the work

described here^ this possibility was investigated. An attempt was

made to formulate diagnostic strategies which not only are applicable

to a number of diagnostic problems^ but are also stated in such a

way that they can be incorporated in a computer program.

The incorporation of such diagnostic strategies in a computer

program may result in an improved diagnostic capability in a number

of areas. Diagnosis is generally a difficult problem. It places

considerable demands on the organization and use of experience as

well as the proper interpretation of test results in light c " this

information. When experience is framed in probabilistic terms, the

problem is even more difficult. The determination of a good test-

ing strategy is also a difficult problem. Hence, if a diagnostic

program could be developed which exploited the comparative advan-

tages of a computer, its use in conjunction with a human diagnos-

tician might provide him with a powerful tool for dealing with the

complexities of diagnosis.

The goal of the^ work, then, was t^ ^^rmulate diagnostic strat-

egies which exploit the processing and storage capabilities of a

computer. No attempt was made to simulate human diagnostic strat-

egies. While the results of the work might provide strategies





which hvunans could employ effectively, such results would really be

derivative.

In order to make the view of diagnosis more specific, a model

diagnostic problem was defined. This problem made explicit a number

of considerations mentioned above. The object of this model diagnos-

tic problem is to determine the current state of a given finite-state

machine. By applying a test to the machine, the diagnostician can

discover one or more attributes . Information about the given ma-

chine is available only in terms of attributes. For the diagnosti-

cian, the significance of any given attribute depends on the other

known attributes and on the experience the diagnostician has had

with similar machines. In the model problem, experience takes a

very specific form.

The diagnostician has available the following information about

the machine: 1) the identity of each possible state and the a priori

probability that the machine is currently in that state, 2) a list

of all the possible attributes and for each state the conditional

probability that the attribute will be exhibited by the machine given

that the machine is in that state, 3) the name and cost (in some

units) of a test to detect each attribute if it is present (A given

test may be the test for more than one attribute.) and 4) for each

pair of states (Mj^,Mj) the cost 1^^ (in the same units as the test

costs) of deciding the unknown state is M^ when it is really M^.

The diagnostician is also aware of all relevant relationships





among attributes (e.g. that two given attributes are mutually ex-

clusive). Finally, he is certain that all tests are accurate, and

that no test will change the characteristic state of the system.

The problem for the diagnostician is as follows. Given some

initial set of attributes known to be present, the diagnostician

must choose either to make a decision about the state of the machine

or to perform a test. In the first case, he incurs the risk of mis-

diagnosis and its consequent cost, and in the second case, he in-

curs the cost of the test. If a test is performed, its results (a

set of one or more attributes) are revealed to him. Again he has

a choice of making a terminal decision or performing a new test.

Throughout the problem, his goal is to minimize the sum of the test-

ing cost and the cost of misdiagnosis.

A diagnostic program was designed to solve this model problem.

The remainder of this paper describes the program and its environ-

ment and presents some results obtained from its application to

some real diagnostic problems.

2. The Diagnostic System

The diagnostic system was implemented on the bime-sharing sys-

tem (CTSS) at Project MAC, M.I.T. The diagnostic system was written

principally in MAD, but some heavily used routines were written in

FAP, The system makes very extensive use of the SLIP-MAD library

for list processing developed by Professor Joseph Weizenbaum of

M.I.T. (5)





In its basic mode of operation, the diagnostic system permits

a user to interact directly with the diagnostic program. The lat-

ter is a set of functions, each of which will be discussed in some

detail. First, however, a brief description of a user's session

with the program will be presented, so the reader can get a general

understanding of the operation of the program.

If a user wishes to employ the program for diagnosis in a par-

ticular problem area, he must provide the program with appropriate

experience for the area. This experience is all the information

specified in the model diagnostic problem discussed above. It

includes, for example, the names of all the possible states, attrib-

utes, and tests; the relevant probabilities and associations; and

the costs of tests and misdiagnoses. This information is stored as

a disk file by the user. From this file, the program creates an

information structure for the problem area. The information struc-

ture is a particular organization of the information in the main

memory which is suited for the types of processing required during

a diagnosis.

Assume that a doctor has provided all the required information

about a certain medical area and that the program has created the

information structure. The doctor now wishes to use the program in

the diagnosis of a patient's problem. The patient's complaint is

a persistent cough, and this is the only attribute known so far.

From Figure 1, it can be seen that the user inputs the initial defi-





BEGIN





nition of the problem to the program. In this case^ the problem

is defined by a single attribute. The program processes the at-

tributes through the pattern - sorting function . This function makes

decisions about the relevance of attributes to the current diagnos-

tic problem. If^ for examplej the initial problem definition had

included the attribute "sore ankle," the pattern-sorting function

might have decided that "sore ankle" and "persistent coughing" were

manifestations of different medical problems and should be considered

separately. The output of the pattern-sorting function is a set of

attributes which it believes should be considered as a group by the

program. In this example, there is only one attribute in this set.

The inference function employs the attribute set produced by

the pattern-sorting function and the experience incorporated in

the information structure to produce a current view of the problem.

