Chapter 5

Infinite Horizon Models under
Monotonicity Assumptions

5.1 General Remarks and Assumptions

Consider the infinite horizon problem

minimize J (x) = im (T, T,, = Tuy_)Jo)(x)
N— oo

1)
subject to 7w = (1o, ly,- - -)EIL

In this chapter we impose monotonicity assumptions on the function J,
which guarantee that J, is well defined for all zeIl. For every result to be
shown in this chapter, one of the following two assumptions will be in effect.

Assumption I (Uniform Increase Assumption) There holds

Jo(x) < H(x,u,J o) VxeS, ueU(x). )
Assumption D (Uniform Decrease Assumption) There holds

Jo(x) = H(x,u,J ) VxeS, ueU(x). 3)

It is easy to see that under each of these assumptions the limit in (1) is well
defined as a real number or + co. Indeed, in the case of Assumption I we have
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from (2) that

Jo < Ty(Jo) < (T Ty )Jo) <+ < (Tyo Ty T JJo) < -+,
while in the case of Assumption D we have from (3) that

Jo= Ty (Jo) 2 (T Ty)Jo) = = (T Ty Ty N Jo) ="

Ho ™ Uy
In both cases, the limit in (1) clearly exists in the extended real numbers for
each xeS.

In our analysis under Assumptions I or D we will occasionally need to
assume one or more of the following continuity properties for the mapping H.
Assumptions I.1 and 1.2 will be used in conjunction with Assumption I, while
Assumptions D.1 and D.2 will be used in conjunction with Assumption D.

Assumption L1 If {J,} = F is a sequence satisfying J, < J, < J,,, for
all k, then

lim H(x,u,J,) = H <x, u, lim J k) VxeS, ueU(x). 4)

k= k=

Assumption 1.2 There exists a scalar « > 0 such that for all scalars 7 > 0
and functions J € F with J, < J, we have

H(x,u,J)< H(x,u,J +r) < H(x,u,J) + ar VxeS, ueU(x). (5)
Assumption D.1 If {J,} < F is a sequence satisfying J,,, < J, < J, for
all k, then

lim H(x,u,J,) = H(x, u, lim Jk> VxeS, ueU(x). 6)

k— k— o

Assumption D.2 There exists a scalar o > 0 such that for all scalars
r > 0 and functions Je F with J < J,, we have

H(x,u,J)—argH(x,u,J—r)sH(x,u,J) VxeS, ueU(x). (7)

5.2 The Optimality Equation

Wefirst consider the question whether the optimality equation J* = T(J*)
holds. As a preliminary step we prove the following result, which is of inde-
pendent interest.

Proposition 5.1 Let Assumptions I, 1.1, and 1.2 hold. Then given any
¢ > 0, there exists an e-optimal policy, i.e., a 7, e I1, such that

J¥<J, <JF +e @®)
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Furthermore, if the scalar « in 1.2 satisfies « < 1, the policy 7, can be taken
to be stationary.

Proof Let {g} be a sequence such that ¢, > 0 for all k and
Z = )

For each xS, consider a sequence of policies {r,[x]} = IT of the form

mx] = (u6[x]. #i[x], - )
such that for k=0,1,...
Jom(¥) < J*(x) + & VxeS. (10)

Such a sequence exists, since we have J*(x) > — co under our assumptions.
The (admittedly confusing) notation used here and later in the proof
should be interpreted as follows. The policy m,[x] = (ub[x], i[x],. . .) is
associated with x. Thus uf[x] denotes, for each x€ S and k, a function in M,
while 1[x](z) denotes the value of pf[x] at an element ze S. In particular,
w[x](x) denotes the value of puf[x] at x.
Consider the functions fi, € M defined by

(x) = wo[x](x)  VxeS (11)
and the functions J, defined by

Ti(x) = H[x, (), im (T g - Tm,c])(JO)} VxeS, k=0.1,.... (12)

By using (10), (11), I, and 1.1, we obtain
Julx) = llir?o (T Tus) o))
= Jopa(X) < J*(X) + &, vxeS, k=0,1,.... (13)
We have from (12), (13), and 1.2 for all k = 1,2,. ..and xeS

Ty, 1(Jk)(x H[x, fi— (%), Ji]
< H[X, i (x),(J* + &)
< H[X, - 1(x), J*] + ok
< H[X Byem g (), i (T 1 Ty 1) (Jo) ] + e

i~

= Jio (%) + agy,
and finally,

T. (J)<Tio,+oe, k=12.... (14)

Hx -1
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Using this inequality and 1.2, we obtain

T [T O] < Ty (Timy + agy)

Hi -2

< Ta o) + 0P < Jma + (08— 1 + o?e).

Continuing in the same manner, we obtain for k = 1,2,. ..
k
(Tay  Ta W) < Jo + (0ey + -+ ofey) < J* + <Z ocisi>.
Since J, < J,, it follows that

k
(Ta ™ Ta Mo <% + (z afg,).
i=0
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Denote n, = (L, H; .- - -)- Then by taking the limit in the preceding inequality

and using (9), we obtain

Jo, <J* 46

If o < 1, we take ¢, = e(1 — «) for all k and m,[x] = (uo[x], p1[x]. - .

) in

(10). The stationary policy n, = (I .. . .), where [i(x) = po[x](x) for all

xeS, satisfies J, < J* + & Q.E.D.

It is easy to see that the assumption « < 1 is essential in order to be able
to take 7, stationary in the preceding proposition. As an example, take
S = {0}, U(0) = (0, 0), Jo(0) =0, H(O,u,J) = u + J(0). Then J*(0) = 0, but

for any u e M, we have J,(0) = .

By using Proposition 5.1 we can prove the optimality equation under I,

I.1,and 1.2
Proposition 5.2 Let I, .1, and 1.2 hold. Then

J* = T(J*).
Furthermore, if J'€ F is such that J' > J, and J' > T(J'), then J' > J*.

Proof Forevery m = (pg, Uy, -..)€Il and xe S, we have, from L.1,

Jo(x) = Im (T, T, - T, )(Jo)(x)

Mo © KU1
k=

= Tuo[lim (T, - Tuk)(JO):I(x) > T, (J*)(x) = T(J*)(x).

k— oo
By taking the infimum of the left-hand side over = eIl, we obtain

J* > T(J*).
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To prove the reverse inequality, let ¢; and ¢, be any positive scalars and
let @ = (fo, fy, - - -) be such that

Tp(J*) < T(J*) + ¢4, Ja, < J* 4 ¢,
where %; = (H;,H,,- - -)- Such a policy exists by Proposition 5.1. We have
Jr=1m (T3 Ty, - Tp)Jo)
k— 0

= Tﬁo[lim(Tﬁl~ x T,i,()(Jo)}
k=0

= Tﬁo(*]ﬁl) < Tﬁo(']*) + agy < T(J*) + (31 + 0‘82)-
Since J* < J; and &, and &, can be taken arbitrarily small, it follows that
J* < T(J*).
Hence J* = T(J*).

Assume that J'eF satisfies J'>J, and J' > T(J'). Let {¢} be any
sequence with ¢, > 0 and consider a policy @ = (fy,Hy,. . .)€ Il such that
T,(J)<TJ') + &, k=0,1,....

We have, from 1.2,

J* = inf im(T,, - T, )(Jo)

nell k—

< inf liminf(T,,- -~ T, )(J')

rell k—oo

<Iminf(T4, - Ta)(J)

k— 0

<Iminf(Ty, - T  JITU) + &)
k— o0

<Iiminf(Ty - Ty, Tph )J + &)

Ar-27 HAk-1
k— oo

< lminf[(Tg, - - Ty JJ) + o]

k—©

< lim [T(J’) + <Zk: oc‘é,)} <J + <§ aiai).
k= 0 i=0 i=0

Since we may choose ) 2, a'e; as small as desired, it follows that J* < J'.
QED.

The following counterexamples show that 1.1 and 1.2 are essential in
order for Proposition 5.2 to hold.
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CouNTEREXAMPLE 1 Take S={0,1}, C=U(0)=U(1)=(—1,0], Jo(0)=
Jo(1)= =1, HO,u,J) =u if J1)< —1, HO,u,J)=0 if J(1)> —1, and
H(l,u,J)=u. Then (T, - T,,_)Jo)(0) =0 and (T,, - T, _)Jo)(1) =
Uo(1)for N > 1. Thus J*(0) =0, J*(1) = — 1, while T(J*)(0)= —1, T(J*)(1)=
—1, and hence J* # T(J*). Notice also that J, is a fixed point of T, while
Jo<J* and J, # J*, so the second part of Proposition 5.2 fails when
Jo =J'. Here I and 1.1 are satisfied, but 1.2 is violated.

COUNTEREXAMPLE 2 Take § = {0,1}, C = U(0) = U(1) = {0}, Jo(0) =
Jo(1)=0,H(0,0,J) =01if J(1) < o0, H(0,0,J) = o0 if J(1) = 00, H(1,0,J) =
JA)+ 1. Then (T, T,,_)Jo)0)=0 and (T, -T,. )(Jo)(1)=N.
Thus J*(0)=0, J*(1)= co. On the other hand, we have T(J*)(0)=T(J*)(1)=
co and J* # T(J*). Here I and 1.2 are satisfied, but 1.1 is violated.

As a corollary to Proposition 5.1 we obtain the following.

Corollary 5.2.1 LetI, 1.1, and 1.2 hold. Then for every stationary policy
T =(U,u,...),wehave

J,=T,J,).
Furthermore, if J'€ F is such that J' > J, and J' > T,(J'), then J' > J,.

Proof Consider the variation of our problem where the control con-
straint set is U,(x) = {u(x)} rather than U(x) for VxeS. Application of
Proposition 5.2 yields the result. Q.E.D.

We now provide the counterpart of Proposition 5.2 under Assumption D.
Proposition 5.3 Let D and D.1 hold. Then
J* = T(J*).
Furthermore, if J'€ F is such that J' < J, and J' < T(J'), then J' < J*.
Proof We first show the following lemma.
Lemma 5.1 Let D hold. Then
J* = lim J§, (15)

N— oo
where J} is the optimal cost function for the N-stage problem.

Proof Clearly we have J* < J} for all N, and hence J* < limy_, , J.
Also, for all © = (uo, iy, . .)€ I, we have

(T o ‘TuN-l)(JO)Z JI’\l;?

and by taking the limit on both sides we obtain J, > limy_, ., J%, and hence
J* > limyL , J¥. Q.E.D.

o
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Proof (continued) We return now to the proof of Proposition 5.3. An
argument entirely similar to the one of the proof of Lemma 5.1 shows that
under D we have for all xe S

lim inf H(x,u,J%)= Inf lim H(x,u, J%).
N—-w ueU(x) ueU(x) N- (16)

Using D.1, this equation yields

lim T(J%) = T<1im J;5>. (17)
N— oo N- oo
Since D and D.1 are equivalent to Assumption F.1" of Chapter 3, by Corollary
3.1.1 we have J % = T"(J,), from which we conclude that T(J %)= T *1(J,) =
J%+,. Combining this relation with (15) and (17), we obtain J* = T(J*).

To complete the proof, let J'e F be such that J' < J, and J' < T(J").
Then we have

J*=inf Iim(T,, - T,,_,)Jo)

nell N>«

> lim inf(T,, T,y )(Jo)

N—ow nell

> lim inf(T,,- T,y )J) = lim TNJ") > J".

N—-ow nell N—-owo

Hence J* = J'. Q.E.D.

In Counterexamples 1 and 2 of Section 3.2, D is satisfied but D.1 is
violated. In both cases we have J* # T(J*), as the reader can easily verify.

A cursory examination of the proof of Proposition 5.3 reveals that the
only point where we used D.1 was in establishing the relations

liInN—'oo T(Jﬁ) = T(limN—'oo J;s)

and J = TV(J,). If these relations can be established independently, then
the result of Proposition 5.3 follows. In this manner we obtain the following
corollary.

Corollary 5.3.1 Let D hold and assume that D.2 holds, S is a finite set,
and J*(x) > —oo for all xeS. Then J* = T(J*). Furthermore, if J'eF is
such that J' < Joand J' < T(J'), then J' < J*.

Proof A nearly verbatim repetition of the proof of Proposition 3.1(b)
shows that, under D, D.2, and the assumption that J*(x) > — oo for all
xeS, we have J§ = TN(J,) forall N = 1,2,. ... We will show that

lim H(x,u,J3%) = H<x,u, lim J,";) VxeS, ueU(x)
N—-w N—-w©

Then using (16) we obtain (17), and the result follows as in the proof of
Proposition 5.3. Assume the contrary, i.e., that for some XS, ie U(X), and
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& > 0, there holds

H(Yc,ﬁ,J,’f)—8>H<>?,z7, lim J;’}), k=1,2,....

N- oo

From the finiteness of S and the fact that J*(x) = limy. ., J§(x) > — oo for
all x, we know that for some positive integer k

JE—(g/0) < I}im Ji  Vk=k
By using D.2 we obtain for all k > k
H(Z4,Jf) —e<HEX4,Jf — (g/a)) < H(}'E,ﬁ, lim J;’}>,
N—- oo

which contradicts the earlier inequality. Q.E.D.
Similarly, as under Assumption I, we have the following corollary.

Corollary 5.3.2 Let D and D.1 hold. Then for every stationary policy
T =(uH,...),wehave
J,=T,J,)
Furthermore, if J'€ F is such that J' < J,and J' < T(J'), then J' < J .
It is worth noting that Propositions 5.2 and 5.3 can form the basis for
computation of J* when the state space S is a finite set with n elements

denoted by x,,x,,...,Xx,. It follows from Proposition 5.2 that, under I,
I.1, and 1.2, J*(x,),. .., J*(x,) solve the problem

n
minimize ) 7,
i=1

subject to 4, > inf H(x;,u,J;), i=1,...,n,
ueU(x;)

/'{iZJ()(Xi), i=1,...,n,

where J, is the function taking values J,(x;) = 4;, i=1,...,n. Under D
and D.1, or D, D.2, and the assumption that J*(x) > — oo for ¥xeS, the
corresponding problem is

n
maximize Y
i=1

subject to A < H(x;,u,J,), i=1,...,n, ueU(x)
;»iSJo(Xi), i=1,...,n.

When U(x;) is also a finite set for all i, then the preceding problem becomes
a finite-dimensional (possibly nonlinear) programming problem.
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5.3 Characterization of Optimal Policies

We have the following necessary and sufficient conditions for optimality
of a stationary policy.

Proposition 5.4 Let I, 1.1, and 1.2 hold. Then a stationary policy n* =
(u*, u*,...) is optimal if and only if

T o(J*) = T(J%). (18)

Furthermore, if for each xe S, there exists a policy which is optimal at x,
then there exists a stationary optimal policy.

Proof 1If n* is optimal, then J,» = J* and the result follows from Prop-
osition 5.2 and Corollary 5.2.1. Conversely, if T ,(J*) = T(J*), then since
J* = T(J*)(Proposition 5.2), it follows that T ,.(J*) = J*. Hence by Corollary
52.1,J,. < J* and it follows that 7* is optimal.

If n¥ = (u¥ , 1% &, - ) is optimal at x€ S, we have, from L1,

JHx) = Jp(x) = (T s - Tpr )(Jo)(x)

k— oo 0¥
=T, x[lim(Tu*l T x)(Jo):|(x)
. . .
> T, (J9)(0) 2 TUH) = J5x).

Hence T,x (J*)(x) = T(J*)(x) for all xe S. Define p*e M by u*(x) = u§ ().
Then T ,(J*) = T(J*) and, by the result just proved, the stationary policy
(p*, u*,. . .) is optimal. Q.E.D.

Proposition 5.5 Let D and D.1 hold. Then a stationary policy n* =
(u*, u*,. . .)is optimal if and only if

Tl ) = T(J ). (19)

Proof 1f n* is optimal, then J . = J*, and the result follows from Prop-
osition 5.3 and Corollary 5.3.2. Conversely, if T,.(J ) = T(J ), then we
obtain, from Corollary 5.3.2, that J,. = T(J,), and Proposition 5.3 yields
J» < J* Hence n* is optimal. Q.E.D.

Examples where n* satisfies (18) or (19) but is not optimal under D or I,
respectively, are given in DPSC, Section 6.4.

Proposition 5.4 shows that there exists a stationary optimal policy if
and only if the infimum in the optimality equation

J*(x) = inf H(x,u,J*)

ueU(x)
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is attained for every xeS. When the infimum is not attained for some x e S,
the optimality equation can still be used to yield an -optimal policy, which
can be taken to be stationary whenever the scalar o in 1.2 is strictly less than
one. This is shown in the following proposition.

Proposition 5.6 Let I, 1.1, and .2 hold. Then:

(@) If e>0, {g} satisfies Y 2ok, =¢,6>0,i=0,1,..., and 7* =
s
(u, p¥,. . )ell is such that

T;(J*) < TU*) + ¢, k=0,1,...,
then
J*<Ju<J* 4.

(b) Ife > 0, thescalar o in 1.2 is strictly less than one, and u*¥e M is such
that
T {J*) < TJ*) + ¢e(1 — ),
then
J*<Ia<J* + e

Proof (a) Since T(J*) = J*, we have T (J*) < J* + ¢, and applying

T, toboth sides we obtain

(T Tup)J*) < Tye  (J¥) + 0t < J* + (51 + 02,

Applying T,:  throughout and repeating the process, we obtain, for every
k=1,2,...,
k .
(T T)J%) < J* + ( > oc'ei>-
i=0

Since J, < J*, it follows that

M=

(T TudJo) < J* + < cxisi>, k=12,....

i=0

By taking the limit as k — oo, we obtain J,. < J* + &.
(b) This part is proved by taking ¢, = &(1 — ) and p¥ = u* for all k in
the preceding proof. Q.E.D.

A weak counterpart of part (a) of Proposition 5.6 under D is given in
Corollary 5.7.1. We have been unable to obtain a counterpart of part (b) or
conditions for existence of a stationary optimal policy under D.
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5.4 Convergence of the Dynamic Programming Algorithm—
Existence of Stationary Optimal Policies

The DP algorithm consists of successive generation of the functions
T(Jo), T*(Jo), . . . . Under Assumption I we have TXJ,) < T**!(J,) for all k,
while under Assumption D we have T**1(J,) < TJ,) for all k. Thus we
can define a function J € F by

Jo(x)= lim TM(J,)(x)  VxeS. (20)
N-owo
We would like to investigate the question whether J, = J*. When Assump-
tion D holds, the following proposition shows that we have J,, = J* under
mild assumptions.

Proposition 5.7 Let D hold and assume that either D.1 holds or else
% = TN(J,) for all N, where J§ is the optimal cost function of the N-stage
problem. Then
J, =J*
Proof ByLemma 5.1 we have that D implies J* = limy_, ., J§. Corollary

3.1.1 shows also that under our assumptions J§ = T"(J,). Hence J* =
limy_ o TV o) = J o - Q.E.D.
The following corollary is a weak counterpart of Proposition 5.1 and

part (a) of Proposition 5.6 under D.

Corollary 5.7.1 Let D hold and assume that D.2 holds, S is a finite set,
and J*(x) > —co for all xeS. Then for any ¢ > 0, there exists an ¢-optimal
policy, i.e., a e IT such that

JE<J, <J*+e

Proof For each N, denote ey = ¢/2(L + o+ -+ o ~1) and let my =
{uy, 1, . uN—1 i p. ..} be such that ue M, and for k =0,1,...,N — 1,
uy e M and

(T xTN ¥ 1) (Jo) < TV ¥Jo) + &-

Wehave Tx  (Jo) < T(Jo) + ¢y, and applying T~ , to both sides, we obtain
(Tyx T )Jo) < (Tox T)Jo) + aey < T*(Jo) + (1 + a)ey.

N
HN-27 EN-1 EN-2

Continuing in the same manner, we have
(T Tuy_ o) < TJo) + (1 4+ o+ + oV ey,
from which we obtain, for N =0,1,. ..,

Ty < TV(Jo) + (2/2).

N =
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As in the proof of Corollary 5.3.1 our assumptions imply that J# = TN(J 0)
for all N, so by Proposition 5.7, limy_,, TV(J,) = J*. Let N be such that
TMJo) < J* + (¢/2). Such an N exists by the finiteness of S and the fact
that J*(x) > — oo for all xeS. Then we obtain Jag S J* + ¢, and iy is the
desired policy. Q.E.D.

Under Assumptions I, I.1, and 1.2, the equality J,, = J* may fail to hold
even in simple deterministic optimal control problems, as shown in the
following counterexample.

COUNTEREXAMPLE 3 Let S =[0,00), C = U(x) = (0, 00) for VxS, Jo(x) = 0
for VxeS, and

H(x,u,J)=x + J2x + u) VxeS, ueU(x).
Then it is easy to verify that
J*¥(x) = inf J, (x) = 0 VxeS,
while r
TV(J)(0) = 0, N=12,....
Hence J,(0) = 0 and J,(0) < J*(0).

In this example, we have J*(x) = oo for all xeS. Other examples exist
where J* # J, and J*(x) < oo for all xe S (see [S14, p. 880]). The following
preliminary result shows that in order to have J,, = J*, it is necessary and
sufficient to have J, = T(J ).

Proposition 5.8 Let I, 1.1, and 1.2 hold. Then

Jo T ,) < T(J*)=J*, (21)
Furthermore, the equalities
Jo=TUg)=TUJ*=J*% (22)
hold if and only if
Jo = T(J ). (23)

Proof Clearly wehaveJ,, < J, forall reIl, and it follows that J, < J*.
Furthermore, by Proposition 5.2 we have T(J*) = J*. Also, we have, for all
k>0,

T(J,)= inf H(x,u,J,)> inf H[x,u,TXJo)] = T*"(J,).

ueU(x) ueU(x)

Taking the limit of the right side, we obtain T(J,) > J, which, combined
with J , < J* and T(J*) = J*, proves (21). If (22) holds, then (23) also holds.
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Conversely, let (23) hold. Then since we have J,, > J,, we see from Prop-
osition 5.2 that J, > J*, which combined with (21) proves (22). Q.E.D.

In what follows we provide a necessary and sufficient condition for J, =
T(J,,) [and hence also (22)] to hold under Assumptions I, I.1, and 1.2. We
subsequently obtain a useful sufficient condition for J,, = T(J,) to hold,
which at the same time guarantees the existence of a stationary optimal
policy.

For any J e F, we denote by E(J) the epigraph of J, i.., the subset of SR
given by

E(J) = {(x, YJ(x) < A}. (24)
Under I we have TXJ,) < T¥*(J,) for all k and also J, = limy_.,, T%(Jo),
so it follows easily that
EU.) = () BTV es)
Consider for each k > 1 the subset C, of SCR given by
Ci = {(x,u, )|H[x,u, T*"*(Jo)] < 4, x€ S, ue U(x)}. (26)
Denote by P(C,) the projection of C, on SR, i.,
P(Cy) = {(x,4)| Jue U(x) s.t. (x,u, A)e C;}." (27)
Consider also the set
P(Cy) = {(x,1)|3{7n} st. 2y > 4, (6, 2)€P(C),n=0,1,...}.  (28)

The set P(C,) is obtained from P(C,) by adding for each x the point [x, 2(x)]
where Z(x) is the perhaps missing end point of the half-line {1|(x, 1)e P(Cy)}-
We have the following lemma.

Lemma 5.2 Let I hold. Then forall k > 1
P(Cy) = P(C) = E[T*(Jo)]. (29)
Furthermore, we have
P(C,) = P(Cy) = E[T*(J,)] (30)
if and only if the infimum is attained for each xe S in the equation

TJo)(x) = inf H[xu, T '(Jo)]. (31)

ueU(x)

* The symbol 3 means “there exists” and the initials “s.t.” stand for “such that.”
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Proof If (x,2)e E[TJ,)], we have
THJo)(x) = inf H[x,u, T*"'(Jo)] < 4

ueU(x)

Let {¢,} be a sequence such that ¢, >0, ¢, - 0, and let {u,} = U(x) be a
sequence such that

H[x,u,, T*"1(Jo)] < THJ)(X) + &, < A + &,,.

Then (x,u,,/ + ¢,)e C, and (x,2 + ¢,)e P(Cy) for all n. Since 4+ ¢, > 4,
by (28) we obtain (x, 1) P(C,). Hence

E[T(Jo)] = P(C). (32)

Conversely, let (x,1)e P(C,). Then by (26)—(28) there exists a sequence {An}
with 2, — 4 and a corresponding sequence {u,} = U(x) such that

TH(Jo)(x) < Hx,u, T* }(J0)] < 2.

Taking the limit as n — oo, we obtain TXJ,)(x) < A and (x, 1)e E[TXJ,)].
Hence

P(C,) = E[T"(Jo)],

and using (32) we obtain (29).

To prove that (30) is equivalent to the attainment of the infimum in (31),
assume first that the infimum is attained by uf_(x) for each xe S. Then for
each (x,A)e E[TX(J,)],

Hx, pf—1(x), T 1(Jo)] < 4,

which implies by (27) that (x, )€ P(C,). Hence E[TXJ,)] = P(C,) and, in
view of (29), we obtain (30). Conversely, if (30) holds, we have [x, TJ,)(x)] €
P(C,) for every x for which T(J,)(x) < co. Then by (26) and (27), there exists
a uif_ ;(x)e U(x) such that

H[x, @t 1(x), T*"'(Jo)] < TX(Jo)(x) = inf H[x,u, T*"1(J,)].
ueU(x)
Hence the infimum in (31) is attained for all x for which T*J,)(x) < oo. It

is also trivially attained by all ue U(x) whenever TXJ,)(x) = o0, and the
proof is complete. Q.E.D.

Consider now the set ();% ; C; and define similarly as in (27) and (28) the
sets

(ﬂck> {(xAlE]ueU x)s.t.(x,u, ) e fjc} (33)

P(kol Ck> = {(x, A3

{n) 8.8 Ay = 2y (X, Ay) <ﬂ Ck>} (34)
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Using (25) and Lemma 5.2, it is easy to see that

P<k61 Ck) < kﬁ PG =

=1 k

8

s

P(C)) = () E[T"Uo)] = EUs), (39)
1

1 k

1l
1]

oo}

P(ﬁ ck> < (\PC) = () E[T0a] = EU.) (36)
k=1 k=1

We have the following proposition.
Proposition 5.9 Let I, I.1, and 1.2 hold. Then:
(a) We have J, = T(J,.) (equivalently J, = J¥) if and only if

P(ﬁ ck> = ﬁ P(Cy). (37)

(b) We have J, = T(J,) (equivalently J,, = J*), and the infimum in
Jo(x)= inf H(x,u,J,) (38)

ueU(x)

is attained for each xeS (equivalently there exists a stationary optimal
policy) if and only if
P( N Ck> = ) P(C)). (39)
k=1 k=1
Proof (a) AssumeJ, = T(J,) and let (x,4) be in E(J,), i.e.,
inf H(x,u,J,) = J(x) < A

ueU(x)

Let {¢,} be any sequence with ¢, > 0, &, — 0. Then there exists a sequence
{u,} such that

H(x,u,,J,) < A+ &, n=12,...,
and so
H[x,u,, T* '(Jo)] < A+¢&, kn=12,....

It follows that (x,u,, A + ¢,)€ C, for all k, n and (x,u,, 4 + ¢,)€ ﬂ,‘:‘;l C, for
all n. Hence (x,1 + 8,,)6P(ﬂ;2°=1 C,) for all n, and since 1+ ¢,— 4, we
obtain (x, 2)e P(["\;~ C,). Therefore

E(.) < P@l ck>,

and using (36) we obtain (37).
Conversely, let (37) hold. Then by (36) we have P(ﬂff:l C.)=E(J,)

Let xe$ be such that J_(x) < co. Then [x,J,(x)]€ P([ )72 Ci), and there
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exists a sequence {4,} with 4, — J,(x) and a sequence {u,} = U(x) such that
H[x,u,, T (Jo)] < An, kn=1,2....

