Chapter 8

The Finite Horizon Borel Model

In Chapters 8—10 we will treat a model very similar to that of Section
2.3.2. An applications-oriented treatment of that model can be found in
“Dynamic Programming and Stochastic Control” by Bertsekas [B4], here-
after referred to as DPSC. The model of Section 2.3.2 and DPSC has a
countable disturbance space and arbitrary state and control spaces, whereas
the model treated here will have Borel state, control, and disturbance spaces.

8.1 The Model

Definition 8.1 A finite horizon stochastic optimal control model is a nine-
tuple (S, C, U, W, p, f, o, g, N) as described here. The letters x and u are used
to denote elements of S and C, respectively.

S State space. A nonempty Borel space.

C Control space. A nonempty Borel space.

U Control constraint. A function from S to the set of nonempty subsets
of C. The set

I = {(x,u)|xeS, ueUx)} 1)
is assumed to be analytic in SC.
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W Disturbance space. A nonempty Borel space.

p(dw|x, u) Disturbance kernel. A Borel-measurable stochastic kernel on
W given SC.

f System function. A Borel-measurable function from SCW to S.

o Discount factor. A positive real number.

g One-stage cost function. A lower semianalytic function from I' to R*.

N Horizon. A positive integer.

We envision a system moving from state x, to state x,,; via the system
equation

xk+1=f(xk9ukawk), k=0’17~~-7N_2:

and incurring cost at each stage of g(x;, u;). The disturbances w, are random
objects with probability distributions p(dwy|x;,u,). The goal is to choose u;
dependent on the history (xq, g, - - , Xx— 1, Ux~ 1, Xx) SO as t0 minimize

N-1
E{ Y oFg(xe, uk)}. 2

k=0

The meaning of this statement will be made precise shortly. We have the
constraint that when x, is the kth state, the kth control u, must be chosen to
lie in U(xy).

In the models in Section 2.3.2 and DPSC, the one-stage cost g is also a
function of the disturbance, i.e., has the form g(x, u, w). If this is the case, then
g(x, u, w) can be replaced by

X, u).

gle,u) = [ g, uwp(dw

If g(x, u, w) is lower semianalytic, so is g(x, u) (Proposition 7.48). If p(dw]x, u)
is continuous and g(x, u, w) is lower semicontinuous and bounded below or
upper semicontinuous and bounded above, then g(x, u) is lower semicontin-
uous and bounded below or upper semicontinuous and bounded above,
respectively (Proposition 7.31). Since these are the three cases we deal with,
there is no loss of generality in considering a one-stage cost function which
is independent of the disturbance.

The model posed in Definition 8.1 is stationary, i.e., the data does not
vary from stage to stage. A reduction of the nonstationary model to this
form is discussed in Section 10.1.

A notational device which simplifies the presentation is the state transition
stochastic kernel on S given SC defined by

t(B|x, u) = p({w| f(x,u, w)€ B}|x,u) = p(f ™ (B,

X, u). (3)
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Thus t(B|x, u) is the probability that the (k + 1)st state is in B given that the
kth state is x and the kth control is u. Proposition 7.26 and Corollary 7.26.1
imply that t(dx’|x, u) is Borel-measurable.

Definition 8.2 A policy for the model of Definition 8.1 is a sequence
T = (lo, H1,- - - in—1) such that, for each k, w(duyxo,uo,. .., ue—y,x;) is @
universally measurable stochastic kernel on C given SC- - - CS satisfying

ﬂk(U(xk)[xo,uo,- co U, X)) =1

for every (xq,uq,. . .,U—1,X) If, for each k, p, is parameterized only by
(X0, X), T 1S @ semi-Markov policy. If p, is parameterized only by x,, « is a
Markov policy. If, for each kand (xo, g, - . ., Ug— 1, Xp), el dig|Xo, Ug, - - - U= 1,
X;) assigns mass one to some point in C, n is nonrandomized. In this case,
by a slight abuse of notation, = can be considered to be a sequence of
universally measurable (Corollary 7.44.3) mappings y:SC- - - CS — C such
that

MU(Xo,Ugy. - s t—1, X )€ U(xy)

for every (xq,ug,. .., U-1,%). If & is a type of og-algebra on Borel spaces
and all the stochastic kernel components of a policy are & -measurable, we
say the policy is & -measurable. (For example, & could represent the Borel
o-algebras or the analytic g-algebras.)

We denote by I1' the set of all policies for the model of Definition 8.1
and by I the set of all Markov policies. We will show that in many cases
it is not necessary to go outside IT to find the “best” available policy. In
most cases, this “best” policy can be taken to be nonrandomized. Since
I' is analytic, the Jankov—von Neumann theorem (Proposition 7.49) guar-
antees that there exists at least one nonrandomized Markov policy, so IT
and IT" are nonempty.

If & = (po, Hy,- - - » hy—1) is @ nonrandomized Markov policy, then 7 is a
finite horizon version of a policy in the sense of Section 2.1. The notion of
policy as set forth in Definition 8.2 is wider than the concept of Section 2.1
in that randomized non-Markov policies are permitted. It is narrower in
that universal measurability is required.

We are now in a position to make precise expression (2). In this and
subsequent discussions, we often index the state and control spaces for
clarity. However, except in Chapter 10 when the nonstationary model is
treated, we will always understand S, to be a copy of S and C, to be a copy
of C. Suppose pe P(S) and @ = (1o, i,- - - » Uy—1) is @ policy for the model of
Definition 8.1. By Proposition 7.45, there is a unique probability measure
ry(m,p) on SeCo- - - Sy-1Cn—y such that for any universally measurable
function h:SoCy -+ - Sy—Cn - — R* which satisfies either (h™ dry(m,p) < o0
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or [h™ dry(m,p) < oo, we have

[hdrympy= ([ [ [ [ hostto . xwo sty )

X #N—1(d”1v—1|x0auo,~ coUN—2,XN—1)

x t(de—llxN—Z:uN—Z)' : 't(dxﬂxmuo)#o(d“olxo)P(dxo), 4)
where #(dx'|x,u) is the Borel-measurable stochastic kernel defined by (3).
Furthermore we have from (4) that jhdrN(n, p,) 1s @ universally measurable

function of x (Proposition 7.46), and if h and = are Borel-measurable, then
jhdrN(n, D) 1s a Borel-measurable function of x (Proposition 7.29).

Definition 8.3 Suppose 7 = (ug, 41,- - -, Uy—1) is a policy for the model
of Definition 8.1. For K < N, the K-stage cost corresponding to m at x€ S is

K—-1

JK. n(x) = f[kzo akg(xka uk)] dVN(TE, px)a (5)

where, for each 7eIl’ and pe P(S), ry(x, p) is the unique probability measure
satisfying (4). The K-stage optimal cost at x is
k(x) = inf Jg o(x). (6)

nell’

If ¢ > 0, the policy « is K-stage e-optimal at x provided

JE(x) + ¢ if J¥(x)> —oo,

TAx) < {—1/8 if JE(x) = — oo

If Jg (x) = J¥(x), then = is K-stage optimal at x. If = is K-stage ¢-optimal
or K-stage optimal at every x €S, it is said to be K-stage ¢-optimal or K-stage
optimal, respectively. If {¢,} is a sequence of positive numbers with ¢, {0,
a sequence of policies {r,} exhibits {¢,}-dominated convergence to K-stage
optimality provided

lim Jg . =J§,

and forn=2,3,...
JE(x) + &, if JE(x)> —o0,
<
T mlX) < {JK, o (X) + &y if Ji(x)= —o0.

If K = N, we suppress the qualifier “K-stage” in the preceding terms.

Note that J§ is independent of the horizon N as long as K < N. Note
also that Jg .(x) is universally measurable in x. If 7 is a Borel-measurable
policy and g is Borel-measurable, then Jy .(x) is Borel-measurable in x.
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For 7 = (uo, ty» - - - »uny—1) €I’ and pe P(S), let g,(r, p) be the marginal
of ry(m,p) on §,Cy.. If we take h = )s,...c,_ \5uCiSis,---Cy_, iD (4), We obtain

amSC = [ o o o [ mG

X t(dxklxk— 15 We— 1)k — 1 (it - 1|x0, Ugse o s Ugmg, Xg1) "
X t(dxl‘XO’ ”o)#o(duo[Xo)P(dxo)

N

Xo,Ug,- - - auk—hxk)

= Cilxo, g, - - U1, X
SoCO...Sk_,ck_,fgk’uk(*kl 0sUos- - - Uk—1,Xp)

X t(dxklxk—l’uk—l)drk-—l(nap) VS eABs,CreHBc. (7
From (1) and (7), we see that ¢,(x, p)(I') = 1. If = is Markov, (7) becomes

9, PSC) = ||

Sk - 1Ck -1

[5G s, we- g, (. p)
VS, eBs, C,eBc. (8)
If either
chkg'qu(n,px)<oo Vrell, xeS, k=0,...,N—1, (F*)
or
chkg+qu(n,px)<oo Vrell, xeS, k=0,...,N—1, (F°)

then Lemma 7.11(b) implies that for every neIl’ and xe S

K-1
JeAx)= ¥ & [ gdgmp)  K=1...,N. ©
k=0

If (F*) [respectively (F~)] appears preceding the statement of a proposition,
then (F*) [respectively (F )] is understood to be a part of the hypotheses of
the proposition. If both (F*) and (F~) appear, then the proposition is valid
when either (F*) or (F7) is included among the hypotheses.

If 7’ eIl is a given policy, there may not exist a Markov policy which
does at least as well as n’ for every x e S, i.e., a policy meIT for which

In (%) < Ty wlx) (10)

for every xeS. However, if x is held fixed, then a Markov policy = can be
found for which (10) holds.

Proposition 8.1 (F*)(F~) If xeS and =’ eI, then there is a Markov
policy 7 such that

JK,n(x)zJK.n’(x)7 K=1’9N (11)
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Proof Letn' = (up,ul,...,uy—1) beapolicy and let xe S be given. For
k=0,1,...,N—1,let ,uk(duk|xk) be the Borel-measurable stochastic kernel
obtained by decomposing g(’, p,) (Corollary 7.27.2), i.e.,

G, pISC) = [ m(ClrIp,pIdx)  VS,eBs, CeeBe, (12)

where p, (7, p,) is the marginal of g,(n’, p,) on S,. From (12) we see that

1= @, p)(0) = [ im(UCw)|x0pm’, p)(dx,),

so we must have 14, (U(x;)|x,) = 1 for p(n, p,) almost every x,. By altering
,uk(-lxk) on a set of p,(n’, p,) measure zero if necessary, we may assume that
(12) holds and @ = (g, 1, - - - , Uy—1) IS @ policy as set forth in Definition 8.2.
In light of (9), (11) will follow if we show that g,(n’, p,) = qi(m, p,) for k =
0,1,...,N — 1. For this, it suffices to show that, fork =0,1,...,N — 1,

(', p)(SkCh) = qi(m, p,)(S,Cy) VS eABs, CreBc. (13)

We prove (13) by induction. For k =0, S;e %5 and C,e %, we have, from
(12),

qo(m', p)(SoCo) = f§o #o(golxo)Px(dxo) = qo(7, Px)(SoCo).

If g, p.) = qulm, p.), then for iy € Bs, Ciy 1 € B, We have, from (12),

Gk+ 17, p)(Sk+1Chs1) = f

Sk +

l.Uk+ 1(Crs 1|Xk+ DPe+1(, p)(dxy 1), (14)
From (7) we see that
P+ 1(W, p)(Skv1) = fskck 1(Sk+1 kao w) dqi(m', py),
soif h:S, ., — [0,00] is a Borel-measurable indicator function, then
Lk . h(xXi+ 1) dpics 1 (T, p)(dXp 1) = fSka Lk . (s U+ 1|5, 14y

X dqy(’, px)- (15)
Then (15) holds for Borel-measurable simple functions, and finally, for all
Borel-measurable functions h:S,,; — [0,00]. Letting h(x,,,) in (15) be
U+ 1(Cr s 1|xk+ 1), we obtain from (14), the induction hypothesis, and (8)

i+ 1(75,’ Px)(§k+ 1Qk+ 1) = J:Ska .[SH . M+ 1(Qk+ 1|Xk+ 1)t(dxk+ 1|xk, uk)
X dgy(m', py)
= fSka f& L M (Gt 1‘Xk+ DXy ’xlm w,) dgy(m, p)

= G+ (T, P (S +1Ci 1),
which proves (13) for k + 1. Q.E.D.
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Corollary 8.1.1 (F*)(F™) ForK=1,2,...,N, we have
JE(x) = inf Jg (x) VxeS,

nell

where IT is the set of all Markov policies.

Corollary 8.1.1 shows that the admission of non-Markov policies to our
discussion has not resulted in a reduction of the optimal cost function. The
advantage of allowing non-Markov policies is that an e-optimal nonran-
domized policy can then be guaranteed to exist (Proposition 8.3), whereas
one may not exist within the class of Markov policies (Example 2).

8.2 The Dynamic Programming Algorithm—Existence of
Optimal and e-Optimal Policies

Let U(C|S) denote the set of universally measurable stochastic kernels
won C given S which satisfy ,u(U(x)|x) =1 for every xeS. Thus the set of
Markov policies is IT = U(C|S)U(C|S)- - - U(C|S), where there are N factors.

Definition 8.4 Let J:S — R* be universally measurable and pe U(C|S).
The operator T, mapping J into T ,(J):S — R* is defined by

T,J)(x) = fc [g(x,u) + o fs J(x)t(dx|x, u)] p(dulx)
for every xeS.

The operator T, can also be written in terms of the system function f
and the disturbance kernel p(dw|x, u) as [cf. (3)]

T (J)(x) = f o+ f I, W) Jp(dw]x, )] (dul).

By Proposition 7.46, T,(J) is universally measurable. We show that under
(F7*) or (F7), the cost corresponding to a policy @ = (uo,. . ., iy-1) can be
defined in terms of the composition of operators T, T, -+ T, _,.

Lemma 8.1 (F*)(F~) Let = (to,M1,---.4n—1) be @ Markov policy
and let J,:S — R* be identically zero. Then for K =1,2,..., N we have

JKJ‘ = (Tlio U Tux -1)(‘]0)9 (16)

where T, - - T,, _, denotes the compositionof T, ..., T,

UK K-1"

Proof We proceed by induction. For xe S,
J1.A) = [gdaglm. p.)

= [, ax uo)ioldugl) = T, (Jo)(x).
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Suppose the lemma holds for K — 1. Let & = (g1, {2, - . , iy — 1, i), Where p
is some element of U(C|S). Then for any x€S, the (F*) or (F~) assumption
along with Lemma 7.11(b) implies that (5) can be rewritten as

JeAx) = [, gt uomolduo) + o [, [ [ -+ fc[z ak*lg(xk,u»]

X phg— 1 (dug - | xg - )Hdxg 1| Xg— 5, U 5) "
x #1(d“1lx1)t(dx1 X, ”0)/«‘0(d“0|x)

= fcog(x’ uo)#o(duolx) + CZJ;OJ;‘JK_ lyﬁ(xl)t(dxl|x, uO),uo(duon). an
Under (F7), fc, 9" (x, uo)uo(duo|x) < co and
fCo J:SI[JK“ 1. 206 )t(dxy

while under (F*) a similar condition holds, so Lemma 7.11(b) and the
induction hypothesis can be applied to the right-hand side of (17) to conclude

X, o) | +,u0(duo]x) < o,

T Ax) = f%[go@ o) + o [ (T T W) )eldx,

= (Tyo Ty Tup - )Jo)X). Q.E.D.

Definition 8.5 Let J:S — R* be universally measurable. The operator
T mapping J into T(J):S — R* is defined by
ol

Similarly as for T,, the operator T may be written in terms of f and
p(dw|x,u) as
X, u)}.

If u is nonrandomized, the operators T, and T of Definitions 8.4 and 8.5 are,
except for measurability restrictions on J and u, special cases of those
defined in Section 2.1. In the present case, the mapping H of Section 2.1 is

X, uo)]ﬂo(d“olx)

ue U(x)

TU)(x) = inf {g(x, u) + o fs JO)tdx’

for every xeS8.

TU)(x) = inf {g(x, w) + o [ IL0xuw)]p(aw

ueU(x)

H(x,u,J) = g(x,u) + ocfSJ(x/)t(dx’ X, u)

=g(x,u) + o fW J[f(x, u, w)]p(dwlx, u).

We will state and prove versions of Assumptions F.1 and F.3 of Section 3.1
for this function H. Assumption F.2 is clearly true. Furthermore, if ue U(C|S),
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J1,J5:S —» R*areuniversally measurable,and J; < J,,then T ,(J,) < T ,(J>)
and T(J,) < T(J,). Ifre(0, o0), then T ,(J, +7) = T ,(J;) + arand T(J, + 1) =
T(J,) + or. We will make frequent use of these properties. The reader should
not be led to believe, however, that the model of this chapter is a special case
of the model of Chapters 2 and 3. The earlier model does not admit measur-
ability restrictions on policies.

By Lemma 7.30(4) and Propositions 7.47 and 7.48, T(J) is lower semi-
analytic whenever J is. The composition of T with itself k times is denoted
by T ie., TJ) = T[T*"'(J)], where T°(J) = J. We show in Proposition
8.2 that under (F*) or (F~) the optimal cost can be defined in terms of T".
Three preparatory lemmas are required.

Lemma 8.2 Let J:S — R* be lower semianalytic. Then for ¢ > 0, there
exists ue U(C|S) such that

T, (J)x) < TU)(x) + ¢ VxeS,
where T(J)(x) + ¢ may be — co.

Proof By Proposition 7.50, there are universally measurable selectors
U2 S — Csuch that form = 1,2,...and x€ S, we have u,(x)e U(x) and

TJ)(x)+ ¢ if TJ)(x)> —oco,

kanu)s{_lm if TU)(x) = —co.

Let u(dulx) assign mass one to p,(x) if T(J)(x) > —oo and assign mass
12" to pp(x), m=1,2,...,if T(J)(x) = — 0.
For each Ce %,

2clmi(x)] if T(J)(x)> —c0,
p(Clx)=< = )
21(1/2'"))(9[%(36)] if T(J)(x) = — o0,

is a universally measurable function of x, and therefore u is a universally
measurable stochastic kernel [Lemma 7.28(a),(b)]. This u has the desired
properties. Q.E.D.

Lemma 8.3 (F*) If J,:S — R* is identically zero, then TX(J,)(x) >
— oo for every xe§, K = 1,...,N, where T* denotes the composition of T
with itself K times.

Proof Suppose for some K < N and Xe S that
Ti(Jo)(x)> —o0, j=0,...,K—1,
for every xe S, and

TXJ)(F) = — 0.
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By Proposition 7.50, there are universally measurable selectors y;:S — C,
j=1,...,K —1,such that p;(x)e U(x) and

(T T HJ)X) < TN +1, j=1,....K—1,

HEK -

for every xeS. Then

(Tul U Tﬂx- 1)(‘]0) < (Tul U Tux—z)[T(JO) + 1]
= (Tﬁll. o Tux-a)[TZ(JO) +1+ O(]

ST ')+ 14+a+-+ o872

where the last inequality is obtained by repeating the process used to obtain
the first two inequalities. By Lemma 8.2, there is a stochastickernel u, € U(C|S)
such that

(T T* o)) = — 0.
Then
(Tuo Ty, Tue J)X) < T, [TH M) + 14+ o+ - 4+ a7 ?](X) = — 0.

Choose any pe U(C|S) and let @ = (Uo,- - -, Uk —1, M- - - » 1), SO that mellL
By Lemma 8.1,

Ho BK -1

K-1

Y o [daymp) = Tk oD = Ty T JIQF) = o0,

k=0
so for some k<K —1, [g~ dgy(n,ps) = co. This contradicts the (F™)
assumption. Q.E.D.

Lemma 8.4 Let {J,} be a sequence of extended real-valued, universally
measurable functions on S and let u be an element of U(C|S).

(@) If T,(J;)(x) < oo for every xe S and J, ! J, then T, (J,) | T ,(J).

(b) IfT,(J7)(x) < coforeveryxeS,g=>0,andJ,TJ,then T (J)1 T, (J)

() If {J,} is uniformly bounded, g is bounded, and J, — J, then
T,(J) = T,J).

Proof Assume first that T,(J,) < oo and J, { J. Fix x. Since

f[g(x, u) + o f T, ()e(dx’

x, u) ] pu(dulx) < oo,

we have
g(x,u) + ochl(x’)t(dx’lx, u) < oo

for u(du|x) almost all u. By the monotone convergence theorem [Lemma
7.11(f)],

g(x,u) + o fJ (Xt(dx

x,u)dg(x,u) + o fJ(x’)t(dx’]x, u)
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for pu(du|x) almost all u. Apply the monotone convergence theorem again to
conclude T ,(J)(x)} T (J)(x).

If T,(J7)<o0,g>0,and J,1J, the same type of argument applies. If
{J,} is uniformly bounded, g bounded, and J,, — J, a similar argument using
the bounded convergence theorem applies. Q.E.D.

The dynamic programming algorithm over a finite horizon is executed
by beginning with the identically zero function on S and applying the
operator T successively N times. The next theorem says that this procedure
generates the optimal cost function. In Proposition 8.3, we show how
e-optimal policies can also be obtained from this algorithm.