The current view includes a probability distribution for the un-

known disease given the attributes observed to date and experience

with similar problems.

Based on the current view, the program evaluates all currently

relevant decisions. This evaluation is performed in test - selection

function . The program either chooses to make a terminal decision

or to request that a certain test be performed. In making this de-

cision, the program considers the costs of available tests and the

potential risk of misdiagnosis. Suppose, in the example, the program

chose to request a chest X-ray for the patient. (This means that

the expected value of the information gained from the test exceeds





10

the test cost.) The program reports its choice to the doctor.

When the test results are available, they are reported to the pattern-

sorting function and the loop depicted in Figure 1 is repeated. When-

ever the program decides that the test cost exceeds the expected

value of test results for every relevant test, it will make a ter-

minal decision about the set of attributes currently being con-

sidered.

This brief description has placed the user in a very passive

role with regard to the diagnosis. In fact, as the discussion of

the various functions will indicate, the system permits the user to

be quite active. For example, these functions allow him to test hy-

potheses and to overrule test selection decisions by the program.

The four major components of the diagnostic program will now

be considered in some detail. As indicated above, these components

are the information structure, the inference function, the test

selection function, and the pattern-sorting function.

2.1 The Information Structure

The information structure contains all the experience regarding

a particular problem area which is employed by the diagnostic pro-

gram. The contents of the structure are the states, attributes,

tests, probabilities, etc. which are assumed in the model problem.

As mentioned above, the user provides a file containing this informa-

tion, and from it, the diagnostic system creates the information

structure.





11

The information structure is a SLIP list structure. The parti-

cular form of the information structure was dictated by several con-

siderations. It was advantageous to employ a structure which per-

mitted the use of many of the SLIP list manipulating and searching

functions. The decision to make the information structure a SLIP

list structure strongly influenced subsequent decisions about inter-

nal representations.

The information structure must permit answers to a variety of

questions to be obtained in a reasonably efficient manner. Such

questions might include:

• What are the attributes of pneumonia?

• What diseases result in a rash?

• What is the probability of a fever greater than

102 given pneomonia?

The particular form of the information structure was chosen to facili-

tate the answering of such questions.

The three basic components of the information structure are

state - lists, attribute - lists , and test - lists . Each of these is a

SLIP list. There is one state-list for each state; one attribute-

list for each attribute, and one test list for each test. A sample

state list is represented in Figure 2. For each attribute which is

relevant to the given state, the corresponding attribute list

appears as a sub-list of this state list. Also associated with each

state list is a description list on which are stored attribute-value





Address of Cell Contents of Cell

52152

52154

52156

52160

52162

52164

52166

52232

52232





13

pairs. For a given state, the print-name and the £ priori proba-

bility of the state are stored on the description list of the corres-

ponding state list.

As depicted in Figure 3, an attribute list contains a test

list as a sublist. Thus for each attribute, a test to detect the

attribute can be retrieved. The description list for an attribute

list contains, in addition to the print-name for the attribute, a

special list knovm as a member list . The member list contains the

name of each state list for which the given attribute list is a

sublist and the conditional probability of the attribute given the

state.

A test list, like the one depicted in Figure 4, contains the

cost of the test. It also possesses a description list which con-

tains its print-name and a member list. The latter contains the

list names of all the attribute lists for which the given test list

is a sublist.

In order to permit accessing of state lists, attribute lists,

and test lists in a reasonably efficient way, an additional level

or organization was built into the information structure. Each

state list is a sublist of one of some number (usually 16) of hash

lists which are in turn sublists of the master state list . To re-

trieve the state list corresponding to a particular state, the print-

name for the state is sent to a hash coding routine. This routine

^In an attribute-value pair, the attribute (which in this case
does not mean attribute of a diagnostic problem) serves as a key
word by which the corresponding value can be retrieved. Thus, the

value of a given attribute can be set or retrieved by SLIP functions,





Address of Cell Contents of Cell

12604

12606

12610

12612

12614

12616

12720

12620





Address of Cell Contents of Cell

30122

30124

30126

30130

30132

30134

30136

f
30124





16

converts the print name to an integer in the range 1 to K, where K

is the number of hash lists on the master state list. Assuming

that this integer is J, the Jth hash list on the master state list

is searched for the state list with the given print-name. Because

the state lists were originally distributed among the hash lists in

accordance with the hash coding scheme, the required state list will

be found on the J— hash list (if such a state list is in the in-

formation structure at all). The use of hash lists substantially

reduces the search time for a state list with a given print-name.

As with the state lists, both attribute lists and test lists

are organized using the hash coding function. Thus there is a

master test list and a master attribute list .

Because certain relationships among attributes may be important

in diagnosis, the diagnostic system includes a facility for represent-

ing such relationships in the information structure. This facility

is provided by the clustering routine . This routine permits the user

to specify a dependence among the attributes of a particular state.

For example, he might indicate that two given attributes are mutually

exclusive for the state in question. Because the important relation-

ships are apt to vary from one problem area to another, no attempt

was made to incorporate specific relationships into the diagnostic

system. Instead, the system provides means by which the user can

define relationships in such a way that the inference function can

correctly consider relationships during a diagnosis.