Taking the limit with respect to k and using 1.1, we obtain

H(x, uy,J ) < A,
and since T(J ,,)(x) < H(x,u,,J ), it follows that

T(J)(X) < Ay

Taking the limit as n — oo, we obtain

T(J,)(x) < Jp(x)

for all xe S such that J(x) < co. Since the preceding inequality holds also
for all xeS with J ,(x) = oo, we have

T(J,) < Je-
On the other hand, by Proposition 5.8, we have
Jo < T(J o).

Combining the two inequalities, we obtain J,, = T(J ).
(b)  Assume J,, = T(J,) and that the infimum in (38) is attained for
each x € S. Then there exists a function u* € M such that for each (x, 2)e E(J ;)

H[x, p*(x),J ] < 4.

Hence H[x, p*(x), T*"}(Jo)] < A for k = 1,2,.. ., and we have [x, u*(x), 4] €
(Viz1 Cx. As a result, (x, 1)e P(()i%; C,). Hence

E(J.,) < P< N ck>,
k=1

and (39) follows from (35).
Conversely, let (39) hold. We have for all xeS with J(x) < co that

[x,Jo(x)]€E(J ) = P< N Ck>.
k=1
Thus there exists a u*(x)e U(x) such that

[X’ ,u*(x), Joo(x)] € kol Cka

from which we conclude that

H[x, u*(x), T* " 1(Jo)] £ Jo(x), k=0,1,....
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Taking the limit and using 1.1, we see that
T(J ,)(x) < H[x, u*(x),J o ] < J (x).

It follows that T(J,) < J,, and since J, < T(J,) by Proposition 5.8, we
finally obtain J, = T(J,). Furthermore, the last inequality shows that
u*(x) attains the infimum in (38) when J(x) < co. When J  (x) = oo, every
ue U(x) attains the infimum, and the proof is complete. Q.E.D.

In view of Proposition 5.8, the equality J, = T(J,) is equivalent to

the validity of interchanging infimum and limit as follows
Jo = lim inf(T,,---T,)Jo) = inf lim(T,,---T,)(Jo) =J*
k= nell nellk— o0

Thus Proposition 5.9 states that interchanging infimum and limit is in fact
equivalent to the validity of interchanging projection and intersection in the
manner of (37) or (39).

The following proposition provides a compactness assumption which
guarantees that (39) holds.

Proposition 5.10 Let], 1.1, and 1.2 hold and let the control space C be a
Hausdorff space. Assume that there exists a nonnegative integer k such
that for each xe S, AeR, and k > k, the set

Unx, 4) = {ue U(x)|H[x,u, T"J,)] < 4} (40)

is compact. Then

P(ﬁ Ck> = ﬁ P(C)) (41)
k=1 k

=1
and (by Propositions 5.8 and 5.9)
Jo =T )= TJ*) =J*
Furthermore, there exists a stationary optimal policy.

Proof By (35) it will be sufficient to show that

P(kal Ck> N kﬁ F(Cd), fjl PG =

1—H8

P(Cy). 42)

=1 k=1

Let (x, ) be in ()72, P(Cy). Then there exists a sequence {u,} = U(x) such
that

H[x,u,, TNJ,)] < H[x,u,, T"(Jo)] <4  Vnx>k,
or equivalently
u, € Up(x, 1) Vvax>k k=0,1,....
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Since Uy(x, ) is compact for k > k, it follows that the sequence {u,} has an
accumulation point 7 and

neUyx, 1) Vk>k ‘
But Uy(x,4) > Us(x,A) > ...,s0ueUx,A) for k=0,1,.... Hence
H[xa TV <4 k=01,...,
and (x,7, )€ ()i Cy. It follows that (x, ) P([)i% C) and
P<ﬁ Ck> =) ﬁ P(Cy).
k=1 k=1

Also, from the compactness of U,(x, 1) and the result of Lemma 3.1, it follows
that the infimum in (31) is attained for every xe S and k > k. By Lemma 5.2,
P(C,) = P(C,) for k>k, and since P(C,)> P(C,)>--- and P(C,) o

P(C,)> -+, we have

s

ﬁ P(C) = () PG

1
Thus (42) is proved. Q.E.D.

The following proposition shows also that a stationary optimal policy
may be obtained in the limit by means of the DP algorithm.

Proposition 5.11 Let the assumptions of Proposition 5.10 hold. Then:

(a) There exists a policy n* = (ug, u¥,...)ell attaining the infimum
in the DP algorithm for all k > k&, i.e.,

(T TJo) = T 1(Jo)  Vk2E. 43)

(b) For every policy n* satisfying (43), the sequence { ui¥(x)} has at least
one accumulation point for each xe S with J*(x) < co.

() If u*:S— C is such that u*(x) is an accumulation point of {uf(x)}
for all xeS§ with J*(x) < co and u*(x)e U(x) for all xeS with J*(x) = oo,
then the stationary policy (u*, u*, . . .) is optimal.

Proof (a) This follows from Lemma 3.1.
(b) Foranyrn* = (ug,u¥, ...)satisfying (43) and x € S such that J*(x) <
00, we have

H[x, p¥(x), THJo)] < H[x, i (x), T"(Jo)] < J*(x)  Vk=k nx>k
Hence,

wE(x)e U x, J*(x)] Vk>k nx>k
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Since U,[x,J*(x)] is compact, {4¥(x)} has at least one accumulation point.
Furthermore, each accumulation point u*(x) of {u¥(x)} belongs to U(x)
and satisfies

H[x, p¥(x), T(Jo)] < J*(x)  Vk=k. (44)
By taking the limit in (44) and using I.1, we obtain
H[x, u*(x),J ] = H[x, p*(x), J*] < J*(x)

for all xeS with J*(x) < co. This relation holds trivially for all xeS with
J*(x) = co. Hence T (J*) < J* = T(J*), which implies that T ,.(J*) = T(J*).
It follows from Proposition 5.4 that (u*, u*, .. .) is optimal. Q.E.D.

The compactness of the sets U,(x, A) of (40) may be verified in a number of
special cases, some examples of which are given at the end of Section 3.2.
Another example is the lower semicontinuous model of Section 8.3, whose
infinite horizon version is treated in Corollary 9.17.2.

5.5 Application to Specific Models

We now show that all the results of this chapter apply to the stochastic
optimal control problems of Section 2.3.3 and 2.3.4. However, only a portion
of the results apply to the minimax control problem of Section 2.3.5, since
D.1 is not satisfied in the absence of additional assumptions.

Stochastic Optimal Control—Outer Integral Formulation

Proposition 5.12 Consider the mapping

H(x,u,J) = E*{g(x,u,w) + aJ [ f(x,u, w)]
of Section 2.3.3 and let Jy(x) = 0 for VxeS. If
0 < g(x,u,w) VxeS, ueU(x), weW, (46)

X, u} 45)

then Assumptions I, 1.1, and 1.2 are satisfied with the scalar in 1.2 equal to
o If

g(x,u,w) <0 VxeS, ueU(x), weW, 47)

then Assumptions D, D.1, and D.2 are satisfied with the scalar in D.2 equal
to a.

Proof Assumptions I and D are trivially satisfied in view of (46) or
(47), respectively, and the fact that Jo(x) = 0 for YxeS. Assumptions 1.1 and
D.1 are satisfied in view of the monotone convergence theorem for outer
integration (Proposition A.1). From Lemma A.2 we have under (46) for all
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r>0and JeF withJJ, < J

H(x,u,J + 1) = E*{g(x,u,w) + aJ [ f(x,u,w)] + ar|x,u}
= E*{g(x,u,w) + oJ [ f(x,u,w)]|x,u} + or
= H(x,u,J) + ar.

Hence 1.2 is satisfied as stated in the proposition. Under (47), we have from
Lemmas A.2 and A.3(c) that for all > 0 and Je F with J < J,,

H(x,u,J —r)= H(x,u,J) — ar,
and D.2 is satisfied. Q.ED.

Thus all the results of the previous sections apply to stochastic optimal
control problems with additive cost functionals. In fact, under additional
countability assumptions it is possible to exploit the additive structure of
these problems and obtain results relating to the existence of optimal or
nearly optimal stationary policies under Assumption D. These results are
stated in the following proposition. A proof of part (a) may be found in
Blackwell [B10]. Proofs of parts (b) and (c) may be found in Ornstein [04]
and Frid [F2].

Proposition 5.13 Consider the mapping
H(x,u,J) = E{g(x,u,w) + J[ f(x,u, w)]|x, u}
of Section 2.3.2 (W is countable), and let J(x) = O for all xeS. Assume that
S is countable, J*(x) > — oo for all xS, and g satisfies
b<gx,uw)<0 VxeS, ueU(x), weW,
where be(— oo, 0) is some scalar. Then:

(a) Ifforeach xe S there exists a policy which is optimal at x, then there
exists a stationary optimal policy.
(b) For every ¢ > 0 there exists a u,e M such that

J,(x) < (1 —e)J*(x) VxeS.

(c) If there exists a scalar fe(— o0,0) such that f < J*(x) for all xe S,
then for every & > 0, there exists a stationary e-optimal policy, ie., a y,e M
such that

JE<J, <J* +e

We note that the conclusion of part (a) may fail to hold if we have J*(x) =
— oo for some x €S, even if S is finite, as shown by a counterexample found
in Blackwell [B10]. The conclusions of parts (b) and (c) may fail to hold if
S is uncountable, as shown by a counterexample due to Ornstein [O4]. The
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conclusion of part (c) may fail to hold if J* is unbounded below, as shown
by a counterexample due to Blackwell [B8]. We also note that the results
of Proposition 5.13 can be strengthened considerably in the special case of
a deterministic optimal control problem (cf. the mapping of Section 2.3.1).
These results are given in Bertsekas and Shreve [B6].
Stochastic Optimal Control—Multiplicative Cost Functional

Proposition 5.14 Consider the mapping

H(x,u,J) = E{g(x, u, w)J [ £0x,u,w)] |, u}

of Section 2.3.4 and let Jo(x) = 1 for VxeS.

(a) If there exists a be R such that

1<g(x,uw)<b VxeS, ueU(x), weW,

then Assumptions I, 1.1, and 1.2 are satisfied with the scalar in 1.2 equal to b.
(b) If

0<glxuw<1 VxeS, ueU(x), weW,

then Assumptions D, D.1, and D.2 are satisfied with the scalar in D.2 equal
to unity.

Proof This follows easily from the assumptions and the monotone
convergence theorem for ordinary integration. Q.E.D.
Minimax Control
Proposition 5.15 Consider the mapping
H(x,u,J)= sup {g(x,u,w)+ oaJ[f(x,u,w)]}
)

weW(x,u
of Section 2.3.5 and let Jo(x) = O for VxeS.
(@) If
0<g(x,u,w) VxeS, ueU(x), welW,

then Assumptions I, I.1, and 1.2 are satisfied with the scalar in 1.2 equal to a.
(b) If

glx,u,w) <0 vxeS, ueU(x), weW,
then Assumptions D and D.2 are satisfied with the scalar in D.2 equal to o.

Proof The proof is entirely similar to the one of Proposition 5.12.
QE.D.



Chapter 6

A Generalized Abstract Dynamic
Programming Model

As we discussed in Section 2.3.2, there are certain difficulties associated
with the treatment of stochastic control problems in which the space W of
the stochastic parameter is uncountable. For this reason we resorted to
outer integration in the model of Section 2.3.3. The alternative explored in
this chapter is to modify the entire framework so that policies 7 = ( Hoy iy --)
consist of functions y, from a strict subset of M—for example, those functions
which are appropriately measurable. This approach is related to the one we
employ in Part II. Unfortunately, however, many of our earlier results and
particularly those of Chapter 5 cannot be proved within the generalized
framework to be introduced. The results we provide are sufficient, however,
for a satisfactory treatment of finite horizon models and infinite horizon
models under contraction assumptions. Some of the results of Chapter 5
proved under Assumption D also have counterparts within the generalized
framework. The reader, aided by our subsequent discussion, should be able
to easily recognize these results.

Certain aspects of the framework of this chapter may seem somewhat
artificial to the reader at this point. The motivation for our line of analysis
stems primarily from ideas that are developed in Part II, and the reader
may wish to return to this chapter after gaining some familiarity with Part 1.

91
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The results provided in the following sections are applied to a stochastic
optimal control problem with multiplicative cost functional in Section 11.3.
The analysis given there illustrates clearly the ideas underlying our develop-
ment in this chapter.

6.1 General Remarks and Assumptions

Consider the sets S, C, U(x), M, I, and F introduced in Section 2.1. We
consider in addition two subsets F* and F of the set F of extended real-
valued functions on S satisfying

F*cFcF

and a subset M of the set M of functions u:S — C saLtisfying ux)e U(~x) for
Vx e S. The subset of policies in IT corresponding to M is denoted by II, i.e.,

T = {(1o, 1, - Ve |meM, k=0,1,...}.

In place of the mapping H of Section 2.1, we consider a mapping
H:SCF — R* satisfying for all xeS, ue U(x), J, J'eF, the monotonicity
assumption

H(x,u,J) < H(x,u,J") if J<J.

Thus the mapping H in this chapter is of the same nature as the one of
Chapters 2-5, the only difference being that H is defined on S CF rather than
on SCF. Thus if F consists of appropriately measurable functions and H
corresponds to a stochastic optimal control problem such as the one of
Section 2.3.3 (with g measurable), then H can be defined in terms of ordinary
integration rather than outer integration.

For ue M we consider the mapping T”:F — F defined by

T (J)(x) = H[x, u(x),J] VxeS.
Consider also the mapping T:F — F defined by
T(J)(x)= inf H(x,u,J) VxeS.

ueU(x)
We are given a function J,:S — R* satisfying
Joe F*, Jo(x) > —o0 VxeS
and we are interested in the N-stage problem
minimize Jy o(X) = (T, Tuy_ JJ0)(x)

subject to we 11
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and its infinite horizon counterpart

minimize J(x) = Hm (T, " Tpy_ )Jo)(x) )
N—- oo )

subject to mell.

We use the notation,

J%=1nf Jy ., J* = infJ,,
nell nell
and employ the terminology of Chapter 2 regarding optimal, e-optimal, and
stationary policies, as well as sequences of polices exhibiting {¢, }-dominated
convergence to optimality.
The following conditions regarding the sets F*, F, and M will be assumed
in every result of this chapter.

A.1 Foreach xeS and ue U(x), there exists a ue M such that u(x) = w.
(This implies, in particular, that for every Je F and xe S

T(J)(x)= inf H(x,u,J)= inf H[x, u(x),J]).
) ueM

ueU(x

A.2 Forall JeF* and reR, we have
‘ T(J)e F*, (J +r)eF*
A3 ForallJeF,,ue]VI, and re R, we have
T,J)eF, (J+neF.

A.4 For each JeF* and ¢ > 0, there exists a € M such that for all
xesS

TJ)(x) + ¢ if TJ)x)> —o0,

T ()6 < {_1 /e if T(J)(x) = —oo.

In Section 6.3 the following assumption will also be used.

A5 For every sequence {Ii} = F that converges pointwise, we have
lim,_, , J € F. If, in addition, {J,} = F*, then lim,_,, Jye F*.

Note that in the special case where F* = F = F and M = M, we obtain
the framework of Chapters 2-5, and all the preceding assumptions are
satisfied. Thus this chapter deals with an extension of the framework of
Chapters 2-5.

We now provide some examples of sets F*, F, and M which are useful in
connection with the mapping

H(x,u,J) = J‘* (g0, u, w) + o [ f(x, u, w)]}p(dwlx, u)
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associated with the stochastic optimal control problem of Section 2.3.3. We
take J(x) = Ofor Vx € S. The terminology employed is explained in Chapter 7.

ExampPLE 1 Let S, C, and W be Borel spaces, # the Borel g-algebra
on W, f a Borel-measurable function mapping SCW into S, g a lower semi-
analytic function mapping SCW into R*, p(dw|x,u) a Borel-measurable
stochastic kernel on W given SC, and o a positive scalar. Let the set

I = {(x,u)e SC|xeS,ue U(x)}

be analytic. Take F* to be the set of extended real-valued, lower semi-
analytic functions on S, F the set of extended real-valued, universally mea-
surable functions on S, and M the set of universally measurable mappings
from S to C with graph in I (i.e., ue M if u is universally measurable and
(x, u(x))eT for Vx e S). This example is the subject of Chapters 8 and 9.

EXAMPLE 2 Same as Example 1 except that M is the set of all analytically
measurable mappings from S to C with graph in I'. This example is treated
in Section 11.2.

ExaMPLE 3 Same as Example 1 except for the following: p(dw|x, u) and
f are continuous, g real-valued, upper semicontinuous, and bounded above,
I" an open subset of SC, F the set of extended, real-valued, Borel-measurable
functions on S which are bounded above, F* the set of extended real-valued,
upper semicontinuous functions on S which are bounded above, and M the
set of Borel measurable mappings from S to C with graph in I'. This is the
upper semicontinuous model of Definition 8.8.

ExaMPLE 4 Same as Example 3 except for the following: C is in addition
compact, g real-valued, lower semicontinuous, and bounded below, I' a
closed subset of SC, F the set of extended real-valued, Borel-measurable
functions on S which are bounded below, and F* the set of extended real-
valued, lower semicontinuous functions on S which are bounded below. This
is a special case of the lower semicontinuous model of Definition 8.7.

All these examples satisfy Assumptions A.1-A.4 stated earlier (see also
Sections 7.5 and 7.7). The first two satisfy Assumption A.5 as well

6.2 Analysis of Finite Horizon Models

Simple modifications of some of the assumptions and proofs in Chapter 3
provide a satisfactory analysis of the finite horizon problem (1). We first
modify appropriately some of the assumptions of Section 3.1.

Assumption F.2 Same in statement as Assumption F.2 of Section 3.1
except that F is replaced by F.



6.2 ANALYSIS OF FINITE HORIZON MODELS 95

Assumption F.3 Same in statement as Assumption F.3 of Section 3.1
except we require that JeF*, {J,} = F, and {u,} = M, instead of JeF,
{J,} = F,and {u,} = M.

It can be easily seen that F.2 is satisfied in Examples 1—4 of the previous
section. It is also possible to show (see the proof of Proposition 8.4) that
F.3 is satisfied in Example 1, where universally measurable policies are
employed.

By nearly verbatim repetition of the proofs of Proposition 3.1(b) and
Proposition 3.2 we obtain the following.

Proposition 6.1 (a) Let Assumptions A.1-A.4 and F.2 hold and assume
that J¥(x) > —oo forall xeSand k=1,2,...,N. Then

J§=TJo),

and for every ¢ > 0 there exists an N-stage ¢-optimal policy, ie., a m,ell
such that

J?\;gJN,RESJ;S‘F&

(b) Let Assgmptions A.1-A .4 and F.3 hold and assume that J fn(X) < 00
forall xeS, nell,and k = 1,2,...,N. Then

J§=TUo).

Furthermore, given any sequence {¢,} with ¢, 10, &, > 0 for Vn, there exists a
sequence of policies exhibiting {¢, }-dominated covergence to optimality. In
particular, if in addition J¥(x) > — oo for all xeS, then for every ¢ >0
there exists an ¢-optimal policy.

Similarly, by modifying the proofs of Proposition 3.3 and Corollary
3.3.1(b), we obtain the following.

Proposition 6.2 Let Assumptions A.1-A.4 hold.

(a) A policy n* = (ud, ut,. . .)ell is uniformly N-stage optimal if and
only if (T, TV ¥~ 1)(Jo) = TV %Jo),k=0,1,...,N — 1.
(b) If there exists a uniformly N-stage optimal policy, then
F=T"(Jo).
Analogs of Corollary 3.3.1(a) and Proposition 3.4 can be proved if M
is rich enough so that the following assumption holds.

Exact Selection Assumption For every J e F*, if the infimum in

T(J)= inf H(x,uJ)

ueU(x)

is attained for every x e S, then there exists a u* € M such that T .(J)=TQ).
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In Examples 1 and 4 of the previous section the exact selection assump-
tion is satisfied (see Propositions 7.50 and 7.33). The following proposition
is proved similarly to Corollary 3.3.1(a) and Proposition 3.4.

Proposition 6.3 Let Assumptions A.1-A.4 and the exact selection as-
sumption hold.

(a) There exists a uniformly N-stage optimal policy if and only if the
infimum in the relation

T Y (Jo)(x) = inf H[x,u, TJ,)]
)

ueU(x

is attained foreach xeSand k=0,1,...,N — 1.
(b) Let the control space C be a Hausdorff space and assume that for
each xeS,2eR,and k=0,1,...,N — 1, the set

Un(x, 4) = {ue U(x)|H[x,u, TJ,)] < 4}
is compact. Then
§=T"o)

and there exists a uniformly N-stage optimal policy.

6.3 Analysis of Infinite Horizon Models under a
Contraction Assumption

We consider the following modified version of Assumption C of Sec-
tion 4.1.

Assumption C  There is a closed subset B of the space B such that:
(@) JoeBnF*

(b) Forall Je B F*, the function T(J) belongs to BN F*,
(c) For all JeBnF and pe M, the function T,(J) belongs to B F.

Furthermore, for every 7 = (uq, t1,- - -)€ I1, the limit
A}ijlzo(TuoTul' Ty )Uo)X)
exists and is a real number for each x e S. In addition, there exists a positive
integer m and scalars p and a with 0 < p < 1, 0 < o such that
T J) = T, I <ofl] =T VueM, J,J'eBnF,

T T T ) = (T T Ty N < o =10
vlu,o,...,/,lm_leM, J,JIGBGF.

Ho
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If Assumptions A.1-A.5 and C are made, then almost all the results of
Chapter 3 have counterparts within our extended framework. The key fact is
that, since F and F* are closed under pointwise limits (Assumption A.5), it
follows that BN F, BN F, BN F*, and B F* are closed subsets of B. This
is true in view of the fact that convergence of a sequence in B (i.e., in sup
norm) implies pointwise convergence. As a result the contraction mapping
fixed point theorem can be used in exactly the same manner as in Chapter 3
to establish that, for each ue M, J . 1s the unique fixed point of T, in BN F
and J* is the unique fixed point of T in B F*. Only the modified policy
iteration algorithm and the associated Proposition 4.9 have no counterparts
in this extended framework. The reason is that our assumptions do not
guarantee that Step 3 of the policy iteration algorithm can be carried out.
Rather than provide a complete list of the analogs of all propositions in
Chapter 4 we state selectively and without proof some of the main results
that can be obtained within the extended framework.

Proposition 6.4 Let Assumptions A.1-A.5 and € hold.

(a) The function J* belongs to B N F* and is the unique fixed point of
T within B F*. Furthermore, if J'e B F* is such that T(J') < J’, then
J*¥ < J, whileif J' < T(J'), then J" < J*.

(b) Forevery ue M, the function J, belongs to BN F and is the unique
fixed point of T, within B n F.

(c) There holds

lim ||[T*(J) = J*|=0  VJeBnF*,
N-owo
1im||T,’:’(J)—J#|| =0 VJeBnF, uel.

(d) A stationary policy n* = (u*, u*,...)e Il is optimal if and only if
T (J*) = T(J*).
Equivalently, 7* is optimal if and only if J ,.e B F* and
Tll*(Jll*) = T(JM*)'

) For any &> 0, there exists a stationary e-optimal policy, ie., a
(Mes Hes - - )€ 1T such that

”J* - Jﬂc” <e

Proposition 6.5 Let Assumptions A.1-A.5 and C hold. Assume further
that the exact selection assumption of the previous section holds.

(

(a) Ifforeach xeS there exists a policy which is optimal at x, then there
exists an optimal stationary policy.
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(b) Let C be a Hausdorff space. If for some Je B F* and for some
positive integer k the set
Udx, 4) = {ue U(x)|H[x,u, T*(J)] < 4}

is compact for all xeS, A€ R, and k >k, then there exists an optimal sta-
tionary policy.



Part I1

Stochastic Optimal Control Theory






Chapter 7

Borel Spaces and Their
Probability Measures

This chapter provides the mathematical background required for analysis
of the dynamic programming models of the subsequent chapters. The key
concept, which is developed in Section 7.3 with the aid of the topological
concepts discussed in Section 7.2, is that of a Borel space. In Section 7.4 the
set of probability measures on a Borel space is shown to be itself a Borel
space, and the relationships between these two spaces are explored. Our
general framework for dynamic programming hinges on the properties of
analytic sets collected in Section 7.6 and used in Section 7.7 to define and
characterize lower semianalytic functions. These functions result from
executing the dynamic programming algorithm, so we will want to measur-
ably select at or near their infima to construct optimal or nearly optimal
policies. The possibilities for this are also discussed in Section 7.7. A similar
analysis in a more specialized case is contained in Section 7.5, which is
presented first for pedagogical reasons.

Our presentation is aimed at the reader who is acquainted with the basic
notions of topology and measure theory, but is unfamiliar with some of the
specialized results relating to separable metric spaces and probability
measures on their Borel g-algebras.

101
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7.1 Notation
We collect here for easy reference many of the symbols used in Part II.

Operations on Sets

Let 4 and B be subsets of a space X. The complement of A in X is denoted
by A°. The set-theoretic difference A — B is A n B°. We will sometimes write
X — A is place of A°. The symmetric difference A/AB is (A — B)uU (B — A).
If X is a topological space, A will denote the closure of A. If A;, A,, ... is
a sequence of sets such that 4, c 4, - - and 4 = U,fleA,,, we write
A, 1AIA; > A, > -and A =% 4, wewrite 4, | A If X, X,, .. .isa
sequence of spaces, the Cartesian products of X{,X,,...,X, and of
X1,X,,... are denoted by X, X, X, and X, X, - -, respectively. If the
given spaces have topologies, the product space will have the product
topology. Under this topology, convergence in the product space is com-
ponentwise convergence in the factor spaces. If the given spaces have
c-algebras Fy ,Fy,,..., the product o-algebras are denoted by
FxFx,” Fx,and Fx Fy,- -, respectively.

If X and Y are arbitrary spaces and E < XY, then for each xe X, the
x-section of E is

E.={yeY|x,yeE}. 1)

If 2 is a class of subsets of a space X, we denote by ¢(#) the smallest
o-algebra containing 2. We denote by 2 or Z; the class of all subsets which
can be obtained by union or intersection, respectively, of countably many
sets in 2. If & is the collection of closed subsets of a topological space X,
then #; = &, and the members of &, are called the F_-subsets of X. If ¢
is the collection of open subsets of X, the members of ¥, are called the
Gs-subsets of X.

If (X, 2) is a paved space, i.e., 2 is a nonempty collection of subsets of X,
and S is a Suslin scheme for £ (Definition 7.15), then N(S) is the nucleus of
S. The collection of all nuclei of Suslin schemes for £ is denoted S(2).

Special Sets

The symbol R represents the real numbers with the usual topology. We
use R* to denote the extended real numbers [ — oo, + co] with the topology
discussed following Definition 7.7 in Section 7.3. Similarly, Q is the set of
rational numbers and Q* is the set of extended rational numbers Q U { + o0}

If X and Yaresetsand f: X — Y, the graph of f is

Gr(f) = {(x, f(x))]xe X }. )
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If A = X and % is a collection of subsets of X, we define f(A4) = { f(x)|xe 4}
and

&) =1{f(C)|Ce%}. ©)

If B Y and % is a collection of subsets of Y, we define f~'(B)=
{xe X|f(x)e B} and

7@ ={f7(C)Ce%}. )

If X is a topological space, & x is the collection of closed subsets of X
and %y the Borel o-algebra on X (Definition 7.6). The space of probability
measures on (X, By) is denoted by P(X); C(X) is the Banach space of bounded,
real-valued, continuous functions on X with the supremum norm

11 = supl 9l

for any metric d on X which is consistent with its topology, U,(X) is the space
of bounded real-valued functions on X which are uniformly continuous with
respect to d. If X is a Borel space (Definition 7.7), &y is its analytic c-algebra
(Definition 7.19) and % its universal o-algebra (Definition 7.18).