Proposition 8.2 (F*)(F~) Let J, be the identically zero function on S.
Then

= TXJ,), K=1,...,N. (18)

Proof 1t suffices to prove (18) for K = N, since the horizon N can be

chosen to be any positive integer. Forany = = (uo,. . . , iy—1)€Iland K < N,
we have

Ton = (Tuy Tue JJ0) = (T T, TIUo) 2 TX(Jo),  (19)
where the last inequality is obtained by repeating the process used to obtain

the first inequality. Infimizing over eIl when K = N and using Corollary
8.1.1, we obtain

JE = TJ,). (20)
If (F*) holds, then, by Lemma 8.3, TXJ,) > —, k=1,...,N. For
¢ > 0, there are universally measurable selectors f,:S - C,k=0,...,N — 1,
with fi,(x)e U(x) and
=00 < Ty [T ' J0)](x)
<TJ)X)+ e/l +a+a?+---+a" 1), k=1,...,N,
for every x e S (Proposition 7.50). Then
(TaoTay " Tane- ) 0) < (T Ty T L) To)
+e/(l+a+o?+--+a¥ ]
< (T Ta~ Taw-)[T*(Jo)
+el+a)fl+a+a®+---+a¥ 1)
< TV(Jo) + ¢, (21)
where the last inequality is obtained by repeating the process used to obtain
the first two inequalities. It follows that

JE< TV ). (22)
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Combining (20) and (22), we see that the proposition holds under the (F)
assumption.

If (F~) holds, then Jg .(x) < oo for every xe S, nell, K =1,..., N. Use
Proposition 7.50 to choose nonrandomized policies ' = (pb, . . ., ui_,)ell
such that

(T TV D) L TN MJp),  k=0,...,N—1,
as i — o0. By (19) and Lemma 8.4(a),
Ji< inf (Tyo- ’T“;\}YV_-II)(J())

[CZ TN iN-1)

= inf-- - inf (T, - T - 1)(Jo)

= ll‘lf i il’lf(Tﬂf)o M T“;N-_zz)l:.nf Tugv_-ll(Jo)]

=inf- -~ inf (T o~ - Tyix-2T)(J o)
= TN(J,), (23)

where the last equality is obtained by repeating the process used to obtain
the previous equality. Combining (20) and (23), we see that the proposition
holds under the (F~) assumption. Q.E.D.

When the state, control, and disturbance spaces are countable, the model
of Definition 8.1 falls within the framework of Part I. Consider such a model,
and, as in Part I, let M be the set of mappings u:S — C for which u(x)e U(x)
for every xe S. In Section 3.2, it was often assumed that for every xe S and
ueM,j=0,...,K -1, we have

(T Ty )Jo)(x) < o0, K=1,...,N, (24)
or else for every xe S
inf (T, Ty JJo)x) > — 00, K=1,...,N. (25

n;jeM,0<j<K-1

0

Under the (F*) assumption, Lemma 8.3 implies that
—o0 < T¥(Jy) < inf (Ty Ty ) Jo),

ujeM,0<j<K-1
s0 (25) is satisfied. Under (F 7), we have from Lemma 8.1 that
(T : ‘Tux_l)(J0)=JK.1: < o0,

Ho
where T = (U, . - -, g —1), SO (24) holds. The primary reason for introducing

the stronger (F*) and (F ~) assumptions is to enable us to prove Lemma 8.1.
If one chooses instead to take (16) as the definition of Ji , (as is done in
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Section 3.1), then (24) or (25) suffices to prove Proposition 8.2 along the
lines of the proof of Proposition 3.1 of Part I.

Proposition 8.2 implies the following property of the optimal cost
function.

Corollary 8.2.1 (F*)(F™) For K=1,2,... N, the function J% is
lower semianalytic. .

Proof As observed following Definition 8.5, T(J) is lower semianalytic
whenever J is. Since JE = TX(J,) and J, =0 is lower semianalytic, the
result follows. Q.E.D.

We give an example to show that even when I' = SC and the one-stage
cost g:SC — R* is Borel-measurable, J§ can fail to be Borel-measurable.

ExaMPLE 1 Let A be an analytic subset of [0, 1] which is not Borel-
measurable (Appendix B). By Proposition 7.39, there is a closed set F <
[0,1].47 such that A = projy, 1j(F). Let S=1[0,1], C= .4, T = SC, and
g = Xre- Then

JE(x) = inf g(x,u) = yc(x) VxeS,

ueC
which is a lower semianalytic but not Borel-measurable function. We could
also choose C =[0,1], I' = SC, B a Gssubset of the unit square SC, and
g = ype. This is because A4 and A, the space of irrational numbers in
[0, 1], are homeomorphic (Proposition 7.5). But

No=(([0,1] = {r})

reQ

is a Gs-subset of [0,1], so there is a homeomorphism ¢:.#" — [0,1] such
that @(A4") is a Gs-subset of [0,1]. Let ®:[0,1]4" — [0,1][0,1] be the
homeomorphism defined by

(x,2) = (x, 9(2)).

Then ®([0,1]47) =[0,1]¢(A") is a Gssubset of SC =[0,1][0,1], and
since F is a Gs-set in [0,1].4", B = ®(F) is a Gs-subset of SC which satisfies
projs(B) = A. If g = yp., then again J¥ = y .

We now use Proposition 8.2 to establish existence of e-optimal policies.

Proposition 8.3

(F*) For each ¢ > 0, there exists a nonrandomized Markov ¢-optimal
policy.

(F7) For each ¢ > 0, there exists a nonrandomized semi-Markov e-
optimal policy and a (randomized) Markov ¢-optimal policy.

Proof If (F*) holds, then the policy ({o,- - . ,fiy—;) constructed in the
proof of Proposition 8.2 is e-optimal, nonrandomized, and Markov.
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Assume (F7) holds. We show first the existence of an s-optimal, non-

randomized, semi-Markov policy. Let n' = (b, . . ., ul_) be as in the proof
of Proposition 8.2. Then
Ji=TYJo)= inf (Tyor Tyn-)(Jo)
[(7 TN iN-1) o N-1
= inf IN, ntor iN-1>5
(0seens iN-1)
where glo - iv=0 = (ylo  yiv-1) Choose ¢ > 0 and define
JH(x) + ¢ if J¥(x)> — oo,
0(x) = ] oo
—1/e if J¥(x)= —oo0.

Order linearly the countable set {rUo--—™-9lj; . iv_, are positive
integers} and define n(x) to be the first zo----»*¥ -V such that
JN. LA TR iN- 1)(-x) < H(X)

Let the components of 7(x) be

(po(xo), ui(x1), - - s = 1(Xn-1))-
The set {x|r(x)=r'-->*¥- 9} is universally measurable for each (i, ..., iy ;),
o)
(Bo(x0), u1(X0,X1), - - - » iy —1(X0, XN -1))s

where po(Xo) = ug’(Xo) and w(xo,Xi) = w(x), k=1,...,N —1, is an &
optimal nonrandomized semi-Markov policy.

We now show the existence of an ¢-optimal (randomized) Markov policy.
By Lemma 8.2, there exist uy_, € U(C|S) such that fork=1,...,N

(Toy o T NU0) S THJ) + e/l + ot a? + -+ o).

Proceed as in (21). Q.E.D.

If the (F ) assumption holds and ¢ > 0, it may not be possible to find

a nonrandomized Markov g-optimal policy, as the following example
demonstrates.

ExampLE 2 Let S ={0,1,2,...},C={1,2,...}, W= {w;,w,}, T = SC,
N = 2 and define

TS I B S
g =10 i ox#1,
0 if x=0orx=1o0rw=w,,

ﬂ"‘"“’w)z{l it x#£0 x5 1,and w=w,.

xu)=1-—1/x if x#£0, x#1,
x,u) = 1/x if x#£0, x#1.

P(‘{W1}
P({Wz}
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The (F~) assumption is satisfied. Let 7 = (uo,u;) be a nonrandomized
Markov policy. If the initial state x, is neither zero nor one, then regardless
of the policy employed, x; =0 with probability 1 — (1/x,), and x; =1
with probability 1/x,. Once the system reaches zero, it remains there at no
further cost. If the system reaches one, it moves to x, = 0 at a cost of — p;(1).
Thus Jy A(xo) = —u1(1)/x0 if xo # 0, xo # 1, and J3(xe) = — o0 if xo # 0,
Xo # 1. For any ¢ > 0, = cannot be ¢-optimal.

In Example 2, it is possible to find a sequence of nonrandomized Markov
policies {,} such that Jy . | J¥. This example motivates the idea of policies
exhibiting {¢,}-dominated convergence to optimality (Definition 8.3) and
Proposition 8.4, which we prove with the aid of the next lemma.

Lemma 8.5 Let {J,} be a sequence of universally measurable functions
from S to R* and p a universally measurable function from S to C whose
graph lies in T. Suppose for some sequence {¢,} of positive numbers with
Y% 1 & < o0, we have, for every x €S,

f T (x)e(dx’
and fork =2,3,...

J(x) < J(x) < J(x) + & if J(x)> — o0,
J(x) < T 1(x) + & if J(x)= —o0.

X, 4(x)) < oo, lim J,(x) = J(x)

k—

Then
lim T,(Jy) = T,J). (26)
k=0
Proof Since J < J, for every k, it is clear that
T,(J) < liminf T,(Jy). (27
k= o0

For xeS,

lim sup T,(J5)(9) < g0 wCol] +aimsup [ T 1(09)

+ liin SUD | rerm o J(x)e(dx'|x, p(x)).
Now
h’,fl SUP | sey> - o) Ji(x")t(dx’|x, p(x))

< limsup [f{x'lJ(x'P 0y T |, 1)) + 8k]

k—

= ﬁx'l](x’)> _ o(,\}J(X )t(d.x

X, u(x)).
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If J(x') = — o0, then

LX)+ Y gL J(X),
n=k+1
and since [[J{ (X)) + Yo, &,]t(dX'|x, u(x)) < oo, we have
lim sup

k=

J(x(dx'

X, p(x))

{x'1J(x")= — o0}

< .
k— n=k+1

m f{x,,,(x,)=_w,[fk(x')+ > sn]t(dX’|x,u(x))
{ X, (x) ).

li
fx’lJ(x')= — o} J(x")t(dx

If follows that
limsup T,(J,) < T,(J). (28)
k= 0

Combine (27) and (28) to conclude (26). QED.

Proposition 8.4 (F~) Let {¢,} be a sequence of positive numbers with
&, 0. There exists a sequence of nonrandomized Markov policies {r,}
exhibiting {¢,}-dominated convergence to optimality. In particular, if
JH(x) > — oo for all x € S, then for every ¢ > 0 there exists an e-optimal
nonrandomized Markov policy.

Proof For N =1, by Proposition 7.50 there exists a sequence of non-
randomized Markov policies n, = (ug) such that for all n
T(Jo)(x) + &, if T(Jo)(x) > — o0,
—1/e, if T(Jo)(x)= — 0.
We may assume without loss of generality that
T yJo) < T yn-1(Jo)-

Therefore {r,} exhibits {¢,}-dominated convergence to one-stage optimality.

Suppose the result holds for N — 1. Let , = (uf,. .., ux— ) be a sequence
of (N — 1)-stage nonrandomized Markov policies exhibiting {e,/20}-
dominated convergence to (N — 1)-stage optimality, i.e.,

Tp(Jo)(x) < {

im Jy_1 -, =J8-1,

F-1(x) + (&,/20) if Ji-i(x)>—o0, (29
IN- Lo (X) F (60/20)  1F JF_1(x) = —c0.  (30)

We assume without loss of generality that ) 22, ¢, < co. By Proposition 7.50,
there exists a sequence {u"} of universally measurable functions from S to

In-1.2(%) < {



204 8. THE FINITE HORIZON BOREL MODEL

C whose graphs lie in I" such that

% 1 .
) )+ i TR > — oo, N
Tll"(JN—l)(x) < {—2/8,, lf J;l\;(x)-: — 0. ( )
We may assume without loss of generality that
TJ5-1) < Tyn-1(JF-1), n=23,.... (32)

By Proposition 7.48, the set
A(J%-1) = {(x,wel|u({x’ x,u) > 0}

= {(X» uel f_ Lix % - (x)=— oo}('x/)t(dxllx’ u) <0 } (33)

J{-1(x) = — o0}

is analytic in SC; and the Jankov-von Neumann theorem (Proposition 7.49)
implies the existence of a universally measurable u:projs[A(J%-,)] - C
whose graph lies in A(J% ;). Define

wx) if xeprojs[AJF-1)],
H(x) otherwise.

w'(x) = {

Then #, = (", ,) is an N-stage nonrandomized Markov policy which will
be shown to exhibit {,}-dominated convergence to optimality.
For xeprojs[A(J%-,)], we have, from Lemma 8.5 and the choice of ,
limsup Jy ; (x) = limsup T ,(Jy—-; ,,)(X)

n—oo n—aoo

= T,(U5-0)() = — .

For x¢projs[A(J%-1)], we have #({x'|J§_;(x') = —oo}|x,u) = 0 for every
ue U(x), so by (29)

INl(X) = Tyl In -1, 2,)(X) < Tl IR - 1)(X) + £4/2, (34)
and

limsup Jy ; (x) < limsup T ,(J % - 1)(x) < JF(x)

by (31). It follows that

n—oo

Suppose for fixed xeS we have J¥(x) > —oo. Then x¢ projs[A(JF-1)],
and we have, from (31) and (34),

IN20) S Tl JF- )(X) + 8,/2 < TR(X) + & (36)
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Suppose now that J#(x) = —oo. If x¢projs[A(J%-,)], then (32) and (34)
imply, for n > 2,

In.2X) < TplJF - 1)(X) + €4/2
S Tyn-1(JF-1)(x) + &,/2
S Tyn-iUn-1,m, )(X) + &,/2
S JN.fr,.- 1(x) + 8n/2’

while if xeprojs[ A(J%-)], we have, from (29) and (30),

In 7)) =T (In-1, ) (X)
< Tu(JN— 1.7tn- 1)(x) + 8,,/2
= JIN. 2, (X) + &/2.
In either case,

IN 2 X) S TN - (%) + & (37)

From (35)—(37) we see that {#,} exhibits {¢,}-dominated convergence to
optimality. Q.ED.

We conclude our discussion of the ramifications of Proposition 8.2 with
a technical result needed for the development in Chapter 10.

Lemma 8.6 (F*)(F~) For every peP(S),
[75(p(dx) = inf [y Lop(d)
nell
Proof For peP(S)and nell,

[I3Gop(0) < [Ty 0Pl

which implies
J75ptax) < inf [y (x)ptd). (38)
Choose ¢ > 0 and let #eIl be e-optimal. If p({x|J%(x) = —oo}) =0, then
[Ix.a0p(ax) < [T5pd) + e
and it follows that

inf [y (x)pldx) < [T5(xIpld). (39)
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If p({x|J%(x) = —o0}) > 0, then
[Ix.0p(dx) < =p({x] T5(x) = = 00})e

+ ﬁxu;,(x)> — ) X¥(p(dx) + e. (40)

If [ 75> - oy §(X)p(dX) = oo, then [ J%(x)p(dx) = oo and (39) follows.
Otherwise, the right-hand side of (40) can be made arbitrarily small by letting
¢ approach zero, so inf, . j JIn. x)p(dx) = — oo and (39) is again valid. The
lemma follows from (38) and (39). Q.E.D.

We now consider the question of constructing an optimal policy, if this
is at all possible. When the dynamic programming algorithm can be used to
construct an optimal policy, this policy usually satisfies a condition stronger

than mere optimality. This condition is given in the next definition.
Definition 8.6 Let = (o, ..., ty—;) be a Markov policy and " ~* =
(s s y—1), k=0, ..., N — 1. The policy = is uniformly N-stage optimal if

JN_k’xN—k=J[>\k]_k, k=0,,N—1
Lemma 8.7 (F*)(F~) The policy 7 = (ug,...,uy—1)€Il is uniformly
N-stage optimal if and only if
(T, TV ¥ HJo)=T""MJo), k=0,...,N—1
Proof Ifm = (ug,--.,un_y)1s uniformly N-stage optimal, then
TN ¥ Jo) = Ik = Iy av-x = Ty (Inoio1, av-x-1)
=T, f-r-1)= (T, TV * o) k=0,...,N—1,
where Jo 0o =J§=0. If (T, TV * )Jo)=T""MJo,k=0,....,N—1,
then for all k
¥k = TN_k(Jo) = (TukTN_k_l)(Jo)
= (TﬂkTuk+1TN_k_2)(J0)
= (Tﬂk T TuN—l)(JO)
= JN—k, N ks

where the next to last equality is obtained by continuing the process used to
obtain the previous equalities. Q.E.D.

Lemma 8.7 is the analog for the Borel model of Proposition 3.3 for the
model of Part I. Because (F*) or (F ) is a required assumption in Lemma 8.1,
one of them is also required in Lemma 8.7, as the following example shows.
If we take (16) as the definition of J,_, then Lemma 8.7, Proposition 8.5, and
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Corollaries 8.5.1 and 8.5.2 hold without the (F*) and (F ™) assumptions. The
proofs are similar to those of Section 3.2.

ExampLE 3 Let S={s;t} U {(kj)k=1,2,...; j
U(s) = {a,b}, U(t) = Uk,j) = (b}, k=1,2,...,j=1,2, W=S, and o = 1.
Let the disturbance kernel be given by p(s|s,a) = 1,

pl(k, 1)]s.b] = p[(k.2)

n=1n

© -1
(l,1),b]=k-2<z L2> ki=12,...,

plt|(k,2),b] =1, k=1,2,..., and p(t|t,b) = 1. Let the system function be
f(x,u,w) = w. Thus if the system begins at state s, we can hold it at s or allow
it to move to some state (I, 1), from which it subsequently moves to some
(k,2) and then to t. Having reached ¢, the system remains there. The relevant
costs are g(s,a) = g(s,b) = g(t,b) = 0, g[(k,1),b] =k, g[(k,2),b] = —k, k =
1,2,.... Let @ = (o, tt1, 42) be a policy with ug(s) = b, ui(s) = u,(s) = a.
Then

0 if x,=s,

k if x,=(k1),
—k if x,=(k?2),

0 if x,=t,

T(Jo)(x2) = T,,(Jo)(x2) =

0 if x;,=s,
— 0 if x;=(k1),
—k if x;=(k,?2),
0 if x;, =t

T*(Jo)(x1) = (T, T,)(Jo)(x1)

— 0 if XO=S,

_ - if xo=1(k1),
T3(Jo>(xo>—(TMT”,T“)(JO)(xO)—]_ b a2

0 if xo =1

However, J, 5(s) = o0 > J; 3(s) =0, where T = (lo, M1, H,) and Hy(s) =
Iiy(s) = Tiy(s) = a, so 7 is not optimal and T3(J,) # J%. It is easily verified
that 7 is a uniformly three-stage optimal policy, so Corollary 3.3.1(b) also
fails to hold for the Borel model of this chapter. Here both assumptions (F™)
and (F7) are violated.

Proposition 8.5 (F*)(F™) If the infimum in

inf {g(x, u) + o [ JEHd x, u)}, k=0,....N—1, (41

ue U(x)
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is achieved for each xe S, where J§ is identically zero, then a uniformly N-
stage optimal (and hence optimal) nonrandomized Markov policy exists.
This policy is generated by the dynamic programming algorithm, ie., by
measurably selecting for each x a control u which achieves the infimum.
Proof Let m=(ug,...,Un-1), Where uy_,_,:S — C achieves the

infimum in (41) and satisfies py _,_(x)e U(x)foreveryxeS,k=0,... ,N -1
(Proposition 7.50). Apply Lemma 8.7. Q.E.D.

Corollary 8.5.1 (F*)(F~) If U(x) is a finite set for each xeS, then a
uniformly N-stage optimal nonrandomized Markov policy exists.

Corollary 8.5.2 (F*)(F~) IfforeachxeS,AeR,andk=0,...,N — 1,
the set

Uylx, /) = {u € Ulg(x,u) + o [ JECNHAY | 1) < ;}

is compact, then there exists a uniformly N-stage optimal nonrandomized
Markov policy.

Proof Apply Lemma 3.1 to Proposition 8.5. Q.E.D.

8.3 The Semicontinuous Models

Along the lines of our development of lower and upper semicontinuous
functions in Section 7.5, we can consider lower and upper semicontinuous
decision models. Our models will be designed to take advantage of the
possibility for Borel-measurable selection (Propositions 7.33 and 7.34), and
in the case of lower semicontinuity, the attainment of the infimum in (55)
of Chapter 7. We discuss the lower semicontinuous model first.

Definition 8.7 The lower semicontinuous, finite horizon, stochastic,
optimal control model is a nine-tuple (S,C, U, W,p, f,a,g9,N) as given in
Definition 8.1 which has the following additional properties:

(a) The control space C is compact.
(b) The set T' defined by (1) has the form I' = ( )72, TV, where I'! =
I'?c---,each I'Vis a closed subset of SC, and

lim inf glx,u) = 0.

jow (x.u)elV -V -1
(c) The disturbance kernel p(dw|x, u) is continuous on I

¥ By convention, the infimum over the empty set is oo, so this condition is satisfied if the
IV are all identical for j larger than some index k.
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(d) The system function f is continuous on I'W.
(¢) The one-stage cost function g is lower semicontinuous and bounded
below on T

Conditions (c) and (d) of Definition 8.7 and Proposition 7.30 imply that
#(dx'|x, u) defined by (3) is continuous on T, since for any he C(S) we have

fh(x’)t(dx’[x, u) = fh[ Sx, u, w)]p(dw|x, u).

Condition (e) implies that the (F*) assumption holds.