17

The user defines a relationship by providing the system with

a definition of a predicate which is true only when the relation-

ship is satisfied. The system recognizes a set of primitive logi-

cal and arithmetic operations, and the user can use these (or

previously defined relationships) in defining predicates. If,

for example, the relationship "precedes in time" is desired, the

user might define it as follows.

PRECEDES (X Y) (LE (CHAR TIME X) (CHAR TIME Y))

Here CHAR is a system primitive which retrieves a characteristic of

an attribute. Its first argument is taken as a literal. If, for

example, for a given state the relationship "A precedes B" is rele-

vant, the evaluation of (CHAR TIME A) would result in a question

to the user "What is the time of A?" when A was first observed.

The answer would be stored as part of the history of the diagnosis

and would be available later without further interrogation of the

user. The system includes an interpreter which is used to evalu-

ate relationships. In the above example, the interpreter would

apply the definition of PRECEDES to the argument list (A B) during

the inference phase. Notice that the attributes A and B may be in-

dependent for some other state. The clustering routine is used to

distinguish these cases. The arguments of this routine are the

name of a state, the name of a relationship, and the names of the

attributes involved in the relationship. The effect of the clus-

tering routine is to alter the state list to reflect the dependence





18

of the attributes. The manner in which the relationship definitions

are employed by the system will be discussed in more detail in the

following section on the inference function.

2.2 The Inference Function

The purpose of the inference function is to provide a rational

way of accounting for observed attributes in keeping with the ex-

perience contained in the information structure. The basic deduc-

tive rule employed by the inference function is Bayes Rule. If the

set of attributes observed to date in the diagnosis is (Aj^, , , . Aj^),

the probability of the j-=ii state^ M., is given by

P^M l(L A ^^ - P((Al . . . Ak)/M^) . P(Mi)
P(Mj/(Ai . . . Ai,))

P((A, . . . i^))
^

where P(M0 is the a priori probability of state M-

P((A ... A )/M. ) is the conditional probability

of {k^ . . . Aj^) given Mj

P((A^ . . . A, )) is the unconditional probability

of (Aj^ . . . Aj^)

At any state of the diagnosis, the probabilities PCMj/CAj^ . . . Aj^))

and a record of the tests run and the attributes observed constitute

the current view of the problem taken by the diagnostic program.

This is the basis for the evaluation by the test selection function

of the potential usefulness of new tests.





19

The task of the inference function is to update a proba-

bility distribution for the unknown state based on the observation

of a new attribute. As noted^ this updating is accomplished

through the use of Bayes Rule. While this updating is easily ac-

1

complished in principle^ there are certain considerations which

make the practical realization of the procedure somewhat complicated.

One consideration is that of the non- independence of certain

attributes. The inference function must properly account for rela-

tionships among attributes which are discovered in the information

structure. The means for handling these relationships are provided

by a routine called PIJ and the interpreter mentioned above. The

function of the routine PIJ is to determine the conditional proba-

bility of an attribute given a state and the history of the diagno-

sis to date. In the event that the attribute is not dependent on

any other attribute for the given state^ PIJ needs only to retrieve

the required probability from the information structure. When the

attribute is involved in a relationship for the given state, the

situation is more complicated.

Consider, for example, the two attributes A and B which are

mutually exclusive given the state M. Further assume that the con-

ditional probabilities of A and B given M are 0.7 and 0.3 respectively.

If, at some stage in the diagnosis, A is observed but there is no

information about B, the proper value for P(A/M) is 0.7. If later

B is observed, the proper conditional probability for PIJ to return





20

is P(B/M,A) or zero. PIJ obtains these probabilities in the follow-

ing way. When called upon for the conditional probability P(A/M),

the routine discovers the attribute cluster for A and B on the state

list for M, The name of the cluster relationship (stored in the

cluster) and the arguments of the relationship are passed to the in-

terpreter. The interpreter evaluates the predicate which defines

the relationship for the arguments A and B. Notice, however, that

although A has been observed, there is no information about B cur-

rently available. This situation occurs quite often in sequential

diagnosis. That is, the interpreter is often confronted with re-

lationships which do not have a complete set of arguments (i.e. the

values of some of the arguments are unknown) . The interpreter deals

with this problem by assuming the truth of any relationship predi-

cate which is not demonatrably false in view of the history of the

diagnosis. This strategy results in predicate values which can be

employed by PIJ in a manner consistent with Bayesian inference.

Thus, in the above example, the interpreter indicates that the

relationship i^ satisfied. From this result, PIJ deduces the proper

conditional probability, namely 0.7. When B is observed, the re-

lationship is not satisfied. PIJ uses this result to obtain zero

for the required conditional probability,

PIJ, then, is composed of a set of logical tests on the results

produced by the interpreter, the type of the relationship in question,

and some information about the number of variables for which values





21

were available. By combining this information, PIJ can correctly

account for a variety of inter-attribute relationships. The infer-

ence function is able to assign the proper significance to attributes

in the Bayesian analysis.