We let N denote the set of positive integers with the discrete topology.
The Baire null space .4 is the product of countably many copies of N. The
Hilbert cube # is the product of countably many copies of [0,1]. We will
denote by X the collection of finite sequences of positive integers. We impose
no topology on Z. If se X and z = ({;,{,,...)€ A", we write s < z to mean
s=(y,¢5,...,¢) for some k.

Mappings

If X and Y are spaces, projy is the projection mapping from XY onto X.
If E is a subset of X, the indicator function of E is given by

1 if xekE,
75(x) = {0 if x¢E. ©)
If f:X — [— o0, + o0], the positive and negative parts of f are the functions
f7(x) = max{0, f(x)}, (6)
f7(x) = max {0, —f(x)}. (7)

If f,:X—Y is a sequence of functions, Y is a topological space, and
lim,_, ,, f,(x) = f(x) for all xe X, then we write f, — f. If, in addition, Y =
[— o0, +00] and fi(x) < fo(x) < - - for all x € X, we write f, 1 f, while if
f1(x) = fo(x) = - - - for all x € X, we write f, | f. In general, when the argu-
ments of extended real-valued functions are omitted, the statements are to be
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interpreted pointwise. For example, (sup,f,)(x) = sup,f,(x) for all xe X,
S1 = f; if and only if fi(x) < f5(x) for all xe X, and f + ¢ is the function
(f +&)(x) = f(x) + ¢forall xe X.

Miscellaneous

If (X,d) is a nonempty metric space, xe X, and Y is a nonempty subset
of X, we define the distance from x to Y by

d(x, Y) = inf d(x, y). (8
yeY
We define the diameter of Y by
diam(Y) = sup d(x,y). )
x,yeY

If (X, 7) is a measurable space and & contains all singleton sets, then for
x€ X we denote by p, the probability measure on (X, %) which assigns mass
one to the set {x}.

7.2 Metrizable Spaces

Definition 7.1 Let (X,J) be a topological space. A metric d on X is
consistent with 7 if every set of the form {ye X|d(x,y) < c}, xe X, ¢ > 0, is
in 7, and every nonempty set in J is the union of sets of this form. The
space (X, J) is metrizable if such a metric exists.

The distinction between metric and metrizable spaces is a fine one: In
a metric space we have settled on a metric, while in a metrizable space the
choice is still open. If one metric consistent with the given topology exists,
then a multitude of them can be found. For example, if d is a metric on X
consistent with 7, the metric p defined by

plx,y) = dx,y)/[1+dx,y)]  Vx,yeX

is also consistent with 7. In what follows, we abbreviate the notation for
metrizable spaces, writing X in place of (X, 7).

If (X, ") is a topological space and Y = X, unless otherwise specified, we
will understand Y to be a topological space with open sets G N'Y, where G
ranges over 7 . This is called the relative topology. If (Z, &) is another topo-
logical space, ¢:Z — X is one-to-one and continuous, and ¢ ~ ! is continuous
on ¢(Z) with the relative topology, we say that ¢ is a homeomorphism and Z
is homeomorphic to ¢(Z). When there exists a homeomorphism from Z into
X, we also say that Z can be homeomorphically embedded in X. Given a
metric d on X consistent with its topology and a homeomorphism ¢:Z — X



7.2 METRIZABLE SPACES 105

as just described, we may define a metric d, on Z by

dy(z1,25) = d(@(21), 9(2,)). (10)

It can be easily verified that the metric d, is consistent with the topology &.
This implies that every topological space homeomorphic to a metrizable
space (or subset of a metrizable space) is itself metrizable.

Our attention will be focused on metrizable spaces and their Borel
c-algebras. The presence of a metric in such spaces permits simple proofs
of facts whose proofs are quite complicated or even impossible in more
general topological spaces. We give two of these as lemmas for later reference.

Lemma 7.1 (Urysohn’s lemma) Let X be a metrizable space and 4
and B disjoint, nonempty, closed subsets of X. Then there exists a continuous
function f:X — [0,1] such that f(a) = 0 for every ae 4, f(b) = 1 for every
beB, and 0 < f(x) < 1 for every x¢ A U B. If d is a metric consistent with
the topology on X and inf,. 4 ,.pd(a,b) > 0, then f can be chosen to be
uniformly continuous with respect to the metric d.

Proof Let d be a metric on X consistent with its topology and define
f(x) = d(x, A)/[d(x, A) + d(x, B)],

where the distance from a point to a nonempty closed set is defined by (8).
This distance is zero if and only if the point is in the set, and the mapping
of (8) is Lipschitz-continuous by (6) of Appendix C. This f has the required
properties. If inf,_ 4 y.pd(a,b) > 0, then d(x, 4) + d(x, B) is bounded away
from zero, and the uniform continuity of f follows. Q.E.D.

Lemma 7.2 Let X be a metrizable space. Every closed subset of X is a
G;and every open subset isan F,.

Proof We prove the first statement; the second follows by complemen-
tation. Let F be closed. We may assume without loss of generality that F is
nonempty. Let d be a metric on X consistent with its topology. The continuity
of the function x — d(x, F) implies that

G, = {xeX|d(x,F) < 1/n}
is open. But F = ()2, G,. QE.D.

Definition 7.2 Let X be a metrizable topological space. The space X is
separable if it contains a countable dense set.

It is easily verified that any subspace of a separable metrizable space is
separable and metrizable. A collection of subsets of a topological space
(X,77) is a base for the topology if every open set can be written as a union
of sets from the collection. It is a subbase if a base can be obtained by taking
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finite intersections of sets from the collection. If J has a countable base,
(X, ) is said to be second countable. A topological space is Lindeldf if every
collection of open sets which covers the space contains a countable sub-
collection which also covers the space. It is a standard result that in metrizable
spaces, separability, second countability, and the Lindeléf property are
equivalent. The following proposition is a direct consequence of this fact.

Proposition 7.1 Let (X, 7 ) be a separable, metrizable, topological space
and & a base for the topology . Then £ contains a countable subcollection
%, which is also a base for 7.

Proof Let % be a countable base for the topology . Every set Ce%
has the form C = | ), 1) Bx, where I(C) is an index set and B, € 4 for every
aeI(C). Since C is Lindelof, we may assume I(C) is countable. Let %, =

UceeiBJeeI(C)}.  QED.

The Hilbert cube # is the product of countably many copies of the unit
interval (with the product topology). The unit interval is separable and
metrizable, and, as we will show later (Proposition 7.4), these properties
carry over to the Hilbert cube. In a sense, # is the canonical separable
metrizable space, as the following proposition shows.

Proposition 7.2 (Urysohn’s theorem) Every separable metrizable space
is homeomorphic to a subset of the Hilbert cube .

Proof Let (X, d) be a separable metric space with a countable dense set
{x,}. Define functions

0(x) = min {1, d(x, x;)}, k=1,2,...,
and ¢: X — # by
P(x) = (@1(x), @2(x), . . ).

Each ¢, is continuous, so ¢ is continuous. (Convergence in # is component-
wise.) If ¢(x) = ¢(y), then letting x, — x, we see that lim;_, , d(y, x; ) =0, so
x = y and ¢ is one-to-one. It remains to show that ¢ ! is continuous, ie.,
o(y,) — o@(y) implies y, — y. But if ¢(y,) = ¢(y), choose ¢ > 0 and x, such
that d(y,x;) < e. Since d(y,,x,) = d(y,x;) as n — oo, for n sufficiently large
d(y,,x;) < e Then d(y,y,) < 2e. Q.E.D.

If X is a separable metrizable space and ¢ : X — J# is the homeomorphism
whose existence is guaranteed by Proposition 7.2, then by identifying xe X
with ¢(x)e #, we can regard X as a subset of #. Indeed, we can regard X
as a topological subspace of #, since the images of open sets in X under the
mapping ¢ are just the relatively open subsets of ¢(X) considered as a sub-
space of #. Note, however, that although X is both open and closed in itself,
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¢(X) may be neither open nor closed in ##. In fact, it may have no topological
characterization at all. Likewise, a set with special structure in X, say a G;,
may not have this structure when considered as a subset of #. The next
definition and proposition shed some light on this issue.

Definition 7.3 Let X be a topological space. The space X is topologically
complete if there is a metric d on X consistent with its topology such that the
metric space (X,d) is complete, ie., if {x,} = X is a d-Cauchy sequence
[d(x,,x,) — 0 as n,m — o], then {x,} converges to an element of X.

Proposition 7.3  (Alexandroff’s theorem) Let X be a topologically com-
plete space, Z a metrizable space, and ¢:X — Z a homeomorphism. Then
©(X) is a G;-subset of Z. Conversely, if Y is a Gs-subset of Z and Z is topo-
logically complete, then Y is topologically complete.

Proof For the proof of the first part of the proposition, we treat X as
a subset of Z. There are two metrics to consider, a metric d on Z consistent
with its topology and a metric d; on X which makes it complete. Define

U, = {zeZ|d(z, X) < 1/n and 3 an open neighborhood V(z) of z such that
sup  dy(x,y) < 1/n}.

x,yeV(iE)nX

Forn=1,2,...,given ze U, and V(z) as just defined, we have
V(z) n {yeZld(y,X) < 1/n} = U,

so U, is open. We show X = (2, U,.
For ze X, define

W(z) = {ye X|d,(y,2) < 1/3n}.

Then W(z) is relatively open in X, thus of the form W(z) = V(z) n X, where
V(z) is an open neighborhood in Z of z. Also,
sup  dy(x,y) < 1/n,
x,yeV(z)n X
so zeU,. Therefore X < ﬂ,‘,";l U,. Now suppose ze ﬂ,‘f;, U,. Then
d(z, X) = 0,and since X is closed, we have ze X. There is a sequence {x;} = X
such that x; — z. Let ¥,(z) be an open neighborhood in Z of z for which
sup  di(x,y) < 1/n. (11)
x,yeVn(z) n X
For each n, there is an index k, such that x, e V,(z) for k > k,. From (11) we
see that d,(x;, x;) < 1/n for i,j > k,, so {x,} is Cauchy in the complete space
(X,d;) and hence has a limit in X. But the limit is z by assumption, so X =
Ny U,
n=1 n
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For the converse part of the theorem, suppose (Z,d) is a complete metric
space and Y = ﬂ;‘,‘;l U,, where each U, is open in Z. Define a metric d;
on Y by

di(y,2) =d(y,z) + ;1 min{1/2"|[1/d(y,Z — U,)] — [1/d(z,Z — U)ll}-

If { .} is Cauchy in (Y,d,), then it is also Cauchy in (Z,d), and thus has a
limit ye Z. For each n,

asi,j — o0,s0 [1/d(yi,Z — U,)] remains bounded as k — oo. It follows that
ye U, for every n, hence yeY. Q.ED.

As we remarked earlier without proof, the Hilbert cube inherits metriz-
ability and separability from the unit interval. It also inherits topological
completeness. This is a special case of the fact, which we now prove, that
completeness and separability of metrizable spaces are preserved when
taking countable products.

Proposition 7.4 Let X, X,,. .. be a sequence of metrizable spaces and
Y,=X,X, -X,, Y=X,X,---.Then Y and each Y, is metrizable. If each
X, is separable or topologically complete, then Y and each Y, is separable or
topologically complete, respectively.

Proof 1If d, is a metric on X, consistent with its topology, then

d(y,y) = Z min{l/Z", dk(nkaﬁk)}’
k=1

where y = (11,72, - - ) § = (1,72, - -), is @ metric on Y consistent with the
product topology. If each (X,,d,) is complete, clearly (Y,d) is complete. If
4, is a countable base for the topology on X, the collection of sets of the
form G,G,- - -G, X,41Xn+2 "+, Where G, ranges over %, and n ranges over
the positive integers, is a countable base for the product topology on Y. The
arguments for the product spaces Y, are similar. Q.E.D.

Combining Propositions 7.2-7.4, we see that every separable, topo-
logically complete space is homeomorphic to a Gs-subset of the Hilbert cube,
and conversely, every G,-subset of the Hilbert cube is separable and topo-
logically complete. We state a second consequence of these propositions
as a corollary.

Corollary 7.4.1 Every separable, topologically complete space can be
homeomorphically embedded as a dense Gs-set in a compact metric space.
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Proof Let X be separable and topologically complete and let ¢ be a
homeomorphism from X into #. Since s is metrizable, ¢(X) is a G;-subset

of # (Proposition 7.3) and thus a dense Gjs-subset of ¢(X). Tychonoff’s
theorem implies that # is compact, so ¢(X) is compact. Q.E.D.

If X and Z are topological spaces, ¢ a homeomorphism from Z onto X,
and d a metric on X consistent with its topology such that (X, d) is complete,
then d; defined by (10) is a metric on Z consistent with its topology, and
(Z,d,) is also complete. Thus topological completeness is preserved under
homeomorphisms. The same is true for separability, as is well known.
Topological completeness is somewhat different from separability, however,
in that one must produce a metric to verify it. It is quite possible that a space
has two metrics consistent with its topology, is a complete metric space with
one, but is not a complete metric space with the other. For example, let
X = {1,%,},. . .} have the discrete topology,

0 if x=y,
dl(x’ y) - {1 if X ;é y,
and
dy(x,y) = |x = y|.”

Then (X, d,) is complete, but (X, d,) is not. A more surprising example is that
the set A of irrational numbers between 0 and 1 with the usual topology
is topologically complete. To see this, write 4o = (),.o([0,1] — {r}), where
0 is the set of rational numbers. It follows that /4" is a Gs-subset of [0,1]
and is thus topologically complete by Proposition 7.3. Another proof is
obtained as follows. Let N be the set of positive integers with the discrete
topology and A" the product of countably many copies of N. The space A"
is called the Baire null space and is topologically complete (Proposition 7.4).
The topological completeness of A", follows from the fact that 4" and A",
are homeomorphic. We give the rather lengthy proof of this because it is not
readily available elsewhere. This homeomorphism will be used only to
construct a counterexample (Example 1 in Chapter 8), so it may be skipped
by the reader without loss of continuity.

Proposition 7.5 The topological spaces 4", and A" are homeomorphic.

Proof Let Z be the set of finite sequences of positive integers. [f ze X U A",
we will represent its components by {,. Similarly, {, will represent the com-
ponents of an element Z of £ U .A". The length of ze X U ./ is defined to be
the number of its components. If z has length greater than or equal to k,
we define z;, = ({,,{k+1,-..) OF 2z, = ((,. . .,(,), depending on whether z
has infinite length or length m < co.
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For zeZ u 4, define a sequence whose initial terms are
xi(z) ={7h
xx(2) = + )7
x3(2) = ({1 + G+ D)L
If z has length k < oo, we define x,(2), x,(2), . . ., x;(z) as shown, and x, , j(z) =
x(2),j=1,2,....

Claim I The sequence {x,(z)} converges to an element of (0,1] for
VzeX u AN
If z has finite length, the claim is trivial. If z has infinite length, then

0 < X24(2) < X2042(2) < X2441(2) < Xpp—1(2) < 1, n=12..., (12)
so for every n

X2,(z) < liminf x,(z) < limsup x,(z) < x,,_4(2). (13)
k=

Now
0 < x3,-1(2) — Xx24(2)
=[{1 + x2n-2(22)] 71 = [{1 + X2 -4(22)] 7}
= [{1 + X2n-2(22)] 7 L1 + X20-1(22)] 7 [X20-1(22) = X2 2(22)]
S0+ G+ D72 [X20-1(22) = X20-2(22)]
S+ G+ D770 + G+ D7 [Xn-3(23) — X20-2(23)]

< G+ G+ DT 2+ GG+ D)2 [y + o + D772
Since
[Cak-1+ Cae + D77 [Co + Qo + D772 <8, k=1,...,n—1,
we have
0 < xz,-1(2) = X2(2) @)1,

and Claim 1 follows.
Define ¢p:X U A4 — (0,1] by

@(z) = lim x,(z).

k=0

Note thatif ze A, then 0 < ¢(z) < 1. Also, if z has length at least k, then

@(2) = o[(C1. a5 - - Ce-15 Vo(2)]- (14)
Claim2 Ifze ./ and ¢(z) = ¢(Z), then z = 2.
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Suppose ¢(z) = (p(z) and z # Z. We can use (14) to assume without loss
of generality that {; # , or else % has length one and {; = {,. In the latter
case, (12) implies

@@ =1/ = 1/{; = x1(2) > x3(2) 2 0(2),

and a contradiction is reached. In the former case, if Z has length one, then
from (14)

12, = 0(3) = ¢(2) = 1/[{1 + o(z5)],

so
Lo=0 + 0z),
which is impossible, since 0 < ¢(z,) < 1. If Z has length greater than one, then
1/[C + 0(E)] = 0 = 0(2) = 1/[{1 + 0(z2)],
and
81 + @(Z,) = {1 + o(22).
This is also impossible, since 0 < ¢(Z,) < 1 and 0 < @(z,) < 1.

Claim 3 Every rational number in (0,1] has the form ¢(Z), where
ZeZ.

Let r,/q be a rational number in (0, 1] reduced to lowest terms, r; and g
positive integers. Then

ri/g=(q/r)~" =g + (r2/r0)] 7",
where g, and r, are positive integers and r, < r;. Likewise,
rafry = (ryfr) "t = g2 + (r3/r2)] 71,
where g, and r are positive integers and r3 < r,. Continuing, we eventually
obtain r, = 1 and have
rl/q = Q’[(‘ha qz,- - - aqn—larn"l):"

Claims 2 and 3 imply that if ze .4, then ¢(z) is irrational. Put another
way, ¢ maps .4 into A y. But given ye .4y, it is possible to choose positive
integers {,,{,,. .., such that

G+ <y <G
C+EHY ! <y<@+ G+
CHC+CG+HY™H ) <y<C+C+GH™H7!
etc., so that defining z = ({4,{,,. . .), we have

X2(2) < Y < Xg4-4(2), k=12,....
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It follows that ¢(z) = y, so ¢ maps 4" onto A" and, by Claim 2, is one-to-one
on 4.

We show that ¢ restricted to 4" is open and continuous. Let V < A" be
open. We may assume without loss of generality that

V= {ZGJV’(CI" . aCn) = (61" . ’En)}-
Then

o) ={&+ G+ +G+oe@) ) ) e,

and since {@(z)|ze N} = Ny, @(V) is open. Since convergence in A~ is
componentwise and x,(z) depends only on the first n components of ze A",
continuity of ¢ on A" follows from (13). Q.E.D.

We now examine properties of metrizable spaces related to the notion
of total boundedness.

Definition 7.4 A metric space (X,d) is totally bounded if, given ¢ > 0,

there exists a finite subset F, of X for which
X = UF {yeX|d(x,y) < &}.

A totally bounded metric space is necessarily separable, since | J;; Fy,
is a countable dense subset. Total boundedness depends on the metric,
however, and a space which is totally bounded (and separable) with one
metric may not be totally bounded with another. Like separability, total
boundedness is preserved under passage to subspaces, i.e., if (X, d) is totally
bounded and Y < X, then (Y,d) is totally bounded. To see this, take ¢ > 0
and let F,, be a finite subset of X such that

X= | {yeXldxy) <e/2}.

xeFg)
Choose a point, if possible, in each of the sets
Yn{yeX|d(x,y) <&?2}, xeF,,,
and call the collection of these points G,. Then
Y= ) {zeY|d(y,2) <&}

yeGe
We use this fact to prove the following classical result relating completeness,
compactness, and total boundedness.

Proposition 7.6 A metric space is compact if and only if it is complete
and totally bounded.

Proof 1f (X,d) is a compact metric space, then every Cauchy sequence
has an accumulation point. The Cauchy property implies that the sequence
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converges to this point, and completeness follows. Also, for ¢ > 0, the
collection of sets

{yeXl|d(x,y) < e}, xeX,

contains a finite cover of X. Hence, (X, d) is totally bounded.

If (X, d) is complete and totally bounded and S = {s;} is a sequence in
(X,d), then an infinite subsequence S; = S must lie in some set B; =
{yeX|d(x,,y) < 1}. Since B, is totally bounded, an infinite subsequence
S, = S, must lie in some set B, = {y€ B,|d(x,,y) < 3}. Continuing in this
manner, we have for each n an infinite sequence S, ,; = S, lying in B, ,; =
{yeB,|d(x,+1,y) < 1/(n+ 1)}. Let j, <j, <--- be such that s; €S,. Then
{s;.} is Cauchy and thus convergent. Therefore S has an accumulation
point, and the compactness of (X, d) follows. Q.E.D.

Corollary 7.6.1 The Hilbert cube is totally bounded under any metric
consistent with its topology, and every separable metrizable space has a
totally bounded metrization.

Proof The Hilbert cube is compact by Tychonoff’s theorem. Urysohn’s
theorem (Proposition 7.2) can be used to homeomorphically embed a given
separable metrizable space into the Hilbert cube. Q.E.D.

As mentioned previously, total boundedness implies separability. By
combining this fact with Proposition 7.6, we obtain the following corollary.

Coroliary 7.6.2 A compact metric space is complete and separable.

If X is a metrizable space, the set of all bounded, continuous, real-
valued functions on X is denoted C(X). As is well known, C(X) is a Banach
space under the norm

[1f]l = sup| f(x),
xeX

and we will always take C(X) to have the metric and topology corresponding
to this norm. If d is a metric on X consistent with its topology, we denote
by U,(X) the collection of functions in C(X') which are uniformly continuous
with respect to d. We take Uy(X) to have the relative topology of C(X).
We conclude this section with a discussion of the properties C(X) and U 4(X)
inherit from X.

Proposition 7.7 If X is a compact metrizable space, then C(X) is
separable.

Proof  Thespace X is separable (Corollary 7.6.2). Let {x, } be a countable
dense subset of X and let F,, F,,. .. be an enumeration of the collection of
sets of the form { ye X|d(x,, y) < 1/n}, where k and n range over the positive
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integers. For any disjoint pair F; and F;, let f;; be a continuous function
taking values in [0, 1] such that f;;(x) = 0 for xe F; and f;;(x) = 1 for xe F;.
If F; and F; are not disjoint, let f;; be identically one. Let % consist of the
functions f;; as i and j range over the positive integers. The collection %
clearly separates points in X, i.e., given x 5 y, there exists f €% for which
f(x) # f(y). Let 2 be the collection of finite-degree polynomials over %,
i.e., a typical element in £ has the form

| livee i e S

[(FT in)sGseens Jjn)
where o(iy,. .., ip5j1.- - -2 Jn) ER, fifn- -, fi, €%, and the summation is finite.
Then £ is a vector space under addition and the product of two elements in
2 is again in 2. With these operations £ is an algebra, and by the Stone-
Weierstrass theorem, £ is dense in C(X). Let 2, be the collection of finite-
degree polynomials over ¥ with rational coefficients. An easy approximation
argument shows that 2, is dense in £, and thus dense in C(X) as well. Since
2, is countable, C(X) is separable. Q.E.D.

Definition 7.5 Let (X,d;) and (Y,d,) be metric spaces. A mapping
@:X — Y is an isometry if

di(x1,x3) = da(0(x1), 9(x3)) Vxi,x€X.
In this case we say that (X, d,) and (¢(X), d,) are isometric spaces.

If (X,d,) and (Y, d,) are as in Definition 7.5, we may regard the former
as a subspace of the later, and the distances between points in X are un-
affected by this embedding. Thus an isometry is a metric-preserving
homeomorphism.

Proposition 7.8 Let (X,d) be a metric space. There exists a complete
metric space (X4, d,), called the completion of (X,d), and an isometry ¢: X —
X 4 such that ¢(X) is dense in X ;.

Proof The construction of the completion of a metric space is standard,
so we content ourselves with a sketch of it. Given the metric space (X, d),
define an equivalence relation ~ on the set of Cauchy sequences in (X, d) by

(Xa) ~ (X3} = lim d(x,, x;) = 0.

n— oo

Let X, be the set of equivalence classes of Cauchy sequences in (X, d) under
this relation and let d,; be defined on X, X, by

dy(x, y) = lim d(x,, y,), (15)

n—w
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where {x,} and {y,} are chosen to represent the equivalence classes x and y.
It is straightforward to verify that the limit in (15) exists for every pair of
Cauchy sequences {x,} and {y,}, and it is independent of the particular
sequences chosen to represent the equivalence classes x and y. Furthermore,
(X4,dy) can be shown to be a complete metric space, and the mapping ¢
which takes xe X into the equivalence class in X, containing the Cauchy
sequence (X, X,...) is an isometry. The image of X under ¢ is dense in X,.

Q.E.D.

We can regard X, as consisting of X together with limits of all Cauchy
sequences in X. We are really interested in the case in which (X, d) is totally
bounded, for which we have the following result.

Corollary 7.8.1 Let (X,d) be a totally bounded metric space. There
exists a compact metric space (X,,d,) and an isometry ¢:X — X, such that
@(X)is dense in X .

Proof In light of Propositions 7.6 and 7.8, it suffices to prove that the
completion (X,,d,) of (X,d) is totally bounded. Choose ¢ > 0. Regarding
(X,d) as a subspace of (X, d,), choose a finite set F, of X for which

X = {yeXld(x,y) < ¢?2}.

xeF,

Since X is dense in X,;, we have

Xd = q‘ {yGXdldl(X, y) < 8}. Q.E.D.
If X is a separable metrizable space, it is not necessarily true that C(X)
is separable (unless X is compact, in which case we have Proposition 7.7).
For example, let f:R — [0, 1] be defined as

0 if |x| >3,
fx) =<1+ 2x if —3<x<0,
1-2x if 0<x<%

B

and given an infinite sequence b = (f, f8,, . . .) of zeroes and ones, define

Hx)= Y flx—n)
nlBn= 13

We have constructed an uncountable collection of functions £, in C(R) such
that if b, # b,, then || f,, — f;,|| = 1. Therefore, C(R) cannot be separable.

It is true, however, that given a separable metrizable space X, there is a
metric d on X consistent with its topology such that Uy (X) is separable.
This is a consequence of the next proposition and the fact that separability
implies the existence of a totally bounded metrization (Corollary 7.6.1). We
prove this proposition with the aid of the following lemma.
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Lemma 7.3 Let Y be a metrizable space, d a metric on Y consistent
with its topology, and X < Y. If ge Uy (X), then g has a continuous extension
to Y, i.e., there exists §e C(Y) such that g(x) = g(x) for every xe X, and the
extension § can be chosen to satisfy ||g|| = ||g|| If X is dense in Y, § is unique.

Proof Since g is uniformly continuous on X, given ¢ > 0 there exists
() > 0 such that if x,, x, € X and d(x,,x,) < &(¢), then |g(x,) — g(x2)| < &
Suppose yeX. Then there exists a sequence {x,} = X for which x, — y.
Given ¢ > 0, there exists N(g) such that d(x,, x,,) < 6(¢) for all n, m > N(e),
so {g(x,)} is Cauchy in R. Define §(y) = lim,, ,, g(x,). Note that n > N(e)
implies |g(x,) — §(y)| < e.