Proposition 8.6 Consider the lower semicontinuous finite horizon model
of Definition 8.7. For k =1,2,..., N, the k-stage optimal cost function J}
is lower semicontinuous and bounded below, and J} = TJ,). Furthermore,
a Borel-measurable, uniformly N-stage optimal, nonrandomized Markov
policy exists.

Proof Suppose J: S — R* is lower semicontinuous and bounded below,
and define K: I - R* by
K(x,u) = g(x,u) + a fJ(x’)t(dx’]x, u). 42)
Extend K to all of SC by defining
K(x,u) if (x,u)el,
0 if (x,u)¢l.

By Proposition 7.31(a) and the remarks following Lemma 7.13, t13e function
K is lower semicontinuous on I'. For ceR, the set {(x,u)e SC |K(x, u) < c}
must be contained in some I'* by Definition 7.8(b), so the set

{(x, u)eSC|K(x, u) < ¢} = {(x,u)e*|K(x,u) < c}

is closed in I'* and thus closed in SC as well. It follows that K(x, u) is lower
semicontinous and bounded below on SC and, by Proposition 7.32, the
function

R(x, u) = {

T(J)(x) = inf K(x, u) (43)
ueC
is as well. In fact, Proposition 7.33 states that the infimum in (43) is achieved
for every x €S, and there exists a Borel-measurable ¢: S — C such that

T(J)(x) = K[x, ¢(x)] VxeS.

Forj=1,2,...,let ¢;: projs(I'/) — C be a Borel-measurable function with
graph in I'V. (Set D = I'/ in Proposition 7.33 to establish the existence of such
a function.) Define u: S — C so that u(x) = @(x) if T(J)(x) < o0, u(x) = @,(x)
if T(J)(x) = o0 and xeprojs(I'!); and for j = 2,3, ..., define u(x) = ¢;(x) if
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T(J)(x) = oo and xeprojs(I'¥) — projs(I'’~*). Then u is Borel-measurable,
u(x)e U(x) for every xe S, and T ,(J) = T(J).

Since J, =0 is lower semicontinuous and bounded below, the above
argument shows that J§ = T%(J,) has these properties also, and furthermore,

for each k=0, ..., N — 1, there exists a Borel-measurable y,: S — C such
that w(x)e U(x) for every xeS and (T, TN *"1)(J,) = TV %J,). The
proposition follows from Lemma 8.7. Q.ED.

We note that although condition (a) of Definition 8.7 requires the com-
pactness of C, the conclusion of Proposition 8.6 still holds if C is not compact
but can be homeomorphically embedded in a compact space € in such a way
that the image of I/, j = 1,2, ..., is closed in SC. That is to say, the conclu-
sion holds if there is a compact space C and a homeomorphism ¢:C — C
such that for j = 1,2, ..., ®IY) is closed in SC, where

O(x,u) = (x, @(u))-

The continuity of f and p(dw|x,u) and the lower semicontinuity of g are
unaffected by this embedding. In particular, if I'V is compact for each j, we
can take C = # and use Urysohn’s theorem (Proposition 7.2) and the fact
that the continuous image of a compact set is compact to accomplish this
transformation. We state this last result as a corollary.

Corollary 8.6.1 The conclusions of Proposition 8.6 hold if instead of
assuming that C is compact and each I'V is closed in Definition 8.7, we assume
that each I'V is compact.

Definition 8.8 The upper semicontinuous, finite horizon, stochastic,
optimal control model is a nine-tuple (S,C,U, W,p, f,a,g,N) as given in
Definition 8.1 which has the following additional properties:

(a) The set I defined by (1) is open in SC.

(b) The disturbance kernel p(dw|x, u) is continuous on T".

(c) The system function f is continuous on I'W

(d) The one-stage cost g is upper semicontinuous and bounded above
onT.

As in the lower semicontinuous model, the stochastic kernel #(dx’|x, u)
is continuous in the upper semicontinuous model. In the upper semicon-
tinuous model, the (F~) assumption holds. If J:S — R* is upper semicon-
tinuous and bounded above, then K:I' - R* defined by (42) is upper
semicontinuous and bounded above. By Proposition 7.34, the function

T(J)x) = inf K(x,u)

ueU(x)

is upper semicontinuous, and for every ¢ > 0 there exists a Borel-measurable
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u:S — C such that u(x)e U(x) for every xe S, and

TJ)x)+¢ if TJ)(x)> -

T,(J)x) < { e it TU)) = —oo.

Since J,, = 0 is upper semicontinuous and bounded above, so is J* = T*J o),
k=1,2,..., N. The following proposition is obtained by using these facts
to parallel the proof of the (F ™) part of Proposition 8.3.

Proposition 8.7 Consider the upper semicontinuous finite horizon
model of Definition 8.8. Fork = 1,2,. .., N, the k-stage optimal cost function
J§ 1s upper semicontinuous and bounded above, and J§ = T%J,). For each
¢ >0, there exists a Borel-measurable, nonrandomized, semi-Markov,
g-optimal policy and a Borel-measurable, (randomized) Markov, e-optimal
policy.

Actually, it is not necessary that S and C be Borel spaces for Proposition
8.7 to hold. Assuming only that S and C are separable metrizable spaces, one
can use the results on upper semicontinuity of Section 7.5 and the other
assumptions of the upper semicontinuous model to prove the conclusion of
Proposition 8.7.

It is not possible to parallel the proof of Proposition 8.4 to show for the
upper semicontinuous model that given a sequence of positive numbers {ea}
with ¢, { 0, a sequence of Borel-measurable, nonrandomized, Markov policies
exhibiting {e,}-dominated convergence to optimality exists. The set A(J%_,)
defined by (33) may not be open, so the proof breaks down when one is
restricted to Borel-measurable policies.

We conclude this section by pointing out one important case when the
disturbance kernel p(dw|x,u) is continuous. If W is n-dimensional Euclidean
space and the distribution of w is given by a density d(w|x, u) which is jointly
continuous in (x, u) for fixed w, then p(dwlx, u) is continuous. To see this, let
G be an open set in W and let (x,, u,) — (x, u) in SC. Then

lim inf p(G|x;. ) = lim inf fG (W], u) dw
k— o0

k— o0
> fG dw

by Fatou’s lemma. The continuity of p(dw

x,u)dw = p(G

X, u)

x, u) follows from Proposition 7.21."

' Note that by the same argument,

lim inf p(G®|x,, u,) = p(G|x. u),

k=%

50 p(G|xi.u) — p(G|x,u). Under this condition, the assumption that the system function is
continuous in the state (Definitions 8.7(d) and 8.8(c)) can be weakened. See [H3] and [S5].
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In fact, it is not necessary that d be continuous in (x, u) for each w, but
only that (x,,u,) — (x,u) imply d(w|x,,u,) — d(w|x,u) for Lebesgue almost
all w. For example, if W = R, the exponential density

_ exp[—(w — m(x,u))] it w>mx,u),
dlwlx,w) = {0 if w<m(x,u),

where m:SC — R is continuous, has this property, but need not be con-
tinuous in (x, u) for any we R.



Chapter 9

The Infinite Horizon Borel Models

A first approach to the analysis of the infinite horizon decision model
is to treat it as the limit of the finite horizon model as the horizon tends to
infinity. In the case (N) of a nonpositive cost per stage and the case (D) of
bounded cost per stage and discount factor less than one, this procedure has
merit. However, in the case (P) of nonnegative cost per stage, the finite
horizon optimal cost functions can fail to converge to the infinite horizon
optimal cost function (Example 1 in this chapter), and this failure to converge
can occur in such a way that each finite horizon optimal cost function is
Borel-measurable, while the infinite horizon optimal cost function is not
(Example 2). We thus must develop an independent line of analysis for the
infinite horizon model. Our strategy is to define two models, a stochastic
one and its deterministic equivalent. There are no measurability restrictions
on policies in the deterministic model, and the theory of Part I or of Bertsekas
[B4], hereafter abbreviated DPSC, can be applied to it directly. We then
transfer this theory to the stochastic model. Sections 9.1-9.3 set up the two
models and establish their relationship. Sections 9.4-9.6 analyze the sto-
chastic model via its deterministic counterpart.

9.1 The Stochastic Model

Definition 9.1 An infinite horizon stochastic optimal control model,
denoted by (SM), is an eight-tuple (S,C, U, W,p,f,a,g) as described in

213
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Definition 8.1. We consider three cases, where I' is defined by (1) of
Chapter 8:

P) 0<g(x,u)forevery (x,u)el.
(N) g(x,u) <0 forevery (x,u)erl.
(D) O0<a<1,andforsomebeR, —b < g(x,u) < b for every (x,u)el.

Thus we are really treating three models: (P), (N), and (D). If a result is
applicable to one of these models, the corresponding symbol will appear.
The assumptions (P), (N), and (D) replace the (F*) and (F~) conditions of
Chapter 8.

Definition 9.2 A policy for (SM) is a sequence @ = (g, i1, - -) such that
for each k, uk(duk|x0, Ug,- . -, Ug—1,Xy) 1S @ universally measurable stochastic
kernel on C given SC- - - CS satisfying

,uk(U(xk)]xo’an' colgo1,X) =1

for every (xq,uq,- - -, Ux—1,X;). The concepts of semi-Markov, Markov, non-
randomized, and % -measurable policies are the same as in Definition 8.2.
We denote by I1' the set of all policies for (SM) and by I1 the set of all Markov
policies. If 7 is a Markov policy of the form n = (y,,. . .), it is said to be
Stationary.

As in Chapter 8, we often index S and C for clarity, understanding S, to
be a copy of S and C,, to be a copy of C. Suppose pe P(S) and 7 = (1o, 41, - -)
is a policy for (SM). By Proposition 7.45, there is a sequence of unique prob-
ability measures ry(m,p) on SoCq- - *Sy—1Cn-1, N =1,2,.. ., such that for
any N and any universally measurable function h:SqCqy- - -Sy_;Cy-; — R*
which satisfies either [h* dry(m, p) < o or [k~ dry(m, p) < oo, (4) of Chapter
8 is satisfied. Furthermore, there exists a unique probability measure
r(m,p) on SqCoS;C; - such that for each N the marginal of r(r,p) on
S0Co- - *Sy_1Cn_1 is ry(m, p). With ry(n,p) and r(r, p) determined in this
manner, we are ready to define the cost corresponding to a policy.

Definition 9.3 Suppose 7 is a policy for (SM). The (infinite horizon) cost
corresponding to m at xe S is

2o}

JAx) = fl: ZO ok g(xy, uk)J dr(m, p,)
= i ot fg(xk, w) drm, py).! (1)
k=0

" The interchange of integration and summation is justified by appeal to the monotone
convergence theorem under (P) and (N), and the bounded convergence theorem under (D).
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If # = (u,p,...) is stationary, we sometimes write J, in place of J,. The
(infinite horizon) optimal cost at x is

J*(x) = inf J(x). @)
nell’

If ¢ > 0, the policy = is g-optimal at x provided

J*(x) + ¢ if J*(x)> — oo,
Tl < {—1/8 it J*x) = — oo,

If J(x) = J*(x), then & is optimal at x. If  is ¢-optimal or optimal at every
x €8, it is said to be e-optimal or optimal, respectively.

It is easy to see, using Propositions 7.45 and 7.46, that, for any policy =,
J(x) is universally measurable in x. In fact, if = = (o, p1,...) and 7* =
(o, - - - » Mx— 1), then J; «(x) defined by (5) of Chapter 8 is universally measur-
able in x and

lim J (X)) = J(x) VxeSs. (3)
k— 0
If = is Markov, then (3) can be rewritten in terms of the operators T, of
Definition 8.4 as
Hm (T, T )T o)(x) = (%) VxeS§, 4)
k—
which is the infinite horizon analog of Lemma 8.1. If 7 is a Borel-measurable
policy and g is Borel-measurable, then J(x) is Borel-measurable in x (Pro-
position 7.29).

It may occur under (P), however, that lim,, ,, JF(x) # J*(x), where J(x)
is the optimal k-stage cost defined by (6) of Chapter 8. We offer an example
of this.

ExampLE 1 Let S=1{0,1,2,...}, C={1,2,...}, U(x)=C for every
xeS, a=1,

u if x=0, (1) = 1 if x=1,
x—1 if x=0  ICYTl0 it xx1

The problem is deterministic, so the choice of W and p(dw|x, u) is irrelevant.
Beginning at x, = 0, the system moves to some positive integer u, at no cost.
It then successively moves to uy — 1,uy — 2,. . ., until it returns to zero and
the process begins again. The only transition which incurs a nonzero cost
is the transition from one to zero. If the horizon k is finite and u, is chosen
larger than k, then no cost is incurred before termination, so J§#(0) = 0. Over
the infinite horizon, the transition from one to zero will be made infinitely
often, regardless of the policy employed, so J*(0) = 0.

f(x,u)={
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Form = (ug, t41,. . .)€I1" and pe P(S), let q,(x, p) be the marginal of r(x, p)
on S,C,, k=0,1,.... Then (7) of Chapter 8 holds, and if 7 is Markov, (8)
holds as well. Furthermore, from (1) we have

T = % o [ gdaimp)  VxeS, 5)
k=

which is the infinite horizon analog of (9) of Chapter 8. Using these facts
to parallel the proof of Proposition 8.1, we obtain the following infinite
horizon version.

Proposition 9.1 (P)(N)(D) If xeS and =’ eIT’, then there is a Markov
policy 7 such that

Jﬂ:(x) = Jﬂ’(x)‘
Corollary 9.1.1 (P)(N)(D) We have
J*x)= inf J(x)  VxeS,

nell

where I is the set of all Markov policies for (SM).

9.2 The Deterministic Model

Definition 9.4 Let (S, C, U, W, p, f,0,g) be an infinite horizon stochastic
optimal control model as given by Definition 9.1. The corresponding infinite
horizon deterministic optimal control model, denoted by (DM), consists of
the following:

P(S) State space.

P(SC) Control space.

U Control constraint. A function from P(S) to the set of nonempty
subsets of P(SC) defined for each pe P(S) by

U(p) = {ge P(SC)|q(T") = 1 and the marginal of g on § is p}, 6)

where I is given by (1) of Chapter 8.
f  System function. The function from P(SC) to P(S) defined by

7@\ = [ slxwadx,w)  VSeds, )

where #(dx'|x, u) is given by (3) of Chapter 8.
o Discount factor.

g One-stage cost function. The function from P(SC) to R* given by

90) = [ 9(x wadex, ). ®)
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The model (DM) inherits considerable regularity from (SM). Its state and
control spaces P(S) and P(SC) are Borel spaces (Corollary 7.25.1). The
system function f is Borel-measurable (Proposition 7.26 and Corollary
7.29.1), and the one-stage cost function g is lower semianalytic (Corollary
7.48.1). Furthermore, under assumption (P) in (SM), we have g = 0, while
under (N), g <0, and under (D), 0<a<1and —b<g<b.

Definition 9.5 A policy for (DM) is a sequence of mappings % =
(Fos Hy,- - .) such that for each k, fz,: P(S) - P(SC) and (p)e U(p) for every
pe P(S). The set of all policies in (DM) will be denoted by 1. We place no
measurability requirements on these mappings. A policy T of the form
T = (@ n,...) is said to be stationary.

Definition 9.6 Given p, e P(S) and a policy 7@ = (Ho, My, . ..) for (DM),
the cost corresponding to T at p,, is

2]

Ta(po) = Y. #G(4y), ©)

k=0

where the control sequence {g,} is generated recursively by means of the
equation

A= Fdpe),  k=01,..., (10)

and the system equation
Pes1=flg), k=0,1,.... (11)

If 7 = (@5, . .) is stationary, we write Jz in place of J;. The optimal cost
at p, is

T*(po) = inf Tx(po)

The concepts of e-optimal and optimal policies for (DM) are the same as those
given in Definition 9.3 for (SM).

Definition 9.7 A sequence (po,qo,qy,. - .)€ P(S)P(SC)P(SC)- - - is ad-
missible in (DM) if g€ U(p,) and g4 ; € U[f(g)], k = 0,1,. ... The set of all
admissible sequences will be denoted by A.

The admissible sequences are just the sequences of controls gq,q;,. . .
together with the initial state p, which can be generated by some policy for
(DM) via (10) and (11). Except for p,, the measures p, are not included in the
sequence, but can be recovered as the marginals of the measures g, on
S [cf. (6)].

Definition 9.8 Let J:P(S) - R* be given and let fi: P(S) — P(SC) be
such that fi(p)e U(p) for every pe P(S). The operator T, mapping J into
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T:(J):P(S) —» R* is defined by

T()(p) =g[a@)] + «J[f(@p)]  YpeP(S)
The operator T mapping J into T(J): P(S) — R* is defined by

T(J)p) = irgl(f ){y(q)+a7[7(q)]} Vpe P(S).

Because (DM) is deterministic, it can be studied using results from Part I,
Chapters 4 and 5 or from DPSC. This is because there is no need to place
measurability restrictions on policies in a deterministic model. The operators
T, and T of Definition 9.8 are special cases of those defined in Section 2.1.
In the present case, we take H(p,q,J) to be

H(p,q,7) = 3(q) + 2J [ f(@)]-

The monotonicity assumption of Section 2.1 is satisfied by this choice of H.
The cost corresponding to a policy & = (Hg, H1,- - -) as given by (9) is easily
seen to be of the form (cf. Section 2.2)
Jo=1m (Ts,- Tay. )Jo),
N—-owo

where Jy(p) = 0 for every pe P(S). It is a straightforward matter to verify
that under (D) the contraction assumption of Section 4.1 is satisfied when
B is taken to be the set of bounded real-valued functions on P(S), m is taken
to be one, and p = a. Under (P), Assumptions I, I.1, and 1.2 of Section 5.1
are satisfied, while under (N), Assumptions D, D.1, and D.2 of the same
section are in force.

9.3 Relations between the Models

Definition 9.9 Let = (uo, 14y, . . .)€ Il be a Markov policy for (SM) and
7 = (Ho, Hi, - - .) € I1 a policy for (DM). Let p, € P(S) be given. If for all k

L#k(Q‘X)Pk(dx) = (P (SC) VSe%s, CeBc, (12)

where p, is generated from p, by 7 via (10) and (11), then = and 7 are said
to correspond at p,. If = and % correspond at every pe P(S), then = and
7 are said to correspond.

If = and & correspond at p,, then the sequence of measures [go(7, po),
q1(m, po), - - -] generated from p, by 7 via (8) of Chapter 8 is the same as
the sequence (qq, 4, - -) generated from p, by T via (10) and (11). If = and
7 correspond, then they generate the same sequence (qo,4;,...) for any
initial p,.
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Proposition 9.2 (P)(N)(D) Given a Markov policy nell, there is a
corresponding e I1. If e I1 and p, € P(S) are given, then there is a Markov
policy n eIl corresponding to 7 at p,.

Proof 1fm = (uo,uy,...)eIlis given, then for each k and any p, e P(S),
there is a unique probability measure on SC, which we denote by T (py),
satisfying (12) (Proposition 7.45). Furthermore,

Ap)(T) = [(iU)pdx) = 1, (13)

$0 T = ([ig, fi1,- - .) is in IT and corresponds to 7. If T = (Fy, iy, . . .)€ I1 and
po€ P(S) are given, let (po, py, p2,. . .) be generated from p, by 7 via (10) and
(11). For each k, choose a Borel-measurable stochastic kernel w(du|x) which
satisfies (12) for this particular p, (Corollary 7.27.2). Then (13) holds, so

m(U)|x) =1 (14)

for p, almost every x. Altering w(dux) on a set of p,-measure zero if necessary,
we may assume that (14) holds for every xeS and (12) is satisfied. Then
= (Ko, HUs,- - .)€II corresponds to 7 at p,. Q.ED.

Proposition 9.3 (P)(N)(D) Let peP(S), nell, and Tell be given. If
n and 7 correspond at p, then

Tup) = [T x)p(dx).

Proof We have from (7) of Chapter 8, (5), (8), (9), and the monotone or
bounded convergence theorems

[70op(ax) = fs[éo [, . gdar. px)]p(dx)

INgE!

o f s f secid dqi(m, p,)p(dx)

k

0

M8

— k
=20 fskckgqu(n,p)

0

M8

o aky [qk(n’ p)]

=TJ«p). Q.ED.

Corollary 9.3.1 (P)(N)(D) Let xeS, nell, and TeIl be given. If = and
7 correspond at p,, then

Ta(pe) = Jo(x).
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Corollary 9.3.2 (P)(N)(D) For every x€S,
T*(py) = J*(x).

Proof Corollaries 9.1.1, 9.3.1, and Proposition 9.2 imply that, for every
xeSs,

T*(p,) = inf T(p,) = inf J(x) = J¥(x). QED.
mell nell

Corollary 9.3.2 shows that J* and J* are related, but in a rather weak
way that involves J* only on S = {p,e P(S)|xeS}. In Proposition 9.5 we
strengthen this relationship, but in order to state that proposition we must
show a measurability property of J*. This is the subject of Proposition 9.4,
which we prove with the aid of the following lemma.

Lemma 9.1 The set A of admissible sequences in (DM) is an analytic
subset of P(S)P(SC)P(SC)- - - .