There is another important matter which must be considered in

specifying the inference function. In certain diagnostic problems,

it may not be possible to relate all the observed attributes to a

single state. Consider, for example, the diagnostic problem posed

by a patient who has a severe cough and a sore ankle among other

signs and symptoms. It is unlikely that the attributes "severe

cough" and "sore ankle" are indicative of the same disease state.

Suppose further that most of the observed attributes suggest di-

seases which can produce a severe cough, and that before the attrib-

ute "sore ankle" is observed, only diseases in this group are being

considered by the program. When the attribute "sore ankle" is

finally observed, it is necessary for the inference function to

incorporate this new evidence into the current view of the prob-

lem. This means applying Bayes Rule. But what value should be as-

signed to the conditional probability of "sore ankle" given a par-

ticular disease, D, from the group being considered?

1
This last source of information permits PIJ to recognize re-

lationships assumed satisfied because no appropriate information
was available. Such relationships are accounted for somewhat dif-
ferently in determining probabilities.





22

Notice that while it is quite possible for the patient to have

disease D and a sore ankle, the attribute "sore ankle" is not sig-

nificant in the diagnosis of D, If, however, the program takes the

conditional probability of "sore ankle" given D to be zero, then D

will be permanently eliminated from further consideration by Bayes

Rule. This is obviously very undesirable.

An alternative is to assign a value of (e^ "^ 0) to the condi-

tional probability in question. (One choice for £ might be the un-

conditional probability of the attribute.) Such a choice would pre-

vent the inference function from eliminating any state from considera-

tion except in the case of an explicit zero conditional probability.

The disadvantage of this approach is that it prevents the drastic

reduction of the number of states considered by the diagnostic pro-

gram based on observed attributes. Because the number of possible

states may be very large, a reasonable level of efficiency in diag-

nosis demands maximum use of each attribute to narrow the focus of

the search. For example, if the observed attributes indicate a stom-

ach problem, the test selection function should not consider such

tests as a leg X-ray.

An alternative solution is to employ £ probabilities as above,

but to maintain a threshold and to eliminate states for which the

current probability has fallen below this threshold. This approach,

too has a major drawback. The conditional probability of a state

given the observed attributes can vary greatly during a diagnosis.





23

The sequence of values it assumes depends upon the order in which

observed attributes are considered by the inference function, al-

though for a fixed set of observed attributes, the final probability

is independent of the sequence. Thus, the state D in the above ex-

ample might still be eliminated by the inference function if the

attribute "sore ankle" were one of the first attributes observed in

the diagnosis.

The solution to this problem embodied in the diagnostic pro-

gram is quite different from those described above. This solution

is implemented in the pattern-sorting function, the operation of

which is discussed in the next section.

2.3 The Pattern-Sorting Function

The information structure as currently constituted associates

with each state only those attributes which are considered by the

user to be relevant to the diagnosis of that state. Thus, while it

is possible for a patient to have tuberculosis and a sore ankle,

the user would not associate the attribute "sore ankle" with the

state "tuberculosis", because the attribute contributes nothing to

the diagnosis of the disease. This means that the attribute list

for "sore ankle" does not appear as a sublist of the state list for

"tuberculosis" in the information structure.

In certain cases, the diagnostic program will be confronted with

a set of observed attributes such that no state is associated with

all the observed attributes in the information structure. The





24

pattern-sorting function is designed to deal with such a situation.

This function operates in such a way as to make maximum use of a

newly observed attribute in reducing the number of states considered

by the program. At the same time, it provides safeguards against

the elimination of the actual state from consideration through the

processing of an "irrelevant" attribute.

From the set of observed attributes, the pattern-sorting func-

tion creates a set of attribute patterns . Each pattern is a subset

of the set of observed attributes which satisfies two requirements:

1) at least one state in the information structure is associated

with all the attributes in the pattern, and 2) the pattern is not

a subset of any other pattern.

As an example, consider the patterns obtained from the set of

observed attributes (A,B,C). If at least one state in the informa-

tion structure is associated with all these attributes, there will

be only one pattern, namely (A B C) . Assume, however, that no state

meets this requirement, but a number of states are associated with

A and B. Then (A B) is a pattern. The pattern (A C) would be

legitimate if at least one state is associated with A and C. (By

assumption, A cannot also be associated with B.) In this case (C)

cannot be a pattern since it is a subset of (A C)

.

The pattern-sorting function maintains a list of all patterns

called the pattern stack. Associated with each pattern in the pattern

stack is a probability distribution for the unknown state obtained





25

by the inference function on the assumption that the given pattern

constitutes the entire set of observed attributes.

The patterns developed in this way constitute a hypothesis about

an overall relationship among attributes. It results in a grouping

of attributes in a certain way. The particular grouping, however,

may be proved incorrect by the observation of certain new attributes.

In the above example, the correct grouping might be (A B), (C). For

this reason, the patterns constructed by the pattern-sorting function

are not static, but rather are continually reviewed by the function.

Such reviews may result in the creation of new patterns and the dele-

tion of old ones.