Suppose now that xe X and d(x, y) < d(g)/2. Choose n > N(g) so that
d(x,, y) < 6(g)/2. Then d(x, x,) < 6(¢) and

l9(x) = G(»)] < |g(x) = glxa)| + lg(x,) — G(¥)] < 2. (16)

This shows that for any sequence {x,} = X with x;, — y, we have g(y) =
lim,_ , g(x;), so the definition of §(y) is independent of the particular
sequence {x,} chosen. If ye X, we can take x, =y, n=1,2, ..., and obtain
g(¥) = g(y), so G is an extension of g. If {y,,} is a sequence in X which con-
verges to ye X, then there exist sequences {X,,,} in X with y,, = lim,, ;, Xy
Choose n; <n, <---so that lim,, o, X, =y and d(x,,,,, V) < 6(1/m)/2.
Then

gy = 1ijn 9 (Xmn, ) (17)
and, by (16),
|9(Xmn,) — G(Vm)| < 2/m. (18)

Letting m — oo in (18) and using (17), we conclude that §(y) = lim,,— o §(Vm)
and § is continuous on X. It is clear that

suplg(x)| = sup|g(y)|-
xeX veX

If X =Y, g is clearly unique and we are done. If X is a proper subset of Y,
use the Tietze extension theorem (see, e.g., Ash [A1] or Dugundji [D7]) to
extend g to all of Y so that

lgll = iuglé(y)l. QED.

Proposition 7.9  If (X, d) is a totally bounded metric space, then U,(X)
is separable.

Proof Corollary 7.8.1 tells us that (X, d) can be isometrically embedded
as a dense subset of a compact metric space (X,,d;). We regard X as a
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subspace of X ;. Given any g€ U,(X), by Lemma 7.3, g has a unique extension
geC(X,) such that ||g|| =||g|]. The mapping g — g is linear and norm-
preserving, thus an isometry from Uy(X) to C(X,). The latter space is sep-
arable by Proposition 7.7, and the separability of U,(X) follows. Q.E.D.

7.3 Borel Spaces

The constructions necessary for the subsequent theory of dynamic
programming are impossible when the state space and control space are
arbitrary sets or even when they are arbitrary measurable spaces. For this
reason, we introduce the concept of a Borel space, and in this and subsequent
sections we develop the properties of Borel spaces which permit these
constructions.

Definition 7.6 If X is a topological space, the smallest g-algebra of
subsets of X which contains all open subsets of X is called the Borel g-algebra
and is denoted by %y. The members of %y are called the Borel subsets of
X.

If X is separable and metrizable and & is a ¢-algebra on X containing
a subbase % for its topology, then & contains %y. This is because, from
Proposition 7.1, any open set in X can be written as a countable union of
finite intersections of sets in . Thus we have #y = (&) for any subbase
<.

We will often refer to the smallest g-algebra containing a class of subsets
as the g-algebra generated by the class. Thus, %y is the ¢-algebra generated
by the class of open subsets of X. Note that %y is the class of Borel subsets
of the real numbers in the usual sense, ie., the o-algebra generated by the
intervals.

Given a class of real-valued functions on a topological space X, it is
common to speak of the weakest topology with respect to which all functions
in the class are continuous. In a similar vein, one can speak of the smallest
o-algebra with respect to which all functions in the class are measurable.
If X is a metrizable space, it is easy to show that its topology is the weakest
with respect to which all functions in C(X) are continuous. The following
proposition is the analogous result for . In the proof and in subsequent
proofs, we will use the fact that for any two sets Q, ', any collection % of
subsets of (', and any function f:Q — ', we have

o[/ @)]=f""[e(®)]

Proposition 7.10 Let X be a metrizable space. Then %y is the smallest
o-algebra with respect to which every function in C(X) is measurable, i.c.,

By = 0[|Jseca /™ (%Br)]-
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Proof Denote & = o[ J;ccon S~ '(%r)] and let 7 be the topology
of R. We have

7 =o[ U f’l[am)ﬂ

SeC(X)

0'[ U G[f_l(g-R)]} < 0'|: U %X:| = Bx.
feCx) feC)

To prove the reverse containment By = & we need only establish that &
contains every nonempty open set. By Lemma 7.2, it suffices to show that
Z contains every nonempty closed set. Let 4 be such a set. We may assume
without loss of generality that 4 # X, so there exists xe X — 4. Let B = {x},
and let f be given by Lemma 7.1. Then 4 = f "({0})e#.  Q.E.D.

We use Lemma 7.2 to prove another useful characterization of the Borel
o-algebra in a metrizable space.

Proposition 7.11 Let X be a metrizable space. Then %y is the smallest
class of sets which is closed under countable unions and intersections and
contains every closed (open) set.

Proof Let 2 be the smallest class of sets which contains every closed
set and is closed under countable unions and intersections, i.e., & is the
intersection of all such classes. Then 9 = %y and it suffices to prove that
2 is closed under complementation. Let 2’ be the class of complements of
sets in 2. Then &’ is also closed under countable unions and intersections.
Lemma 7.2 implies that & contains every open set, so &' contains every
closed set, and consequently 9 = @'. Given De %, we have DeZ’, so
D°eg. Q.E.D.

Definition 7.7 Let X be a topological space. If there exists a complete
separable metric space Y and a Borel subset Be %y such that X is homeo-
morphic to B, then X is said to be a Borel space. The empty set will also be
regarded as a Borel space.

Note that every Borel space is metrizable and separable. Also, every
complete separable metrizable space is a Borel space. Examples of Borel
spaces are R, R", and R* with the weakest topology containing the intervals
[— o0, @), (B, ], (o B), o BeR. (This is also the topology that makes the
function ¢ defined by

1 if x= oo,
o(x) = {sgn(x)(1 —e ™) if xeR,
-1 if x= —o0,
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a homeomorphism from R* onto [ —1, 1]). Any countable set X with the
discrete topology (i.e., the topology consisting of all subsets of X) is also a
Borel space. We will show that every Borel subset of a Borel space is itself
a Borel space. For this we shall need the following two lemmas. The proof
of the first is elementary and is left to the reader.

Lemma 7.4 If Yis a topological space and E < Y, then the o-algebra %,
generated by the relative topology coincides with the relative o-algebra,
Le., the collection {E n C|Ce %y}. In particular, if Ee %y, then % consists
of the Borel subsets of Y contained in E.

Lemma 7.5 If X and Y are topological spaces and ¢ is a homeomor-
phism of X into Y, then ¢(%y) = Z,x)-

Proof If Ty is the topology of X, then ¢(7 ) is the topology of ¢(X).
Since ¢ is one-to-one, we have that ¢ is the inverse of a mapping, and

?(#x) = o[o(Tx)] = alo(Tx)] = B ox)- QE.D.
Proposition 7.12  If X isa Borel space and Be %y, then Bis a Borel space.

Proof Let ¢ be a homeomorphism of X into some complete separable
metric space Y such that ¢(X)e%y. From Lemma 7.5 and the fact that
Be %y, we obtain ¢(B)e€ A, x,. It follows from Lemma 7.4 that ¢(B)c %y.

Q.E.D.

Like separability and completeness, the property of being a Borel space
is preserved when taking countable Cartesian products.

Proposition 7.13 Let X, X,,... be a sequence of Borel spaces and
Y,=X,X,--X,, Y=X,X, . Then Y and each Y, with the product
topology is a Borel space and the Borel g-algebras coincide with the product
o-algebras, ie., By, = Bx Bx, - Bx, and By = Bx Bx, -

Proof Asin Proposition 7.4, we focus our attention on the more difficult
infinite product. Consider the last statement of the proposition. Each X, has
a countable base ¥, for its topology, and the collection of sets of the form
GG, G, X,11X,., -, where G, ranges over %, and n ranges over the
positive integers, is a base for the product topology on Y. The o-algebra
generated by this topology is %y . Recall that the product ¢-algebra 2 Bx,
is the smallest g-algebra containing all finite-dimensional measurable rec-
tangles, i.e., all sets of the form BB, - - - B,X 41, Xp+2 - -, Where B, e %x,.,
k=1,...,n Itis clear that each basic set of the product topology on Y is
a finite-dimensional measurable rectangle, and since each open subset of
Y is a countable union of these basic open sets, every open subset of Y is
%x Px, - measurable. We conclude that By = By By, --. (Note that
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this argument relies only on the separability of the spaces X;, X,,....
Without this separability assumption, the argument fails and the conclusion
is false.) The reverse set containment follows from the observation that for
each k and B,e%x,, X1 X, Xy 1B Xy 41 - €By.

To prove that Y is a Borel space, note that X; can be mapped by a
homeomorphism ¢, onto a Borel subset of a separable topologically complete
space X,. The product ¥ = X, X, - - - is separable and topologically complete,
and ¢:Y — Y defined by

¢(x1a X5 ) = ((Pl(xl)a (pZ(XZ)a . )

is a homeomorphism from Y onto ¢(X)p,(X,)--- . This last set is in
Bz Bz, - = By, and the conclusion follows. QE.D.

Definition 7.8 Let X and Y be topological spaces. A function f: X —» Y
is Borel-measurable if f ~'(B)e By for every Be By.

In many respects, Borel-measurable functions relate to Borel g-algebras
as continuous functions relate to topologies. We have already used the fact,
for example, that if f,: X — ¥, is continuous from a topological space X to
a topological space Y, k=1,2,...,then F: X - Y, Y, - - - defined by F(x) =
(f1(x), f2(x), .. .) is also continuous. This follows from the componentwise
nature of convergence in product spaces. There is an analogous fact for
Borel-measurable functions and Borel spaces.

Proposition 7.14 Let X be a Borel space, Y3, Y, . .. a sequence of Borel
spaces, and f;: X — Y, a sequence of functions. If each f; is Borel-measurable,
k=1,2,...,then the function F:X — Y, Y, - - - defined by

F(x) = (fi(x), f2(x), . . )
and the functions F,: X — Y, Y, - - - ¥, defined by
Fn(x) = (fl(x)afZ(x)v . ’j;l(x))

are Borel-measurable. Conversely, if F is Borel-measurable, then each f; is
Borel-measurable, k = 1,2, ..., and if some F, is Borel-measurable, then
fisf2,- - ., f, are Borel-measurable.

Proof Again we consider only the infinite product. The Borel o-algebra

in Y,Y, - is generated by sets of the form BB, --, where B,e%y,,
k=1,2,.... Now
F™ BBy ) =f1{'(B)nf2 (B (19)

The left side of (19) is in &y for each B, e By, , k = 1,2,.. ., if and only if the
sets f }(By) are in Ay for each Bye By, k = 1,2,.. ., and the result follows.
Q.E.D.
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Corollary 7.14.1 Let X and Y be Borel spaces, D a Borel subset of X,
and f:D — Y Borel-measurable. Then

Gr(f) = {(x.f(x))e X Y|xe D}
1s Borel-measurable.

Proof The mappings (x,y) — f(x) and (x,y) — y are Borel-measurable
from DY to Y, so the mapping F(x, y) = (f(x), y) is Borel-measurable from
DY to YY. Then

Gr(f) = F '({(nylye Y}).
Since {(y,y)|ye Y} is closed in YY, Gr(f) is Borel-measurable. Q.E.D.

The concept of homeomorphism is instrumental in classifying topological
spaces, since it allows us to identify those which are “topologically equiva-
lent.” We can also classify measurable spaces by identifying those which,
when regarded only as sets with g-algebras, are indistinguishable. We
specialize this concept to Borel spaces.

Definition 7.9 Let X and Y be Borel spaces and ¢:X — Y a Borel-
measurable, one-to-one function such that ¢~! is Borel-measurable on
@(X). Then ¢ is called a Borel isomorphism, and we say that X and ¢(X)
are Borel-isomorphic (or simply isomorphic).

If X and Y are Borel spaces and ¢:X — Y is a Borel isomorphism, it is
tempting to think of X and ¢(X) as identical measurable spaces. The difficulty
with this is that X is a Borel space, but ¢(X) is not required to be. This
discrepancy is eliminated by the following intuitively plausible proposition,
the rather lengthy proof of which can be found in Chapter I, Section 3 of
Parthasarathy [P1]. We will not have occasion to use this result.

Proposition 7.15 (Kuratowski’s theorem) Let X be a Borel space, Y a
separable metrizable space, and ¢: X — Y one-to-one and Borel-measurable.
Then ¢(X) is a Borel subset of Y and ¢ ~* is Borel-measurable. In particular,
if Y is a Borel space, then X and ¢(X) are isomorphic Borel spaces.

The advantage of classifying spaces by means of Borel isomorphisms
is illustrated by the following result. We need this proposition for the subse-
quent development, but the proof is rather lengthy and is relegated to
Appendix B, Section 2.

Proposition 7.16 Let X and Y be Borel spaces. Then X and Y are
isomorphic if and only if they have the same cardinality.

Proposition 7.16 leads to a consideration of the possible cardinalities of
Borel spaces. Of course, Borel spaces which are countably infinite are
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possible, as are Borel spaces which consist of a given finite number of
elements. In both these cases, the Borel g-algebra is the power set and the
conclusion of Proposition 7.16 is trivial. Because every Borel space can be
homeomorphically embedded in the Hilbert cube, every Borel space has
cardinality less than or equal to ¢. Even if one were to admit the possibility
of an uncountable cardinality strictly less than ¢, the proof of Proposi-
tion 7.16 as given in Appendix B shows that every uncountable Borel space -
has cardinality c¢. By combining this fact with Proposition 7.16, we obtain
the following corollary.

Corollary 7.16.1 Every uncountable Borel space is Borel-isomorphic to
every other uncountable Borel space. In particular, every uncountable Borel
space is isomorphic to the unit interval [0,1] and the Baire null space A"

7.4 Probability Measures on Borel Spaces

If X is a metrizable space, we shall refer to a probability measure p on
the measurable space (X, %y) as simply a probability measure on X. The
set of all probability measures on X will be denoted by P(X). A probability
measure p e P(X) determines a linear functional [,: C(X) — R defined by

L) = [ fap. 20)

On the other hand, a function f'e C(X) determines a real-valued function
0,:P(X) — R defined by

0,(p) = [fap. @1

These relationships and the metrizability of the underlying space X allow
us to show several properties of P(X). In particular, we will prove that there
is a natural topology on P(X), the weakest topology with respect to which
every mapping of the form of (21) is continuous, under which P(X) is a
Borel space whenever X is a Borel space.

7.4.1 Characterization of Probability Measures

Definition 7.10 Let X be a metrizable space. A probability measure
pe P(X) is said to be regular if for every Be By,

p(B) = sup{p(F)|F = B, F closed} = inf{p(G)|B = G, G open}. (22)

Proposition 7.17 Let X be a metrizable space. Every probability mea-
sure in P(X) is regular.
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Proof Let pe P(X) be given and let & be the collection of Be %y for
which (22) holds. If H < X is open, then H = | )72, F,, where {F,} is an
increasing sequence of closed sets (Lemma 7.2), so

inf{p(G)|H = G, G open} = p(H)
= lim p(F,)

n— oo
< sup{p(F)|F = H, F closed} < p(H).

Therefore & contains every open subset of X. We show that & is a s-algebra
and conclude that & = %.
If Be&, then

p(B%) =1 — p(B) = 1 — sup{p(F)|F = B, F closed}
= inf{p(G)|B* = G, G open},
and similarly,
p(B°) = sup{p(F)|F = B, F closed},

so & is closed under complementation. Now suppose {B,} is a sequence of
sets in &. Choose ¢ > 0 and F, = B, = G, such that F, is closed, G, is open,
and p(G, — F,) < ¢/2". Then

- ([’) B,,) U [@ (G, F,,)} 3)

SO

and since ¢ is arbitrary,

p< O B,,> = inf{p(G)

n=1

B, =G, G open}.
=1

n

It is also apparent from (23) that
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The finite union | J)-, F, is a closed subset of ( J;>; B, and ¢ is arbitrary, so

P<O B,,) = SUP{P(F)lF < Ql B,, F closed}.

=1

This shows that & is closed under countable unions and completes the
proof. Q.ED.

From Proposition 7.17 we conclude that a probability measure on a
metrizable space is completely determined by its values on the open or
closed sets. The following proposition is a similar result. It states that a
probability measure p on a metric space (X, d) is completely determined by
the values jg dp, where g ranges over U (X).

Proposition 7.18 Let X be a metrizable space and d a metric on X
consistent with its topology. If p;, p, € P(X) and

[gdp, = [gdp,  VgeULX)
then p; = p,.

Proof Let F be any closed proper subset of X andlet G, = {xe X |d(x, F)
< 1/n}. For sufficiently large n, F and G;, are disjoint nonempty closed sets
for which inf,.r ,cgsd(x,y) >0, so by Lemma 7.1, there exist functions
f.€ Uy(X) such that f,(x) = 0 for xe G, f(x) = 1 forxe F,and 0 < f,(x) < 1
for every xe X. Then

pu(F) < [ fudps = [ fydp> < pa(G),

and so

<)

pi(F) < Pz( N Gn> = pa(F).

n=1
Reversing the roles of p; and p,, we obtain p,;(F) = p,(F). Proposition 7.17
implies p,(B) = p,(B) for every Be %By. Q.E.D.
7.4.2 The Weak Topology

We turn now to a discussion of topologies on P(X), where X is a
metrizable space. Given ¢ > 0, pe P(X), and f e C(X), define the subset of
P(X):

Vipif) = {qc—:P(X)H [rag— fdp‘ < e} 24
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If D = C(X), consider the collection of subsets of P(X):

V(D) = {Vg(p;f)

e>0, peP(X),feD}.

Let 7 (D) be the weakest topology on P(X) which contains the collection
77(D), i.e., the topology for which ¥7(D) is a subbase.

Lemma 7.6 Let X be a metrizable space and D = C(X). Let {p,} be a net
in P(X) and pe P(X). Then p, — p relative to the topology .7 (D) if and only
if [ fdp, — { fdp for every feD.

Proof Suppose p, — p and feD. Then, given ¢ > 0, there exists f§ such
that o > B implies p, € V(p:f). Hence [ dp, — [f dp. Conversely, if {f dp, —
[fdp for every feD, and Ge.7 (D) contains p, then p is also contained in
some basic open set ﬂ2=1 V.(p; fi) € G,whereg, > 0and freD, k=1,...,n
Choose f3 such that for all & > f we have |{ fydp, — [ fidp| < &,k =1,...,n.
Then p,eG for o > B, so p, — p. Q.E.D. '

We are really interested in .7 [C(X)], the so-called weak topology on
P(X). The space C(X) is too large to be manipulated easily, so we will need a
countableset D = C(X)such that 7 (D) = 7 [ C(X)]. Such aset Dis produced
by the next three lemmas.

Lemma 7.7 Let X be a metrizable space and d a metric on X consistent
with its topology. If f'e C(X), then there exist sequences {g,} and {h,} in
U,(X) such that g, 1 fand h, | f.

Proof We need only produce the sequence {g,}, since the other case
follows by considering —f. In Lemma 7.14 under weaker assumptions we
will have occasion to utilize the construction about to be described, so we
are careful to point out which assumptions are being used. If f € C(X), then
f is bounded below by some beR, and for at least one xoe X, f(x,) < .
Define

gulx) = ini[f (y) + nd(x, )] (25)

Note that for every xe X,
b < g.(x) < f(x) + nd(x, x) = f(x),
and
b < g,(x) < f(xg) + nd(x, xq) < 0.
Thus
b<g <g, <</, (26)
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and each g, is finite-valued. For every x, y,ze X,

f(y) + nd(x,y) < f(y) + nd(z,y) + nd(x, 2),
and infimizing first the left side and then the right over ye X, we obtain

9u(x) < gu(2) + nd(x, 2).

Reverse the roles of x and z to show that

|gn(~x) - gn(Z)I < nd(x, Z),
s0 ¢, € Uy (X) for each n. From (26) we have
lim g, < f. (27

n— oo

We have so far used only the facts that f is bounded below and not identically
0. To prove that equality holds in (27), we use the continuity of f. For
xeX,and ¢ > 0, let {y,} = X be such that

f(yn) + nd(-x’ yn) < g,,(X) + &.

As n— oo, either g, 1 o0, in which case equality must hold in (27), or else
¥. — x. In the latter case we have

f(x) = lim f(y,) < lim g,(x) + ¢, (28)

and since x and ¢ are arbitrary, equality holds in (27). Q.E.D.

Lemma 7.8 Let X be a metrizable space and d a metric on X consistent
with its topology. Then 7 [C(X)] = I [U4(X)].

Proof Since UyX)< C(X), we have ¥ [UyX)] =7 [C(X)] and
T [UfX)] = T[C(X)]. To prove the reverse containment, we show that
every set in " [C(X)] is open in the I [U,X)] topology. Thus, given any
set V,(p;f)e ¥ [C(X)] and any point p, in this set, we will construct a set
in 7[U4X)] containing p, and contained in V,(p;f). Given V(p;f) and
Po € VAp;f), there exists &, > 0 for which V, (po; f) = Vi(p; f). By Lemma 7.7,
there exist functions g and h in Uy(X) such that g < f < h and

[Fdpo< [gdpo+ (o2, [hdpo < [fdpo+(ao/2)
If g€ Vo 2(Pos 9) 0 Viyj2(pos h), then
ffdpo < fgdpo + (60/2) < fgdq +& < fqu + &
and

fqugfhdq<fhdpo+(go/2)<ffdpo+ao,
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SO

< &y,

‘ffmr—ff@m

Le., ge V. (po; f) and
Vso/z(Po§g) M Vso/z(Po;h) < Vip; f) QE.D.

Lemma 7.9 Let X be a metrizable space and d a metric on X consistent
with its topology. If D is dense in U,(X), then 7 [Uy(X)] = (D).

Proof It is clear that (D) = 7 [U,(X)]. To prove the reverse set
containment, we choose a set V(p;g)e ¥"[U,(X)], select a point p,, in this
set, and construct a set in 7 (D) containing p, and contained in ¥(p;g). Let

fgdpo—fgdp

Let he D be such that ||g — h|| < ¢,/3. Then for any g€V, 5(po;h), we have

’fgdq—fgdp fgdq—fhdq'+ fhdq—fhdpo
+ ’fh dpo — fg dpo fg dpo — f g dp’

<%m+mm+mm+ﬂwm—h@Fa

&g =& — > 0.

<

+

so V3(posh) = Vi(p;g).  Q.E.D.

Proposition 7.19 Let X be a separable metrizable space. There is a
metric d on X consistent with its topology and a countable dense subset D
of Uy(X) such that 7(D) is the weak topology 7 [C(X)] on P(X).

Proof Corollary 7.6.1 states that the separable metrizable space X has

a totally bounded metrization d. By Proposition 7.9, there exists a countable
dense set D in Uy(X). The conclusion follows from Lemmas 7.8 and 7.9.
Q.E.D.

From this point on, whenever X is a metrizable space, we will understand
P(X) to be a topological space with the weak topology T [C(X)]. We will
show that when X is separable and metrizable, P(X) is separable and
metrizable; when X is compact and metrizable, P(X) is compact and metriz-
able; when X is separable and topologically complete, P(X) is separable and
topologically complete; and when X is a Borel space, P(X) is a Borel space.

Proposition 7.20 If X is a separable metrizable space, then P(X) is
separable and metrizable.
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Proof Let d be a metric on X consistent with its topology and D a
countable dense subset of U,(X) such that (D) is the weak topology on
P(X) (Proposition 7.19). Let R* be the product of countably many copies
of the real line and let ¢: P(X) — R® be defined by

¢(p) = <fgl dp, fgz dp, . . >

where {g;,g,,. ..} is an enumeration of D. We will show that ¢ is a homeo-
morphism, and since R® is metrizable and separable (Proposition 7.4), these
properties for P(X) will follow.

Suppose that ¢(p;) = @(p,), so that [g,dp, = [g,dp, for every g,eD. If
g€ Uy(X), then there exists a sequence {gy,} = D such that ||g,, — g|| = 0 as
j— co. Then

‘ [gap, - [gdp, [@ = g dpy| + timsup| [ g, dp, — [ g1, dp

Jjo o

< limsup
j= oo

+ lim sup

Jjo o

f (9x; — 9)dp2

< 2limsupllgi, — g|| =0,
J—?>©
so [gdp, = [gdp,. Proposition 7.18 implies that p, = p,, so ¢ is one-to-one.
For each g,eD, the mapping p — jgk dp is continuous by Lemma 7.6, so
¢ is continuous. To show that ¢ ~! is continuous, let {p,} be a net in P(X)
such that ¢(p,) - ¢(p) for some pe P(X). Then [g,dp, — [g,dp for every
gr€ D, and by Lemma 7.6, p, — p. Q.E.D.

Proposition 7.20 guarantees that when X is separable and metrizable,
the topology on P(X) can be characterized in terms of convergent sequences
rather than nets. We give several conditions which are equivalent to con-
vergence in P(X).

Proposition 7.21 Let X be a separable metrizable space and let d be a
metric on X consistent with its topology. Let {p,} be a sequence in P(X)
and pe P(X). The following statements are equivalent:

@) p.—p;

(b) [fdp,— [fdp forevery feC(X);

(c) [gdp,— [gdp for every ge Uy(X);

(d) limsup,. . p(F) < p(F) for every closed set F < X;
(

e) liminf,.  p,(G) > p(G) for every open set G < X.
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Proof The equivalence of (a), (b), and (c) follows from Lemmas 7.6
and 7.8. The equivalence of (d) and (e) follows by complementation.

To show that (b) implies (d), let F be a closed proper nonempty subset
of X and let G, = {xe X|d(x,F) < 1/k}. For k sufficiently large, F and G}
are disjoint nonempty sets, and there exist functions f, e C(X) such that
filx) =1 for xeF, fi(x) =0 for xeG§, and 0 < f(x) < 1 for every xeX.
Using (b) we have

lim sup p,(F) < lim [ f,dp, = [f,dp < p(Gy)

n—oo n—oo

and letting k — oo, we obtain (d).

To show that (d) implies (b), choose fe C(X) and assume without loss
of generality that 0 < f < 1. Choose a positive integer K and define closed
sets

Fo={xeX|f(x) > k/K}, k=0, ..,K.
Define ¢:X — [0,1] by

K
o(x) = k‘éo (/K )2 p - i (X5

where Fyg,; = &. Then f — (1/K) < ¢ < f, and, for any ge P(X),

K K
Joda= 3 KKy F~Fio) = WK) 3 a(FD.
Using (d) we have

lim sup ffdp,, — (1/K) < limsup f(p dp,

K
= (I/K)limsup Y p,(Fy)
1

n—>o k=
K
1/K F)) = d d
<(/K) Y p(F) = [odp < [1dp.

and since K is arbitrary, we obtain

lim sup ffdp,, < ffdp (29)
for every fe C(X). In particular, (29) holds for —f, so
limint [ fdp, = ~limsup [(~/)dp, = = [(~f)dp = [fdp.  (30)

n—aoo

Combine (29) and (30) to conclude (b). Q.E.D.
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When X is a metrizable space, we denote by p, the probability measure
on p(X) which assigns unit point mass to x, i.e., p,(B) = 1 ifand only if xe B.

Corollary 7.21.1 Let X be a metrizable space. The mapping §: X — P(X)
defined by d(x) = p, is a homeomorphism.

Proof It is clear that § is one-to-one. Suppose {x,} is a sequence in X
and xe X. If x, — x and G is an open subset of X, then there are two possi-
bilities. Either xeG, in which case x,eG for sufficiently large n, so
liminf,_ , p,,(G) = 1 = p(G), or else x ¢ G, in which case lim inf, . , p,, (G) =
0 = p(G). Proposition 7.21 implies p, — p,, so J is continuous. On the other
hand, if p,, » p, and G is an open neighborhood of x, then since
liminf, ., p,,(G) = p(G) = 1, we must have x,€G for sufficiently large n,
ie., x, — x. This shows that ¢ is a homeomorphism. Q.E.D.

From Corollary 7.21.1 we see that p, can converge to p in such a way
that strict inequality holds in (d) and (e) of Proposition 7.21. For example,
let G = X be open, let x be on the boundary of G, and let x, converge to x
through G. Then p, (G) = 1 for every n, but p,(G) = 0.