Proof The set A is equal to 4y N [[ )i o Bi], where

Ao = {(Po>40,41- - -)|do€ Ulpo)},
B, = {(Po»%,‘ha- . -)|‘1k+1e U[f(‘]k)]}%

By Corollary 7.35.2, it suffices to show that 4, and B,, k=0,1,..., are
analytic. Using the result of Proposition 7.38, this will follow if we show
that

A = {(p;,91)€ P(S)P(SC)|q; € U(p,)},
B = {(go,91)€ P(SC)P(SC)|q: € U[ f(q0)]}

are analytic. Let P(T') = {ge P(SC)|q(T") = 1}, where T is given by (1) of
Chapter 8. Then P(I') is analytic (Proposition 7.43). Equation (6) implies that
A is the intersection of the analytic set P(S)P(I') (Proposition 7.38) with the
graph of the function ¢: P(SC) — P(S) which maps g into its marginal on S.
It is easily verified that ¢ is continuous (Proposition 7.21(a) and (b)), so
Gr(o) is Borel (Corollary 7.14.1). Therefore, A is analytic. The set B is the
inverse image of A under the Borel-measurable mapping (go,41) = [ f(90),91],
so is also analytic (Proposition 7.40). Q.E.D.

Proposition 9.4 (P)(N)(D) The function J*:P(S) - R* is lower semi-
analytic.

Proof Define G:A — R* by

G(po. 90,91 -) = Zo (g, (15)
k=
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where A is the set of admissible sequences (Definition 9.7). Then G is lower
semianalytic by Lemma 7.30(2), (4) and Lemma 9.1. By the definition of J*
and A, we have

J¥po)=  inf  G(po.qo.q1,---)  VPo€P(S), (16)
(90,41, - - .)€Apo
so J* is lower semianalytic by Proposition 7.47. Q.E.D.
Corollary 9.4.1 (P)(N)(D) The function J*:S — R* is lower semi-
analytic.

Proof By Corollary 9.3.2,
J*(x) = J*[6(x)]  VxeS,

where 6(x) = p, is the homeomorphism defined in Corollary 7.21.1. Apply
Lemma 7.30(3) and Proposition 9.4 to conclude that J* is lower
semianalytic. Q.ED.

Lemma 9.2 Given pe P(S) and ¢ > 0, there exists a policy & for (DM)
such that

P)D) - Tp) < [T0p(dx) + e,
f JHpdx) +¢  if f JH*(x)p(dx) > — oo,
—1e if f J*(x)p(dx) = — co.

Proof As a consequence of Corollary 9.4.1, [ J*(x)p(dx) is well defined.
Let pe P(S)and ¢ > O be given. Let G:A — R* be defined by (15). Proposition
7.50 guarantees that under (P) and (D) there exists a universally measurable
selector ¢:P(S) — P(SC)P(SC)- - - such that (p,¢(p))e A for every pe P(S)
and

Glp,o(p)] <T*p)+e  VpeP(S).

Let 6:S — P(SC)P(SC)- - - be defined by a(x) = ¢(p,). Then ¢ is universally
measurable (Proposition 7.44) and

G[peo()] <T*x) + ¢ VXES. (17)

Under (N), there exists a universally measurable ¢:S — P(SC)P(SC)- - - such
that for every xeS, (p,,o(x))€eA and

J*¥(x) + ¢ if J¥(x)> — o0,

G < .

[pe. ()] = {—(1 + ) ep,(J¥) if JHx) = — oo,

where p,.(J*) = p({x|J*(x) = — c0})if p({x|J*(x) = —o0}) > Oand p,(J*) =
1 otherwise.

(18)
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Denote ¢(x) = [go(d(xo, to)|x), g1 (d(x1,u)[x),. . .]. Each qyd(x,,u)|x) is
a universally measurable stochastic kernel on S,C, given S. Furthermore,

qo(d(xo, uo)’x) e U(p,) Vxes,
and, fork=0,1,...,
Qe+ 1 (A4 1, gt 1)Ix) € U(f[qk(d(xk’ “k)lx)]) Vxes.
Fork=0,1,..., define g, e P(SC) by
%uB) = [aBlop(dx)  VBeBs.

Theng(T') = 1,k =0,1,.... We show that (p,g,,7;,. . .)€ A. Since the mar-
ginal of go(d(xo, 4o)|X) on Sy is p,, we have

To(S0Co) = [ a0(SoCol0Ip(d) = [ 75, (x)p(dx) = p(So) ~ VSoeBs,
s0 Goe U(p). Fork = 0,1,. .., we have
T 1Sk 1Cics 1) = [ s (S s Cue 1 0ID(AX)
= fs fskck USk+1 |xk, w)qi(d(x, uk)|x)p(dx)
= Jg o 08ks 1] w)Td(x w))  VSs s € Bs.

Therefore g, € U[ /(g,)] and (p, 9o, 1, - - ) €A.

Let @ be any policy for (DM) which generates the admissible sequence
(P, 90,915- - -)- Then under (P) and (D), we have from (17) and the monotone
or bounded convergence theorem

jﬁ(p) = G(I%aanl" . )

= k;O ot fSka 9 (X, w) ol , )
= 3 o [ [0, 000 miasldtn. wlx)p(a)

= fs[kgo o fskckg(xk,uk>qk<d<xk,uk)|x>]p(dx)

= [, 6lp..o()p(dx)

< fs JHx)p(dx) + e.
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Under (N), we have from the monotone convergence theorem

Tu(p) = [ Glpero(x)]p(d). (19)
If p({x|J*(x) = —o0}) = 0, (18) and (19) imply

Tp) < [T*09p(dx) +

where both sides may be —oo. If p({x|J*(x) = —c0}) >0, then [J*(x)
p(dx) = — oo and we have, from (18) and (19),

T < [y s -y L7700 + () — (1 + &3
<e—(1+¢)e=—1/e. QED.
Proposition 9.5 (P)(N)(D) For every pe P(S),
T*(p) = [J#0p(ax).
Proof Lemma 9.2 shows that
T*(p) < [J*op(dx)  ¥peP(S).

For the reverse inequality, let p be in P(S) and let 7 be a policy for (DM).
There exists a policy = € IT corresponding to 7 at p (Proposition 9.2), and, by
Proposition 9.3,

Tup) = [Jopdx) = [I*Cop(d).

By taking the infimum of the left-hand side over T € I1, we obtain the desired
result. QE.D.

Propositions 9.3 and 9.5 are the key relationships between (SM) and (DM).
As an example of their implications, consider the following corollary.

Corollary 9.5.1 (P)(N)(D) Suppose neIl and TeIl are corresponding
policies for (SM) and (DM). Then = is optimal if and only if 7 is optimal.

Proof If r is optimal, then
Tup) = [J00ptdx) = [T*(pd) =THp)  VpeP(S)
If 7 is optimal, then
Joux) = Jups) = T*(ps) = J*(x)  VxeS. Q.ED.

The next corollary is a technical result needed for Chapter 10.
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Corollary 9.5.2 (P)(N)(D) For every pe P(S),
J7*captax) = inf [1,(x)p(a).
Proof By Propositions 9.2 and 9.3,
J*(p) = inf |J(x)p(dx)  VpeP(S).

nell

Apply Proposition 9.5. Q.ED.

We now explore the connections between the operators T, and T and
the operators T and T. The first proposition is a direct consequence of the
definitions. We leave the verification to the reader.

Proposition 9.6 (P)(N)(D) Let J:S— R* be universally measurable
and satisfy J >0, J <0, or —c<J < ¢, ¢ < o0, according as (P), (N), or
(D) is in force. Let J: P(S) — R* be defined by

T(p) = [Jop(ax)  vpeP(s)
and suppose i: P(S) —» P(SC) is of the form
A(PNSC) = [(m(Clx)p(dx)  VSeds, Cede
for some pe U(C|S)". Then f(p)e U(p) for every pe P(S), and
TP = [T)0pd)  ¥peP(s).

Proposition 9.7 (P)(N)(D) Let J:S— R* be lower semianalytic and
satisfy J > 0, J<0,0or —¢c<J<¢ ¢< o, according as (P), (N), or (D)
is in force. Let J: P(S) — R* be defined by

J(p) = [Jptax)  VpeP(s). (20)
Then
TO)p) = [ TP ¥peP(s),
Proof For pe P(S) and ge U(p) we have
9(a) + «J[f@)] = LC[Q(X, u) + dJ;J(X')I(dX'IX, u)Jq(d(x, u))

> [ TW)Ep(ax)

" The set U(C|S), defined in Section 8.2, is the collection of universally measurable stochastic
kernels y on C given S which satisfy p(U(x)|x) = 1 for every xeS.
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which implies
TO)p) 2 [ TU)(x)p(dx).
Given ¢ > 0, Lemma 8.2 implies that there exists pe U(C |S ) such that
J;[g(x, u) +a J; J(x)t(dx'

Let g€ U(p) be such that

x, ) Ju(dulx) < T(J)(x) + &.

9(SC) = [ u(Clop()  VSes,Ceae.
Then

TJ)(p) < J;C[g(x, ) + o [ J()dxx, u):lq(d(x, )

= fs J; [g(x, u) + ocfSJ (x")e(dx'|x, u):l ,u(dulx)p(dx)

< [T + ¢,

where [T(J)(x)p(dx) + ¢ may be — co. Therefore,

TO)p) < [ TU)0p(dx).  QED.

9.4 The Optimality Equation—Characterization of
Optimal Policies

As noted following Definition 9.8, the model (DM) is a special case of
that considered in Part I and DPSC'. This allows us to easily obtain many
results for both (SM) and (DM). A prime example of this is the next
proposition.

Proposition 9.8 (P)(N)(D) We have
J* = T(T*), (21)
J* = T(J*). (22)
Proof  The optimality equation (21) for (DM) follows from Propositions
4.2(a), 5.2, and 5.3 or from DPSC, Chapter 6, Proposition 2 and Chapter 7,

T Whereas we allow g to be extended real-valued, in Chapter 7 of DPSC the one-stage cost
function is assumed to be real-valued. This more restrictive assumption is not essential to any
of the results we quote from DPSC.
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Proposition 1. We have then, for any xe S,
J¥(x) = J*(p) = T(J*)(py) = T(J*)(x)
by Propositions 9.5 and 9.7, so (22) holds as well. Q.E.D.

Proposition 9.9 (P)YN)(D) If # = (f . ..) is a stationary policy for
(DM), then J; = T;(Jp). If m=(u,u,...) is a stationary policy for (SM),
then J, = T,(J,).

Proof For (DM) this result follows from Proposition 4.2(b), Corollary
5.2.1, and Corollary 5.3.2 or from DPSC, Chapter 6, Corollary 2.1 and
Chapter 7, Corollary 1.1. Let = = (u, u,. . .) be a stationary policy for (SM)
andlet T = (4,4, . . .) be a policy for (DM) corresponding to n. Then for each
x€S,

JuUx) = Jdp) = TJ)(py) = T(J ()
by Propositions 9.3 and 9.6. Q.E.D.

Note that Proposition 9.9 for (SM) cannot be deduced from Proposition
9.8 by considering a modified (SM) with control constraint of the form

Uy x) = {u(x)}  VxeS, (23)

as was done in the proof of Corollary 5.2.1. Even if g is nonrandomized
so that (23) makes sense, the set

w = {(x u)|xeS,ueU,(x)}

may not be analytic, so U, is not an acceptable control constraint.

The optimality equations are necessary conditions for the optimal cost
functions, but except in case (D) they are by no means sufficient. We have
the following partial sufficiency results.

Proposition 9.10

(P) IfJ:P(S)—[0,00]and J > T(J), then J > J*.

If J:S —[0,00] is lower semianalytic and J > T(J), then J > J*.
(N) IfJ:P(S)—[—0,0] and J < T(J), then J < J*.

If J:S — [ — 00, 0] is lower semianalytic and J < T(J), then J < J*.
(D) IfJ:P(S)—[—c,c],c < oo,and J = T(J), then J = J*.

If J:S - [—c¢,c], ¢ < oo, is lower semianalytic and J = T(J), then

J =J*

Proof We consider first the statements for (DM). The result under (P)
follows from Proposition 5.2, the result under (N) from Proposition 5.3,
and the result under (D) from Proposition 4.2(a). These results for (DM)
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follow from Proposition 2 and trivial modifications of the proof of Proposi-
tion 9 of DPSC, Chapter 6.

We now establish the (SM) part of the proposition under (P). Cases (N)
and (D) are handled in the same manner. Given a lower semianalytic function
J:S — [0, co] satisfying J > T(J), define J: P(S) — [0, co] by (20). Then

T(p) = [J0ptx) = [ Tx)p(dx) = TANp)  VpeP(S)
by Proposition 9.7. By the result for (DM), J > J*. In particular,
J(x) = J(p,) = T*(p,) = J*(x) VxeS. Q.E.D.

Proposition 9.11 Let 7= (G, &...) and ©=(u,pu,...) be stationary
policies in (DM) and (SM), respectively.

(P) IfJ:P(S)—[0,c0] and J > Ty(J), then J > 7.
If J:S—[0,00] is universally measurable and J > T,J), then
J=>J,.

(N) IfJ:P(S)—>[—0,0] and J < Ty(J), then J < J.
If J:S - [—0,0] is universally measurable and J < T,(J), then
J<J,.

(D) IfJ:P(S)—[—c¢,c],c<oo,and J = TyJ), then J = T .
If J:S = [ —c¢,c], ¢ < o0, is universally measurable and J = T,(J),
thenJ =J,.

Proof The (DM) results follow from Proposition 4.2(b) and Corollaries
5.2.1 and 5.3.2 or from DPSC, Corollary 2.1 and trivial modifications of
Corollary 9.1 of Chapter 6. The (SM) results follow from the (DM) results
and Proposition 9.6 in a manner similar to the proof of Proposition 9.10.
Q.E.D.

Proposition 9.11 implies that under (P), J, is the smallest nonnegative
universally measurable solution to the functional equation

= T, J).

Under (D), J, is the only bounded universally measurable solution to this
equation. This provides us with a simple necessary and sufficient condition
for a stationary policy to be optimal under (P) and (D).

Proposition 9.12 (P)(D) Let 7= (& ...) and = (u,u,...) be sta-
tionary policies i in (DM) and (SM), respectlvely The policy 7 is opt1ma1 if
and only if J* = T,(J*). The policy = is optimal if and only if J* = T,(J%).

Proof If @ is optimal, then J, = J*. By Proposition 9.9, J* = T, (J* )
Conversely, if J* = Ty(J*), then, by Proposition 9.11, J* > J, and 7 is



228 9. THE INFINITE HORIZON BOREL MODELS
optimal. The proof for (SM) follows from the (SM) parts of the same
propositions. Q.ED. '

Corollary 9.12.1 (P)(D) There is an optimal nonrandomized station-
ary policy for (SM) if and only if for each xe S the infimum in

inf {g(x, u) + o f TH)H(dX)x, u)} (24)

ueU(x)

is achieved.

Proof If the infimum in (24) is achieved for every x € S, then by Proposi-
tion 7.50 there is a universally measurable selector u:S — C whose graph
lies in I" and for which

gl u(x)] + o [ T*x)e(dx

= inf {g(x, u) + o fJ *(x)t(dx'|x, u)} VxeS.

ueU(x)

X, u(x))

Then by Proposition 9.8
T,J* =TJ* =J%

so T = (i, 14, . . .) is optimal by Proposition 9.12.
If © = (u, 4, . . .) is an optimal nonrandomized stationary policy for (SM),
then by Propositions 9.8 and 9.9

T(*=T(,)=J,=J*=T(J%,
so u(x) achieves the infimum in (24) for every xe€S. Q.E.D.

In Proposition 9.19, we show that under (P) or (D), the existence of any
optimal policy at all implies the existence of an optimal policy that is non-
randomized and stationary. This means that Corollary 9.12.1 actually gives a
necessary and sufficient condition for the existence of an optimal policy.

Under (N) we can use Proposition 9.10 to obtain a necessary and suffi-
cient condition for a stationary policy to be optimal. This condition is not
as useful as that of Proposition 9.12, however, since it cannot be used to
construct a stationary optimal policy in the manner of Corollary 9.12.1.

Proposition 9.13 (N)(D) Let 7= (& f...) and © = (u,pu,...) be sta-
tionary policies in (DM) and (SM), respectively. The policy 7 is optimal if
and only if 7, = T(J,). The policy = is optimal if and only if J, = T(J,).

Proof If @ is optimal, then J, = J*. By Proposition 9.8

T, =T%=TT* =T,
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Conversely, if J; = T(J,), then Proposition 9.10 implies that J, < J* and &
is optimal.

If 7 is optimal, J, = T(J,) by the (SM) part of Proposition 9.8. The
converse is more difficult, since the (SM) part of Proposition 9.10 cannot be
invoked without knowing that J, is lower semianalytic. Let 7 = (B, .. - .) be
a policy for (DM) correspondlng to = (u k.. .), so that J(p) = jJ ,‘(x)p (dx)
for every pe P(S). Then for fixed pe P(S) and g€ U(p),

9lq) + o7 Fa)] = fsc[g(x, 0 + o [ 7,6, u)}q(d(x, )
>f inf { (x,u) + ocf J(x)t(dx'|x, u} (dx),

ueU(x)
provided the integrand

T(J,)(x) = inf {g(x, W)+ o fs (< )t(dx|x, u)}
ueU(x)

is universally measurable in x. But T(J,) =J, by assumption, which is
universally measurable, so

gla) + 2T, [F(@)] = [J.(9p(dx) = Tu(p)

By taking the infimum of the left-hand side over g€ U(p) and using Proposi-
tion 9.9, we see that

T =J;=TyJp).
The reverse inequality always holds, and by the result already proved for
(DM), 7 is optimal. The optimality of = follows from Corollary 9.5.1.  Q.E.D.

9.5 Convergence of the Dynamic Programming Algorithm—
Existence of Stationary Optimal Policies

Definition 9.10 The dynamic programming algorithm is defined recur-
sively for (DM) and (SM) by
Jolp) =0 VpeP(s),
Jeer(p)=TT)(p)  YpeP(S), k=0.1,...,
Jo(x) =0 VxeSs,
Jir1(x) = T(J)(x) ¥xeS, k=0,1,....
We know from Proposition 8.2 that this algorithm generates the k-stage
optimal cost functions Ji. For simplicity of notation, we suppress the « here.

At present we are concerned with the infinite horizon case and the possibility
that J, may converge to J* as k — co.
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Under (P), J, < J; and so J, = T(J,) < T(J,) = J,. Continuing, we see
that J, is an increasing sequence of functions, and so J,, = lim,_, ,, J, exists
and takes values in [0, + co]. Under (N), J, is a decreasing sequence of
functions and J, exists, taking values in [ — c0,0]. Under (D), we have

Jo< b+ TWJ,),
0<b+TWU)<b+T[b+ T{J)] =1+ )b+ T*J,),
0<b+Th+TU)]=0+a)b+T*JTo)<b+ T[(1 +)b+ THJ,)]
= +a+a?)b+ T(J,),

and, in general,

k-2 k-1
0<b )Y &+ T YJp)<b Y o + THJy).
j=o0 j=0

Ask — oo, weseethat b Y525 of + T*(J,) increases to a limit. But by 2 g0/ =
b/(1 — ), so J, = lim,_, ., T*(J,) exists and satisfies
-b/(l—a)<J,.
Similarly, we have
T, < b/l )
Now if J:P(S) » [ —c¢,¢], ¢ < oo, then
Jo<J +e¢, TT) <TJT +c¢)=ac+ T,

and, in general,

THJ ) < ofc + TH(J).
It follows that
J,, <lim inf TXJ),
k— 0
and by a similar argument beginning with J — ¢ < J,,, we can show that
lim sup,~,, TXJ) < J,. This shows that under (D), if J is any bounded real-
valued function on P(S), then J = lim,_, , T*(J).

The same arguments can be used to establish the existence of J,, =
lim,_, ,, J;. Under (P), J,,:S — [0, +o0]; under (N), J,:S - [ —00,0]; and
under (D), J, = lim,_, , T%J) takes values in [ —b/(1 — o), b/(1 — )] where
J:S - [—c.c], ¢ < oo, is lower semianalytic. Note that in every case, J, is
lower semianalytic by Lemma 7.30(2).

Lemma 9.3 (P)(N)(D) For every peP(S),
Tp) = f./k(x)p(dx), k=0,1,..., k=oo.
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Proof For k=0,1,..., the lemma follows from Proposition 9.7 by
induction. When k = oo, the lemma follows from the monotone convergence
theorem under (P) and (N) and the bounded convergence theorem under (D).

Q.ED.

Proposition 9.14 (N)(D) We have
Jo = J*, (25)
Jo =J* (26)

Indeed, under (D) the dynamic programming algorithm can be initiated
from any J:P(S)— [—¢,c], ¢ < oo, or lower semianalytic J:S —[—c,c],
¢ < o0, and converges uniformly, i.e.,

lim sup |T*(J)(p) — T*(p)| = O, 27)
k— o0 peP(S)
lim sup|T*(J)(x) — J*(x)| = 0. (28)
k— o xeS

Proof The result for (DM) follows from Proposition 4.2(c) and 5.7 or
from DPSC, Chapter 6, Proposition 3 and Chapter 7, Proposition 4. By
Lemma 9.3,

Jux)=Tup,)  ¥xeS, k=0,1,..., k=oo,

so (25) implies (26). Under (D), if a lower semianalytic function J:S — [ — ¢, c],
¢ < o0, is given, then define J:P(S)— [ —¢,c] by (20). Equation (28) now
follows from (27) and Propositions 9.5 and 9.7. Q.E.D.

Case (D) is the best suited for computational procedures. The machinery
developed thus far can be applied to Proposition 4.6 or to DPSC, Chapter 6,
Proposition 4, to show the validity for (SM) of the error bounds given there.
We provide the theorem for (SM). The analogous result is of course true
for (DM).