The pattern stack is managed in the following way. Whenever a

new attribute is observed, it is processed by the pattern sorting

function. For each pattern in the pattern stack, a subroutine deter-

mines the relevance of the new attribute to the pattern. If the cor-

responding attribute list appears as a sublist of any state list

associated with the pattern, the new attribute is considered rele-

vant to the pattern. This association between state lists and a

pattern is effected through a distribution list . For each pattern,

a distribution list contains the names and probabilities of all states

which have a non-zero probability given the attributes in the pattern.

In obtaining these probabilities, the inference function assigns zero

to the conditional probability of an attribute given a state whenever





26

the corresponding attribute list is not a sublist of the state list.

Since states with zero probability are removed from distribution

lists, this maximizes the use made of an attribute to reduce the num-

ber of states in a distribution list.

When a new attribute is relevant to a given pattern, the infer-

ence function is invoked to update the distribution list and the

attribute is added to the pattern. If after updating, any state in

the distribution list has zero probability, it is removed from the

list. An example of such a situation is the following. Suppose the

pattern in question is (A B C) and the states in the distribution list

are (M N 0). The attribute D is now observed. Assume that the attrib-

ute list for D appears as a sublist of the state lists for M „nd N

respectively, but is not a sublist of the state list for 0. This

means that the attribute is relevant to the diagnosis of M or N, but

not to that of 0. The updating of the pattern will result in a new

pattern (A B C D) and a new distribution list containing only M and N,

In some cases, the probability of a pattern may go to zero

(i,e. the probability of each state in the distribution list becomes

zero). In this event, the pattern is deleted from the stack. Note

that if an attribute is not relevant to a particular pattern, no up-

dating of the pattern takes place.

When the new attribute has been processed against each pattern

in the stack, the pattern-sorting function tries to create a new pat-

tern. Each state list on the member list of the given attribute list





27

is checked. If the state list appears on a distribution list in the

stack, no further action is taken. If the state list is not found,

a new pattern can be created. The new pattern is the intersection

of the set of attributes associated with the state and the set of ob-

served attributes to be accounted for. A distribution list is created

for this pattern, and if the pattern has non-zero probability, it is

added to the stack.

During a diagnosis, the program maintains a list of observed

attributes known as the unaccounted -for list . All attributes are

placed on this list when they are first observed. Whenever a pattern

is assigned a tentative diagnosis by the program, the attributes in

the pattern are removed from the unaccounted-for list. The pattern

in question is marked in the stack. If the unaccounted-for list is

empty, a tentative diagnosis for all attributes has been obtained.

If this list is not empty, there are still attributes to be

investigated. All unmarked patterns are deleted from the stack, and

new patterns are formed using the unaccounted-for list as the set of

observed attributes. If, for example, the pattern just diagnosed is

(A B CD), the unmarked pattern (C E F) will be converted to (E F) in

this process. Once the attribute C has been assigned to a tentative

diagnosis, the program need not account for C in another pattern as

well. If, however, during the investigation of the pattern (E F),

the test selection function chooses a test which would reveal C,

This attribute simply will be transferred to the pattern with the





28

appropriate updating. The user will not be interrogated again about C.

In summary, then, attributes from tentatively diagnosed patterns

are used to update unmarked patterns only if tests for these attrib-

utes are suggested by the test selection function.

The pattern-sorting function performs one other task for the

diagnostic program. The test selection function bases its evalua-

tion of tests on a single distribution list. Since there may be a

number of patterns (and hence distribution lists) in the pattern stack,

the pattern-sorting function must choose one of the patterns for fur-

ther investigation.. Thus, if confronted with two patterns, the pro-

gram must decide which pattern to diagnose first. For example, a

doctor might choose to investigate the severe cough of his patient

before seeking to account for his sore ankle.

There are a number of factors which might influence the choice

of a pattern. If the pattern contains a very unlikely attribute,

then it might be favored. The pattern might also be favored if it

suggests a very serious state or contains many attributes.

The selection rule employed by the pattern-sorting function

employs a seriousness measure for each state. The actual derivation

of the seriousness measure is not important here. (It is obtained

from the values 1^^ of the loss function matrix.) Each state is

assigned a value W. of the seriousness measure. The seriousness

measure for the kHll pattern, S, is obtained as follows.

Sk= i ^j Wj





29

where Pj is the conditional probability of

of the j— state given the attrib-

t" h
utes in the k— pattern.

The current pattern is the pattern for which S-^ is a maximum. At any

stage in the diagnosis^ the distribution list of the current pattern,

the current distribution , is used by the test selection function for

test evaluation.

Note that the measure Sj^ has a number of desirable properties.

If an attribute in the vS^ pattern is quite specific to a serious state

Mg, then P^ is approximately one, and S^ is approximately W , If all

the states in the distribution list are very serious, the value of

Sj^ will be large regardless of the actual probability distribution.

A pattern containing many attributes is favored only if the serious-

ness measure S, warrants it. Thus, the program may temporarily ignore

a number of attributes of the common cold to investigate an attribute

associated with cancer.