We now show that compactness of X is inherited by P(X).

Proposition 7.22 If X is a compact metrizable space, then P(X) is a
compact metrizable space.

Proof If X is a compact metrizable space, it is separable (Corollary
7.6.2) and C(X) is separable (Proposition 7.7). Let { f;} be a countable set in
C(X)suchthat f; = 1, || fi|| < 1 forevery k, and { f;} is dense in the unit sphere
{feC(X)|||f]| < 1}. Let [—1,1]* be the product of countably many copies
of [-1,1] and define ¢:P(X) - [—1,1]% by

@(p)= (ffl dp, ffz dp,.. >

A trivial modification of the proof of Proposition 7.20 shows ¢ is a homeo-
morphism. We will show that ¢[P(X)] is closed in the compact space
[—1,1]®, and the compactness of P(X) will follow.

Suppose {p,} is a sequence in P(X) and @(p,) - (o1, %,,...)e[—1,1]%.
Given ¢ > 0and f e C(X) with || f|| < 1, there is a function f, with || f — fi]| <
¢/3. There is a positive integer N such that n,m > N implies |{ f, dp, — [fy dp..| <
¢/3. Then

‘ﬁm—hm

s‘ffdpn—ffkdpn

+’ffkdpn—ffkdpm

[fedp, = [1dp,

+ <Eé,
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so {[fdp,} is Cauchy in [ —1,1]. Denote its limit by E(f). If || f|| > 1, define
E(f) = FIEGINAD.

It is easily verified that E is a linear functional on C(X), that E(f) > 0 when-
ever f >0, |[E(f)| < || f|| for every fe C(X), and E(f;) = 1. Suppose {h,} is
a sequence in C(X) and h,(x) | 0 for every xe X. Then for each ¢ > 0, the set
K, (e) = {x|h,(x) > &} is compact, and ()2, K,(e) = . Therefore, for n
sufficiently large, K,(¢) = &, which implies ||h,|| | 0. Consequently, E(h,) ! 0.
This shows that the functional E is a Daniell integral, and by a classical
theorem (see, e.g., Royden [R5, p. 299, Proposition 21]) there exists a unique
probability measure on o[ ) ;.cox) f ™ (#x)] which satisfies E(f) = [ fdp for
every f e C(X). Proposition 7.10 implies pe P(X). We have

o, = lim fﬂdpan(ﬁ()=fﬁdp, k=12,...,

n— o0

so @(p,) = @(p). This proves @[ P(X)] is closed. Q.E.D.

In order to show that toplogical completenéss and separability of X imply
the same properties for P(X), we need the following lemma.

Lemma 7.10 Let X and Y be separable metrizable spacesand ¢: X — Y
a homeomorphism. The mapping : P(X) — P(Y) defined by

¥(p)B)=ple~'(B)] VBeBy
is a homeomorphism.

Proof Suppose p;,p, e P(X) and p; # p,. Since p; and p, are regular,
there is an open set G = X for which p;(G) # p,(G). The image ¢(G) is
relatively open in ¢(X), so ¢(G) = ¢(X)n B, where B is open in Y. It is
clear that

¥(p1)(B) = p1(G) # p2(G) = ¥(p,)(B),

so Y is one-to-one. Let {p,} be a sequence in P(X) and pe P(X). If p, — p,
then since ¢ ~'(H) is open in X for every open set H = Y, Proposition 7.21
implies

lim infy (p,)(H) = liminfp,[o ~'(H)] = p[o~"(H)] = ¥(p)(H),
so ¥(p,) — ¥(p) and y is continuous. If we are given {p,} and p such that
Y(p,) = ¥(p), a reversal of this argument shows that p, —» p and ¢! is
continuous. Q.ED.

Proposition 7.23 If X is a topologically complete separable space, then
P(X) is topologically complete and separable.
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Proof By Urysohn’s theorem (Proposition 7.2) there is a homeomor-
phism ¢:X — 2, and the mapping ¥ obtained by replacing Y by 4 in
Lemma 7.10 is a homeomorphism from P(X)to P(). Alexandroft’s theorem
(Proposition 7.3) implies ¢(X) is a Gs-subset of #, and we see that

Y[PX)] = {pe P()|p[# — o(X)] = 0}. (31)

We will show /[ P(X)] is a G,-subset of the compact space P(#°) (Proposition
7.22) and use Alexandroff’s theorem again to conclude that P(X) is topo-
logically complete.

Since ¢(X) is a G4-subset of 5, we can find open sets G; > G, > - - - such
that ¢(X) = ( )s2 G,. It is clear from (31) that

w@wﬂ=édeWm%—@=%

= () () {peP(H#)p(# — G,) < 1/k}.
n=1k=1
But for any closed set F and real number c, the set {pe P(#)|p(F) > c} is
closed by Proposition 7.21(d), and {pe P(#)|p(# — G,) < 1/k} is the com-
plement of such a set. Q.E.D.

We turn now to characterizing the g-algebra %px, when X is metrizable
and separable. From Lemma 7.6, we have that the mapping 0,:P(X) — R
given by

0,(p) = [fdp

is continuous for every f'e C(X). One can easily verify from Proposition 7.21
that the mapping 05: P(X) — [0, 1] defined by*

05(p) = p(B)

is Borel-measurable when B is a closed subset of X. (Indeed, in the final stage
of the proof of Proposition 7.23, we used the fact that when B is closed the
upper level sets {pe P(X)|0z(p) > ¢} are closed.) Likewise, when B is open,
0g is Borel-measurable. It is natural to ask if 05 is also Borel-measurable
when B is an arbitrary Borel set. The answer to this is yes, and in fact, Zpy,
is the smallest g-algebra with respect to which 6y is measurable for every
Be%y. A useful aid in proving this and several subsequent results is the
concept of a Dynkin system.

* The use of the symbol 0 here is a slight abuse of notation. In keeping with the definition

of 0, the technically correct symbol would be 0,,,.
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Definition 7.11 Let X be a set and & a class of subsets of X. We say &
is a Dynkin system if the following conditions hold:

(a) Xeg.
(b) If A,BeZ and B = A, then A — Be %.
(© If A1,A;,...€Z and A, c A, <~ then | )2, 4,€92.

Proposition 7.24 (Dynkin system theorem) Let % be a class of subsets
of a set X, and assume & is closed under finite intersections. If & is a Dynkin
system containing &, then & also contains ¢(%).

Proof This is a standard result in measure theory. See, for example,
Ash [Al, page 169]. Q.E.D.

Proposition 7.25 Let X be a separable metrizable space and & a collec-
tion of subsets of X which generates %y and is closed under finite inter-
sections. Then %py, is the smallest ¢-algebra with respect to which all
functions of the form

Oe(p) = p(E), Ee€é,

are measurable from P(X) to [0, 1], i.e.,

«@P(X) = O'I: U efl(gx)i'-
Eeé&

Proof Let % be the smallest g-algebra with respect to which 60 is
measurable for every E€&. To show F < %p,, we show that 0p is Bpx)-
measurable for every Be Bx. Let & = {Be By|0p is Bpx,-measurable}. It
is easily verified that & is a Dynkin system. We have already seen that 9
contains every closed set, so the Dynkin system theorem (Proposition 7.24)
implies & = By.

It remains to show that Bpy, = #.Let 9’ = {Be B|0p is F-measurable}
As before, 2’ is a Dynkin system, and since & = &', we have 2’ = %y. Thus
the function 0,(p) = jf dp 18 #-measurable when f is the indicator of a
Borel set. Therefore 6, is % -measurable when f is a Borel-measurable
simple function. If f'e C(X), then there is a sequence of simple functions f,
which are uniformly bounded below such that f, T f. The monotone conver-
gence theorem implies 0, T0,, so 0, is & -measurable. It follows that for
e >0, pe P(X), and f e C(X), the subbasic open set

< }

is 7 -measurable. It follows that Bpy, = F (see the remark following Defini-
tion 7.6). Q.E.D.

V;(p;f>={qu<X>H [£dg— [fdp
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Corollary 7.25.1 If X is a Borel space, then P(X) is a Borel space.

Proof Let ¢ be a homeomorphism mapping X onto a Borel subset of a
topologically complete separable space Y. Then, by Lemma 7.10, P(X) is
homeomorphic to the Borel set {peP(Y)|p[e(X)] =1}. Since P(Y) is
topologically complete and separable (Proposition 7.23), the result fol-
lows. Q.E.D.

7.4.3 Stochastic Kernels

We now consider probability measures on a separable metrizable space
parameterized by the elements of another separable metrizable space.

Definition 7.12 Let X and Y be separable metrizable spaces. A stochastic
kernel q(dy|x) on Y given X is a collection of probability measures in P(Y)
parameterized by xeX. If & is a o-algebra on X and y~![%py] = Z,
where y: X — P(Y) is defined by

7(x) = q(dy|x), (32)

then q(dy|x) is said to be F-measurable. If y is continuous, q(dy[x) is said
to be continuous.

Proposition 7.26 Let X and Y be Borel spaces, & a collection of subsets
of Y which generates %y and is closed under finite intersections, and g(dy|x)
a stochastic kernel on Y given X. Then g(dy|x) is Borel-measurable if and
only if the mapping Az: X — [0, 1] defined by

Jp(x) = q(E[x)
is Borel-measurable for every E€&.

Proof Let y:X — P(Y) be defined by y(x) = q(dy|x). Then for E€ &, we
have Ag = Ogoy. If q(dy\x) is Borel-measurable (i.e., y is Borel-measurable),
then Proposition 7.25 implies Ag is Borel-measurable for every E€&. Con-
versely, if /5 is Borel-measurable for every E€ &, then o[\ Jg.s 4z "(%Br)] ©
Ay . Proposition 7.25 implies

v Bew)] = '})_1|:O'< U 95—1(,@1;))]
Eeé
= 0'[ U V_l(QE_I(QR)):I = 0'|: U iEI(%’R)} < By,

Ee& Eeé&

so g(dy|x) is Borel-measurable. Q.ED.

Corollary 7.26.1 Let X and Y be Borel spaces and g(dy|x) a Borel-
measurable stochastic kernel on Y given X. If Be %y, then the mapping
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Ap:X — [0,1] defined by

Ag(x) = q(B|x), (33)
where B, = {ye Y|(x, y)e B}, is Borel-measurable.

Proof 1If Be%yy and xeX, then B, = Y is homeomorphic to BN
[{x}Y]eByy. It follows that B, € %y, s0 q(B,|x) is defined. It is easy to show
that the collection & = {Be%yy|Ap is Borel-measurable} is a Dynkin
system. Proposition 7.26 implies that & contains the measurable rectangles,
S0 9 = Byy. Q.E.D.

We now show that one can decompose a probability measure on a
product of Borel spaces into a marginal and a Borel-measurable stochastic
kernel. This decomposition is possible even when a measurable dependence
on a parameter is admitted, and, as we shall see in Chapter 10, this result
is essential to the filtering algorithm for imperfect state information dynamic
programming models.

As a notational convenience, we use X to denote a typical Borel subset
of a Borel space X.

Proposition 7.27 Let (X, %) be a measurable space, let Y and Z be Borel
spaces, and let g(d(y, z)|x) be a stochastic kernel on YZ given X. Assume
that g(B|x) is #-measurable in x for every Be %y,. Then there exists a sto-
chastic kernel r(dz|x, y) on Z given XY and a stochastic kernel s(dy|x) on Y
given X such that r(Z|x,y) is & %y-measurable in (x,y) for every Ze%,,
S(le) is #-measurable in x for every Y € 4y, and

a(YZlx) = [,z

Proof  We prove this proposition under the assumption that Y and Z
are uncountable. If either Y or Z or both are countable, slight modifications
(actually simplifications) of this proof are necessary. From Corollary 7.16.1,
we may assume without loss of generality that Y = Z = (0,1].

Let s(dy|x) be the marginal of g(d(y, 2)|x) on Y, ie., s(¥|x) = q(YZ|x) for
every Ye%y. For each positive integer n, define subsets of Y

X, y)s(dy|x)  VYeBy, Ze%,. (34)

M(jn) =(( =12 j/2"], j=1....2"

Then each M(j,n+ 1) is a subset of some M(k,n), and the collection
(M(j,m)ln=1,2,...; j=1,...,2") generates %By. For zeQn Z, define
q(dy(0,z]|x) to be the measure on Y whose value at Y e, is q(Y(0, z]|x).
Then ¢(dy(0,z]|x) is absolutely continuous with respect to s(dy|x) for every



136 7. BOREL SPACES AND THEIR PROBABILITY MEASURES
ze€Q n Z and xe X. Define forzeQ n Z

qalM(j, n)(0, z]|x]/s[M(j, n)|x]
G,(z|x,y) = if yeM(jn) and s[M(j,n)|x] >0,
0 if yeM(jn) and s[M(j,n)|x]=0.

The functions G,(z|x, y) can be regarded as generalized difference quotients
of q(dy(0, z]|x) relative to s(dy|x). For each z, the set

B(z) = {(x, y)e XY|lim G,(z]x, y) exists in R}

{(x,)eXY|{G,(z

x,y)} is Cauchy}

N U N {x»neXY||Gx,y) — Gulz

k=1N=1n,m=N

x, y)| < 1/k}

is # By-measurable. Theorem 2.5, page 612 of Doob [ D4] states that
S[B(z)x] =1 VxeX, zeQn2Z,
and if we define

lim G,(zx,y)  if (xy)eB(),

n—oo

G(z

X, y) =
z otherwise,

then

q[¥0.2)x] = [, GGz

x,y)s(dy|x)  VxeX, zeQnZ, YeBy. (35)

It is clear that for any z, G(z|x, y) is # #y-measurable in (x, p).f
A comparison of (34) and (35) suggests that we should try to extend

G(z|x, y) in such a way that for fixed (x, y), G(z|x, y) is a distribution function.

' For the reader familiar with martingales, we give the proof of the theorem just referenced.
Fix x and y and observe that for m > n,

q[MGmO.2]x] = [, Gulelx. Vs(dyl) ()

Since {M(j, n)| j=1,...,2"} is the o-algebra generated by G,(z|x, y) regarded as a function of
y, we conclude that G,(z|x, y), n = 1,2, ... is a martingale on Y under the measure s(dy|x). Each
G,(z|x, y) is bounded above by 1, so by the martingale convergence theorem (see, e.g., Ash [Al,
p. 292]), G,(z|x, y) converges for s(dy|x) almost every y. Thus s[B(z),Jx] = 1 and the definition
of G(z|x, y) given above is possible. Let m — oo in (x) to see that (35) holds whenever Y = M(j, n)
for some j and n. The collection of sets Y for which (35) holds is a Dynkin system, and it follows
from Proposition 7.24 that (35) holds for every Y € #y.
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Toward this end, for each zoe Q N Z, we define
C(zo) = {(x,y)eXY]EIzeQ N Z with z < z, and G(z
U {x»eXY|G(z

zeQnZ
z<zo

C= | Clz)
z0eQnZ
D(zp) = {(x,y)e X YiG(- |x, y) is not right-continuous at Zo}

x,y) > G(zox, »)},

X, y) > G(Zolxa y)}’

—UN U (0eXY([Glxy) - Glaopy)| = Un),

n=1k=1 zeQnZ
zo<z<zo+1/k

D= {J D(z),

z0eQnZ

E = {(x, )€ X Y|G(z|x, y) does not converge to zero as z | 0}

= D ﬁ UZ{(x,y)eXYHG(zlx,y)]z1/n},

n=1k=1zeQn
z<1/k

and
F={(x,)eXY|G(]x,y) # 1}.

For fixed xe X and z,€Q n Z, (35) implies that whenever zeQ N Z, z < z,,

then
fl_f G(z

Therefore G(z

x5y < [ Glaolu ylsdylx)  VYey.

X, Y) < G(ZO

x, y) for s(dy|x) almost all y, so s[C(zo)|x] = 0 and
s(C,|x) = 0. (36)

Equation (36) implies that G(z|x, y) is nondecreasing in z for s(dy|x) almost
all y. This fact and (35) imply thatif z | z, (ze Q n Z), then

fy G(z

5, )5(dy[) 4 [, Glzolx, sy,

and

G(zlx. ) L G(zo

X, ¥)
for s(dy|x) almost all y. Therefore s[D(z,),|x] = 0 and
s(D,|x) = 0. (37)
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Equation (35) also implies that as z | 0 (ze Q n Z)
fy G(x, V)sdyx) L0 VYeBy.

Since G(z|x, y) is nondecreasing in z for s(dy|x) almost all y, we must have
G(z|x, y) 1 0 for s(dy|x) almost all y, i,

S(E,|x) = 0. (38)
Substituting z = 1 in (35), we see that
[, 6l sy = szl vres,
so G(1|x,y) = 1 for s(dy|x) almost all y, i.e.,
s(F,|x)=0. (39)

ForzeZ, let {z,,} be a sequence in Q N Z such that z, | z and define, for every
xeX, yey,

lim G(z,|x, y) if (x,y)eXY—-(CuDuEUF),
x,y)=<""% (40)

F(z

z otherwise.

For (x,»))eXY—-(CuDuUEUF), G(z|x,y) is a nondecreasing right-
continuous function of ze Q N Z, so F(z]x, y) is well defined, nondecreasing,
and right-continuous. It also satisfies for every (x, y)e X Y,

0< F(zlx,y) <1 VzeZ,
F(ljx,y) =1,
and
ziir(l) F(z|x,y) = 0.

It is a standard result of probability theory (Ash [Al, p. 24]) that for each
(x, y) there is a probability measure r(dz|x, y) on Z such that

r((0,z]|x, y) = F(z|x, y) Vze(0,1].

The collection of subsets Ze %, for which r(le, y) is # % y-measurable in
(x,y) forms a Dynkin system which contains {(0,z]|ze Z}, so r(Z|x,y) is
F By-measurable for every Ze%,. Relations (35)—(40) and the monotone
convergence theorem imply

q[Y(0,z]|x] = fZF(z
= [,r(0.2]

x, y)s(dy|x)

x,y)s(dylx)  VxeX, zeZ, Ye%y. (41)
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The collection of subsets Z € 4, for which (34) holds forms a Dynkin system
which contains {(0, z]|ze Z}, so (34) holds for every Ze %,,. Q.E.D.

If # = %y, an application of Proposition 7.26 reduces Proposition 7.27
to the following form.

Corollary 7.27.1 Let X, Y, and Z be Borel spaces and let g(d(y,z)|x)
be a Borel-measurable stochastic kernel on YZ given X. Then there exist
Borel-measurable stochastic kernels r(dz|x, y) and s(dy|x) on Z given X Y and
on Y given X, respectively, such that (34) holds.

If there is no dependence on the parameter x in Corollary 7.27.1, we
have the following well-known result for Borel spaces.

Corollary 7.27.2 Let Y and Z be Borel spaces and ge P(YZ). Then there
exists a Borel-measurable stochastic kernel r(dz|y) on Z given Y such that

4(YZ) = [,rZlysidy)  VYedy, Zed,

where s is the marginal of g on Y.

7.4.4 Integration
As in Section 2.1, we adopt the convention
— 00 + 00 = +00 — 00 = 0. (42)
With this convention, for a, b, ce R* the associative law
(@a+b)+c=a+b+0)

still holds, since if either a, b, or ¢ is co, then both sides of (42) are oo, while
if neither a, b, nor ¢ is oo, the usual arithmetic involving finite numbers and
— oo applies. Also, if a,b,ce R* and a + b = c, then a = ¢ — b, provided
b # + 0. It is always true however thatifa + b < c,thena < ¢ — b.

We use convention (42) to extend the definition of the integral. If X is a
metrizable space, pe P(X), and f: X — R* is Borel-measurable, we define

[rap=[r*dp—[fap. (43)

Note that if [f*dp < co or if {f~dp < co, (43) reduces to the classical
definition of | f dp. We collect some of the properties of integration in this
extended sense in the following lemma.

Lemma 7.11 Let X be a metrizable space and let pe P(X) be given.
Let /. g and f,, n=1,2,..., be Borel-measurable, extended real-valued
functions on X.
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(a) Using (42) to define f + g, we have

f(f+g)dp3ffdp+fgdp- (44)

(b) If either
(b1) [f*dp<ocoandfg*dp< co,o0r
(b2) [f~dp<coandfg~dp< co,or
(b3) [g* dp < oo and [g~ dp < oo, then

f (f +9)dp = ff dp + fg dp. (45)

(c) If0<a< oo, then [(af)dp = af f dp.

(d) Iff <g,then |fdp < [gdp.

() Iff,tfand|f,dp> —oo,then [f,dp?|fdp.
(f) Iff,lfand [f,dp < oo, then f,dpl | fdp.

Proof We prove (b) first and then return to (a). Under assumption (b1),
we have f(x) < co and g(x) < co for p almost every X, so the sum f(x) + g(x)
can be defined without resort to the convention (42) for p almost every x.
Furthermore, | fdp < o and [gdp < o0, 50 (45) follows from the additivity
theorem for classical integration theory (Ash [Al, p. 45]). The proof of (45)
under assumption (b2) is similar. Under assumption (b3), either | f ¥ dp = oo,
in which case both sides of (45) are oo, or else [ f ¥ dp < oo, in which case
assumption (bl) holds. Returning to (a), we note that if assumption (bl)
holds, then (45) implies (44). If assumption (b1) fails to hold, then

[rdp+ [gdp=co,

so (44) is still valid. Statements (c) and (d) are simple consequences of (42)
and (43). Statement (e) follows from the extended monotone convergence
theorem (Ash [Al, p. 47])if [ f1 dp < 0. If [ f{ dp = oo, then [ fi dp > — o0
implies { /{ dp = [ f; dp = o0, and the conclusion follows from (d). Statement
(f) follows from the extended monotone convergence theorem. Q.E.D.

We saw in Corollary 7.27.2 that a probability measure on a product of
Borel spaces can be decomposed into a stochastic kernel and a marginal.
This process can be reversed, that is, given a probability measure and one
or more Borel-measurable stochastic kernels on Borel spaces, a unique
probability measure on the product space can be constructed.

Proposition 7.28 Let X, X,, ... be a sequence of Borel spaces, Y, =
X,X, -X,and Y = X, X, - .Letpe P(X,)be given,and, forn = 1,2,...,
let g,(dx,+ 1\ y,) be a Borel-measurable stochastic kernel on X, ., given Y.
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Then for n=2,3,..., there exist unique probability measures r,eP(Y,)
such that

X Xo o X)= [ [ [ de i &alxoxa e x)

X qn—Z(dxn—llxlaxZa' . 9xn—2)' o
X qy(dx,|x;)p(dx,) VX,eBx,.... X, €Bx,. (46)

If f:Y, > R* is Borel-measurable and either | f " dr, < oo or [f~ dr, < oo,
then

fynfdrn = J‘lexz‘ : 'fxnf(xI:XZV . axn)qn—l(dxn|~x1:x2a- . 9xn—1)' o
X ql(dx2|x1)p(dx1). (47)

Furthermore, there exists a unique probability measure ron ¥ = X, X, - -
such that for each n the marginal of r on Y, is r,,.

Proof Thespaces ¥,,n=2,3,...,and Y are Borel by Proposition 7.13.
If there exists r, € P(Y,) satisfying (46), it must be unique. To see this, suppose
r,€ P(Y,) also satisfies (46). The collection & = {Begy"|r,,(B) =r(B)}isa
Dynkin system containing the measurable rectangles, so 9 = %y _and r, =
r,. We establish the existence of r, by induction, considering first the case
n = 2. For Be #y,, use Corollary 7.26.1 to define

r2(B) = [, ai(Bexp(dxy). (48)

It is easily verified that r, e P(Y,) and r, satisfies (46). If f is the indicator
of Be By,, the [y, f(x1,x,)q:(dx,|x,) is Borel-measurable and, by (48),

[, pdrs= [ [, fxox)au@xalxnpidx,) (49)

Linearity of the integral implies that (49) holds for Borel-measurable simple
functions as well. If f: Y, — [0, o] is Borel-measurable, then there exists an
increasing sequence of simple functions such that f,1 f. By the monotone
convergence theorem,

'}Ln; fxlﬁ,(xl,xz)ql(dxz]xl) = fxzf(xbxz)éh(dlexﬂ Vx;€Xy,
sO _fxzf(xbxz)‘h(dxz
tim [, fudrs = lim [ [ fGerxa)auldxafepn)

= fxl fxzf(xuxz)‘h(dlexl)p(dxl).

X,) is Borel-measurable and
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But (y, f,dr, 1{y, f dr,, so (49) holds for any Borel-measurable nonnegative
f.For a Borel-measurable f: Y, - R* satisfying [ f * dr, < oo or j f~dr, < o0,
we have

szf+ dry = fxlfxzf+(x1axz)‘h(dlexl)P(dxﬂ:

and

[, 1 dr = [, [, e x)audxalxptxy).

Assume for specificity that [y, f ~ dr, < co. Then the functions

fxzf+(x1,x2)q1(dx2|x1)

and

— [ £ e x)as )

satisfy condition (b2) of Lemma 7.11, so

szfdrz = fyzf+ drz o szf_ drz
= Xl[fxz.f+(xl,xz)41(dxz|x1) - fxzf‘(xbxz)‘l1(dx2|x1)]l7(dx1)

= [ [ st xaaud ()

where the last step is a direct result of the definition of [y, f(x;, X,)q;(dx,|x;).
Assume now that r, e P(Y;) exists for which (46) and (47) hold when
n=k For Be Y., let

rev1(B) = [, au(Bylyori(dyy).
Then 1y €P(Ysy). If B= XX, - X;Xy+1, Wwhere X;€ %y, then
reerB) = [0, 0 04X 1 90l

= L&J‘X:. : ‘fsz qk()_(k+llxlax27- .. 7xk)qk—-1(dxk‘xk—l)' o

X Q1(dx2|X1)P(dx1) (50)

by (47) when n = k. This proves (46) for n = k + 1. Now use (50) to prove
(47) when n =k + 1 and f is an indicator function. As before, extend this
to the case of f:Y.{—[0,00]. If f: Y%, > R* is Borel-measurable and
either [f ™ dr,; < oo or [f~dr..; < o, then the validity of (47) for non-
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negative functions and the induction hypothesis imply

fyk+lf+d"k+1 = J'lexz'” Xk+lf+(xl,-..,Xk+1)qk(dxk+1|xlvx27'--,xk)'”
X ql(dx2|x1)p(dx1)

= Jx,x Xk+lf+(x1a~"axk+1)Qk(dxk+1|x1’x2,'"7xk)drka

and likewise
fYka_ drys, = fxl...xk Xk+1f_(xl,' .- ,xk+1)qk(dxk+1,xlax2,- - Xp) dry.
Assume for specificity that [y, ., f~ dr,+; < . Then the functions

Xus lf+(x1,' .- sxk+1)51k(dxk+1|x1,xz,- ceXg)

and

— JXis lf_(x1»~ ces X+ l)qk(dxk-%—l'xlvxz’- ceXy)
satisfy condition (b2) of Lemma 7.11, so as before

Yies lfdrk+1 = fxl"'xk Xis lf(xl,' .- ’xk+1)qk(dxk+1|xlaX27- s X ) dry.
(51)

Since

[ Xus lf(xu- <o Xt l)qk(dxk+1|x17x2" . . ’xk)]

< Jxes lf_(xla' e X DG Xex 1] X15 X2, - X0),
we can apply the induction hypothesis to the right-hand side of (51) to
conclude that (47) holds in the generality stated in the proposition.