Proposition 9.15 (D) LetJ:S—[—c,c],c < o0, belower semianalytic.
Then forall xeSand k=0,1,...,

THJ)(x) + b < T**Y(J)(X) + ber s
< JHx) < T U)(X) + By S TXU)(X) + By (29)
where

b = [o/(1 — )] ing[T"(J)(x) — T 1J)(x)], (30)

b= [o/(1 — )] su;s)[T"(J)(x) — T Y)(x)] (31)
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Proof  Given alower semianalytic function J:S — [ —c,c], ¢ < oo, define
J:P(S) - [—c,c] by (20). By Proposition 9.7,

T(J)(p) = fT"(J)(x)p(dx) VpeP(S), k=0,1,....

Therefore
by = [o/(1 - a)]pil;(fs )[T"(j )(p) = T~ (0)(p)],

by = [o/(1 = )] pS;I;I(DS)[T"(j )(p) — T (J)(p)],

where b, and b, are defined by (30) and (31). Taking o; = a, = o in Proposi-
tion 4.6 or using the proof of Proposition 4, Chapter 6 of DPSC, we obtain

T*(J)(p) + by < T***(T)(p) + by,
< J¥(p) < T YI)(p) + brsy < THI)(p) + by

Substituting p = p, in this equation, we obtain (29). Q.ED.

It is not possible to develop a policy iteration algorithm for (SM) along
the lines of Proposition 4.8 or 4.9. One difficulty is this. If at the kth iteration
we have constructed a policy (u, .. . .), where e U(C|S), then J,, is
universally measurable but not necessarily lower semianalytic. We would
like to find y ., € U(C|S) such that T, (J,,) < T(J,,) + ¢ where ¢ > 0 is
some prescribed small number, but Proposition 7.50 does not apply to this
case.

We turn now to the question of convergence of the dynamic programming
algorithm under (P). Without additional assumptions, we have only the
following result.

Proposition 9.16 (P) We have

IA A
<

T < J%, (32)
Jo *, (33)
Furthermore, the following statements are equivalent:

(@ J,=T0,)

(b) J,=J%
© Jo=T{U),
d J,=J*

Proof 1t is clear that (32) holds and, by Proposition 9.10, implies the
equivalence of (a) and (b). Lemma 9.3, Proposition 9.5, and (32) imply (33).
Conditions (a) and (c) are equivalent by Lemma 9.3 and Proposition 9.7.
Conditions (b) and (d) are equivalent by Lemma 9.3 and Proposition 9.5.

Q.E.D.
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In Example 1, we have J(0) = 0 and J*(0) = oo, so strict inequality in
(32) and (33) is possible. We present now an example in which not only is
J,, different from J*, but J, is Borel-measurable while J* is not.

ExampLE 2 (Blackwell) Let X be the set of finite sequences of positive
integers and H the set of functions h from X into {0,1}. Then H can be
regarded as the countable Cartesian product of copies of {0,1} indexed by
2. Let {0,1} have the discrete topology and H the product topology, so H
is a complete separable metrizable space (Proposition 7.4). A typical basic
open set in H is {he H|h(s) = 1 Vse X, h(s) = 0 Vse Z,}, where T, and Z,
are finite subsets of X. Consider a Suslin scheme R:Z — %y defined by

R(s)= {heHJh(s) =1}  VseZX
Then
N(R) = {he H|3(1.Ls.. . ) €A such that h(Cy, Ly, .., ) = 1¥n)

is an analytic subset of H (Proposition 7.36). We show with the aid of
Appendix B that N(R) is not Borel-measurable. Let Y be an uncountable
Borel space and Q:%X — %, a Suslin scheme such that N(Q) is not Borel-
measurable (Proposition B.6). Define y: Y — H by

Ll yeQ(),
w<y)(s>={0 £ veo

If 2, and X, are finite subsets of X, then
Y~ '({heH|h(s) = 1VseZ,, h(s) = 0 VseX,})

_ Lm Q(s)] " Lm (¥ - Q(s))]

ex, ey,

is in %By. The collection & of subsets E of H for which " Y(E)e %y is a
o-algebra containing a base for the topology on H, so, by the remark following
Definition 7.6, & contains %y and y is Borel-measurable. For each seX,
we have Q(s) = ¥ " *[R(s)], so

NQ = Nesw=U Ny [Re)]

zeN s<z zeN s<z
= l//"[ UM N R(S)] =y~ [N(R)].

Since N(Q) is not Borel-measurable, N(R) is also not Borel-measurable.
Define the decision model by taking S = HX*, where £* =X U {0},
C={1,2,...}, U(x) = C for every xe S, and
S([h,0],u) = (h,u),
f([h7(C19C2” .. >Cn)]au) = [hn(clagz-;' .. 7Cn>u)]'
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The system transition is deterministic,' so the choice of W and p(dw|x, u)
is irrelevant. Choose o = 1 and

0 if hw=1,
g([h’o]’“)={1 i hEZ;=0

0 if .8, 0,w=1,

1 if h(y,85,-..,8,,u)=0.

If the system begins at x, = [h,0] and the horizon is infinite, a positive cost
can be avoided if and only if there exists ({4, {,,...)such that h({,,{5,...,(,) =
1 for every n, ie., J¥([h,0]) = 0 if and only if 7€ N(R). Therefore, J* is not
Borel-measurable. Over the finite horizon, we have

Jie1(x) = T(J)(x) = ing{g(x, u) + Ji[f(x,w)]},

g([h’(zlaCZw .. ,C,,)], u) = {

and since C is countable and f, g, and J, are Borel-measurable, J, is
Borel-measurable for k = 0,1,2, . ... It follows that J, is Borel-measurable.

The equivalent conditions of Proposition 9.16 are not easily verified in
practice. We give here some more readily verifiable conditions which imply
that J, = J*.

Proposition 9.17 (P)(D) Assume that there exists a nonnegative integer
k such that for each xS, AeR, and k > k, the set

Ui(x,4) = {u e U(x)

glxu) + o f T () (dx | x, u) < z}» (34)

is compact in C. Then J, = J*, J, = J*, and there exists an optimal non-
randomized stationary policy for (SM).

Proof Under(P), wehave,foreachk,J, < J,,50J,.1 =TJ,) < T(J,),
and letting k — oo we obtain

Jo £ T(J ) (35)

Let xeS be such that J_(x) < oco. By Lemma 3.1 for k >k there exists
u, € U(x) such that

Jeer(¥) = glx,) + [ T )X

Since J, < J; . < -+ < J, it follows that for k > k

glx,u) + o [ 1,(x)e(dx’

X, Uy).

%) < g ) + o [ () x, )
— T ST Vizk
Therefore, {u;|i > k} = U[x,J,(x)] for every k > k. Since U,[x,J,(x)] is
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compact, all limit points of the sequence {u;|i > k} belong to U,[x,J .(x)],
and at least one such limit point exists. It follows that if @ is a limit point of
the sequence {u;|i > k}, then

e () Ux,J,(x)].
k=K
Therefore, for all k > k,
o2 (e ) + o [ J()dx’

X, 1) = Jys1(x).
Letting k — o0 and using the monotone convergence theorem, we obtain

J o) = 906 1) + o [ T (¥)e(dx'|x.B) = T(JT.)(x) (36)

for all xe S such that J, (x) < oo. We also have that (36) holds if J_.(x) = o,
and thus it holds for all xeS. From (35) and (36) we see that J, = T(J )
and conditions (a)—(d) of Proposition 9.16 must hold. In particular, we have
from (35) and (36) that for every x e S, there exists e U(x) such that

T*x) = g(x,7) + o f TE)H(dx |, ) = TI*)(x).

The existence of an optimal nonrandomized stationary policy for (SM)
follows from Corollary 9.12.1.

Under (D), conditions (a)-(d) of Proposition 9.16 hold by Proposition
9.14. If we replace g by g + b, we obtain a model satisfying (P). This new
model also satisfies the hypotheses of the proposition, so there exists an
optimal nonrandomized stationary policy for it. This policy is optimal for
the original (D) model as well. Q.ED.

Corollary 9.17.1 (P)(D) Assume that the set U(x) is finite for each
xeS. Then J, = J* J, = J* and there exists an optimal nonrandomized
stationary policy for (SM). In fact, if C is finite and g and T are Borel-
measurable, then J* is Borel-measurable and there exists a Borel-measurable
optimal nonrandomized stationary policy for (SM).

Corollary 9.17.2 (P)(D) Suppose conditions (a)—(e) of Definition 8.7
(the lower semicontinuous model) are satisfied. Then J, = J*, J_ = J*,
J* is lower semicontinuous, and there exists a Borel-measurable optimal
nonrandomized stationary policy for (SM).

Proof From the proof of Proposition 8.6, we see that J, is lower semi-
continuous for k = 1,2,. .., as are the functions

glx,u) + o f T (< )e(dx’

R X, ) if (x,uel,
K(x,u) = )
o0 if (x,u)¢l.

(37)
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For A€ R and k fixed, the lower level set
{(,weSC|IKi(x,u) <A} =T
is closed, so for each fixed xe S
Ui(x,2) = {ue C|K,(x,u) < 1}

is compact. Proposition 9.17 can now be invoked, and it remains only to
prove that the optimal nonrandomized stationary policy whose existence is
guaranteed by that proposition can be chosen to be Borel-measurable. This
will follow from Proposition 9.12 and the proof of Proposition 8.6 once we
show that J , = J* is lower semicontinuous. Under (P), J, 1 J*, so

o

{xeS|J*(x) <A} = [ {xeS|Ju(x) < A}

k=0

is closed, and J* is lower semicontinuous. Under (D),
Jk - b Z ka T J*,
i=k

so a similar argument can be used to show that J* is lower semicontinuous.
Q.ED.

By using the argument used to prove Corollary 8.6.1, we also have the
following.

Corollary 9.17.3 The conclusions of Corollary 9.17.2 hold if instead of
assuming that C is compact and each I is closed in Definition 8.7, we
assume that each I'V is compact.

Proposition 9.17 and its corollaries provide conditions under which the
dynamic programming algorithm can be used in the (P) and (D) models to
generate J*. It is also possible to use the dynamic programming algorithm to
generate an optimal stationary policy, as is indicated by the next proposition.

Proposition 9.18 (P)(D) Suppose that either U(x) is finite for each
xeS or else conditions (a)—(e) of Definition 8.7 hold. Then for each k>0
there exists a universally measurable y,:S — C such that g (x)e U(x) for
every xe S and

T, Ji) = T (38)

If {w is a sequence of such functions, then for each xeS the sequence
{i(x)} has at least one accumulation point. If u:S — C is universally measur-
able, u(x) is an accumulation point of { 44,(x)} for each x € S such that J*(x) <
o0, and u(x)e U(x) for each xe S such that J*(x) = oo, then = = (i, 1, . ) is
an optimal stationary policy for (SM).
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Proof 1f U(x) is finite for each xe S, then the sets U,(x, ) of (34) are
compact for all k > 0, xe S, and A€ R. The proof of Corollary 9.17.2 shows
that these sets are also compact under conditions (a)—(e) of Definition 8.7.
The existence of functions y,:S — C satisfying (38) such that w,(x)e U(x) for
every x€ S is a consequence of Lemma 3.1 and Proposition 7.50.

Under (P) we see from the proof of Proposition 9.17 that {(x)} has at
least one accumulation point for each x €S such that J*(x) < co and every
accumulation point of { w(x)} is in U(x). If u: S — C is universally measurable
and u(x) is an accumulation point of { i (x)} for each x € § such that J*(x) <
0, then from (35), (36), and Proposition 9.17 we have

T¥x) = gLx p)] + o [ THHA |, 1) (39)

for all xe S such that J*(x) < oco. If u(x) e U(x) for all xS such that J*(x) =
00, then

J¥(x) = T(J*)(x) < g[x, u(x)] + afJ *x)t(dx'|x, u(x)) < 00 = J*(x) (40)

for all xe S such that J*(x) = co. From (39) and (40) we have J* = T, (J*),
and the policy & = (i, 14, . - .) is optimal by Proposition 9.12.

Under (D) we can replace g by g + b to obtain a model satisfying (P) and
the hypotheses of the proposition. The conclusions of the proposition are
valid for this new model, so they are valid for the original (D) model as
well. Q.E.D.

A slightly stronger version of Proposition 9.18 can be found in [S12].

Corollary 9.18.1 If conditions (b)—(e) of Definition 8.7 hold and if each
I'¥ of condition (b) is compact, then the conclusions of Proposition 9.18 hold.

9.6 Existence of ¢-Optimal Policies

We have characterized stationary optimal policies and given conditions
under which optimal policies exist. We turn now to the existence of e-optimal
policies. For fixed xeS, by definition there is a policy which is e-optimal
at x. We would like to know how this collection of policies, each of which is
e-optimal at a single point, can be pieced together to form a single policy
which is e-optimal at every point. There is a related question concerning
optimal policies. If at each point there is a policy which is optimal at that
point, is it possible to find an optimal policy ? Answers to these questions are
provided by the next two propositions.

Proposition 9.19 (P)(D) For each ¢ > 0, there exists an e-optimal non-
randomized Markov policy for (SM), and if o < 1, it can be taken to be
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stationary. If for each xe S there exists a policy for (SM) which is optimal
at x, then there exists an optimal nonrandomized stationary policy.

Proof Choose ¢ >0 and g, > 0 such that Y % 0¥, =& If o < 1, let
& = (1 — a)e for every k. By Proposition 7.50, there are universally measurable
functions w,:S— C, k=0,1,..., such that w(x)e U(x) for every xe S and

T,J*<J*+¢.
If « < 1, we choose all the y, to be identical. Then
(T Tu)I*) S Ty - (J*) + 0 < T* + 1 + .

Continuing this process, we have

k
CTIUH) S T* 4 Y ade; < J* +og,
j=0

T

3¢

(T,

Ho

and, letting k — oo, we obtain

lim(T,,T,, T, )(J*) < J* + .
k—

Under (P) we have
Jo=1Im(T,,T,, - T, )NJo) < im(T,,T,, - T,)J*), (41)
k— k= o

SO 7 = (lo, M1, . . .) Is e-optimal. Under (D),
Jo < J* + [b/(1 — o],
T o) S (T Ty, - T)I* + [b1 — 2)])
= [0 = )] + (T, T, * T, )(J¥),

(T

Ko

T

©1

so (41) is valid and 7 = (uo, iy, . .) is e-optimal. This proves the first part of
the proposition.

Suppose that for each xe S there is a policy for (SM) which is optimal
at x. Fix x and let @ = (uo, ;.. ..) be a policy which is optimal at x. By
Proposition 9.1, we may assume without loss of generality that x is Markov.
By Lemma 8.4(b) and (c), we have

JH(x) = Jo(x)
= im(T,,T,, - T,)(Jo)(x)

= Tuolilim(Tm' .- Tnk)(JO)J(x)
> T, (J*)x) = T(J*)(x) = J*(x).
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Consequently,
T, (J*)(x) = T(J*)(x).

This implies that the infimum in the expression
inf {g(x, u) + « f.] *(x)e(dx'|x, u)}
ueU(x)

is achieved. Since x is arbitrary, Corollary 9.12.1 implies the existence of an
optimal nonrandomized stationary policy. Q.E.D.

Proposition 9.20 (N) For each ¢ > 0, there exists an e-optimal non-
randomized semi-Markov policy for (SM). If for each xeS there exists a
policy for (SM) which is optimal at x, then there exists a semi-Markov
(randomized) optimal policy.

Proof Under (N) we have J, | J* (Proposition 9.14), so, given ¢ > 0,
the analytically measurable sets

Ay = {xeS|J¥(x) > — 00, Ju(x) < J*(x) + ¢/2}
U {xeS|JH(x) = — o0, Jy(x) < —(2 + &%)/2¢}

converge up to S as k — co. By Proposition 8.3, for each k there exists a
k-stage nonrandomized semi-Markov policy * such that for every xe S

J(x) + (g/2) if Jx)> — o0,
—1/e if Jyx)= —oo0.

Then for x € A, we have either J¥*(x) > — oo and
J e x) < Ji(x) + (6/2) < T*(x) + &,
or else J*(x) = — 0. If J*(x) = — oo, then either J,(x) = — o0 and

Jk, n"(x) < - 1/89

Jk, ,,k(X) < {

or else J,(x) > — oo and
Ji(X) S Tlx) + (6/2) < —[(2 + €))/2¢] + (¢/2) = —1/e.

Choose any pe U(C|S) and define #* = (uf,. .., -1, i 1. . .), where 7° =
(uk,. .., uk_,). For every x€ A4,, we have

J*(x) + ¢ if J*¥(x)> —o0,

Talx) < Ty i) < {_ e if J*x)= —oo,

so #* is a nonrandomized semi-Markov policy which is ¢-optimal for every
x€ A,. The policy 7 defined to be #* when the initial state is in A, but not
in A; for any j < k, is semi-Markov, nonrandomized, and g-optimal at every
xel Jiz1 A =S.
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Suppose now that for each xe S there exists a policy =™ for (SM) which
is optimal at x. Let 7* be a policy for (DM) which corresponds to ¥, and let
(x> 9597, - -) be the sequence generated from p, by 7~ via (10) and (11). If
G:A - [ — 0,0] is defined by (15), then we have from Proposition 9.3 that

JH*(x) = Jox(X) = Tox(px) = G(Px, G5, G55 - - - (42)
We have from Proposition 9.5 and (16) that
J*(X) = j*(px) = lnf G(px7 do>91,- - ) (43)

(90,91, )€Ap,

Therefore the infimum in (43) is attained for every p. € S, where S = {p,| ye S},
so by Proposition 7.50, there exists a universally measurable selector y: 5 —
P(SC)P(SC)- - - such that ¥(p,)eA, and

J*x) = J*(py) = G[pe¥(py)]  Vpi€S.
Let 5:S — S be the homeomorphism d(x) = p, and let ¢(x) = ¥ [5(x)]. Then
¢ is universally measurable, p(x)e A, _, and
J*(x) = G[ps, @(x)] VxeS. (44)
Denote

(P(X) = [qO(d(x09 u0)|X), ql(d(x19u1)|x)’ . ]

For each k > 0, g,(d(x;, uk)lx) is a universally measurable stochastic kernel
on §,C, given S, and by Proposition 7.27 and Lemma 7.28(a), (b), g, (d(x;., ;)| x)
can be decomposed into its marginal pk(dxk|x), which is a universally measur-
able stochastic kernel on S, given S, and a universally measurable stochastic
kernel p(duyx, x;) on Cy given SS,. Since po(dxo|x) = p.(dx,), the stochastic
kernel po(duy|x, x,) is arbitrary except when x = x,. Set

Tio(duo|x) = po(duo|x,x)  VxeS.

The sequence 7 = (Hg, Uy, M- - -) is @ randomized semi-Markov policy for
(SM). From (7) of Chapter 8, we see that for each xe S

qk(n’ px) = qk(d(xka uk)’x) VxGS, k= 0’ 17 e
From (5), (15), and (44), we have

Jr:(x) = G[vaqo(na px)7q1(n’ px)a .. ] = J*(X) VXGS,
so 7 is optimal. Q.E.D.

Although randomized polcies may be considered inferior and are avoided
in practice, under (N) as posed here they cannot be disregarded even in
deterministic problems, as the following example demonstrates.
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ExampLE 3 (St. Petersburg paradox) Let S={0,1,2,...}, C = {0,1},
U(x) = C for every xe S, a =1,

Foou) = x+1 if u=1 x#0,
70 otherwise,
(x,4) = -2 fx#0, u=0,
g =10 otherwise.

Beginning in state one, any nonrandomized policy either increases the state
by one indefinitely and incurs no nonzero cost or else, after k increases, jumps
the system to zero at a cost of —2%*! where it remains at no further cost.
Thus J*(1) = — oo, but this cost is not achieved by any nonrandomized
policy. On the other hand, the randomized stationary policy which jumps the
system to zero with probability + when the state x is nonzero yields an
expected cost of — oo and is optimal at every x€S.

The one-stage cost g in Example 3 is unbounded, but by a slight modifica-
tion an example can be constructed in which g is bounded and the only
optimal policies are randomized. If one stipulates that J* must be finite, it
may be possible to restrict attention to nonrandomized policies in Proposition
9.20. This is an unsolved problem.

If (SM) is lower semicontinuous, then Proposition 9.19 can be strength-
ened, as Corollary 9.17.2 shows. Similarly, if (SM) is upper semicontinuous,
a stronger version of Proposition 9.20 can be proved.

Proportional 9.21 Assume (SM) satisfies conditions (a)—(d) of Definition
8.8 (the upper semicontinuous model).

(D) For each ¢ > 0, there exists a Borel-measurable, ¢-optimal, non-
randomized, stationary policy.

(N) For each ¢ > 0, there exists a Borel-measurable, e-optimal, non-
randomized, semi-Markov policy.

Under both (D) and (N), J* is upper semicontinuous.

Proof Under (D) and (N) we have lim,_ ., J, = J* (Proposition 9.14),
and each J, is upper semicontinuous (Proposition 8.7). By an argument
similar to that used in the proof of Corollary 9.17.2, J* is upper semi-
continuous.

By using Proposition 7.34 in place of Proposition 7.50, the proof of
Proposition 9.19 can be modified to show the existence of a Borel-measurable,
e-optimal, nonrandomized, stationary policy under (D). By using Proposition
8.7 in place of Proposition 8.3, the proof of Proposition 9.20 can be modified
to show the existence of a Borel-measurable, ¢-optimal, nonrandomized,
semi-Markov policy under (N). Q.E.D.