The seriousness measure for each pattern is recomputed before

every entry into the test selection function. This means that new

current pattern may be chosen. If, for example, the only serious state

in the current pattern becomes quite unlikely as the result of the

observation of a new attribute, the pattern-sorting function may se-

lect a new current pattern for the test selection function

2.4 The Test Selection Function

The set of routines which comprise the test selection function





30

perforin the analysis of all relevant decision alternatives for the

diagnostic program. At each stage in a diagnosis, the program must

decide whether tp request that the user perform another test or to

make a terminal decision about the given system. There is a deci-

sion alternative for each relevant test and one for the terminal

decision. In choosing one of these alternatives, the test selection

function considers the current view of the problem (embodied in a

probability distribution for the unknown state), the history of the

diagnosis to date, and information about the potential usefulness

and cost of the various decisions. The manner in which these con-

siderations are brought to bear on the problem of test selection is

discussed in this section.

The test selection problem can be represented by part of a de -

cision tree such as that depicted in Figure 5. Such a tree contains

two kinds of nodes. Nodes such as A are called decision nodes, and

correspond to those points in the diagnosis where the program can

make decisions. At each decision node, each decision alternative

is represented by a branch emanating from that node. In the test

selection problem, there is a branch from a decision node for each

relevant test and one for the terminal decision alternative. If the

program selects a particular test, it moves to one of nature 's nodes

.

such as node B in Figure 5. Here "nature" chooses a branch corres-

ponding to a particular test result, and the program moves along this

branch to a new decision node.





Figure 5

A Portion of a Decision Tree

31





32

Each decision node is characterized by a probability distribu-

tion for the unknown state and a history of the diagnosis to date

including the sequence of tests already performed. Since the infor-

mation structure includes all the additional probabilities required,

the program could solve the test selection problem by constructing

the entire decision tree and "folding it back" in terms of expected

loss. In this way, the optimal testing strategy could be obtained.

The problem with this approach is not conceptual, but computa-

tional. As the number of tests and test results increases, the size

of the decision tree (as measured by the nvunber of decision nodes)

increases very rapidly. For example, if one were using twenty "one

time" tests (each with two mutually exclusive results) to classify pa-

tients into one of ten disease groups, the maximum number of decision

nodes in the tree is

N(K 10) =
^Q^

•
^Q'

Where K is the depth of the tree. (Searching the decision tree to

depth K from the current decision node means evaluating all sequences

of K tests from the set of relevant tests.) VJhen K is 5, N(K, 10) is

approximately 10 , although this example does not constitute a par-

ticularly large problem. Notice that even if there were a specific

test for each disease, there would be about 30,000 different testing

This is possible if no test is to be performed more than once

during a diagnosis.





33

strategies of length 5.

The design of the test selection function was strongly influenced

by such considerations. The function can employ a variety of heuris-

tics for test selection when the decision tree is very large. It can

also obtain optimal testing strategies when this approach is computa-

tionally feasible. Since the latter process is extensively discussed

in the literature, it will not be considered here. This discussion

will focus on the use of heuristics to obtain "good" testing strate-

gies with a reasonable amount of computation.

An obvious approach to reducing the number of decision nodes

considered by the test selection function is to limit the depth of

the search to some small number. For example, only testing sequences

of length two might be considered. A second approach is to limit the

breadth of the search at each decision node. The breadth of the

search is the number of tests considered at a decision node. By con-

trolling either or both of these, the test selection function can re-

strict the number of decision nodes which it considers. Of course,

such a restriction may well lead to sub-optimal testing strategies.

The present version of the diagnostic system permits the user

to set depth and breadth control parameters for the test selection

function. These parameters can be set independently of one another

(subject to certain limitations on available memory) and each can be

altered at any stage in the diagnosis.

If at some stage in a diagnosis the depth control parameter is





34

K, the test selection function evaluates all relevant testing strate-

gies of length K. Thus all paths from the current decision node are

explored to the same depth. Generally, this means that the test se-

lection function must decide the relative value of being at a decision

node corresponding to a less than certain diagnosis. For example, con-

sider a search of depth 1. Suppose one of the possible outcomes of

test T is A. From the current distribution P and the observation A,

a new distribution P' can be obtained by the inference function. Part

of the problem of evaluating the potential efficacy of T is that of

assessing the desirability of attaining the view characterized by P '

.

The measure used by the test selection function for this purpose is

the expected decision loss for a terminal decision. The loss of a

decision node at depth K from the current node is the expected loss

for the optimal terminal decision for the node. Thus, if a search of

depth K down some path in the decision tree terminates on a node for

which the probability distribution is P', the expected loss for the

node is given by

L'= -n ilijPj
l^i^n j = l

The loss for any test is taken to be the cost of the test plus

In some cases, a decision node which permits a terminal decision

will be encountered. In such a case, the search of that path is ter-

minated, regardless of depth.