To establish the existence of a unique probability measure re P(Y) whose
marginal on Y,isr,, n = 2,3,. .., we note that the measures r, are consistent,
ie, if m > n, then the marginal of r,, on Y, is r,. If each X, is complete, the
Kolmogorov extension theorem (see, e.g., Ash [Al, p. 191]) guarantees the
existence of a unique re P(Y) whose marginal on each Y, is r,. If X, is not
complete, it can be homeomorphically embedded as a Borel subset in a
complete separable metric space X,. As in Proposition 7.13, each Y, is
homeomorphic to a Borel subset of the complete separable metric space
Y, =X, X, -X,and Yis homeomorphic to a Borel subset of the complete
separable metric space ¥ = X, X, - -. Each r,e P(Y,) can be identified with
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7,e P(Y,) in the manner of Lemma 7.10, and, invoking the Kolmogorov
extension theorem, we establish the existence of a unique 7e P(Y) whose
marginal on each Y, is 7,. It is straightforward to show that Fassigns prob-
ability one to the image of Y in Y, so 7 corresponds to some re P(Y) whose
marginal on each Y, is r,. The uniqueness of 7 implies the uniqueness of
r. Q.E.D.

In the course of proving Proposition 7.28, we have also proved the
following.

Proposition 7.29 Let X and Y be Borel spaces and q(dy|x) a Borel-
measurable stochastic kernel on Y given X. If f: XY — R* is Borel-measur-
able, then the function 1: X — R* defined by

39 = [ fex v)atdypo) (52

is Borel-measurable.

Corollary 7.29.1 Let X be a Borel space and let f:X — R* be Borel-
measurable. Then the function 0 ,: P(X) — R* defined by

0,(p)= [ fdp

is Borel-measurable.

Proof Define a Borel-measurable stochastic kernel on X given P(X) by
g(dx|p) = p(dx). Define f: P(X)X — R* by f(p,x) = f(x). Then

0,(p) = [ f(pax) = [ Fip. X)atdlp)

is Borel-measurable by Proposition 7.29. Q.E.D.

If feC(XY) and q(dy|x) is continuous, then the mapping 4 of (52) is
also continuous. We prove this with the aid of the following lemma.

Lemma 7.12 Let X and Y be separable metrizable spaces. Then the
mapping ¢: P(X)P(Y) — P(XY) defined by

a(p,q) = pq,

where pq is the product of the measures p and g, is continuous.

Proof We use Urysohn’s theorem (Proposition 7.2) to homeomorphi-
cally embed X and Y into the Hilbert cube 5, and, for simplicity of notation,
we treat X and Y as subsets of #. Let d be a metric on s # consistent with
its topology. If ge U,(XY), then Lemma 7.3 implies that g can be extended
to a function e C(# #°). The set of finite linear combinations of the form
Yk_; fi(h;(y), where f; and h; range over C(#) and k ranges over the
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positive integers, is an algebra which separates points in ##, so given
& > 0, the Stone—Weierstrass theorem implies that such a linear combination
can be found satisfying |[Y%_, f;h; — g|| < e If {p,} is a sequence in P(X)
converging to pe P(X), {q,} a sequence in P(Y) converging to ge P(Y), and
f; and h; the restrictions of fJ and h ;to X and Y, respectively, then

lim sup
n—oo

fngd(pnq,.) - fxygd(pq)l
fxy<g - j=il fjhj>d(l7nqn)
fxfjdpn  hidd, — fxfjdpfy hjdq|

fxy<j21 fihy = g>d(,,q)’

< limsup
n— oo

k
+ Y lim

j=1n-o

+ lim sup

n—co

< 2e.

The continuity of ¢ follows from the equivalence of (2) and (c) of Proposition
7.21. Q.E.D.

Proposition 7.30 Let X and Y be separable metrizable spaces and let
q(dy|x) be a continuous stochastic kernel on Y given X. If feC(XY), then
the function 1: X — R defined by

9 = [ fex )ty
is continuous.

Proof The mapping v:X — P(XY) defined by v(x) = p,q(dy|x) is con-
tinuous by Corollary 7.21.1 and Lemma 7.12. We have i(x) = (07 °v)(x),
where 0,: P(XY) — R is defined by 0 ,(r) = [ f dr. By Proposition 7.21, 6 s s
continuous. Hence, / is continuous. QED.

7.5 Semicontinuous Functions and Borel-
Measurable Selection

In the dynamic programming algorithm given by (17) and (18) of Chap-
ter 1, three operations are performed repetitively. First, there is the eval-
uation of a conditional expectation. Second, an extended real-valued
function in two variables (state and control) is infimized over one of these
variables (control). Finally, if an optimal or nearly optimal policy is to be
constructed, a “selector” which maps each state to a control which achieves
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or nearly achieves the infimum in the second step must be chosen. In this
section, we give results which will enable us to show that, under certain
conditions, the extended real-valued functions involved are semicontinuous
and the selectors can be chosen to be Borel-measurable. The results are
applied to dynamic programming in Propositions 8.6—8.7 and Corollaries
9.17.2-9.17.3.

Definition 7.13 Let X be a metrizable space and f an extended real-
valued function on X. If {xe X|f(x) < c} is closed for every ceR, f is said
to be lower semicontinuous. If {xe X|f(x) > ¢} is closed for every ceR, f is
said to be upper semicontinuous.

Note that f is lower semicontinuous if and only if —f is upper semi-
continuous. We will use this duality in the proofs of the following propositions
to assert facts about upper semicontinuous functions given analogous facts
about lower semicontinuous functions. Note also that if f is lower semi-
continuous, the sets {xe X|f(x) = —oo} and {xeX|f(x) < oo} are closed,
since the former is equal to ﬂ,‘,”:l{xeX |f(x) < —n} and the latter is X.
There is a similar result for upper semicontinuous functions. The following
lemma provides an alternative characterization of lower and upper semi-
continuous functions.

Lemma 7.13 Let X be a metrizable space and f: X — R*.

(@) The function f is lower semicontinuous if and only if for each
sequence {x,} = X converging to xe X

liminf f(x,) > f(x). (53)

n—co

(b) The function f is upper semicontinuous if and only if for each
sequence {x,} = X converging to xe X

limsup f(x,) < f(x). (54)

n— oo

Proof Suppose f is lower semicontinuous and x, — x. We can extract
a subsequence {x,,} such that x,, — x as k — co and

lim f(x,,) = liminf f(x,).
k— o0 n—oo
Given ¢ > 0, define
liminf f(x,) + ¢ if liminf f(x,) > — oo,
9(8) - n— oo n— oo
—1/e otherwise.
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There exists a positive integer k(e) such that f (x,,.) < 0(e) for all k > k().
The set { ye X| f(y) < 6(¢)} is closed, and hence it contains x. Inequality (53)
follows. Conversely, if (53) holds and for some ceR, {x,} is a sequence in
{ye X|f(y) < c} converging to x, then f(x) < ¢, so f is lower semicontinuous.

Part (b) of the proposition follows from part (a) by the duality mentioned
earlier. Q.E.D.

If f and g are lower semicontinuous and bounded below on X and if
X, — X, then
lim inf[ f(x,) + g(x,)] = liminf f(x,) + lim infg(x,)

n—aoo n—oo

> f(x) + g(x),

so f + g is lower semicontinuous. If f is lower semicontinuous and « > 0,
then of is lower semicontinuous as well. Upper semicontinuous functions
have similar properties.

It is clear from (53) and (54) that f:X — R* is continuous if and only
if it is both lower and upper semicontinuous. We can often infer properties
of semicontinuous functions from properties of continuous functions by
means of the next lemma.

Lemma 7.14 Let X be a metrizable space and f: X — R*.

(a) The function f is lower semicontinuous and bounded below if and
only if there exists a sequence { f,} = C(X) such that £, 1 f.

(b) The function f is upper semicontinuous and bounded above if and
only if there exists a sequence { f,} = C(X) such that f, | 1.

Proof 'We prove only part (a) of the proposition and appeal to duality
for part (b). Assume f is lower semicontinuous and bounded below by
be R, and let d be a metric on X consistent with its topology. We may assume
without loss of generality that for some x,e X, f(x,) < oo, since the result
is trivial otherwise. (Take f,(x) = n for every xe X.) As in Lemma 7.7, define

gnlx) = inf( [f(y) + nd(x, y)].

Exactly as in the proof of Lemma 7.7, we show that {g,} is an increasing
sequence of continuous functions bounded below by b and above by f. The
characterization (53) of lower semicontinuous functions can be used in place
of continuity to prove g, T f. In particular, (28) becomes

f(x) < liminf f(y,) < lim g,(x) + e.
Now define f, = min{n,g,}. Then each f, is continuous and bounded and
Ju1f. This concludes the proof of the direct part of the proposition. For
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the converse part, suppose { f,} = C(X)and f,1f. For ceR,
{xeX|f(x)<c} = Ol{xeX|f,,(x) <c}

is closed. Q.E.D.

The following proposition shows that the semicontinuity of a function of
two variables is preserved when one of the variables is integrated out via
a continuous stochastic kernel.

Proposition 7.31 Let X and Y be separable metrizable spaces, let g(d y[x)
be a continuous stochastic kernel on Y given X, and let f:XY — R* be
Borel-measurable. Define

309 = [ fex y)atdsio).

(a) If f is lower semicontinuous and bounded below, then A is lower
semicontinuous and bounded below.

(b) If f is upper semicontinuous and bounded above, then A is upper
semicontinuous and bounded above.

Proof We prove part (a) of the proposition and appeal to duality for
part (b). If /: XY — R* is lower semicontinuous and bounded below, then
by Lemma 7.14 there exists a sequence { f,} = C(XY)such that f,1 f. Define
An(x) = j fulx, y)q(dy|x). By Proposition 7.30, we have that 4, is continuous,
and by the monotone convergence theorem A, T 4. By Lemma 7.14, J is lower
semicontinuous. Q.ED.

An important operation in the execution of the dynamic programming
algorithm is the infimization over one of the variables of a bivariate function.
In the context of semicontinuity, we have the following result related to
this operation.

Proposition 7.32 Let X and Y be metrizable spaces and let f: XY — R*

be given. Define
fHx) = in}f fx, ). (55)
Ye

(@) If f is lower semicontinuous and Y is compact, then f* is lower
semicontinuous and for every xe X the infimum in (55) is attained by some
yeY.

(b) If f is upper semicontinuous, then f* is upper semicontinuous.

Proof (a) Fix x and let {y,} = Y be such that f(x,y,){f*(x). Then
{y.} accumulates at some y,€ Y, and part (a) of Lemma 7.13 implies that
f(x, o) = f*(x). To show that f* is lower semicontinuous, let {x,} = X be
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such that x, - x,. Choose a sequence { y,} = Y such that

f(xmyn) = f*(xn)a n= 1,2,~ e

There is a subsequence of {(x,,,)}, call it {(x,.,¥,)}, such that
liminf,- ,, f(Xy, ¥n) = limy— o, f(Xp,, Vs, )- The sequence {y,, } accumulates at
some y, € Y, and, by Lemma 7.13(a),

lim inf f*(x,) = lim inf f(x,, y,) = lim f(x,,,Vn) = f(X0,0) = f*(x0),

n— oo n—o k= o0

so f* is lower semicontinuous.

(b) Let d, be a metric on X and d, a metric on Y consistent with their
topologies. If G = XY is open and x, € projx(G), then there is some y, € Y for
which (x,, yo) € G, and there is some ¢ > 0 such that

N(x0,Y0) = {(x, y)eXY|d1(x, Xo) < &d3(y,¥0) < &} = G.
Then
Xo € projx[ N.(xo,0)] = {xeX|d1(x, Xo) < &} < projx(G),

S0 projx(G) is open in X. For ceR,

{xe X|f*(x) < ¢} = projx({(x, ») e X Y| f(x,y) < c}).

The upper semicontinuity of f implies that {(x,)|f(x,y) < ¢} is open, so
{xe X|f*(x) < c} is open and f* is upper semicontinuous. Q.E.D.

Another important operation in the dynamic programming algorithm
is the choice of a measurable “selector” which assigns to each xe X a yeY
which attains or nearly attains the infimum in (55). We first discuss Borel-
measurable selection in case (a) of Proposition 7.32. For this we will need
the Hausdorff metric and the corresponding topology on the set 2% of
closed subsets of a compact metric space Y (Appendix C). The space 2*
under this topology is compact (Proposition C.2) and, therefore, complete and
separable. Several preliminary lemmas are required.

Lemma 7.15 Let Y be a compact metrizable space and let g: Y —» R*
be lower semicontinuous. Define g*:2¥ — R* by

ming(y) if A#J,
g*(4) =

ved (56)
0 if A=¢.

Then g* is lower semicontinuous.

Proof Since the empty set is an isolated point in 2¥, we need only
prove that g* is lower semicontinuous on 2¥ — {f}. We have already shown
[Proposition 7.32(a)] that, given a nonempty set 4e2”, there exists ye 4
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such that g*(4) = g(y). Let {4,} = 2¥ be a sequence of nonempty sets with
limit 4€2¥, and let y,e A, be such that g*(4,) = g(y,), n = 1,2,.... Choose
a subsequence { y,, } such that

lim g(y,,) = liminfg(y,) = liminfg*(A4,).

k= n— o n—oo
The subsequence { y,, } accumulates at some y, € Y, and, by Lemma 7.13(a),
9(yo) < lim g(y,,) = liminfg*(4,).
k=0 n— o
From (14) of Appendix C and from Proposition C.3, we have (in the notation

of Appendix C)
yO S m An = A,

n— oo

SO

g*(4) < g(yo) < liminfg*(A,).

The result follows from Lemma 7.13(a). Q.E.D.

Lemma 7.16 Let Y be a compact metrizable space and let g: Y — R*
be lower semicontinuous. Define G:2YR* — 2¥ by

G(A,c)=An{yeY|g(y) < c}. (57)
Then G is Borel-measurable.

Proof We show that G is upper semicontinuous (K) (Definition C.2)
and apply Proposition C.4. Let {(4,,¢,)} = 2'R* be a sequence with limit
(4,¢). If lim,_, , G(4,,¢c,) = &, then

[im G(4,,c,) = G(4,c¢). (58)

n—oo

Otherwise, choose yelim,_, ., G(A4,,c,). There is a sequence n, < n, < - - - of

positive integers and a sequence y,, € G(4,,,Cy,), L =1,2,..., such that
Vn, — y- By definition, y, € A4, for every k, so yelim,_, A4, = A. We also
have g(y,.) < ¢, k=1,2,..., and using the lower semicontinuity of g,
we obtain

g(y) <liminfg(y,,) < lim ¢, = c.
k— oo k= o0

Therefore y € G(A4, ¢), (58) holds, and G is upper semicontinuous (K).
Q.E.D.
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Lemma 7.17 Let Y be a compact metrizable space and let g: Y —» R*
be lower semicontinuous. Let g*:2¥ — R* be defined by (56) and define
G*:2¥ - 2% by

G*A)=A n {yeY|g(y) < g*(A)}. (59)
Then G* is Borel-measurable.

Proof Let G be the Borel-measurable function given by (57). Lemma 7.15
implies g* is Borel-measurable. A comparison of (57) and (59) shows that

G*(4) = G[4,9%(4)].
It follows that G* is also Borel-measurable. Q.E.D.

Lemma 7.18 Let Y be a compact metrizable space. There is a Borel-
measurable function ¢:2¥ — {@} > Y such that o(4)ed for every

Ae2 — {5}

Proof Let {g,Jn=1,2,...} be a subset of C(Y) which separates points
in Y (for example, the one constructed in the proof of Proposition 7.7). As in
Lemma 7.15, define g*:2¥ — R* by

min g,(y) if 4#d,
gi(A) =374
o) if A=,
and, as in Lemma 7.17, define G*:2¥ — 27 by
GH(A) = A n {yeY|g.(y) < gi(A)} = {ye A|g.(y) = gi(A)}.
Let H,:2¥ — 2¥ be defined recursively by

Ho(A) = A,
H.(4) = Gi[H,-(A)], n=12,....
Then for 4 # &, each H,(A) is nonempty and compact, and
A=HyA) > H(A)> HyA)>---.

Therefore, (2o H(A) # &. If y,y € (o H,(A), then for n=1,2,..., we
have

9.(y) = gE[H,-1(A)] = g.¥).

Since { g,,ln =1,2,...} separates points in Y, we have y = y’, and ﬂ o H(A)
must consist of a single point, which we denote by o(A4).
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We show that for 4 # &

lim H,(A) = () H{A) = {c(A)}. (60)
n—oo n=0

Since the sequence {H,(A)} is nonincreasing, we have from (14) and (15)
of Appendix C that

() Hy(A) = lim H,(A) = lim H,(A). (61)
n=0 n— o n—oo
If yelim,_, , H,(A), then there exist positive integers n, <n, <--- and a
sequence y,, € H,,(4), k=1,2,..., such that y, — y. For fixed k, y, €H,,
for all j >k, and since H,(A) is closed, we have yeH, (A4). Therefore,
ye()ioH,(4) and

Tim H,(A) = () H,(A). (62)
n— o n=0
From relations (61) and (62), we obtain (60).

Since G} and H, are Borel-measurable for every n, the mapping v:2¥ —
{@&} — 2¥ defined by v(4) = {a(A)} is Borel-measurable. It is easily seen
that the mapping 7:Y — 2% defined by t(y) = {y} is a homeomorphism.
Since Y is compact, t(Y) is compact, thus closed in 2¥ and 17 !:7(Y) » Y
is Borel-measurable. Since ¢ = 7~ oy, it follows that ¢ is Borel-measurable.

Q.E.D.

Lemma 7.19 Let X be a metrizable space, Y a compact metrizable space,
and let f:XY — R* be lower semicontinuous. Define F: XR* — 2 by

F(x,c) = {ye Y|f(x,y) < c}. (63)
Then F is Borel-measurable.

Proof The proof is very similar to that of Lemma 7.16. We show that F
is upper semicontinuous (K) and apply Proposition C4. Let (x,,c,) = (x,¢)
in XR* and let y be an element of Iim,_ ., F(x,,c,), provided this set is
nonempty. There exist positive integers n; <n, <--- and y,, € F(x,,, Cy,
such that y, — y. Since f(x,,,V,) < ¢, and f is lower semicontinuous, we
conclude that f(x, y) < ¢, so that lim,_, ., F(x,,¢,) = F(x, ¢). The result follows.

Q.E.D.

Lemma 7.20 Let X be a metrizable space, Y a compact metrizable space,
and let /: XY — R* be lower semicontinuous. Let f*:X — R* be given by
f*(x) = min,_y f(x, y), and define F*:X — 2" by

F*(x) = {ye Y| f(x,y) < f*()}. (64)

Then F* is Borel-measurable.
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Proof Let F be the Borel-measurable function defined by (63). Prop-
osition 7.32(a) implies that f * is Borel-measurable. From (63) and (64) we have

F*(x) = F[x, f*(x)].
It follows that F* is also Borel-measurable. Q.E.D.

We are now ready to prove the selection theorem for lower semicontinuous
functions.

Proposition 7.33 Let X be a metrizable space, Y a compact metrizable
space, D a closed subset of XY, and let f:D — R* be lower semicontinuous.
Let f*:projx(D) — R* be given by

f*(x) = min f(x, y). (65)
yeDyx
Then projx(D) is closed in X, f* is lower semicontinuous, and there exists
a Borel-measurable function ¢:projyx(D) — Y such that Gr(¢) = D and

flx o] =/*x)  Vxeprojx(D). (66)

Proof Wefirst prove the result for the case where D = X'Y. Asin Lemma
7.18,let 6:2¥ — {F} — Y be a Borel-measurable function satisfying a(4) e 4
for every Ae2¥ — {¥}. As in Lemma 7.20, let F*:X — 2¥ be the Borel-
measurable function defined by

F*(x) = {ye Y|f(x,y) = f*(x)}

Proposition 7.32(a) implies that f* is lower semicontinuous and F*(x) #
for every xe X. The composition ¢ = g o F* satisfies (66).

Suppose now that D is not necessarily X Y. To see that projyx(D) is closed,
note that the function g = — ¥, is lower semicontinuous and

projx(D) = {xe X|g*(x) < — 1},

where g*(x) = min, .y g(x, y). By the special case of the proposition already
proved, g* is lower semicontinuous, projx(D) is closed, and there is a Borel-
measurable function ¢:X — Y such that g[x, ¢;(x)] = g*(x) for every
xe X or, equivalently, (x, ¢(x))e D for every x e projx(D).

Define now the lower semicontinuous function f: XY — R* by

f(x y)={f(xay) lf (x,y)eD,

fo'o) otherwise.

Forall ceR,

{xeprojx(D)| f*(x) < ¢} = {xeX|minf(x, y) < c}.
yeY
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Since min, .y f(x,y) is lower semicontinuous, it follows that f* is also lower
semicontinuous. Let ¢,:X — Y be a Borel-measurable function satisfying

Fx @2(x)] = mi?f(x, ) VxeX.

Clearly (x, @,(x))e D for all x in the Borel set
{xeleinf(x,y) < oo}.
yeY

Define ¢ :projy(D) — Y by
(pl(x) lf minf(x,y) = 00,

o(x) = o
@,(x) if min f(x,y) < co.
yeY

The function ¢ is Borel-measurable and satisfies (66). Q.E.D.

We turn our attention to selection in the case of an upper semicontinuous
function. The analysis is considerably simpler, but in contrast to the “exact
selector” of (66) we will obtain only an approximate selector for this case.

Lemma 7.21 Let X be a metrizable space, Y a separable metrizable
space, and G an open subset of X Y. Then projx(G) is open and there exists
a Borel-measurable function ¢:projx(G) — Y such that Gr(p) < G.

Proof Let {y,n=1,2,...} be a countable dense subset of Y. For fixed
ye Y, the mapping x — (x, y) is continuous, so {x€ X|(x, y)e G} is open. Let
G, = {xe X|(x,y,)€ G}, and note that proj(G) = (U, G, is open. Define
@:projx(G) — Y by

V1 if XEGl,

n—1
Vn if xeG,— |J Gy, n=2,3,....

k=1

o(x) =

Then ¢ is Borel-measurable and Gr(¢) < G. Q.E.D.

Proposition 7.34 Let X be a metrizable space, Y a separable metrizable
space, D an open subset of XY, and let f:D — R* be upper semicontinuous.
Let f*:projx(D) — R* be given by

fHx) = ian fx,p). 67)

YeUx
Then projy(D) is open in X, f* is upper semicontinuous, and for every
e > 0, there exists a Borel-measurable function ¢,:projx(D) — Y such that
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Gr(p,) = D and for all xe projy(D)

fH)+e i f*x) > —oo,
fIx 0x)] < {_ 1/ if f*x)= —o0.

Proof The set projx(D) is open in X by Lemma 7.21. To show that f*
is upper semicontinuous, define an upper semicontinuous function /: XY —
R* by

(68)

Ty = {f(x,y) if (x,y)eD,

0] otherwise.

For ce R, we have
{xepron(D)|f*(x) <c} = {xeX]inff(x,y) < c},
yeY

and this set is open by Proposition 7.32(b).
Let ¢ > 0 be given. For k =0, +1, £2,. .., define (see Fig. 7.1)

A(k) = {(x,y)eD|f(x, y) < ke},
B(k) = {xeprojy(D)|(k — 1)e < f*(x) < ke},
B(—o0) = {xeprojx(D)|f*(x) = — 0},
B(o0) = {xeprojx(D)| f*(x) = oo}

The sets A(k), k=0,+1,+2,..., are open, while the sets B(k), k =
0,+1,+2,...,B(— ), and B(co) are Borel-measurable. By Lemma 7.21,

ke

(k-De -

Bk B(K)
FIGURE 7.1
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there exists foreach k = 0, +1, +2,. . . a Borel-measurable ¢, : projx(4;) — Y
such that Gr(¢p,) = A, and there exists a Borel-measurable §:projy(D) — Y
such that Gr(@) = D. Let k* be an integer such that k* < —1 /e2. Define
@,:projx(D) — Y by

@i(x) if xeB(k), k=0,+1,+2,...,

P:(x) = S B(x) if xeB(c),

(pk*(x) if XGB(—OO).
Since B(k) < projx[A(k)] and B(— o) < projx[A(k)] for all k, this definition
is possible. It is clear that ¢, is Borel-measurable and Gr(¢,) = D. If xe B(k),
then, since (x, @x(x))€ A(k), we have

1% 03] = f[x @ux)] < ke < f*(x) + .
If xe B(oo), then f(x,y) = oo for all yeD, and f[x, ¢ (x)] = 0 = f*(x). If
x € B(— o0), we have
D% 0d0)] = f[x oulx)] < k¥e < —1/e.
Hence ¢, has the required properties. Q.E.D.

7.6 Analytic Sets

The dynamic programming algorithm is centered around infimization
of functions, and this is intimately connected with projections of sets. More
specifically, if f: XY — R* is given and f*:X — R* is defined by

f*x) = y1n£ fxy),
then for each ce R
{xe X|f*(x) < ¢} = projx({(x, y)e X Y|f(x,y) < c}).

If f is a Borel-measurable function, then {(x,y)|f(x,y) <c} is a Borel-
measurable set. Unfortunately, the projection of a Borel-measurable set need
not be Borel-measurable. In Borel spaces, however, the projection of a Borel
set is an analytic set. This section is devoted to development of properties
of analytic sets.

7.6.1 Equivalent Definitions of Analytic Sets

There are a number of ways to define the class of analytic sets in a Borel
space X. One possibility is to define them as the projections on X of the
Borel subsets of XY, where Y is some uncountable Borel space. Another



7.6 ANALYTIC SETS 157

possibility is to define them as the images of the Baire null space .4/ under
continuous functions from 4" into X. Still another possibility is to define
them as all sets of the form

U m S(O-lao-Z"'"o-n),

(61,62,...)eN n=1

where 4" is the set of all sequences of positive integers (the Baire null space)
and the sets S(64, 05, . . .,0,) are closed in X. All these definitions are equiv-
alent, as we show in Proposition 7.41. We will take the third definition
as our starting point, since this is the most convenient analytically. We first
formalize the set operation just given in terms of the notion of a Suslin scheme
in a paved space.

Definition 7.14 Let X be a set. A paving 2 of X is a nonempty collection
of subsets of X. The pair (X, 2) is called a paved space.

If (X, 2) is a paved space, we denote by ¢(Z) the o-algebra generated by
2, we denote by 2; the collection of all intersections of countably many
members of 2, and we denote by 2, the collection of all unions of countably
many members of 2. Recall that N is the set of positive integers, .4 is the
set of all infinite sequences of positive integers, and X is the set of all finite
sequences of positive integers.

Definition 7.15 Let (X, 2) be a paved space. A Suslin scheme for 2 is a
mapping from X into 2. The nucleus of a Suslin scheme S:Z — 2 is

NS)= U () S(o1,02,- -0, (69)
(61,62,...)eN n=1
The set of all nuclei of Suslin schemes for a paving 2 will be denoted by & (2).

In order to simplify notation, we write, for s = (6,,0,,...,0,)eX and
z=({1,{5,.. )N,

s<z 1f O'1=C1, O'2=C2,...,O'n=cn.
With this notation, (69) can also be written as

NS)= U ) S

zeN s<z

We will use both expressions interchangeably.

Note that the union in (69) is uncountable, so if 2 is a ¢-algebra and S
is a Suslin scheme for 2, N(S) may be outside 2. Several properties of ¥ (2)
are given below.
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Proposition 7.35 Let X be a space with pavings £ and 2 such that
P < 2. Then

(@) S(P) <= F(2),

(b) F(2);=F(2),

© SLP), =S (P),

d Z<=H2),

(&) S (P)=SL[F(DP)].

Proof (a) Obvious.