Chapter 10

The Imperfect State Information Model

In the models of Chapters 8 and 9 the current state of the system is known
to the controller at each stage. In many problems of practical interest, how-
ever, the controller has instead access only to imperfect measurements of
the system state. This chapter is devoted to the study of models relating to
such situations. In our analysis we will encounter nonstationary versions
of the models of Chapters 8 and 9. We will show in the next section that
nonstationary models can be reduced to stationary ones by appropriate re-
formulation. We will thus be able to obtain nonstationary counterparts to
the results of Chapters 8 and 9.

10.1 Reduction of the Nonstationary Model—State
Augmentation

The finite horizon stochastic optimal control model of Definition 8.1
and the infinite horizon stochastic optimal control model of Definition 9.1
are said to be stationary, i.c., the data defining the model does not vary from
stage to stage. In this section we define a nonstationary model and show how
it can be reduced to a stationary one by augmenting the state with the time
index.

242
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We combine the treatments of the finite and infinite horizon models.
Thus when N = oo and notation of the form S,,S;,...,Sy_;ork=0,...,
N — 1 appears, we take this tomean S,,S;,...and k =0, 1,. . ., respectively.

Definition 10.1 A nonstationary stochastic optimal control model, de-
noted by (NSM), consists of the following objects:

N Horizon. A positive integer or co.

Sy, k=0,...,N —1 State spaces. For each k, S, is a nonempty Borel
space.

C., k=0,...,N—1 Control spaces. For each k, C, is a nonempty
Borel space.

Uy, k=0,...,N —1 Control constraints. For each k, U, is a function
from S, to the set of nonempty subsets of C,, and the set

I = {(x, uk)lxkesk’ u.€ Uk(xk)} 1)

is analytic in S,C,.

W,,k=0,...,N —1 Disturbance spaces. For each k, W, is a nonempty
Borel space.

pk(dwklxk,uk), k=0,...,N—1 Disturbance kernels. For each Kk,
pildwy|x,, 1) is a Borel-measurable stochastic kernel on W given S,C,.

fi-k=0,...,N —2 System functions. For each k, f, is a Borel-measur-
able function from S,C, W, to S, ;.

o Discount factor. A positive real number.

gr- k=0,...,N —1 One-stage cost functions. For each k, g, is a lower
semianalytic function from I';, to R*.

We envision a system which begins at some x; € S, and moves successively
through state spaces Sy41,S¢+2,... and, if N < oo, finally terminates in
Sy—-1- A policy governing such a system evolution is a sequence 7* =
(Mis Mg+ 15- - - » Mn—1), Where each y; is a universally measurable stochastic
kernel on C; given §,C,- - - C;_,S; satisfying

#j(Uj(xj)|xk’“k,- coUmgX;) =1

for every (x;,u,. .., u;—1,X;). Such a policy is called a k-originating policy
and the collection of all k-originating policies will be denoted by IT*. The
concepts of semi-Markov, M arkov, nonrandomized and # -measurable policies
are analogous to those of Definitions 8.2 and 9.2. The set I1° is also written
as IT, and the subset of I1’ consisting of all Markov policies is denoted by IT.
Define the Borel-measurable state transition stochastic kernels by

LSk 41 ‘xk’ )

= pk({wke I/Vk‘ﬁc(xk’ukvwk)e§k+ 1}|xk’uk) VSk+1€%s, . -
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Given a probability measure p, e P(S,) and a policy n* = (u,. - . , uy—1)€IT%,
define for j=k,k+1,...,N—1

4@ pISC) = [ o [ Jo mi Gt 1)
Xty (dx;|x; - g, 45 4)
X ﬂj—1(duj—1lxk,uk,- .- ,uj-zaxj—l)’ : 'ﬂk(d“k|xk)pk(dxk)
VS,-G.%’SJ., Cjegcj. (2)

There is a unique probability measure g;(7*, p,) € P(S;C)) satisfying (2).
If the horizon N is finite, we treat (NSM) only under one of the following
assumptions:

Jye, 07 Cru)daimip) <0 VeIl xS, k<j<N-1. (F')
‘ k=0,...,N—1.
Jo,97 Cpupdampa) <0 Vrhell xieSp, k<j<N-1 (F)
k=0, .. N—1.
If N = o, we treat (NSM) only under one of the assumptions:
(P) 0 < gulx,,u) forevery (x;,u)el,, k=0,...,N — L

(N) g lx,, ) <0 forevery (x;,u)el}, k=0,...,N— L

(D) 0<a<1, and for some be R, —b < g,(x;, u,) < b for every
()€l k=0,...,N — 1.

As in Chapters 8 and 9, the symbols (F ™), (F7), (P), (N), and (D) will be used
to indicate when a result is valid under the appropriate assumption.
We define the k-originating cost corresponding to n* at x, € S to be

N-1
Tabon k)= Y o [ g0, u)day(w b,
j=k Jbi

and the k-originating optimal cost at x, € S, to be

T k) = inf J (g, k). 3)
nk e TIk

A policy neIl® is e-optimal at x,€ S, if

J*(x0,0) + ¢ if J*(xq,0) > — o0,

T{x0.0) < {_1 P it J*(x0,0) = — <o,

The policy 7 is optimal at xo if J (x4, 0) = J*(xo, 0). We say ne I1° is e-optimal
(optimal) if it is e-optimal (optimal) at every xo€S,. Let {¢,} be a sequence
of positive numbers with ¢, 0. A sequence of policies {r,} = I1° is said to
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exhibit {¢,}-dominated convergence to optimality if

lim J,, (x0,0) = J*(x0,0) Vxo€S0,

n— oo

and forn=2,3,...
® : * _
T (50,0) < {J (%0,0) + &, if  J*(x9,0)> — o0,

J o (X0,0) + &, if J*(x0,0)= —

Definition 10.2 Let a nonstationary stochastic optimal control model
as defined by Definition 10.1 be given. The corresponding stationary sto-
chastic optimal control model, denoted by (SSM), consists of the following
objects. (T is both a terminal state and the only control available at that
state. If N = oo, the introduction of T is unnecessary.):

S = U,’X'O‘ {(xi, k)| x,€ Sk} w {T} State space.

C = Lo {(uy, k)|ue C,} v {T}  Control space.

U Control constraint. A function from S to the set of nonempty subsets
of C defined by U(x;, k) = {(uy, k)|, € Up(xp)}, U(T) = {T}.

W= Lo {( wk,k)|wke W,} Disturbance space.

p(

W€ By, , we define

PL{(Wi> k)| wice W] (xi, K), (e, k)] = Pl Wilxic, - (4)
f System function. We define for k=0,...,N —2
f[(xk’ k)’ (uk> k)7 (Wk’ k)] = [f;c(xka Uy, Wk)’ k + 1]9 (5)
and for the remaining two stages
f[(xN—laN_l)a(uN—lnN_l)a(WN—laN—1)]=T7 (6)
AT, T,w)=T. ()

o Discount factor.
g One-stage cost function. We define

g[(xkﬂ k)’ (uk’ k)] = gk(xln uk)7 (8)
. g(T.T)=0. )
N Horizon.
Consider the mapping ¢, :S, — S given by ¢,(x,) = (x;, k). We endow §
with the topology that makes each ¢, a homeomorphism, and we endow C
and W with similar topologies. The spaces S, C, and W are Borel. The set

= {(x,u)|xeS,ue U(x)}

N-1
= | ([0 k), (e, 0| (e ) € Tiy W {(T, T)}
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is analytic, and g defined on I' by (8) and (9) is lower semianalytic. The dis-
turbance kernel p(dw|x, u) is not defined on all of SC by (4), but it is defined
on a Borel subset of SC containing I' — {(T, T)}, which is all that is necessary.
Likewise, the system function f is not defined on all of SCW by (5)—(7), but
the set of points where it is not defined has probability zero under any policy
governing the system evolution. Both p(dw[x, u) and f are Borel-measurable
on their domains. Thus (SSM) is a special case of the stochastic optimal
control model of Definition 8.1 (N < oo) or Definition 9.1 (N = c0).

If N < o, the (F*) and (F ~) assumptions on (SSM) are given in Section
8.1. These are equivalent to the respective (F*) and (F~) assumptions on
(NSM) given earlier in this section. If N = oo, the (P), (N), and (D) assumptions
on (SSM) of Definition 9.1 are equivalent to the respective (P), (N), and (D)
assumptions on (NSM) given earlier in this section.

The reader can verify that there is a correspondence of policies between
(NSM) and (SSM), and the optimal cost at (x;, k)€ S for (SSM) is J*(x;, k)
given by (3). Because of these facts, results already proved for (SSM) with
either a finite or infinite horizon have immediate counterparts for (NSM).
An illustration of this is the nonstationary optimality equation.

Proposition 10.1 (P)(N)(D) Let J*(x,, k) be defined by (3). For fixed k,
J*(xi, k) is lower semianalytic on S, and

J*(x, k)= inf {gk(xkauk) + aLk+‘J*(Xk+1:k + l)tk(dxk+1|xk,uk)}-

g € Ur(xx)

We do not list all the results for (NSM) that can be obtained from (SSM).
The reader may verify, for example, that the existence results of Propositions
8.3 and 8.4, are valid for (NSM) in exactly the form stated. From Proposi-
tions 9.19 and 9.20 we conclude that, under (P) and (D), an e-optimal non-
randomized Markov policy exists for (NSM), while under (N), an ¢-optimal
nonrandomized semi-Markov policy exists. In what follows, we make use
of these results and reference only their stationary versions.

10.2 Reduction of the Imperfect State Information
Model—Sufficient Statistics

Before defining the imperfect state information model, we give without
proof some of the standard properties of conditional expectations and prob-
abilities we will be using. For a detailed treatment, see Ash [A1]. Throughout
this discussion, (Q, Z, P) is a probability space and X is an extended real-
valued random variable on Q for which either E[X *] or E[X "] is finite.

If 2 =« & is a g-algebra on Q, then the expectation of X conditioned on
2 is any Q-measurable, extended real-valued, random variable E[ X |2](")
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on Q which satisfies
fD X(@)P(do) = [, E[X|2](@)P(dw)  VDe.

It can be shown that at least one such random variable exists. Any such
random variable will be called a version of E[X|2]. If X(w) = b for some
be R and every w € Q, then it can be shown that for any version E[ X|Z](-) the
random variable E[ X|2](-) defined by

E[X|2](») = max {E[ X|2](w), b},

is also a version of E[X|2]. If & = @ is a collection of sets which is closed
under finite intersections and generates the g-algebra & and if Y is an ex-
tended real-valued, Z-measurable, random variable satisfying

fD X(w)P(dw) = fD Y(w)P(dw) VDeé, (10)
then Y satisfies (10) for every De &, and Y is a version of E[X|2]. If § =« @
is a g-algebra, then

E{E[X|2]|€}(w) = E[X|6]() (11)
for P almost every w.
Suppose now that (Q,% ;) and (Q,, % ,) are measurable spaces and

Y;:Q - Q,and Y,:Q — Q, are measurable. Let g:Q,Q, — R* be measurable
and satisfy either E[g* (Y, ;)] < oo or E[g~(Y;, Y>)] < co. We define

E[X|Y;]() = E[X|7(Y;)](w),
where
F(Y) = {Y{'(F)|Fe 7).
We define for y, €Q,
E[X|Y1 = J"1] = E[Xl Yl](@(h)),

where w(y,) is any element of Y7'({y}). Since E[X|Y;] is Z(Y,)-
measurable, it is constant on Y1 '({ y, }), and this definition makes sense. Note
that E[X|Y, = y,] is a function of y,, not of . We have for any y, e Y,

E[g(Y;, Y2)|Y1 = )’1] = E[g(y1, Yz)] (12)

for P almost every y,. We use the phrase “for P almost every y,” to indicate
that, in this case,

P({weQ|(12) fails when y, = Y;(w)}) = 0.
For Fe #,, define
P[YZGFIYJ(@) = E[XF(Y2)|Y1]((U),
P[Y2€F|Y1 = J’1] = E[XF(YZ)’Yl = J’1]~
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Suppose t(dyz] y1) is a stochastic kernel on (Q,, % ,) given Q, such that for
every Fe %,

P[Y2€F|Y1 =y = t(F’y1)

for P almost every y;. Then (12) can be extended to

E[g(y, ¥2)|Y: = ] = E[g(y0, Y2)] = [g(vi,y2e(dyalyy)  (13)

for P almost every y,. We will find (11) and (13) particularly useful in our
treatment of the imperfect state information model. They will be used
without reference to this discussion.

Definition 10.3 The imperfect state information stochastic optimal con-
trol model (ISI) is the ten-tuple (S, C, (Uy,...,Ux_1), Z, &, g, L, Sg, S, N)
described as follows:

S,C,a,9,t State space, control space, discount factor, one-stage cost
function, and state transition kernel as given in Definition 8.1 and (3) of
Chapter 8. We assume that g is defined on all of SC.

Z Observation space. A nonempty Borel space.

U, k=0,...,N —1 Control constraints. Define for k=0,... , N — 1,

Ik = Z()CO' c Ck—IZk' (14)

An element of I is called a kth information vector. For each k, U, is a mapping
from I, to the set of nonempty subsets of C such that

= {(ibu)likelk’ue Uk(ik)} 15)

is analytic.

So Initial observation kernel. A Borel-measurable stochastic kernel on
Z given S.

s Observation kernel. A Borel-measurable stochastic kernel on Z given
CS.

N Horizon. A positive integer or co.

For the sake of simplicity, we have eliminated the system function,
disturbance space, and disturbance kernel from the model definition. In
what follows, our notation will generally indicate a finite N. If N = oo, the
appropriate interpretation is required.

The system moves stochastically from state x, to state x, . ; via the state
transition kernel #(dx, , {|x;.u,) and generates cost at each stage of g(x;, u;).
The observation z, ; is stochastically generated via the observation kernel
$(dzy+ 1|ty X+ 1) and added to the past observations and controls (z,, g, - - -
Zi, uy) to formthe (k + 1)stinformation vector iy, ; = (2o, Ug,- - « 5 Zgs Uy Zk 4 1)-
The first information vector i, = (z,) is generated by the initial observation
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kernel sy(dz,|x,), and the initial state x, has some given initial distribution p.
The goal is to choose u; dependent on the kth information vector i, so as
to minimize

N-1
E{ Z g (xy, ”k)}-
k=0

Definition 10.4 A policy for (ISI) is a sequence 7 = (uq, . . . , uy - ;) such
that, for each k, p(du,|p; i) is a universally measurable stochastic kernel on
C given P(S)I, satisfying

m(Uii|ps i) =1 Y(p;ip) € P(S)I,.

If for each p, k, and i, u,(du,
7 1S nonrandomized.

p; i) assigns mass one to some point in C,

The concepts of Markov and semi-Markov policies are of no use in (ISI),
since the initial distribution, past observations, and past controls are of
genuine value in estimating the current state. Thus we expect policies to
depend on the initial distribution p and the total information vector. In the
remainder of this chapter, IT will denote the set of all policies in (ISI).

Just as we denote the set of all sequences of the form (zo, ug, . . . ,uy_;, 2,) €
ZC---CZ by I, and call these sequences the kth information vectors, we
find it notationally convenient to denote the set of all sequences of the form
(X0,Z0,Ugs- -+ » X, 2y, Uy ) ESZC - - - SZC by H,, and call these sequences the
kth history vectors. Except for u,, the kth information vector is that portion
of the kth history vector known to the controller at the kth stage. Given
peP(S)and @ = (yo,. . ., uy—1) €11, by Proposition 7.45 there is a sequence
of consistent probability measures P,(r,p) on H,, k =0,..., N — 1, defined
on measurable rectangles by

P(m, p)(S0ZoCo - - - SiZiCy)

- f§o on J‘Qo' ’ 'J;k fzkl‘k(gk

X t(dxpfug - 1, Xg— 1)+~ pro(dug

D;Zo,Ug,- - - ’uk—l’zk)s(dzk|uk—laxk)

D; Zo)So(dZO|xo)P(dxo). (16)

Definition 10.5 Given pe P(S), a policy © = (ug,- .., uy—;)€Il, and a
positive integer K < N, the K-stage cost corresponding to m at p is

K-1

JiAp) = f,,x_l[ ) a"g(xk,uu}dPK_l(n,p). (17)

K=0
If N < oo, the cost corresponding to m is Jy_,, and we assume either

N—-1

fHN_,LZOa"g‘(xk,uk)}dPN_l(n,p)<oo Vrell, peP(S) (F")
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or

N-1

[ [ ) akg*(xk,uk)]dPN-l<n,p) < Vrell, peP(S). (F)
“Lk=0

If N = oo, the cost corresponding to = is J, = limg_,, Jg ., and to ensure
that this limit is a well-defined extended real number, we impose one of
the following conditions:

(P) 0<g(x,u) forevery(x,u)eSC.
(N) g(x,u) <0 forevery (x,u)eSC.
(D) 0<oa<1,andforsomebeR, —b < g(x,u) < bforevery (x,u)e SC.

The optimal cost at p is
J¥(p) = inIfI In,«(P)-

The concepts of optimality at p, optimality, e-optimality at p, and e-optimality
of policies are analogous to those given in Definition 8.3.

If N < o0 and (F*) or (F ™) holds, then by Lemma 7.11(b)

N-1

Tndp)= L o[, g m)dPp)  Vrell, pePS) (18

k
If N = o0 and (P), (N), or (D) holds, then

Jp) = kgo ot fHk 9(xx, ) dP(m,p)  Vrell, peP(S). (19)

To aid in the analysis of (ISI), we introduce the idea of a statistic sufficient
for control. This statistic is defined in such a way that knowledge of its
values is sufficient to control the model.

Definition 10.6 A statistic for the model (ISI) is a sequence (179, - - - ,in-1)
of Borel-measurable functions ,: P(S)I, — Y;, where Y, is a nonempty Borel
space, k =0,...,N — 1. The statistic (9,. . - ,4n-1) 1S sufficient for control
provided: '

(a) For each k, there exists an analytic set I, = Y,C such that
projyk(f"k) = Y, and for every pe P(S)

[y = {(ix, u)[[’?k(P; i) ule rk}a (20)
where I', is defined by (15). We define
U(y) = (.- (21)

(b) There exist Borel-measurable stochastic kernels 7,(dy, + 1|y, u) on
Y.+, given Y,C such that for every pe P(S), nell, Y11 €By,, ., k=0,...,
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N — 2, we have

Pk+1(7T,P)[’7k+1(P;ik+ 1)€Xk+1|’7k(P;ik) =V, U = ak] = f(Yis 1|7k,ﬁk) (22)

for P,(r, p) almost every (¥, ;).
(c) There exist lower semianalytic functions §,:[; — [ — o0, 0] satis-
fying for every pe P(S), nell,k=0,..., N — 1,

E[g(xy, Uk)l”lk(l’; i) = Vi, e = U] = G(Fr, W) (23)

for P,(m,p) almost every (7,,%), where the expectation is with respect to
Pk(na p)

Condition (a) of Definition 10.6 guarantees that the control constraint
set U,(i;) can be recovered from #,(p;i,). Indeed, from (15), (20), and (21),
we have for any pe P(S), iyel,, k=0,...,N — 1,

Uiiy) = Uk[’?k(P; i)]- (24)

IfU,(i;) = Cforevery i, el,, k=0,...,N — 1, then condition (a) is satisfied
with [, = Y;C. This is the case of no control constraint. Condition (b)
guarantees that the distribution of y,,; depends only on the values of y,
and u,. This is necessary in order for the variables y, to form the states of a
stochastic optimal control model of the type considered in Section 10.1.
Condition (c) guarantees that the cost corresponding to a policy can be
computed from the distributions induced on the (y,,u,) pairs.

We temporarily postpone discussion on the existence and the nature of
particular statistics sufficient for control, and consider first a perfect state
information model corresponding to model (ISI) and a given sufficient
statistic.

Definition 10.7 Let the model (ISI) and a statistic sufficient for control
(Mo, --.,nny-1) be given. The perfect state information stochastic optimal
control model, denoted by (PSI), consists of the following (we use the notation
of Definitions 10.3 and 10.6):

Y.,k=0,...,N —1 State spaces.

C Control space.

U,,k=0,...,N—1 Control constraints.

o Discount factor.

g, k=0,...,N —1 One-stage cost functions.

T, k=0,...,N —2 State transition kernels.
N Horizon.
" In this context “for Py(r, p) almost every (J,.%,)” means that the set {(xo, Zo, o, . - . , X,

2, ) € Hy| (22) holds when 3, = n,(p;i,). %, = u,} has P,(n, p)-measure one.
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Thus defined, (PSI) is a nonstationary stochastic optimal control model
in the sense of Definition 10.1. The definitions of policies and cost functions
for (PSI) are given in Section 10.1. We will use (~) to denote these objects
in (PSI). For example, I’ is the set of all (0-originating) policies and IT is
the set of all Markov (0-originating) policies for (PSI). If # = (&, . . . , Ax—1)
is a policy for (PSI), then by (24) and Proposition 7.44 the sequence

(ﬁo[duolﬁo(PQio)],- .- 7ﬁN—1[duN—1|770(p;i0)7 Uy, - - -5 UN-2, ’7N—1(P;iN-1):|),
where
ik=(20>u0>"'auk—1’zk)a k=03"~aN_17 (25)

is a policy for (ISI). We call this policy 7 also, and can regard I as a subset
of IT in this sense. If # is a nonrandomized policy for (PSI), then it is also
nonrandomized when considered as a policy for (ISI). We will see in Proposi-
tion 10.2 that 7 results in the same cost for both (PSI) and (ISI).