35

the sum of the expected losses for the decision nodes which can re-

sult from the test each weighted by the probability that the node

will be reached given the distribution at the node where the test

is employed. Thus, for any non-terminal decision node, each rele-

vant test can be evaluated by "folding back" the appropriate portion

of the decision tree below the node. When each relevant test has

been evaluated in this manner, the expected loss for the best deci-

sion (either to perform a certain test or to make a terminal deci-

sion) becomes the expected loss for the node.

This process of evaluating tests results in a list of decision

alternatives for the current node and their expected losses. The

decision alternative with minimum expected loss is selected by test

selection function. Since the value of each alternative is known, the

program can select the second best alternative if for some reason the

user overrules the first choice, etc.

The user can also control the breadth of the search in the test

selection function, although in a less direct way. The user can set

a threshold used by the test selection function. Only tests relevant

to states whose current probability (at a given node) is greater than

the threshold are considered by the test selection function. For

example, if the current distribution were (0.1, 0.4, 0.5) for the

states A, B, and C respectively, and the threshold were 0.45, only

A test is considered relevant to a state if it can detect an
attribute which has non-zero conditional probability given the state.





36

those tests relevant to state C would be considered at this node.

Note that this control is indirect^ because all the tests relevant

to A and B may also be relevant to C.

The user may employ the test selection function to aid him in

testing hypotheses about the unknown state. If^ for example, he be-

lieves that the state is B, he can request the program to determine

the best test to prove or disprove his hypothesis.

The test selection function includes a number of other heuristic

controls which permit more complicated heuristics to be specified.

The effectiveness of some of these heuristics has been studied, and

a report on the results is available elsewhere (4). The interested

reader is referred to that report for a more extensive discussion of

this subject. Suffice it to say here that through the use of the

heuristic controls, the user can specialize the test selection func-

tion to a number of different selection strategies.

2.5 The Generator

One purpose of the highly modular design of the diagnostic sys-

tem is to allow new strategies to be introduced into it as the prob-

lems of diagnosis become better understood. Unfortunately, there are

relatively few problem areas for which the appropriate "experience"

is available (in terms of probabilities etc.). If the diagnostic

program is restricted to real problems, it may not be possible to ex-

ercise existing strategies in a sufficient nvmiber of environments to

properly assess their general effectiveness. It is particularly useful





37

to be able to construct artificial problems to test specific fea-

tures of the program (e.g. the sensitivity of performance to the num-

ber of irrelevant attributes encountered by the program).

The generator was incorporated into the system to meet this need,

The generator is a set of routines which provide an extensive simula-

tion capability. The user can turn system control over to the genera-

tor, and the latter becomes the subject of the diagnosis. Using an

existing medical information structure, for example, the generator

could choose a particular disease at random based on the a priori

disease probabilities in the structure. After choosing some number

of attributes at random (again in accordance with the probabilities

in the information structure), the generator presents these attrib-

utes as a problem to the diagnostic program. The latter functions

as usual, except the generator intercepts all requests for test re-

sults and provides these results in keeping with the probabilistic

description of the disease. The generator can maintain extensive

records of various aspects of the performance of the diagnostic pro-

gram on the case.

Since the generator employs the information structure and all

the associated accessing routines, it can correctly account for any

inter-attribute dependency which is represented in the structure. Be-

cause the given information structure can correspond to either a real

or an artificial diagnostic problem, the user can study the perform-

ance of the diagnostic program in many environments. Of course, the





38

generator also allows many cases to be run in a reasonable time.

While the generator is a very important tool for the study and

improvement of the diagnostic program, its design is generally

straightforward, and it will not be discussed in detail here. From

the user's point of view, it allows him to perform a simulation run

for which he can set

1) the number of cases,

2) whether cases should represent one state only or be

representative of the population,

3) number of initial attributes per case,

4) number of irrelevant attributes per case, and

5) heuristic controls for test selection.

Although these controls are not exhaustive, they do provide a flexible

means for studying the performance of various diagnostic strategies.

3. Applications of the Diagnostic System

To date, the diagnostic system has been applied to two prob-

lems in medical diagnosis. One problem is the diagnosis of congenital

heart disease. The use of a computer in the diagnosis of congenital

heart disease has been studied extensively by Warner and his associ-

ates (1,2). They have developed a program which employs Bayesian

analysis, but their program provided neither a test-selection nor a

pattern-sorting capability. All the relevant attributes for a case

are collected before the program is invoked. The program employs a





39

disease-attribute probability matrix and Bayes Rule to obtain a post-

erior distribution over the thirty-five possible diseases.

The second problem considered was the diagnosis of primary bone

tumors. Here the problem is to employ evidence derived principally

from a radiograph to classify a patient into one of nine bone tumor

classes. Computer-aided diagnosis of bone tumors has been studied

in depth by Lodwick (3), and he has developed a program similar in de-

sign to that of Warner.

Dr. Warner and Dr. Lodwick generously provided the necessary

statistical information and actual case histories required for the

study of the performance of the diagnostic program on these problems.

The results of this study are available elsewhere (4), and more

studies are planned. Here some representative results from the study

of bone tumor diagnosis will be presented, so the reader can obtain

a feeling for capabilities of the program.