(b) Tt is clear that £(2), > #(2). Now choose ()=, N(S,) €S (P)s.
where S, is a Suslin scheme for 2, k =1,2,.... It suffices to construct a
Suslin scheme S for £ such that

N(S) = ﬁ N(S). (70)

Fork=1,2,...letIl, = {2/ — )2*"'|j=1,2,...}. ThenII,, 5, .. .isa
partition of N into infinitely many infinite sets. For each positive integer k,
let @, : A" — A be defined by

ng(ClaC:h . ') = (CZ"‘%C}Z"“’CS'Z"‘% .- ')7

i.e., @, picks out the components of ({, {5, . . .) with indices in IT, . We want to
construct a Suslin scheme S for which

() S(s) = ﬁ () Sils) Vze. (71)

s<z k=1 s < ¢r(z)

We may rewrite (71) as

ﬂ S(ClaCZ’ e aCn)
n=1

= kOI .OI Si(lar-1, {50615 - - aC(zj—nzk-l) V{1, 00, )N (72)

Given ({y,(5,...,(,)€Z, we have n = (2j — 1)2*~! for exactly one pair of
positive integers j and k. Define
S(Cls CZ! s 7Cn) = Sk(CZk‘ls C3~2k‘17 L) C(Zj—l)zk—l)‘ (73)

This defines a Suslin scheme S for which (72), and hence (71), is easily verified.
We now use (71) to prove (70). Choose

xeN©S)= 1 ) Ss).

zeN s<z
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For some z, €./, we have
xe (VS =) () Suls)
s<zo k=1 s<¢x(zo)

Thus, for every k,

xe ) Ss)<= U () Suls) = N(Sy).

s <@ir(zo) zeN s<z

It follows that x e ()% ; N(S,) and
N(S) < ﬂ N(Sp). (74)
k=1

If we are given xe( )2, N(S,), then x€|J.cs(Vs<=Sk(s) for every k, so
for every k, there exists z,€ 4" such that xe (),<., Si(s). Let zoe ./ be such
that @u(zo) = z, k=1,2,... . Then x& (7%, [ )s<onzo) Sk(s)- An application
of (71) shows that

xe () St <= |J ) Sts) = N(S)

s<zp zeN s<z

and
N@S)> f}l N(Sy). (75)

Relation (70) follows from (74) and (75).

(c) It is clear that #(2), o F(#). Choose U,‘f; 1 N(Sy) e L(2),,, where
Sy is a Suslin scheme for 2, k = 1,2,.... It suffices to construct a Suslin
scheme S for £ for which

N(S) = C') N(S,). (76)

Given ({;,{5,...,(,)€Z, we have {; = (2j — 1)2*~! for exactly one pair of
positive integers j and k. Define

S({laCl) LR 7Cn) = S((z.]_ 1)2k—1’C2, cee 5Cn) = Sk(j,CZ’ ] 9Cn)'
This defines a Suslin scheme S for which
m S((2J - 1)2"_1,CZ7 ... 7Cn) = ﬂ Sk(jaCZ’ L 9Cn)
n=1 n=1

Vke N.Y(j, 5, .. )eN. (T7)

Returning to (76), we choose xeN(S)=|J.cs [)s<:S(s). For some
(1.5, .. )N, we have xe ()21 Sy, {5, - - -, {,), and choosing j and k so
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that {; = (2j — 1)2¢~ 1, we have, from (77),
xeﬁ1 Sislar oL S NS < kgjl NS,
SO
N(S) < kgl N(S,). (78)

If, on the other hand, we choose

o)

xekQ NS =U U N S,

k=1zeAN s<z

then for some ke N and (j,{,,...)e A, we have xe ()%, Si(j, (s, - - -, ()
Equation (77) implies

o)

XE€ ﬂ S((zj_ 1)2k_17C2’~ . ‘9Cn) = N(S)>

n=1

SO
N(S) > G N(S,). (79)
k=1

Relation (76) follows from (78) and (79).

(d) For Pe 2, define S(s) = P for every se . Then N(S) = P.

() The proof of this takes us somewhat far afield, so is given as Propo-
sition B.2 of Appendix B. Q.E.D.

It is not in general true that (&) is closed under complementation,
so F(2) is generally not a g-algebra. In order for #(2) to contain ¢(2),
we need one additional assumption.

Corollary 7.35.1 Let (X,2) be a paved space and assume that the
complement of each set in 2 is in (). Then ¢(2) = L (P).

Proof The smallest algebra containing & consists of the finite inter-
sections of finite unions of sets in £ and complements of sets in £. By
Proposition 7.35, these sets are contained in L[S [SL(P)]] = F(£). Since
F(2) is a monotone class, it contains the g-algebra generated by 2 as well
(Ash [Al, p. 19]). Q.E.D.

Definition 7.16 Let X be a Borel space. Denote by %y the collection
of closed subsets of X. The analytic subsets of X are the members of (F y).

Corollary 7.35.2 Let X be a Borel space. The countable intersections
and unions of analytic subsets of X are analytic.
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Proof  This follows from Proposition 7.35(b) and (c). Q.E.D.

Proposition 7.36 Let X be a Borel space. Then every Borel subset of X
is analytic. Indeed, the class of analytic sets (%) is equal to F(By).

Proof  Every open subset of X is an F, (Lemma 7.2), so every open set
is analytic. Corollary 7.35.1 implies #y = $(F ). Proposition 7.35(a) and
(e) implies

AT x) < F(Bx) = S[L(Fy] =S Fx). QED.

If the Borel space X is countable, then every subset of X is both analytic
and Borel-measurable. If X is uncountable, however, the class of analytic
subsets of X is strictly larger than %y. This is shown in Appendix B, where
we prove the existence of an analytic set whose complement is not analytic.

Note that an immediate consequence of Proposition 7.36 is that if Y is
a Borel subset of the Borel space X, then the analytic subsets of Y are the
analytic subsets of X contained in Y. A generalization of this fact is the
following.

Corollary 7.36.1 Let X and Y be Borel spaces and ¢:X — Y a Borel
isomorphism. Then 4 = X is analytic if and only if ¢(A4) = Y is analytic.

Proof If ¢:X — Y is a Borel isomorphism and 4 = X is analytic, then
A = N(S), where S is a Suslin scheme for # . It is easily seen that ¢(4) =
N(p©S), where @S is the Suslin scheme for %y defined by (¢ o S)(s) =
@[ S(s)], so @(A) is analytic by Proposition 7.36. If p(4) = Y is analytic,
A < X is analytic by a similar argument. Q.E.D.

We proceed to the development of several equivalent characterizations
of analytic sets. The general definition of a Suslin scheme is unrestrictive
with respect to the form of the mapping S:= — 2. In the event that X is a
separable metric space and 2 =  y, one can assume without loss of general-
ity that S has more structure.

Definition 7.17 Let (X, 2) be a paved space and S a Suslin scheme for 2.
The Suslin scheme S is regular if for each ne N and (6,,0,,...,0,+)€Z,
we have

S(Gl,az,. . ,O'n)D S(O'I,O'z,. N ’O-nao-n-)-l)'

Lemma 7.22 Let (X,d) be a separable metric space and S a Suslin
scheme for Z . Then there exists a regular Suslin scheme R for % such
that N(R) = N(S) and, for every z = ({;,{5,...)e N,

limdiam R({;,{5,...,{) =0 if R0, .,0)# T Vno (80)

n—oo
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Proof By the Lindeldf property, for each positive integer k, X can
be covered by a countable collection of open spheres of the form By; =
{xeX|d(x,x;) < 1/k},j=1,2,....For ({1,{;,03,(z,. . )N, define

R(,) = Byz,,

R(Z1,{1) = R(C1) 0 SEy),
R(CI’C1’C2) R(CbCl)mEzZza
R(1,(1,02,00) = R, 84, 55) 0 S, L),

etc. Thus

N R(s) = [ N Ekzk}\ [ﬂ S(s)} (81)
s<(C1.81.2: 825+ 2) k=1 s<z

where z = ({;,{5;...). It is clear that R is a regular Suslin scheme for Zx
and (80) holds. If xe N(R), then there exists ({;,(;,{5,(5,...)€ A" such that
x€(Ns<@rtrtn ..y R(5), 50 by 1) x&(\s<(y.t...S(5) = N(S), and there-
fore N(R) = N(S). If xe N(S), then there exists ({;,{,,...)e.#" such that
x€(Vs<rca... 1 S(s). Since for each positive integer k, the collection {By|j =
1,2,...} covers X, there exists for each k a positive integer {, for which
xeBklk Then xe ﬂk i Bz, and, by (81), x€ (Vs<¢,.¢0. 5.0, ) R(S) = N(R), s0
N(R) o N(S). It follows that N(R) = N(S). QED

Note that if a regular Suslin scheme R satisfies (80), then for all z in
Ny = {ze%lﬂ R(s) # Q},
the set (),<. R(s) consists of a single point, say f(z). Thus we have
N(R) = f(N"1),
and this relation provides the basis for an alternative way of characterizing
analytic sets. We have the following lemma.

Lemma 7.23 Let (X,d) be a complete separable metric space. If 4 < X
is a nonempty analytic set, then there exist a closed subset A", of 4" and a
continuous function f:.A4"; - X such that A = f(A4",). Conversely, if
Ny = N isclosed and f: 4", — X is continuous, then f(4",) is analytic.

Proof Let A = N(R) be nonempty, where R is a regular Suslin scheme
for & 4 satisfying (80). Define

Ny = {zeﬂ (R #@}

s<z
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Letz = ({,{;,...) be in A" If for each n we have R((,,{5,...,(,) # &, then
it is possible to chose x,€ R({1,{5,. . .,{,). The sequence {x,} is Cauchy by
(80), and since (X,d) is complete, {x,} has a limit xe X. But for each n the
regularity of R implies {x,|jm > n} = R((,{5,...,{,),50 xeR((1,Eas- .., L),
Therefore xe(),<.R(s). Now suppose ze. 4" — .4",. The preceding argu-
ment shows that for some s, < z, we have R(s,) = . The open neighborhood
{we.#[s, < w} contains z and is contained in A — Ny, 80 N — N s
open and ./, is closed.

For ze /", define f(z) to be the unique point in (<, R(s). If {z;} is a
sequence in 4"y converging to z, = ({;,{,,...)€./";, then given ¢ > 0, (80)
implies that there exists s, < z, for which diam R(s,) < ¢. For k sufficiently
large, z,.€ {ze N[s, < z},50 f(z;) € R(s,). Therefore d( f(z,), f(z,)) < diam R(s,)
< ¢, which shows that f is continuous.

For the converse, suppose 4", = A" is closed and f:.4", » X is con-
tinuous. Define a regular Suslin scheme R for %y by

R(s) = f({ze N y|s < z}),

where R(s) = & if {ze /'[s <z} = &. If ze /"y, then f(z)e();<.R(s) =
N(R), so f(4",) = N(R). If xe N(R), then for some 2o =((1,85,.. )N We
have x & (),<., R(s). Then for each n,

xef({ze 4|1, Cas- .00 < 2)),

so given ¢ > 0, there exists a z,e.4"; with ({;,{,,...,(,) < z, and d(x, f(z,))
<& But as n— oo, z, must converge to z,. The closedness of 4", implies
zo€./4"1, and the continuity of f implies d(x, f(zo)) < &. Since ¢ > 0 is arbi-
trary, we have f(zo) = x, xe f(4",), and N(R) < f(AN",). Q.ED.

We have thus characterized analytic sets as the continuous images of
closed subsets of .4#". We will obtain an even sharper characterization, for
which we need the following lemma.

Lemma 7.24 If /", is a nonempty closed subset of .4, then there exists
a continuous function g: .4~ — 4 such that A", = g(A").

Proof  Use the Lindelof property to cover .4, with a countable collec-
tion of nonempty closed sets {S({,)|{; € N} which satisfy

N 12 8(y), diamS({,) <1, (;=12,...,

where d is a metric on 4" consistent with its topology and diam S(¢,) 1s
given by (9). Cover each S(¢,) with a countable collection of nonempty
closed sets {S({;,(,)|{,e N} which satisfy

S(¢y) = S(E4.8y), diamS(Claiz)S%, L=1,2,0...
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Continue in this manner so that, for any ({;,{5,...,{—1)

S(ClaCZ,”-azn)#Qa Cn=l729"'n (82)
S((laCZs""Cn—l)= Ul S(CISCZV"’Cn)a (83)
tn=
S(ClaCZ’“'?Cn—l)DS(QhCZ"":gn—l,Cn), Cn=1,25"~7 (84)
diam S 1, Gos- .ty < 1 Gi=1,2,. ... (85)

The completeness of 4" and (82)—(85) imply that for each ze A, ﬂSQS(s)
consists of a single point. Define g(z) to be this point. Then

N(ES)=g(N) =Ny

The continuity of g follows by an argument similar to the one used in the
proof of Lemma 7.23. Q.E.D.

Proposition 7.37 Let X be a Borel space. A nonempty set 4 = X is
analytic if and only if 4 = f(/4") for some continuous function f: A" — X.

Proof If X is complete, the proposition follows from Lemmas 7.23 and
724. 1f X is not complete, it is still homeomorphic to a Borel subset of a
complete separable space, and the result follows from Corollary 7.36.1.

Q.E.D.

Proposition 7.37 gives a very useful characterization of nonempty ana-
Iytic sets in terms of continuous functions and the Baire null space .#". The
Baire null space has a simple description and its topology allows considerable
flexibility. We have already shown, for example, that it is homeomorphic to
N o, the space of irrationals in [0, 1]. Another important homeomorphism
is the following.

Lemma 7.25 The space .4 is homeomorphic to any finite or countably
infinite product of copies of itself.

Proof We prove the lemma for the case of a countably infinite product.
Let I1,,I1,,. . . be a partition of N, the set of positive integers, into infinitely
many infinite sets. Define @: A" — A" A A~ - - by

(p(Z) = (Zl’zla' . ')a (86)

where z, consists of the components of z with indices in IT,. Then ¢ is one-
to-one and onto and, because convergence in a product space is component-
wise, ¢ is a homeomorphism. Q.E.D.

Combination of Lemma 7.25 with Proposition 7.37 gives the following.
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Proposition 7.38 Let X, X,,... be a sequence of Borel spaces and A,
ananalyticsubset of X,k = 1,2,....Thenthesets 4,4, - -and 4,4, - 4,,
n=1,2,...,are analytic subsets of X, X, - - -and X, X, - - - X, respectively.

Proof Let f:. /" — X, be continuoussuch that 4, = fi(A"),k=1,2,....
Let ¢ be given by (86) and F: /" A"+ - —> X, X, - - be given by

F(217227' . ) = (fl(zl)afZ(ZZ)" . )

Then Fo ¢ is continuous and maps .4 onto 4,4, - - . The finite products
are handled similarly. Q.E.D.

Another consequence of Proposition 7.37 is that the continuous image
of an analytic set, in particular, the projection of an analytic set, is analytic.
As discussed at the beginning of this section, this property motivated our
inquiry into analytic sets. We formalize this and a related fact to obtain
another characterization of analytic sets.

Proposition 7.39 Let X and Y be Borel spaces and A4 an analytic subset
of X'Y. Then projy(A) is analytic. Conversely, given any analytic set C = X
and any uncountable Borel space Y, there is a Borel set B = XY such that
C = projx(B). If Y = 4, B can be chosen to be closed.

Proof If A= f(#) < XY is analytic, where f is continuous, then
projx(A4) = (projy o f)(A") is analytic by Proposition 7.37. If C = f(A#) = X
is nonempty and analytic, then

C = projx[Gr(f)]a

where Gr(f) = {(f(z),2)e XN'|ze A"} is closed because f is continuous. If
Y is any uncountable Borel space, then there exists a Borel isomorphism
@ from .4 onto Y (Corollary 7.16.1). The mapping ® defined by

O(x, z) = (x, ¢(2))
is a Borel isomorphism from X4 onto XY, and
C = projx(®[Gr(f)]). QED.

So far we have treated only the continuous images of analytic sets. With
the aid of Proposition 7.39, we can consider their images under Borel-
measurable functions as well.

Proposition 7.40 Let X and Y be Borel spaces and f:X — Y a Borel-
measurable function. If 4 = X is analytic, then f(A4) is analytic. If B Y
is analytic, then f ~!(B) is analytic.

Proof Suppose A = X is analytic. By Proposition 7.39, there exists a
Borel set B = X/ such that A = projx(B). Define yy: B — Y by ¥/(x, z) = f(x).
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Then y is Borel-measurable, and Corollary 7.14.1 implies that Gr(y/)e By y-
Finally, f(A4) = projy[Gr(y)] is analytic by Proposition 7.39.

If B = Y is analytic, then B = N(S), where S is some Suslin scheme for
Fy. Then f~1(B)= N(f~'<8S), where f~*¢§ is the Suslin scheme for %y
defined by

(f1eS)s) =T [S6)] Vs
The analyticity of f ~*(B) follows from Proposition 7.36. Q.E.D.
We summarize the equivalent definitions of analytic sets in Borel spaces.

Proposition 7.41 Let X be a Borel space. The following definitions of
the collection of analytic subsets of X are equivalent:

(@ S (Fx);

(b) S (%x);

(c) theempty set and the images of 4" under continuous functions from
N into X;

(d) the projections into X of the closed subsets of X.A";

(e) the projections into X of the Borel subsets of XY, where Y is an
uncountable Borel space;

(f) the images of Borel subsets of Y under Borel-measurable functions
from Y into X, where Y is an uncountable Borel space.

Proof The only new characterization here is (f). If Y is an uncountable
Borel space and f:Y — X is Borel-measurable, then for every Be %y, f(B)
is analytic in X by Proposition 7.40. To show that every nonempty analytic
set A = X can be obtained this way, let ¢ be a Borel isomorphism from Y
onto XA and let F = X4 be closed and satisfy projy(F)= A. Define
B = ¢~ }(F)e&y. Then (projy @)(B) = A. If A = (7, then f(¥) = A for any
Borel-measurable f:Y — X. Q.E.D.

7.6.2 Measurability Properties of Analytic Sets

At the beginning of this section we indicated that extended real-valued
functions on a Borel space X whose lower level sets are analytic arise natu-
rally via partial infimization. Because the collection of analytic subsets of
an uncountable Borel space is strictly larger than the Borel o-algebra (Ap-
pendix B), such functions need not be Borel-measurable. Nonetheless, they
can be integrated with respect to any probability measure on (X, Zx). To
show this, we must discuss the measurability properties of analytic sets.

If X is a Borel space and pe P(X), we define p-outer measure, denoted
by p*, on the set of all subsets of X by

p*(E) = inf{p(B)|E = B, Be By}. 87)
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Outer measure on an increasing sequence of sets has a convergence property,
namely, p*(E,) T p*(\ ;2 E,)ifE; = E, = - - - . This is easy to verify from (87)
and also follows from Eq. (5) and Proposition A.1 of Appendix A (see also
Ash [A1, Lemma 1.3.3(d)]). The collection of sets Z4(p) defined by

Bx(p) = {E = X|p*(E) + p*(E°) = 1}
is a o-algebra (Ash [Al, Theorem 1.3.5]), called the completion of By with
respect to p. It can be described as the class of sets of the form B u N as B

ranges over By and N ranges over all subsets of sets of p-measure zero in
By (Ash [Al, p. 18]), and we have

p*(Bu N) = p(B).

Furthermore, p* restricted to #4(p) is a probability measure, and is the only
extension of p to %By(p) that is a probability measure. In what follows, we
denote this measure also by p and write p(E) in place of p*(E) for all E € Z4(p).

Definition 7.18 Let X be a Borel space. The universal c-algebra Uy is
defined by %y = ﬂ perx) Bx(p). If Ec Uy, we say E is universally measurable.

The usefulness of analytic sets in measure theory is in large degree
derived from the following proposition.

Proposition 7.42 (Lusin’s theorem) Let X be a Borel space and S a
Suslin scheme for % . Then N(S) is universally measurable. In other words,
y (%X) = %X‘

Proof Denote A = N(S), where S is a Suslin scheme for %. For
(61,...,0,)€Z, define

N(oy,...,00) = {((1,(5,. . )e ,/V|C1 =01,..., =04} (88)
and
M(oy,...,00) = {((1,05... JeN| i S04, G < 0y}
=11<6l U rquN(‘l:l,...,‘c,‘). (89)
Define also
R(G4,...,00) = ZGM(GQWW st S(s). (90)
Then
R(o4,...,0.) = K(oy,- - - ,0%), (91)
where
K(oy,...,0,) = U (5 S(ty,....1)). (92)
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Aso, 100, M(g,)1 A, s0 R(g,) T A. Likewise, as g, T 00, M(04,...,04-1,0%) T
M(Gl,. .. ,O'k_l),SOR(O'l,. .. ,O‘k_l,O'k)TR(O‘l,. .. Jo-k—l)‘ GiVCanP(X)and
&> 0, choose {;,C,,. ..such that

p*(A) < p*[R({1)] + (¢/2),
p*[R(Zl, .. ,Zk_l)] < P*[R(Zl, .. :Zk—l’Zk)] + (S/Zk), k = 2, 3,. R
Then
p*(A) < p*[R(y,- .- 0]+ k=1,2,.... 93)
The set K(T4,. . -, ;) is universally measurable, so (91) and (93) imply
1 = p[K(Zl’ .. ’Zk)] + p[X - K(Zl" .. 7Zk)]
2 P*[R(zu- .. 7Zk)] + p[X - K(Zla' .. ’zk)]

2 p¥(4) — &+ p[X — K@i, ... ). 94)
We show that
kOI K(y,...,5))c A V(1,8s,.. )N 95)
If
') © k
xe ﬂ K({,,...,0) = ﬂ U ﬂ S(ty, ..., 1)), 96)
k=1 k=1t1<{y. ..., <G J=1

an argument by contradiction will be used to show that for some 7; < (;,
we have

o)

k
xeS(fl)m[m U N S(?l,rz,...,rj)]. 97)

k=212<2, .. Tk Sk j=2
If no such 7; existed, then for every 7, < {;, there would exist a positive
integer k(t,) such that

k(z)

k

xg_ﬁS(rl)ml:ﬂ U N S(‘cl,rz,...,rj):|.
k=2t3<l2,..., <Lk j=2

If k = max,, .., k(z,), then

xé¢ {S(tl)r\l:(% U (k) S(II,TZ,...,TJ):|}

1<y k=212<02,- - =Lk j=2

D

e,

T1<81.. .. w<{rj=1

5(119127 .. 7Tj) = K(Cla LA ,CE)
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and a contradiction is reached. Replace (96) by (97) and apply the same
argument to establish the existence of T, < {, such that

o)

k
xeS(T,) N S(T,,7T,) N [ N U () STL,7%5,15,. . ,zj)].

k=31t3<83, ..., <k j=3

Continuing this process, construct a sequence 7, < {;,7, < {5, . .. such that
0
xe () STy, ...,%) = N(S) = A.
k=1

This proves (95), i.e.,, as k > o0, K({;,. . .,{,) decreases to a set contained in
A,and X — K({y,....{,) increases to a set containing X — A. Lettingk - oo
in (94), we obtain

1= p*A4) — ¢ + p*(X — A).
Since ¢ > 0 is arbitrary, this implies that
1= p*(A) + p*(X — A).
It is true for any E = X that p*(E) + p*(X — E)> 1, so
P¥(A) + p*(X — 4) =1,
and A is measurable with respect to p. Q.E.D.

Corollary 7.42.1 Let X be a Borel space. Every analytic subset of X is
universally measurable.

Proof The closed subsets of X are universally measurable, so ¥ (F ) =
Uy by Proposition 7.42. Q.E.D.

As remarked earlier, the class of analytic subsets of an uncountable Borel
space is not a g-algebra, so there are universally measurable sets which are
not analytic. In fact, we show in Appendix B that in any uncountable Borel
space, the universal g-algebra is strictly larger than the g-algebra generated
by the analytic subsets.

7.6.3  An Analytic Set of Probability Measures

In Proposition 7.25 we saw that when X is a Borel space, the function

P(X) — [0,1] defined by 6,(p) = p(4) is Borel-measurable for every
Borel-measurable 4 = X. We now investigate the properties of this function
when A is analytic. The main result is that the set {pe P(X )|p(A) = ¢} is
analytic for each real c.

Proposition 7.43 Let X be a Borel space and A4 an analytic subset of X.
For each ceR, the set {pe P(X)|p(4) = c} is analytic.
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Proof Let S be a Suslin scheme for #y, the class of closed subsets of X,
such that 4 = N(S). For seZ, let N(s), M(s), R(s), and K(s) be defined by
(88)—(90) and (92). Then (91) and (95) hold and each K(s) is closed. We show
that for ce R

{peP(X)|p(4) = ¢} = ﬁ U N{rePX)|p[K(s)] 2 c = (I/n)}. (98)

n=1zeAN s<z

If 5(A) > c, then for any n > 1, there exists ({;,,, . ..)€.4" such that (93) is
satisfied with p = p and e = 1/n. Then by (91), for k = 1,2, . ..

p[K(—Cla' .- 9Zk):| = I_’[R(Qw .. »Zk)] > p(A) — (1/n) = c — (1/n),
SO

[co}

pe (1 U () {pePXIKE] 2 ¢ = (1/m).

n=1
On the other hand, given

o)

pe () U Ni{pePX)|p[K()] = c— (1/n)},

n=1zeAN s<z

we have that for each n there exists ({,{ 25-- .)e A for which

ﬁ[ﬁ Ky, - ,Ck)} = lim p[K ({1, - -G = ¢ = (1/n).

=1 k— o0

We have then from (95) that
P(A) = ¢ — (1/n), n=12,...,

s0 p(A4) = ¢, and (98) is proved.
Proposition 7.25 guarantees that for each n > 1 and se X, the set

T,(s) = {pe P(X)|p[K(s)] = ¢ — (1/n)}

is Borel-measurable in P(X). We have from (98) that
{peP(X)|p(4) = c} = [} N(T,),
n=1

and the proposition follows from Proposition 7.36 and Corollary 7.35.2.
Q.ED.

Corollary 7.43.1 Let X be a Borel space and 4 an analytic subset of X.
For each ceR, the set {pe P(X)|p(4) > c} is analytic.
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Proof Foreach ceR,
{peP(X)|p(4) > ¢} = Ql{peP(X)|p(A) >c+ (1/n)}.

The result follows from Corollary 7.35.2 and Proposition 7.43. Q.E.D.

7.7 Lower Semianalytic Functions and Universally
Measurable Selection

In a Borel space X, there are at least three o-algebras which arise natu-
rally': the Borel g-algebra %y of Definition 7.6, the universal o-algebra %, of
Definition 7.18, and the analytic g-algebra .7y, which we define now.

Definition 7.19 Let X be a Borel space. The analytic o-algebra o/ y is the
smallest o-algebra containing the analytic subsets of X. In symbols, &7y =
o[F(Fx)]. If Eeso/y, we say that E is analytically measurable.

From Proposition 7.36 and Lusin’s theorem (Proposition 7.42), we have
that for any Borel space X

gxcy(gx)C%XC%X.

If X is countable, each of these collections of sets is equal to the power set
of X (the collection of all subsets of X). We show in Appendix B that if X is
uncountable, each set containment above is strict. This fact will not be used
in the constructive part of the theory, but only to give examples showing
that results cannot be strengthened.

Corresponding to the three ¢-algebras just discussed, we will treat three
types of measurability of functions. Borel-measurable functions were defined
in Definition 7.8. The other two types are defined next.

Definition 7.20 Let X and Y be Borel spaces and f a function mapping
Dc< X into Y. If Deo/y and f~(B)e.«/x for every Be By, f is said to be
analytically measurable. If De %y and f ~*(B)e Uy for every Be By, f is said
to be universally measurable.

From the preceding discussion, we see that every Borel-measurable func-
tion is analytically measurable, and every analytically measurable function is
universally measurable. The converses of these statements are false.

We begin by stating for future reference the following characterization
of the universal g-algebra.