Define ¢: P(S) — P(Y,) by

o(D)(Xo) = [ o({Zolo(p; o) € Yo} [xolp(dxo)  ¥YoeBy,  (26)

Thus defined, ¢(p) is the distribution of the initial state y, in (PSI) when the
initial state x, in (ISI) has distribution p. By Corollary 7.26.1, for every
Y, € #y, the mapping

Yyo(Xo,p) = 50({Zo|’70(17;zo)€ Yo}lxo)

is Borel-measurable. Define a Borel-measurable stochastic kernel on S given
P(S) by q(dx,|p) = p(dx,). Then (26) can be written as

o)) = jl//XO(XO’ P)Q(dX0|P)'

It follows from Propositions 7.26 and 7.29 that ¢ is Borel-measurable. For
pe P(S), define the mapping V,,: H, = Y,Co - - - Y,C; by

I/lz,k(x0720,u07‘ s Xpy 2, Uy) = ['IO(P; io), Ug,- -, Mi(Ps ik)7uk]a (27)

where (25) holds. For ge P(Y,) and 7 = gﬁo,. .. fin—,) eIl there is a se-
quence of consistent probability measures P,(7, g) generated on Y,Cy - - - Y,C}.,
k=0,...,N — 1, defined on measurable rectangles by

PR a)(%Co %G = [ [ [, B(Cilyouor. w1

X - l(dyk]yk—l’uk—l). ) 'ﬁo(duoly'o)Q(dYO)- (28)

* The disturbance spaces, disturbance kernels, and system functions in (PSI) can be taken
to be W, = Yoy 1s PldwWilvis ) = T(dyys 1| vio i), and fi( v, ue. i) = wy, respectively.
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For a Markov policy #ell, these objects are related to the probability
measures P,(%, p) defined by (16) in the following manner.

Lemma 10.1 Suppose pe P(S)and 7l Thenfork =0,...,N — 1 and
for every Borel set B < Y,C, - - - Y,C;, we have

P&, PV, x(B)] = Pi[# ¢(p)](B). (29)

Proof It suffices to prove that if YoeBy,, Co€PBc,,- - - » Yo € By,
Cie %, then

Pk(ﬁ,P)({”Io(P;io)e Yy, ugeCo,. .., mp;ix) € Y, “kEQk})
= P [#, 0(0)](X%Co - - %Cy).f (30)

For k = 0, (30) follows from (16), (26), and (28). If (29) holds for some k < N,
then using (16), (22), (28), and (29), we obtain

Py 1(ﬁ’P)({’70(P§i0)G Yo, u0€Cos- - Mk+1(Psik+ 1) € Yow 15 sy EQk+1})

= 7 C
J;ﬂo(p:io)elo‘uoego ..... Nr(p; ik) € Y, uc € Cic} fl’k+ 1uk+ 1("'k+ 1|yk+ 1)

X fk(dyk+ 1]’71:(!’; i), w) dPy(7, p)

YoCo. .. YxCr J;,H lﬁk+ (o 1|J’k+ l)fk(dyk-l- 1|,Vk, uk)dpk[ﬁ, (P(P)]
= Pk+1[ﬁ7 (P(P)](ZOQO‘ Y 1Gi ) QED.

As noted earlier, (PSI) is a model of the type considered in Section 10.1.
The (F*) and (F~) conditions of Section 10.1, when specialized to the (PSI)
model, will be denoted by (F*) and (F ~), respectively. These conditions are
not to be confused with the (F*) and (F~) conditions for the ISI model
given in this section. In a particular problem it is often possible to see the
relationship between these finiteness conditions on the two models. In the
general case, the relationship is unclear. We point out, however, that if g is
bounded below or above, then (F*) or (F ™) is satisfied for (ISI), respectively,
and given any statistic sufficient for control, the corresponding g, can be
chosen so as to be bounded below or above, respectively. If a particular
result holds when we assume (F*) on the (ISI) model and (F*) on the (PSI)
model, the notation (F*,F*) will appear. The notation (F~,F~) has a
similar meaning.

* In this context, we define
{no(prio)e Yo.uo€ Co.- - - P k) € Yoo i € Ci}
= (x0,Z0,Uo- - - ~xkazks“k)|’10(17§i0)€_y0~u06§0w P i) € Yoot € Ci

where i; = (zo,ug,. . .. u;_y,z;). We will often use this notation to indicate a set which depends
on functions of some or all of the components of a Cartesian product.
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If N = o0, we consider conditions (P), (N), and (D) for (ISI) and the
corresponding conditions (P), (N), and (D) for (PSI). In this case, however,
if (P) holds for (ISI) and lower semianalytic functions g,:I', » [ — o0, 0]
satisfying (23) exist, there is no loss of generality in assuming that g, >0
for every k, ie., (P) holds for (PSI). Likewise, if (N) or (D) holds for (ISI),
we may assume without loss of generality that (N) or (D), respectively, holds
for (PSI). As in the finite horizon case, we adopt the notation (P, P), (N, N),
and (D, D) to indicate which assumptions are sufficient for a result to hold.

From Section 10.1, we have that when (F*), (F ), (P), (N), or (D) holds,
then the (0-originating) cost corresponding to a policy # for (PSI) at ye Y, is

N-1
Tva) =T o[ Gy dPz.p,) (31)
k=0

where N may be infinite. The (0-originating) optimal cost for (PSI) at ye Y, is
J#(y) = Ainrg Iy, 4. (32)
The remainder of this section is devoted to establishing relations between

costs, optimal costs, and optimal and nearly optimal policies for the (ISI)
and (PSI) models.

Proposition 10.2 (F*,F*)(F~,F7)(P,P)(N,N)(D,D) Forevery peP(S)
and 7 ell, we have
Ty +p) = [, T, d30)o(p)dyo). (33)
Proof From (31), (28), (23), (18), (19), and Lemma 10.1, we have

[ Ivatoian = 3 o [, [ o 8m)dPy plo(p)ay)

- k 7] P.[7
=X f,oco.,.ykck Gy, we) dP[7, 0(p)]
1

k=

where the (F*) or (F~) assumption is used to interchange integration and
summation when N < co, and the monotone or bounded convergence
theorem is used when N = co. Q.E.D.

Corollary 10.2.1 (F*,F*)(F~,F~)(P,P)(N,N)(D,D) Forevery peP(S),

we have

T < [, Txroe(p)dyo). (34)
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Proof The function J%(y,) is lower semianalytic, so the integral in (34)
is defined. From Proposition 10.2, we have

J5() = inf Iy (p) < inf [ Ty (vo)e(p)dyo),
nell rellv?iO
so it suffices to show that
inf [, Ty (000 ()dyo) = [, Tx(volo(p)dyo). (39)
Rell V70 o
This follows from Lemma 8.6 and Corollary 9.5.2. Q.E.D.

We wish now to establish a relationship similar to (33) between the
optimal cost functions for (ISI) and (PSI). In light of Corollary 10.2.1, it
suffices to show that given any policy for (ISI), a policy for (PSI) can be
found which does at least as well. This is formalized in the next lemma, and
the analog of (33) is given as part of Proposition 10.3.

Lemma 10.2 (F* F*)(F~,F~)P,P)N,N)(D,D) Given peP(S) and
nell, there exists 7 € IT such that

InAP) = [, I syo)o(p)dyo). (36)

Proof LetpeP(S)and n = (ug,...,ux-1)€Il be given. Fork=0,...,
N — 1, let Qy(w, p) be the probability measure on Y,C, defined on measurable
rectangles to be

Oi(m, P)(XCy) = Plm, P)({”Ik(P§ )€Y, u € Ck})~ (37)

There exists a Borel-measurable stochastic kernel ﬁk(duk| i) on C, given Y,
such that for every Borel set B = Y,C, we have

0w P)(B) = [, . Au(B,, ) dQu(r p). (38)
In particular,

1 = Pi(m, p)({(ix. up) € Fk})
= Pu(m, p)({[m(ps i) ] € Tu})

= Qu(m. )T = [, . AOu()] 1) d0u(m )

so, altering fi;(du,|y,) on a set of measure zero if necessary, we may assume
that (38) holds and ﬁk(Uk(yk)[yk) = 1forevery y € Y. Let 7 = (fig,. .., An-1)-
Then 7 is a Markov policy for (PSI).

We show by induction that for Y€ By,, C,e%c, k=0,...,N — 1,

Ou(m, PXCy) = Pi[7, o(P]({ yee e, e Ci}). (39)
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We see from (26) and (37) that the marginal of Q4(x, p) on Y, is ¢(p). Equation
(39) for k = 0 follows from (28) and (38). Assume that (39) holds for k. From
(38), (37), (22), and the induction hypothesis, we have

Ok+1(m, P)(Ye+ 1Civ 1)

= ﬁk+1(§k+1IJ’k+1)ko+1(7T,P)

Yie+1Ck+ 1

= ﬁk+1(Qk+1|’7k+1(P§ik+1))de+1(7f’P)

{me+ 1(ps i+ 1)€Y+ 1}

= fHk L,k " P+ 1(Crsr |J’k+ Di(dyy+ 1|”Ik(p; i), u) dPy(m, p)

= fYka J;,H l.ak+ 1(Cr+ 1],Vk+ Di(dyy+ llyka ) dQy(m, p)

YoCo - YiCr Lk+ lﬁk+ 1(Cr+ 1|J’k+ Vi Y+ 1|J’k’ ) dpk[ﬁ, @(p)]

= Py, 1[55, (P(P)]({ Viv1€Yr 1,4 €Cry 1})-

Taken together, (37) and (39) imply that for ¥, € By, ,C,€ B¢, k=0,...,N — 1,
we have

Pk(n’P)({”Ik(P;ik)el/;n”kegk}) = pk[ﬁa(P(P)]({ykeXk,ukegk})- (40)

If (40) is used in place of Lemma 10.1, the proof of Proposition 10.2 can
now be used to prove (36). Q.E.D.

Definition 10.8 Given g P(Y,) and & > 0, a policy #e[l’ is said to be
weakly g-g-optimal if

[, Txoatdyoy + 6 i [, Ti(voladye) > — oo,

~1/e it [, Tt(vo)a(dye) = —co.

The policy 7 is said to be g-optimal if q({ yo € Yo|Tx.2(¥o) = TE(yo)}) = 1.

fyo jN. #{Yo)q(dyo) <

Equation (35) shows that given any pe€ P(S) and ¢ > 0, a weakly ¢(p)-¢-
optimal Markov policy exists. The next proposition shows that such a policy
is ¢-optimal at p when considered as a policy in (ISI).

Proposition 10.3 (F* F*)(F~,F~)(P, P)(N,N)(D,D) We have

50 = [, Tt(roe)dye)  ¥peP(S) (41)

Furthermore, if 7 is optimal, ¢(p)-optimal, or weakly ¢(p)-e-optimal for
(PSI), then 7 is optimal, optimal at p, or ¢-optimal at p, respectively, for
(ISI). If 7 is e-optimal for (PSI) and (F*,F*), (P, P), or (D, D) holds, then
7 1s also e-optimal for (ISI).



10.2 REDUCTION OF THE IMPERFECT STATE INFORMATION MODEL 257

Proof Equation (41) follows from Corollary 10.2.1 and Lemma 10.2.
Let # be e-optimal for (PSI). It is clear that under (P, P) and (D, D), we have

T5(yo) > —o0  Vyee Yy, 42)
SO
jN, Avo) < Tk(o) + ¢ Vyoe Yo. (43)

Under (F*,F™), (42) follows from Lemma 8.3 and Proposition 8.2, so again
(43) holds. We have from (41) and Proposition 10.2 that

Indp) = [, I Avo)o(e)dvo)

< [, JE00)o(p)dyo) + ¢
=JX¥(p)+¢  VpeP(S),

so # is e-optimal for (ISI). The remainder of the proposition follows from
(41) and Proposition 10.2. Q.E.D.

We shall show shortly that a statistic sufficient for control always exists,
and indeed, in many cases it can be chosen so that (PS]) is stationary. The
existence of such a statistic for (ISI) and the consequent existence of the
corresponding model (PSI) enable us to utilize the results of Chapters 8
and 9. For example, we have the following proposition.

-~

Proposition 10.4 (F*, F*)(F~,F7)P,P)N,N)YD,D) If(no,...,Nn-1)
is a statistic sufficient for control for (ISI), then for every & > 0, there
exists an e-optimal nonrandomized policy for (ISI) which depends on
i = (2o, Ug, - - - , U 1,2) Only through #,(p; i), i.e., has the form

= (ol P:mo(P3i0)]s- - - » v —1[P3 v -1(P3 N -1)])- (44)

Under (F*,F7), (P,P), or (D, D), we may choose this e-optimal policy to
have the simpler form

= (,ao[’?o(l’; io)],' N7 1[’71\/— (psin- 1)])~ (45)

Proof Under (E*,F*), (P,P), or (D,D), there exists an e-optimal, non-
randomized, Markov policy # = (fiy,. - - , fiy—1) for (PSI) (Propositions 8.3
and 9.19). This policy 7 is e-optimal for (ISI) by Proposition 10.3, and the
second part of the proposition is proved.

Assume (F~,F7) holds and let {e,} be a sequence of positive numbers
with 2, ¢, < 00 and ¢, 1 0. Let &, = ({5, . . , fix—1) be a sequence of non-
randomized Markov policies for (PSI) exhibiting {e,}-dominated conver-
gence to optimality (Proposition 8.4). By Proposition 10.2 and the (F~, F)
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assumption, we have

Jy, I 27000 (P)dyo) = Ix () < 0 VpEP(S)

Since

Tvambo)+ Y &lli(ve)  VyoeYo,
k=n+1
we have

lim fyo T, 2(Y0)(p)(dyo) = J;o T*(yo)o(p)dyo)  VpeP(S).
Let ¢ > 0 be given and let n(p) be the smallest positive integer n for which

[y, * oo (p)dyo) + &

it [, *Ooee)dye) > — oo,
—1/e

it [, P*oe(e)dyo) = - oo.

Define p,(p; yi) = 85" (y), k = 0,...,N — 1. Then by Propositions 10.2 and
10.3, = given by (44) is an e-optimal nonrandomized policy for (ISI).
Assume (N, N) holds. Consider the nonstationary stochastic optimal
control model (NPSI) for which the initial state space is P(Y,), the initial
control space is a singleton set {u,}, the initial cost function is go(g, up) = 0
for every ge P(Y,), and the initial transition kernel is given by t(dy,|q, uo) =
q(dy,) for every ge P(Y,). For k > 0, the (k + 1)st state and control spaces,
control constraint, cost function, and transition kernel are Y;, C, U,, g,
and 7(dye+ 1| ye» u) of (PSI), respectively. The discount factor is « and the
horizon is infinite. By definition, the optimal cost for (NPSI) at g€ P(Y,) is

inf [ Ti(yo)a(dyo)

fyo Tx. t(¥o)@(p)(dy,) <

which, by Corollaries 9.1.1 and 9.5.2, is the same as

Jy, T¥(vo)atdyo).

Now (NPSI) has a nonpositive one-stage cost function, so, by Proposition
9.20, for each ¢ > 0 there exists an ¢-optimal, nonrandomized, semi-Markov
policy

T = (1(q): Fo(q; Vo) Ba (g3 Y1), - - ).

For fixed g€ P(Y,), let 7(q) be the policy for (PSI) given by
(q) = (Rolq; Yo) 1(g3 y1)s - - )
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Then
[, 7*oatdyo) +2 if [, T*(vo)a(dye) > — oo,
[} 0

~1/s it [, P*Ooaldyo) = — o,

ie., @i(q) is weakly g-¢-optimal for (PSI). By Proposition 10.3, the policy =
defined by (44), where w,(p; yi) = W@(p); yi), is e-optimal for (ISI). Q.E.D.

The other specific results which can be derived for (ISI) from Chapters 8
and 9 are obvious and shall not be exhaustively listed. We content ourselves
with describing the dynamic programming algorithm over a finite horizon.

By Proposition 8.2, the dynamic programming algorithm has the follow-
ing form under (F*,F¥) or (F~,F~), where we assume for notational
simplicity that (PSI) is stationary:

J§(»=0  Vye¥, (46)
() = inf (Gu) +a [Triaylywh k=0 .N—1 @)

ueU(y

[, Tea(voadyo) <

If the infimum in (47) is achieved for every y and k=0,...,N — 1, then
there exist universally measurable functions fi,: Y — C such that for every y
and k=0,...,N — 1, fi(y)e U(y) and fi,(y) achieves the infimum in (47).
Then 7 = (fly, . . . , Ay — 1) is optimal in (PSI) (Proposition 8.5), so 7 is optimal
in (ISI) as well (Proposition 10.3).

If (F*,F*) holds and the infimum in (47) is not achieved for every y
andk=0,..., N — 1, the dynamic programming algorithm (46) and (47) can
still be used in the manner of Proposition 8.3 to construct an e-optimal,
nonrandomized, Markov policy 7 for (PSI). We see from Proposition 10.3
that 7 is an e-optimal policy for (ISI) as well.

In many cases, 7+ 1(p;ix+1) is a function of #,(p;iy), u, and z,. ;. The
computational procedure in such a case is to first construct (fig,. .., Ax—1)
via (46) and (47), then compute y, = 54(p;io) from the initial distribution
and the initial observation, and apply control u, = fio( o). Given yy, u;, and
Zr+ 1, compute y, . ; and apply control w1 = fg+1(Ve+1), k=0,...,N — 2.
In this way the information contained in (p;i,) has been condensed into y;.
This condensation of information is the historical motivation for statistics
sufficient for control.

10.3 Existence of Statistics Sufficient for Control

Turning to the question of the existence of a statistic sufficient for control,
it is not surprising to discover that the sequence of identity mappings on
P(S)I,,k=0,...,N — 1,is such an object (Proposition 10.6). Although this
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represents no condensation of information, it is sufficient to justify our
analysis thus far. We will show that if the constraint sets I', are equal to I,C,
k=0,...,N — 1, then the functions mapping P(S)I, into the distribution
of x, conditioned on (p; i), k=0,...,N — 1, constitute a statistic sufficient
for control (Proposition 10.5). This statistic has the property that its value
at the (k + 1)st stage is a function of its value at the kth stage, u, and z; +,
[see (52)], so it represents a genuine condensation of information. It also
results in a stationary perfect state information model and, if the conditional
distributions can be characterized by a finite set of parameters, it may
result in significant computational simplification. This latter condition is
the case, for example, if it is possible to show beforehand that all these
distributions are Gaussian.

10.3.1 Filtering and the Conditional Distributions of the States
We discuss filtering with the aid of the following basic lemma.

Lemma 10.3 Consider the (ISI) model. There exist Borel-measurable
stochastic kernels ro(dxo|p; zo) on S given P(S)Z and r(dx|p;u,z) on S given
P(S)CZ which satisfy

[y, 5o(Zolxolptdxo) = [ [} rolSo

Jysz

Proof For fixed (p;u)e P(S)C, define a probability measure g on SZ
by specifying its values on measurable rectangles to be (Proposition 7.28)

piu) = [ s(Zlu, p(d)

By Propositions 7.26 and 7.29, g(d(x, z)|p; u) is a Borel-measurable stochastic
kernel on SZ given P(S)C. By Corollary 7.27.1, this stochastic kernel can be
decomposed into its marginal on Z given P(S)C and a Borel-measurable
stochastic kernel r(dx|p;u,z) on S given P(S)CZ such that (49) holds.
The existence of ry(dx,|p; zo) is proved in a similar manner. Q.E.D.

D; Zo)So(dZolxo)P(dxo)
VSoe®Bs, ZoeBz, peP(S), (43)

u,p(d) = [ [, r(S|psu, 2)s(dzlu, x)p(dx)

VSe%Bs, Ze#B;, peP(S), ueC. (49)

q(SZ

It is customary to call p, the given distribution of x,, the a priori distribu-
tion of the initial state. After z, is observed, the distribution is “up-dated”,
i.e., the distribution of x, conditioned on z, is computed. The up-dated
distribution is called the a posteriori distribution and, as we will show in
Lemma‘10.4, is just ro(dxo|p; zo). At the kth stage, k > 1, we will have some
a priori distribution pj of x; based on i, _; = (2¢, U, - . , Ux—2,Zx-1). Control
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u,_, is applied, some z, is observed, and an a posteriori distribution of x
conditioned on (i _ 1, Uy -1, z;) is computed. We will show that this distribu-
tion is just r(dx|pi; ux— 1, z¢)- The process of passing from an a priori to an a
posteriori distribution in this manner is called filtering, and it is formalized
next.

Consider the function f: P(S)C — P(S) defined by

Fp.u)S) = (S wp(dx)  VSes. (50)

Equation (50) is called the one-stage prediction equation. If x, has an a
posteriori distribution p, and the control u, is chosen, then the a priori
distribution of x; . ; is f(py, ). The mapping f is Borel-measurable (Proposi-
tions 7.26 and 7.29).

Given a sequence i€ I, such that iy, ; = (i, U, Zx+1), k=0,. .. ,N = 2,
and given pe P(S), define recursively

Po(P;io) = roldXo|P; Zo), (51)
Pr+1(Piiks 1) = r(dx f[pk(p;ik)a Uk]?”k,zm 1), k=0,...,N=2. (52)

Note that for each k, p,: P(S)I, — P(S) is Borel-measurable.