The bone tumor problem was formulated with nine states (one for

each histologic type) and thirty-two tests. Some tests were specific

for a particular attribute (e.g. a test for a certain pattern of

bone destruction), while other tests were associated with a number of

attributes. An example of the latter is the "age test" for which

there are five attributes, each corresponding to a range of years.

Warner's program uses a somewhat modified form of Bayes' Rule
to correctly account for mutually exclusive attributes.





40

There are an extremely large number of possible attribute sets which

can be encountered, and while certain attributes are generally strong

evidence for particular tumors, this evidence alone is not conclusive.

As a result, it may be necessary to consider many attributes to estab-

lish a diagnosis for a particular case.

The disease-attribute probability matrix provided by Dr. Lodwick

was used as the basis for an information structure. The results dis-

cussed here were obtained by assigning all tests unit cost and all

misdiagnoses a cost of 100,000. Twelve actual case histories were

used as the basis for problems presented to the program. For each

case, approximately nine attributes were included as the initial state-

ment of the problem. These attributes were considered to be easily

observable (for example, the age of the patient, the location of

the tumor, etc.). During the diagnosis, when the program chose a

test, the results were determined by consulting the appropriate case

history.

The results of this experiment are summarized in Table 1. In

each case, the results of the sequential diagnosis are compared with

the pathologist's diagnosis and the diagnosis obtained when all at-

tributes were used.

These results are typical of those obtained from an extensive

These numbers are quite arbitrary. They were chosen to exemplify

a situation in which decision losses are far greater than testing losses,





41

study of the performance of the program (4), This study suggested

that: 1) A computer program can perform quite well in the diagnosis

of congenital heart disease and primary bone tumors. This, however,

had already been well-established by the work of Warner and Lodwick.

2) Sequential diagnosis can substantially reduce the number of tests

performed during diagnosis. When the cost of tests is significant,

then, sequential diagnosis may result in improved diagnosis. 3)

Although the diagnostic program was developed to solve an abstract

problem, it proved effective in the solution of real problems. The

same diagnostic program using different information structures was

able to deal with two different problems in medical diagnosis.

Because the purpose of this paper is to describe the operation

of a program to solve diagnostic problems, the results obtained from

using the program have been deliberately slighted. The above sugges-

tions, however, are well-supported by the experimental evidence ob-

tained to date with the program, and are included to give the reader

some indication of the potential of such a program,

4. Conclusions

The program described in this paper was designed to solve an

abstract diagnostic problem which is believed to subsume many of the

features of a number of real diagnostic problems. The program per-

forms two principal functions, inference and test selection. Like

other programs for diagnosis, it employs Bayesian analysis of attrib-





42

TABLE 1

Sequential Diagnosis of Bone Tumor Cases
Summary of Results for Actual Case Histories

Case and
Pathology





43

utes to determine the state of the system being diagnosed (although

a more flexible way of handling inter-attribute dependencies is in-

cluded) . It differs from other programs in that it interacts with

the user, selecting diagnostic tests for him to perform in a sequen-

tial manner. The program also includes a way of accounting for both

the costs of tests and the seriousness of various misdiagnoses. Fin-

ally the program can detect irrelevant attributes during a diagnosis.

The program was tested on two different medical problems, the

diagnosis of congenital heart disease and the diagnosis of primary

bone tumors. The results suggest that: 1) the program can perform

effectively in several areas, and 2) there may be a significant ad-

vantage derived from the sequential operation of the diagnostic

program.





References

1. Warner J H. R. et al . "A Mathematical Approach to Medical
Diagnosis/' JAMA 177, 1961

2. Warner, H. R. e_t al, "Experience with Bayes Theorem for Com-
puter Diagnosis of Congenital Heart Disease," Ann. N. Y, Acad .

Sci., 115, 558, 1964

3. Lodwick, G. S. e_t al, "Computer Diagnosis of Primary Bone
Tumors: A Preliminary Report" Radiology 80, 273, 1963

4. Gorry, G. A., "A System for Computer-Aided Diagnosis"
Unpublished Ph.D. Thesis, M.I.T. 1967

5. Weizenbaum, J., "The Symbolic SLIP-MAD System," Project MAC,
M.I.T. , 1965.



'•UG, 2 19671

^G 1 8 1967

• -^a-^tT





Date Due '->

H«r07'81

HftY 5 '84

*

Lib-26-67



3 TDfiD D03 TO
1

76^/-6r

D 773
LlBRASlES

illlilillllllil
^6^-^^

TDfiO DD3 fitiT fia7

MIT LIBRARieS

3 TDflD D 3 fi bT fi3fl
HD28 m.:'

.

.

.mUiU <^. '«

Nos.26U-67~^"'

Nos .275-67 ^'-^ •

3 TDflO DD3 TOD 7TT ZQ>7-G7

MfT LIBRARIES

3 loa
lllllliliil

^^-^7
03 fibl 7b5

MIT LIBRARIES

3 TOflO 003 fib 7T
MIT LIBRARIES

3 TOfiO 003 flbT 77
MH LIBRARIES

3 TOflO
III

273-^7
3 TOO flTfl