Equations (48)—(52) are called the filtering equations corresponding to
the (ISI) model. For a given initial distribution and policy, they generate
the conditional distribution of the state given the current information, as
the following lemma shows,

Lemma 10.4 Let the model (ISI) be given. For any peP(S), n=
(Mos---» Uy_1)El and S, € %5, we have

Py(m, p)[xke§k|ik] = pi(P;i)(Sk) (53)
for P,(r, p) almost every i,, k =0,...,N — 1.

Proof? We proceed by induction. For any So€ %5 and Z, € %,, we have
from (51), (16), and (48), that

Jiar ooy PolP320)S0) APo(m.p) = [ rofSo

- J;fzo olSo
= [, so(Zolxolp(dxo)

= Po(m, p)({x0€S0,20€ Zo})- (54)

Equation (53) for k = 0 follows from (54) and the definition of conditional
probability.

PiZo)dPo(m, p)

D Zo)so(dzolxo)P(dxo)

" In this and subsequent proofs, the reader may find the discussion concerning conditional
expectations and probabilities at the beginning of Section 10.2 helpful.
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Assume now that (53) holds for k. For any I, €%, C,e B¢, Zi+1€ B2
and S, . ; € B, we have from (16), the induction hypothesis, Fubini’s theorem,
(50), (52), and (49) that

P+ 1(Ps i, Uy, Zp 4 D(Sk+1) AP+ 1(m, p)

J;ike_lk»“kegkazk+ 162k + 1}
= fixe fgk J;H . LH lPk+ 151 Zi s 1)(Sk 4 1)5(dzy 1|uk’ Xp+1)
X t(dxy 4 1|Xk, uk)#k(d“klp; i) dPy(m, p)
= ﬁike!k} fsk fgk J;H . fgm ll7k+ (D51, Ugs Zk 1)(S+1)8(dzg 4 lluka Xi+1)

X t(dXpe+ 1] %, th)pi(du| p; 8) [Pu(p3 5 )(dxi)] dPy(m, p)

= Jovems JoJo oo L PPt 2 (S )5(zi it i)
X 1@, 21 %10 1) [PalP3 1)@, (| 3 ) APy, p)

= foe Jo Jou Lo 1Sl Toups i ] 020 )
X Az 1[thes Xiex )T LPR(P3 1), (A s 1 )pie(din] p3 ) APy (m, p)

= J;ikslk} fgk j§k+ls(Zk+llukaxk+ DI [ou(ps i), w](dxy 1)
X t(duy|p; i) dPy(m, p)

= Jover Jo Jo o 5@aa s X e s ) L3 (@)
X p(dw| ;i) dPy(m, p)

= Jovenn Jo Lo i 52l X e s ) )
x [Pu(p; i)(dx;)] dPy(m, p)

= Jovera Jo Jov. 5@ st X 0051 s (i 33 4P, 7, )

=Py 1(7T7P)({ik €L, €Cr, Xkt 1€ Sks 15 Zk41 eZk+1})- (55)

It follows from (55) and the definition of conditional probability that

Py y(m, P)[xk+ 1ESk+ llik+ 1] = Pr+1(Ps i+ 1)(Sk+1)
for P, 1(m, p) almost every i, and the induction step is completed. Q.E.D.

Proposition 10.5 Consider the (ISI) model and assume that U,(x) = C
for every xeS and k=0,...,N — 1. Then the sequence [po(p;io)-- -,
Pn-1(p;iy—y)] defined by (51) and (52) is a statistic sufficient for control,
and the resulting perfect state information model is stationary.
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Proof Let Y, in Definition 10.6 be P(S), k=0,...,N — 1. We have
already seen that the mappings p,: P(S)I, — P(S) are Borel-measurable, so
(Po,- - - »Pn—1) Is a statistic. Condition (a) of Definition 10.6 is satisfied with
I,=P©S)C, k=0,...,N—1.

For ye P(S), ue C and Y € #ps,, define

Z(y.u,Y) = {ze Z|r[dx| f(y,u);u,z]€ Y},

y,u) = LLS[Z( v, u, Y)|u, x"Je(dx’ | x,u)y(dx). (56)

Note that Z(y,u, Y) is the (y,u)-section of the inverse image of Y under a
Borel-measurable function. The stochastic kernel

xu) = [(s(z

is Borel-measurable by Propositions 7.26 and 7.29, so the stochastic kernel

v = [ fsz

is Borel-measurable by the same propositions. It follows from Proposition
7.26 and Corollary 7.26.1 that #(dy'|y,u) is a Borel-measurable stochastic
kernel on P(S) given P(S)C.ForneIl,pe P(S), Ye Bpsand k=0,... ,N =2,
we have from Lemma 10.4

iy

Mz

u, x"t(dx’'

X, u)

AZ

u, x')t(dx'|x, u)y(dx) = J;A(Z|x, u)y(dx)

Py 1(m, ) [ P+ 1(Psik+ 1) € X’Pk(P;ik) =V, U = 'ﬁk]
= P y(m D) Zk+ 1€ Z(Tis Ty, Y)| PP i) = Fieo e = Ty ]
= E{P;, 1(7t>l7)[2k+ 1€ Z(Pr, Ui, Y) ikauk:”pk(p;ik) = Vi, U = ﬁk}

N E{LLS[Z(yk’HIn X)luk7xk+ 1]t(dxk+ leka uk)

X [p(p; i)(@dx)]|pi(pi i) = P th = ﬁk}

= Y|Pk %)

for P,(m, p) almost every (¥, %), Where the expectations are with respect to
P, . 1(m, p). Thus (22) is satisfied.
For nell, pe P(S),and k =0,...,N — 1, we have from Lemma 10.4

E[g(xkauk)lpk(p;ik) =V, Uy = ﬁk]
= E{E[g(xy,u) ik,uk]|pk(p;ik) =V, U = Hk}

v= E{fs g(Xk, w)pi(p; ik)(dxk)lpk(p; i) = Vi Uy = ﬁk}

= [{ 9t mmdx) (57)
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for P,(m, p) almost every (3, 7;), where the expectations are with respect to
P,(m, p). The function §: P(S)C — R* defined by

33,7 = [ gx W) (58)
is lower semianalytic (Proposition 7.48), and, by (57), § satisfies (23). Q.E.D.

If the horizon is finite, then the transition kernel 7 and the one-stage cost
function § defined by (56) and (58) can be substituted in the dynamic pro-
gramming algorithm (46)—(47) to compute the optimal cost function J% for
(PSI). The optimal cost function J3 for (ISI) can then be determined from
(41). If the horizon is infinite, in the limit the dynamic programming algorithm
(46)—(47) yields J* under (N) and (D) and under (P) in some cases (Proposi-
tions 9.14 and 9.17). The determination of J* from J* is again accomplished
by using (41).

10.3.2 The Identity Mappings

Proposition 10.6 Let the model (ISI) be given. The sequence of identity
mappings on P(S)I,, k=0,...,N — 1, is a statistic sufficient for control.

Proof Let Y, in Definition 10.6 be P(S)I,, k =0,...,N — 1, and let #,
be the identity mapping on P(S)I,. Then (y,,. . .,ny-1) is a statistic. Condi-
tion (a) of Definition 10.6 is satisfied with I, = P(S)[,, k=0,...,N — 1.

If Y1 1€Pp1. » i€ P(S)I, and G, € C,, we adopt the notation

_f 5.5 T 7 5 5 \
(2/k+1)(,\7k.ﬁk) = 'tZk+leZ|(p,"03u07- s Uk 15 2k Uy Zi 1) E Yei 1 s

where 3, = (P;Z,, g, . . »Ux_1,Zx)- Using this notation, we define for k =
0,...,N — 2 the stochastic kernel #(dy, + ;| %) on P(S)I, , given P(S)I,C
by

fk(Xk*}- 1 Iylw ak) = S[(_Yk+ 1)(;,“7,0
Sl<+ 1
Vi1 € Byt s (59)

where p,(7,) is given by (51) and (52). By an argument similar to that used in
Proposition 10.5, it can be shown that 7, is Borel-measurable. For pe P(S),
nell, Yi.1€Bpsyr,.. ,»and k=0,...,N — 2, we have from Lemma 10.4

Ty, X+ 1 JE(dxy 4 1IXk’ﬁk)Pk(7k)(dxk)

Pii(m, D) [+ 1(P3ir 1) € Yo s [P i) = Tty = 1]
= Pk+1(7T,P)[(7k:ﬁk,2k+1)€!k+1]

— Jsian SI:(E/R‘+ 1)(?1<~Vk)

Ty X 1 JE(AX5 4 1| X T)Pi(Fr) (dxy)
= L(Ys1|Te. W),

for P,(m, p) almost every (¥, ), so (22) is satisfied.
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Fork=0,...,N — 1, define §,: P(S)[,C — R* by

5T ) = [ 966 TP (60)
By Proposition 7.48, g, is lower semianalytic for each k. For pe P(S), nell,
and k=0,...,N — 1, we have from Lemma 10.4
E[g(xk7 uk)lU(P§ b)) =V, =] = J;k 9(X, W )pi(Fi)(dxy)
= Gi( Vi Uk)

for P,(m,p) almost every (J,,%), where the expectation is with respect to
P.(m, p), so (23) is satisfied. Q.ED.

The transition kernels 7, and one-stage cost functions g, defined by (59)
and (60) can be used in the nonstationary version of the dynamic program-
ming algorithm (46)—(47). See the discussion following Proposition 10.5.



Chapter 11

Miscellaneous

11.1 Limit-Measurable Policies

In this section we strengthen the results of Section 7.7 concerning
universally measurable functions. In particular, we show that these results
are still valid if limit-measurable functions (Definitions B.2 and B.3) are
used in place of universally measurable functions. This allows us to replace
all the results on the existence of universally measurable policies in Chapters 8
and 9 by stronger results on the existence of limit-measurable policies.

We now rework the main results of Section 7.7 with the aid of the concepts
and results of Appendix B.

Proposition 11.1 Let X, Y, and Z be Borel spaces, De ¥y, and E€ ¥y.
Suppose f:D — Y and g:E — Z are limit-measurable and f(D) < E. Then
the composition g e f is limit-measurable.

Proof This follows from Corollary B.11.1. Q.ED.

Corollary 11.1.1 Let X and Y be Borel spaces, let f: X — Y bea function,
and let g(dy|x) be a stochastic kernel on Y given X such that, for each x,
q(dy|x) assigns probability one to the point f(x)e Y. Then g(dy|x) is limit-
measurable if and only if f is limit-measurable.

Proof See the proof of Corollary 7.44.3. Q.ED.

266
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Proposition 11.2 Let X and Y be Borel spaces and let q(dy]x) be a
stochastic kernel on Y given X. The following statements are equivalent:
(2) The stochastic kernel g(dy|x) is limit-measurable.
(b) For every Be %y, the mapping Az: X — R defined by
2p(x) = q(B|x) (1)

is limit-measurable.
(c) Forevery Qe %y, the mapping A, of (1) is limit-measurable.

Proof We prove (a)=(c)=>(b)=(a). Suppose (a) holds and Qe ¥y.
Now /g = 0g°y, where y: X — P(Y) is given by
(%) = qdylx) @)
and 0,:P(Y) — R is given by

0o(q) = 4(Q)- 3)

We have assumed that y is limit-measurable, and 6, is limit-measurable by
Proposition B.12. Therefore (c) holds.
It is clear that (c) = (b). Suppose now that (b) holds. Then

O'I: U )‘I;I('%R)

< gx.
Be By _

Letting y and 0 be defined by (2) and (3), we have from Proposition 7.25

7 [ Brn] = v'l[ff( U 95‘(%)):

Be By

= O'I: U )’*1(01;1('%)1{))] = 0'|: U ‘5 l(gR)J < Py,

Be Ry Be %y

50 g(dy|x) is limit-measurable. Q.E.D.

Proposition 11.3 Let X and Y be Borel spaces and let f: XY — R* be
limit-measurable. Let q(dy|x) be a limit-measurable stochastic kernel on
Y given X. Then the mapping 4: X — R* defined by

2 = [ £ vatdyl)
is limit-measurable.

Proof The mapping d(x) = p, is continuous (Corollary 7.21.1), as is
the mapping ¢: P(X)P(Y) — P(XY) defined by a(p, q) = pq, where pq is the
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product measure (Lemma 7.12). Suppose Qe ¥y and f = y,. For every
xeX,

Ax) = [Pxa(dy|x)](Q) = Og(a[0(x), p(x)]), 4)

where y and 0, are given by (2) and (3). Since all the functions on the right-
hand side of (4) are limit-measurable, A is limit-measurable. It follows that
/ is limit-measurable when f is a limit-measurable simple function. The
extension to the general limit-measurable, extended real-valued function
f is straightforward. Q.E.D.

Corollary 11.3.1 Let X be a Borel space and let f:X — R* be limit-
measurable. Then the function 6 1 P(X) - R* defined by

0,(p) = [fdp
is limit-measurable.
We have the following sharpened version of the selection theorem for

lower semianalytic functions.

Proposition 11.4 Let X and Y be Borel spaces, D « XY an analytic
set,and f: D — R* a lower semianalytic function. Define f*: projy(D) — R* by

f*(x) = inf f(x,y).

yeDx
The set
I = {xeprojy(D)| for some y,eD,, f(x,y,) = f*(x)}

is limit-measurable, and for every &> 0 there exists a limit-measurable
function ¢:projy(D) — Y such that Gr(¢) = D and for all x e projy(D)

SIx 0(x)] = f*(x) if xel,
M) +e i xél fHx)> —oo,
Sl et < {—1/8 it x¢l, f*x)= —oo.

Proof The proof is the same as in Proposition 7.50(b), except that at
the points where Corollaiy 7.44.2 is invoked to say that the composition of
analytically measurable functions is universally measurable, we use Proposi-
tion 11.1 to say that the composition is limit-measurable. Q.E.D.

By the remark following Corollary B.11.1, we see that I and the selector
obtained in Proposition 11.4 are in fact #%-measurable. This remark further
suggests that the constructions in Chapters 8 and 9 of optimal and e-optimal
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policies can be done more carefully by keeping track of the minimal £§
with respect to which policies and costs are measurable. We do this to some
extent in the next section, but do not pursue this matter to any great length.

Propositions 11.1-11.4 are sufficient to allow us to replace every reference
to a “(universally measurable) policy” in Chapters 8 and 9 by the words
“limit-measurable policy.” It does not matter which class of policies is con-
sidered when defining J% and J*; the proof of Proposition 8.1 together
with Proposition 11.5 given below can be used to show that these functions
are determined by the analytically measurable Markov policies alone.
Corollary 11.1.1 tells us that the nonrandomized limit-measurable policies
are just the set of sequences of limit-measurable functions from state to
control which satisfy the control constraint (cf. Definition 8.2). This fact and
Proposition 11.2 are needed for the proof of the limit-measurable counter-
part of Lemma 8.2. From Proposition 11.3 we can deduce that the cost
corresponding to a limit-measurable policy is limit-measurable (cf. Defini-
tions 8.3 and 9.3). This fact was used, for example, in proving that under (F ™)
a nonrandomized, semi-Markov, ¢-optimal policy exists (Proposition 8.3).
Proposition 11.4 allows limit-measurable e-optimal and optimal selection.
The e-optimal selection property for universally measurable functions is
used in practically every proof in Chapters 8 and 9. The exact selection
property is used in showing the existence under certain conditions of optimal
policies (Propositions 8.5, 9.19, and 9.20).

11.2 Analytically Measurable Policies

Some of the existence results of Chapters 8 and 9 can be sharpened to
state the existence of e-optimal analytically measurable policies. This is due
to Proposition 7.50(a) and the following propositions. Proposition 11.5 is
the analog of Corollary 7.44.3 for universally measurable policies and of
Corollary 11.1.1 for limit-measurable policies.

Proposition 11.5 Let X and Y be Borel spaces, let f: X — Y be a function,
and let g(dy|x) be a stochastic kernel on Y given X such that, for each x,
q(dy|x) assigns probability one to the point f(x)e Y. Then q(dy\x) is analyti-
cally measurable if and only if f is analytically measurable.

Proof We sharpen the proof of Corollary 7.44.3. Let y(x) = g(dy|x) and
d(y)=py, so that y =6°f and f = 6 1oy, Now ¢ is a homeomorphism

from Y to Y = {p,|ye Y}, s0 § and 6~ ':Y — Y are both Borel-measurable.
If f is analytically measurable and C € %py,, then

y HC) = fTH67HO) e x
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because 6 ~'(C)e By. If y is analytically measurable and Be %y, then
f71B) =y '[0(B)] e x
because 6(B)e Bpy). Q.E.D.

Proposition 11.6 Let X and Y be Borel spaces and let g(dy|x) be a
stochastic kernel on Y given X. The following statements are equivalent:

(a) The stochastic kernel q(dy|x) is analytically measurable.
(b) For every Be %y, the mapping Az: X — R defined by

/p(x) = q(B|x) ©)
is analytically measurable.

Proof Assume (a) holds and define y(x) = g(dy|x). Then for Be %y,
Ce%Br,and 05: P(Y) — R defined by (3), we have

/5 M(C)=7y7"[03(C)]e o«

because 05 (C)e Bpy, (Proposition 7.25). Therefore (b) holds.
If (b) holds, we can show that (a) holds by the same argument used in
the proof of Proposition 11.2. Q.E.D.

We know from Corollary B.11.1 that the composition of analytically
measurable functions need not be analytically measurable, so the cost
corresponding to an analytically measurable policy for a stochastic optimal
control model may not be analytically measurable. To see this, just write out
explicitly the cost corresponding to a two-stage, nonrandomized, Markov,
analytically measurable policy (cf. Definition 8.3).

A review of Chapters 8 and 9 shows the following. Proposition 8.3 is
still valid if the word “policy” is replaced by “analytically measurable policy,”
except that under (F~) an analytically measurable, nonrandomized, semi-
Markov, e-optimal policy is not guranteed to exist. However, an analytically
measurable nonrandomized e-optimal policy can be shown to exist if g < 0
[B12]. The proof of the existence of a sequence of nonrandomized Markov
policies exhibiting {¢,}-dominated convergence to optimality (Proposition
8.4) breaks down at the point where we assume that a sequence of one-stage
policies {u3} exists for which

Tﬂ"(JO) <T,- 1(Jo).

This occurs because T,»-:(J,) may not be analytically measurable. In the
first sentence of Propos1t10n 9.19, the word “policy” can be replaced by
“analytically measurable policy.” The ¢-optimal part of Proposition 9.20
depends on the (F ™) part of Proposition 8.3, so it cannot be strengthened in
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this way. Under assumption (N), an analytically measurable, nonrandomized,
¢-optimal policy can be shown to exist [B12], but it is unknown whether
this policy can be taken to be semi-Markov. The results of Chapters 8 and 9
relating to existence of universally measurable optimal policies depend on
the exact selection property of Proposition 7.50(b). Since this property is
not available for analytically measurable functions, we cannot use the same
arguments to infer existence of optimal analytically measurable policies.

11.3 Models with Multiplicative Cost

In this section we revisit the stochastic optimal control model with a
multiplicative cost functional first encountered in Section 2.3.4. We pose
the finite horizon model in Borel spaces and state the results which are
obtainable by casting this Borel space model in the generalized framework
of Chapter 6. This does not permit a thorough treatment of the type already
given to the model with additive cost in Chapters 8 and 9, but it does yield
some useful results and illustrates how the generalized abstract model of
Chapter 6 can be applied. The reader can, of course, use the mathematical
theory of Chapter 7 to analyze the model with multiplicative cost directly
under conditions more general than those given here.

We set up the Borel model with multiplicative cost. Let the state space S,
the control space C, and the disturbance space W be Borel spaces. Let the
control constraint U mapping S into the set of nonempty subsets of C be
such that

I = {(x,u)|xe S, ue U(x)}

is analytic. Let the disturbance kernel p(dw|x,u) and the system function
f:SCW — S be Borel-measurable. Let the one-stage cost function g be Borel-
measurable, and assume that there exists a b€ R such that 0 < g(x,u,w) < b
for all xe S, ue U(x), we W. Let the horizon N be a positive integer.

In the framework of Section 6.1, we define F to be the set of extended
real-valued, universally measurable functions on S and F* to be the set
of functions in F which are lower semianalytic. We let M be the set
of universally measurable functions from S to C with graph in I'. Define
H:SCF - [0, 0] by

H(x,u,J) = fw g(x, u, w)J[ f(x, u, w)] p(dw|x, u),

where we define 0- 00 = 00-0=0-(—00) =(—00)-0=0. We take J,:S — R*
to be identically one. Then Assumptions A.1-A 4, 15.2, and the Exact Selection
Assumption of Section 6.1 hold. (Assumption A.2 follows from Lemma 7.30(4)
and Propositions 7.47 and 7.48. Assumption A.4 follows from Proposition
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7.50.) From Propositions 6.1(a), 6.2(a), and 6.3 we have the following results,
where the notation of Section 6.1 is used.

Proposition 11.7 In the finite horizon Borel model with multiplicative
cost, we have
J§ = TJ,),

and for every ¢ > 0 there exists an N-stage ¢-optimal (Markov) policy. A
policy n* = (u§,...,u%-1) is uniformly N-stage optimal if and only if
(T TN ¥ 1) (Jo) = TV "¥Jo), k=0,...,N — 1, and such a policy exists if
and only if the infimum in the relation
T YJo)x) = inf H[x,u, TXJ,)]

ueU(x)
is attained for each xeS and k=0,...,N — 1. A sufficient condition for
this infimum to be attained is for the set

Ui(x, ) = {ue Ux)|H[x,u, T(Jo)] < 4}

to be compact for each xe S, 2eR,and k=0,...,N — 1.