" A fourth c-algebra, the limit g-algebra &y, which lies between .7y and #y, is defined in
Appendix B, and treated there and in Section 11.1.
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Lemma 7.26 Let X bea Borel space and E = X. Then E € %y if and only
if, given any pe P(X), there exists Be #y such that p(E AB)=0.

We turn now to the question of composition of measurable functions. If
Borel-measurable functions are composed, the result is again Borel-measur-
able. Unfortunately, the composition of analytically measurable functions
need not be analytically measurable (Appendix B). We have the following
result for universally measurable functions.

Proposition 7.44 Let X, Y, and Z be Borel spaces, De %y, and E€e%y.
Suppose f:D — Y and g:E — Z are universally measurable and f(D) = E.
Then the composition ge f is universally measurable.

Proof We must show that given Be %, the set f “1[g~!(B)] is uni-
versally measurable. Since g~ *(B)e %y, it suffices to prove that f~ YU)euy
for every Uey. For pe P(X), define p’e P(Y) by

p(C)=p[f O] VCeZBy.
Let Ve 4y be such that
plf "V AfTH U] =p(VAU)=0.
The set f ~ (V) is in%y, so there exists W e By for which p[ W A f~ vyl =0.
Then p[W A f~*(U)] = 0. The result follows from Lemma 7.26. QE.D.
The proof of Proposition 7.44 also establishes the following fact.

Corollary 7.44.1 Let X and Y be Borel spaces, De#y, and f:D — Y
a universally measurable function. If U €%y, then f~ Y Ue%y.

Since o7y = Uy, we can specialize these results to analytically measurable
sets and functions. "

Corollary 7.44.2 Let X, Y, and Z be Borel spaces, De /x, and E€ «/y.
Suppose f:D — Y and g:E — Z are analytically measurable and f(D) < E.
Then the composition geof is universally measurable. If Ae</y, then
fHA)eux.

We remind the reader that if X and Y are Borel spaces, a stochastic kernel
g(dy|x) on Y given X is said to be universally measurable if the mapping
7(x) = q(dy|x) is universally measurable from X to P(Y) (Definition 7.12).

Corollary 7.44.3 Let X and Y be Borel spaces, let f:X — Y be a func-
tion, and let g(dy|x) be a stochastic kernel on Y given X such that, for each
X, q(dylx) assigns probability one to the point f(x)e Y. Then gq(dy|x) is uni-
versally measurable if and only if f is universally measurable.
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Proof Let 6:Y — P(Y) be the homeomorphism defined by (y) = p,
(Corollary 7.21.1). Let y:X — P(Y) be the mapping y(x) = g(dy|x). Then
y =dofandf = 6! oy. Theresultfollows from Proposition 7.44. Q.E.D.

If X is a Borel space and f: X — R* is universally measurable, then given
any pe P(X), f is measurable with respect to the completed Borel g-algebra
Bx(p), and [ f dp is defined by

[fdp=[rdp— [~ dp.

where the convention co — 00 = o0 is used and the integrations are performed
on the measure space (X, Zx(p),p). If De %y, the integral |, f dp is defined
similarly. Having thus defined j f dp without resort to p-outer measure, we
have all the classical integration theorems at our disposal, provided that we
take care with the addition of infinities.

We proceed now to show that universally measurable stochastic kernels
can be used to define probability measures on product spaces in the manner
of Proposition 7.28. For this we need some preparatory lemmas.

Lemma 7.27 Let X be a Borel space and f: X — R*. The function f is
universally measurable if and only if, for every pe P(X), there is a Borel-
measurable function f,: X — R* such that f(x) = f,(x) for p almost every x.

Proof Suppose f is universally measurable and let pe P(X) be given.
For reQ*, let U(r) = {x|f(x) <r}. Then f(x)=inf{reQ*xeU(r)}. Let
B(r)e #x be such that p[ B(r) A U(r)] = 0. Define

f,(x) = inf{reQ*|xeB(r)} = inf y,(x),
reQ*
where ¥,(x) =r if xeB(r) and ¥,(x) = co otherwise. Then f,:X — R* is
Borel-measurable, and

X f(x) # f,(x)} = Lé*[B(r) AU(r)]
has p-measure zero. ”

Conversely, if, given pe P(X), there is a Borel-measurable f, such that
f(x) = f,(x) for p almost every x, then

PUX[f() <} A {x|f(x) < c}) =0
for every ce R*, and the universal measurability of f follows. Q.E.D.

Lemma 7.27 can be used to give an alternative definition of | f dp when
f is a universally measurable, extended real-valued function on a Borel
space X and pe P(X). Letting f, be as in the proof of that lemma, we can
define fdp = [ f,dp. It is easy to show that this definition is equivalent to
the one which precedes Lemma 7.27.
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Lemma 7.28 Let X and Y be Borel spaces and let g(dy|x) be a stochastic
kernel on Y given X. The following statements are equivalent:

(a) The stochastic kernel q(dy[x) is universally measurable.

(b) For any Be %y, the mapping A3:X — R defined by 13(x) = g(Bx)
is universally measurable.

(c) For any p € P(X), there exists a Borel-measurable stochastic kernel
q,(dy|x) on Y given X such that g(dy|x) = q,(dy|x) for p almost every x.

Proof We show (a) = (b) = (c) = (a). Assume (a) holds. Then the func-
tion y: X — P(Y) given by y(x) = g(dy|x) is universally measurable. If Be %y,
/p 1s defined as in (b), and 0p: P(Y) — R is given by 0g(p) = p(B), then i =
0 ° 7y, which is universally measurable by Propositions 7.25 and 7.44. There-
fore (a) = (b).

Assume (b) holds and choose p e P(X). Since Y is separable and metrizable,
there exists a countable base £ for the topology in Y. Let & be the collection
of sets in # and their finite intersections. For F € &, let f be a Borel-measur-
able function for which

fe(x) = q(F|x) VxeBr,

where Bre #x and p(Br) = 1. Such an fr and By exist by assumption (b) and
Lemma 7.27. For x&(\rc 5 B, let q,(dy|x) = q(dy|x). For x¢(\r.5 B, let
q,(dy|x) be some fixed probability measure in P(Y). Then g(dy|x) = g,(dy|x)
for p almost every x. The class of sets Y in %y for which ¢,(Y|x) is Borel-
measurable in x is a Dynkin system containing & . The class % is closed under
finite intersections and generates %y, so statement (c) follows from the
Dynkin system theorem (Proposition 7.24). Therefore (b) = (c).

Assume (c) holds and choose pe P(X). Let qp(dylx) be as in assumption
(c) and define y,7,: X — P(Y) by p(x) = q(dy|x), y,(x) = q,(dy|x). If Be Bpx).
then p[y~'(B) Ay, '(B)] = 0. Lemma 7.26 implies that y~!(B) is universally
measurable. Therefore (c) = (a). QED.

Lemma 7.29 Let X, Y, and Z be Borel spaces and let f: XY — Z be a
universally measurable function. For fixed xe X, define g,: Y — Z by

9x(y) = flx. y).
Then g, is universally measurable for every xe X.

Proof For fixed xoe X, let ¢:Y — XY be the continuous function de-
fined by ¢(y) = (xy,y). For Ze %,,

{(yeYlg (WeZ} =0 '({(x,y)eXY|f(x,y)eZ}),

and this set is universally measurable by Corollary 7.44.1. Q.E.D.



7.7 UNIVERSALLY MEASURABLE SELECTION 175

Itis worth noting that if (Q,, # ;, p)and (Q,, # , , q) are probability spaces,
then there are two natural o-algebras on Q,Q,, namely, % ,%, and the
completion &%, of &% , with respect to pq. If f:Q,Q, - Ris % ,-
measurable, then for every w;eQ,, the function g, (w,) = flw,w,) is
7 ,-measurable. However, if f is only %, % ,-measurable, then g, (w,) can
be guaranteed to be & ,-measurable only for p almost all w, . The case treated
by Lemma 7.29 is intermediate to these two, since % y%y < #xy, and if
pe P(X),qe P(Y),and % x%y denotes the completion of %, %y with respect to
pq, then %yy < Ux%y . Note that the stronger result that g.(y) is #y-measur-
able for every x e X holds, although the assumption that f is % yy-measurable
may be weaker than the assumption that f is % y%y-measurable.

We now use the properties of universally measurable functions and
stochastic kernels to extend Proposition 7.28.

Proposition 7.45 Let X,;,X,,... be a sequence of Borel spaces, Y, =
XX, -X,andY = X, X, - . Letpe P(X,)be givenand, forn=1,2,.. .,
let q,(dx,, + 1] y») be a universally measurable stochastic kernel on X, .., given
Y,. Then for n = 2,3, ..., there exist unique probability measures r, € P(Y,),
such that

(X Xy X, = f)_(xfl(z. ) 'J;_(n_lqn—l(xnlxlaXZ" s Xp—1)

X qn—Z(dxn—llxla-XZa' .. axn—Z). o
X q;(dx,|x)p(dx;) VX, €Bx,,. .., X, €Bx,. (99)

If f:Y, — R*is universally measurable and either | f * dr, < oo or [ f~ dr, <
00, then

f},nfdrn = fxxfxz o 'J‘an(xl’XZV . :xn)qn—l(dxnlxlax29' . ’xn—l). o
X ‘h(dlexl)P(dxl)- (100)

Furthermore, there exists a unique probability measure re P(Y) such that
for each n the marginal of r on Y, is r,.

Proof There is a Borel-measurable stochastic kernel g,(dx,|x;) which
agrees with g(dx,|x,) for p almost every x;. Define r, € P(Y,) by specifying
it on measurable rectangles to be (Proposition 7.28)

(X, X0) = [, 7,

xl)p(dxl) leegXp XZG.%XZ.

Assume f:Y, — [0, 00] is universally measurable and let f: Y, — [0, 0] be
Borel-measurable and agree with f on Y, — N, where N € #y, and r,(N) = 0.
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By Proposition 7.28,
0=ryN) = [, [ anler x20:(dxalx)p(dx,)

= [ D xop@x,),

s0 Gy(N, |x;) =0 for p almost every x;. Now f(x;,X;) = f(x;,x,) for
X, ¢N,, so

fxz [f(xl» X3) — ]7(x1, xz)]%(dlexl)

< follf(xbe) = f(x1,xz)lq1(dxz|x1) =0
for p almost every x; . It follows that
[y Tocw xmdxalen) = [, fGxr, )@ dxslx)
= fx f(xl,xz)ql(dx2|x1)
2

for p almost every x;. The left-hand side is Borel-measurable by Proposition
7.29, so the right-hand side is universally measurable by Lemma 7.27.
Furthermore,

[y pdrs= [, Tdro= [, [, Toxixo@delxp(dx,)
= [ S xp@x).

This proves (100) forn = 2and f > 0.If f: ¥, — R*is universally measurable
and satisfies |/ dr, < oo or | dr, < oo, then (100) holds for f* and 7,
so it holds for f as well. Take f = yy,x, to obtain (99).

Now assume the proposition holds for n=k. Let Gy(dx;+;|y:) be a
stochastic kernel which agrees with g,(dx;+q|yx) for r, almost every x;.
Define 1, ; by specifying it on measurable rectangles to be

a1 X X Xyiy) = L( _qk(-)—(k+1|xlax2’~ LX) dry

1X2 0 Xk

VX1€Bx,- - Xk+1€Bx, 1

Proceed as in the case of n =2 to prove the proposition for n =k + 1.
(See also the proof of Proposition 7.28.)

The existence of re P(Y) such that the marginal of r on X, is r,, n = 2,
3,...,1s proved exactly as in Proposition 7.28. Q.ED.
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In the course of proving Proposition 7.45, we have also established the
following fact.

Proposition 7.46 Let X and Y be Borel spaces and let /:XY — R* be
universally measurable. Let q(dy|x) be a universally measurable stochastic
kernel on Y given X. Then the mapping 4:X — R* defined by

2 = [fx atdylx)
is universally measurable.

Corollary 7.46.1 Let X be a Borel space and let f:X — R* be uni-
versally measurable. Then the function 6,:P(X) — R* defined by

0,(p) = [fdp

is universally measurable.

Proof Define a universally measurable stochastic kernel on X given
P(X) by q(dx|p) = p(dx). Apply Proposition 7.46. Q.E.D.

As mentioned previously, the functions obtained by infimizing bivariate,
extended real-valued, Borel-measurable functions over one of their variables
have analytic lower level sets. We give these functions a name.

Definition 7.21 Let X be a Borel space, D = X, and f:D — R* If D
is analytic and the set {xeD|f(x) < ¢} is analytic for every ceR, then f is
said to be lower semianalytic.

It is apparent from the definition that a lower semianalytic function
is analytically measurable. We state some characterizations and basic prop-
erties of lower semianalytic functions as a lemma.

Lemma 7.30 (1) Let X be a Borel space, D an analytic subset of X,
and f:D — X. The following statements are equivalent.

(a) The function f is lower semianalytic, i.e., the set
(xeD|f(x) < c} (101)

is analytic for every ce R.
(b) The set (101) is analytic for every ce R*.
(c) The set

{xeD|f(x) < ¢} (102)

is analytic for every ceR.
(d) The set (102) is analytic for every ce R*.



178 7. BOREL SPACES AND THEIR PROBABILITY MEASURES

(2) Let X be a Borel space, D an analytic subset of X, and f,:D — R*,
n=1,2,...,asequence of lower semianalytic functions. Then the functions
inf, f,, sup, f,, liminf,_ , f,, and limsup,.,,, f, are lower semianalytic. In
particular, if f, — f, then f is lower semianalytic.

(3) Let X and Y be Borel spaces, g:X — Y, and f:g(X)— R*. If g is
Borel-measurable and f is lower semianalytic, then f o g is lower semianalytic.

(4) Let X be a Borel space, D an analytic subset of X, and f,g:D — R*.
If f and g are lower semianalytic, then f + g is lower semianalytic. If, in
addition, g is Borel-measurable and g > 0 or if f > 0 and g > 0, then fg is
lower semianalytic, where we define 0 00 = 00 - 0 = 0(—00) = (—00)0 = 0.

Proof (1) We show (b)=(a)=(d)= (c)= (b). It is clear that (b) =>(a).
If (a) holds, then .
{xeD|f(x)< 0} =D

is analytic by definition, while the sets

{xeD|f(x) < —0} = ﬁ{xeD|f(x)< —n},

0

{xeD|f(x)<c} = () {xeD|f(x)<c+(/n)}, ceR,

n=1

are analytic by Corollary 7.35.2. Therefore (a) = (d). It is clear that (d) = (c).
If (c) holds, then the sets

{xeD|f(x)< —0} =,

{xeD|f(x) < 0} = O {xeD|f(x) < n},
n=1

{xeD|f(x)< ¢} = O{xeD|f(x)§c—(1/n)}, ceR,

are analytic by Corollary 7.35.2. Therefore (c) = (b).
(2) ForceR,

o

{xeDl|inf f,(x) < ¢} = |J {xeD|fi(x) < c},
n n=1

ﬁ {xeD|fix) < ¢},

n=1

{xeD|sup f,(x) < ¢} =

so inf, f, and sup, f, are lower semianalytic by Corollary 7.35.2 and part (1).
Then
liminf f, = sup inf f;

n— oo n>1kzn
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and

limsup f, = inf sup f;
n— o n>1kn
are lower semianalytic as well.
(3) The domain g(X) of f is analytic by Proposition 7.40. For ce R,

{(xeX|(fog)x) < c} = g7 ({yeg(X)|f(y) <c})

is analytic by the same proposition.
(4) ForceR,

{xeD|f(x) + g(x) < ¢} = UQ[{xeD|f(x) <r}n{xeDlg(x) <c—r}],

and this is true even if f(x) + g(x) = c0 — 00 = oo for some xeD. From
Corollary 7.35.2 it follows that f+ g is lower semianalytic whenever f and
g are. Now suppose g is Borel-measurable and g > 0. For ¢ > 0, we have

{xeD|f(x)g(x) < c} = {xeD|f(x) < 0} v {xeD|g(x) < 0}

UI: U {xeD|f(x) <rg(x) < c/r}],

reQ,r>0

while if ¢ < 0, we have

{xeD|f(x)g(x) < c} = QU . {xeD|f(x) < r,g(x) > ¢/r}.
In both cases, the set {xeD|f(x)g(x) < ¢} is analytic by Corollary 7.35.2.
Suppose f and g are both lower semianalytic and nonnegative. For ¢ > 0,
the set {xeD|f(x)g(x) < ¢} is analytic as before, and for ¢ < 0, this set is
empty. It follows that fg is lower semianalytic under either set of assumptions
on f and g. Q.E.D.

Note in connection with Lemma 7.30(3) that the composition of a
Borel-measurable function with a lower semianalytic function can be guar-
anteed to be lower semianalytic only when the composition is in the order
specified. To see this, let X be a Borel space and 4 = X be an analytic set
whose complement is not analytic (see Appendix B). Define f(x) = — y4(x),
which is lower semianalytic, because {xe X|f(x) < c} is either &, 4, or X,
depending on the value of ¢. Let g: R* — R* be given by g(c) = —c. Then
Za=g° f,and this function is not lower semianalytic, since {x & X[y 4(x) <%} =
A°. This also provides us with an example of an analytically measurable
function which is not lower semianalytic.

Proposition 7.47 Let X and Y be Borel spaces, let D be an analytic
subset of XY, and let f:D — R* be lower semianalytic. Then the function
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f*:projx(D) — R* defined by
f¥*(x) = inf f(x,y) (103)
yeDx
is lower semianalytic. Conversely, if f*: X — R* is a given lower semianalytic

function and Y is an uncountable Borel space, then there exists a Borel-
measurable function f: XY — R* which satisfies (103) with D = XY.

Proof For the first part of the theorem, observe that if f:D — R* is
lower semianalytic and ce R, the set

{XGPIij(D)\ inf f(x,y) < C} = projx({(x, )€ D|f(x, y) < ¢})

yeDx
is analytic by Proposition 7.39.

For the converse part of the theorem, let f*:X — R* be lower semi-
analytic and let Y be an uncountable Borel space. For reQ, let A(r) =
{xeX | f*(x) <r}. Then A(r) is analytic and, by Proposition 7.39, there
exists B(r)e Byy such that A(r) = projx[B(r)]. Define G(r) = USEQ’SS,B(S)
and f: XY — R* by

f(x,y) = inf{re Q|(x,y) e G(n)} = ian ¥, (x, y),

where V,(x,y) =r if (x,y)eG(r) and ¥,(x,y) = o otherwise. Then f is
Borel-measurable. Let g be defined by g(x) = inf, .y f(x, y). We show that
[*(x) = g(x) for every xe X.

If £ *(x) < ¢ for some c€ R, then there exists re€ Q for which f*(x) <r <¢,
and so x e A(r). There exists ye Y such that (x, y)e G(r), and, consequently,
f(x,y) < rand g(x) < r < c. Therefore g(x) cannot be greater than f*(x).

If g(x) < ¢ for some ceR, then there exists reQ and ye Y for which
g(x) < r < ¢ and (x, y)e G(r). Thus for some s€ Q, s < r, we have (x, y)e B(s)
and x € A(s). This implies f*(x) < s < r < ¢, which shows that f*(x) cannot
be greater than g(x). Q.E.D.

Proposition 7.48 Let X and Y be Borel spaces, f: XY — R* lower semi-
analytic, and g(dy|x) a Borel-measurable stochastic kernel on Y given X.
Then the function 1:X — R* defined by

20 = [ fexv)atdo
is lower semianalytic.

Proof Suppose f >0. Let f(x,y)=min{n, f(x,y)}. Then each f, is
lower semianalytic and f, 1 f. The set

E,={(x,y.b)e XYR|f(x,y) < b < n}

= ﬁ U {(x, 3, b)e X YR| fi(x,y) < r,r < b + (1/k) < n + (1/k)}

k=1reQ
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is analytic in XYR by Corollary 7.35.2 and Proposition 7.38. Let u be
Lebesgue measure on R, pe P(XY), and pu the product measure on X YR. By
Fubini’s theorem,

(P(ED = [, [ xm.dudp = [ [n — fix. )1 dp

=n— [ fey)dp

For ce R we have, by the monotone convergence theorem,

{peP(XYn [fexdp < c} -N {peP(XY)l ' hx)dp < c}

n=1

0

O {pe P(XY)|(pu)(E,) = n — c}.
Hence, by Proposition 7.43 and the fact that the mapping p — pu is con-
tinuous (Lemma 7.12), the function 6,:P(X'Y)— R* defined by 0,(p) =
[ f(x,y)dp is lower semianalytic. We have

AMx) = 0, [q(dy|x)p]-

Since the mapping x — g(dy|x) is Borel-measurable from X to P(Y) and the
mappings x — p, and [g(dy|x), p.] — q(dy|x)p, are continuous from X to
P(X) and P(X)P(Y) to P(XY), respectively (Corollary 7.21.1 and Lemma
7.12), it follows from Lemma 7.30(3) that A is lower semianalytic.

Suppose f < 0. Let f,(x,y) = max{—n, f(x,y)}. Then each f, is lower
semianalytic and f,! f. The sets E, = {(x,y,b)e XYR|f,(x,y) < b < 0} are
analytic and

(P(ED) = [, [ rendudp = — [ fix.y)dp
For ceR,

{peP(XY)|ff(x,y)dp<c} U{peP(XY| f,,xy)dp<c}

Q{peP(XY )(PWI(E,) > —c).

Proceed as before.
In the general case,

ff (x, )q(dy|x) = ff T(x, y)q(dy|x) — ff ~(x, y)q(dy|x).

The functions f* and —f~ are lower semianalytic, so by the preceding
arguments each of the summands on the right is lower semianalytic. The
result follows from Lemma 7.30(4). Q.ED.
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Corollary 7.48.1 Let X be a Borel space and let f:X — R* be lower
semianalytic. Then the function 6,: P(X) — R* defined by

0,(p) = [fdp
is lower semianalytic.

Proof Define a Borel-measurable stochastic kernel on X given P(X)
by g(dx|p) = p(dx). Apply Proposition 7.43. Q.ED.

As an aid in proving the selection theorem for lower semianalytic func-
tions, we give a result concerning selection in an analytic subset of a product
of Borel spaces. The reader will notice a strong resemblance between this
result and Lemma 7.21, which was instrumental in proving the selection
theorem for upper semicontinuous functions.

Proposition 7.49 (Jankov—von Neumann theorem) Let X and Y be
Borel spaces and 4 an analytic subset of X Y. There exists an analytically
measurable function ¢: projx(4) — Y such that Gr(¢) = 4.

Proof (See Fig. 7.2.) Let f: 4 — XY be continuous such that 4 =
f(AN). Let g =projyc f. Then g: 4 — X is continuous from 4" onto
projx(A). For xeprojx(4), g~ *({x}) is a closed nonempty subset of .#". Let
¢,(x) be the smallest integer which is the first component of an element
z€97 1({x}). Let {5(x) be the smallest integer which is the second compo-
nent of an element z, g~ *({x}) whose first component is {;(x). In general,
let {,(x) be the smallest integer which is the kth component of an element
zeg~ '({x}) whose first (k — 1)st components are {;(x),...,-1(x). Let
Y(x) = (£1(x),{5(x),. . .). Since z; — Y(x), we have

Y(x)eg™ ({x}). (104)
Define ¢:projx(4) = Y by ¢ = projyeo f o ¥, so that Gr(p) = A.

L ; X
projx(A)

FIGURE 7.2
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We show that ¢ is analytically measurable. As in the proof of Proposition
742, for (64,...,0,)eX let
N(ay,. .. ,0h) = {(ClaCZ" . -)GJV‘Q =01,...,0, = O'k}»
M(oy,. .., 00) = {((1, (s, -)GJV’Cl <01, LG Z o)

We first show that y is analytically measurable, i.e., v~ Y%,) < oy. Since
{N(s)|se =} is a base for the topology on ./, by the remark following Defini-
tion 7.6, we have o({N(s)|se £}) = 4. Then

U By =Y a((N(s)|se £})] = o[y~ H({N(s)|se £})].
and it suffices to prove
YTN(s)] ey VseX. (105)

We claim that for s = (6,,0,,...,0,)eZ
YIING)] = g[M(s)] — .Ul 9[M(oy,. .., 0;-1,0; = 1)], (106)

where M(oy,...,0;-;,0;— 1) = & if o; — 1 = 0. We show this by proving
that ¥ "'[N(s)] is a subset of the set on the right-hand side of (106) and
vice versa.

Suppose xey [ N(s)]. Let ¥(x) = ({1(x), {2(x),. . .). Then

Y(x)e N(s) = M(s), (107)
so (104) implies
x = g[Y(x)] e g[M(s)]. (108)

Relation (107) also implies {(x) = 74,...,{;(x) = 6. By the construction
of Y, we have that ¢, is the smallest integer which is the first component
of an element of g~ '({x}), and for j=2,... k, o; is the smallest integer
which is the jth component of an element of ¢~ !({x}) whose first (j — 1)
components are g4,. . .,0;_;. In other words,

g_l(-{x})f‘\M(O'l,...,O'j_l,O'j—1)=@, j=1,...,k.
It follows that

k
x¢ ) g[M(oy,...,0;-1,0;— 1)]. (109)
j=1
Relations (108) and (109) imply

Y IN(s)] = g[M(s)] — U g[M(ay,...,0;-1,0; — 1)]. (110)

J
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To prove the reverse set containment, suppose

k
xeg[M(s)] — U g[M(oy,...,05-1,0; — 1)]. (111)
ji=1
Since x € g[ M(s)], there must exist y = (1,72, ..)€g~ *({x}) such that
N1 <01, 5 Mk < Ok (112)

Clearly, x € projx(4) = g(A"), so Y(x) is defined. Let y(x) = ({;(x), {2(x),. . .).
By (104), we have g[¥(x)] = x, so (111) implies

VX)EM(oy,. .. 05 1,0, — 1), j=12,...,k

Since Y(x)é M(c, — 1), we know that {;(x) > o,. But {,(x) is the smallest
integer which is the first component of an element of g~ !({x}), so (112)
implies {;(x) < 1, < ¢,. Therefore {;(x) = ¢, . Similarly, since y(x) & M({,(x),
o, — 1), we have {,(x) > ¢,, Again from (112) we see that {,(x) <y, < 0,,
s0 {,(x) = 0,. Continuing in this manner, we show that y(x)e N(s), ie.,
xey "'[N(s)] and

k
YTHIN()] = g[M(s)] - L=)1 9[M(oy,...,05-1,0; — 1)]. (113)

Relations (110) and (113) imply (106).

We note now that M(t) is open in A" for every t€ Z, so g[ M(t)] is analytic
by Proposition 7.40. Relation (105) now follows from (106), so ¥ is analytically
measurable.

By the definition of ¢ and the Borel-measurability of f and projy, we have

@~ '(%By) =¥~ (f " [projy '(%y)]) = NS T [ Bxy]) TN By)

We have just proved ¥~ (#,) = o/, and the analytic measurability of
¢ follows. Q.ED.

This brings us to the selection theorem for lower semianalytic functions.

Proposition 7.50 Let X and Y be Borel spaces, D « XY an analytic
set,and f:D — R* alower semianalytic function. Define f*: projy(D) — R* by
[Hx) = inf flx,y). (114)

ye Dy

(a) For every ¢ > 0, there exists an analytically measurable function
@:projx(D) — Y such that Gr(¢) = D and for all x € projx(D),

f*(x)+ ¢ if f*x)> —oo0,

flxo)] < {4 P iS5 = —oo.
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(b) The set
I = {xeprojx(D)|for some y,eD,, f(x,y,) = f*(x)}

is universally measurable, and for every &> 0 there exists a universally
measurable function ¢:projx(D)— Y such that Gr(¢) = D and for all
X € projx(D)

flx o] =f*x) if xel, (115)
f*x)+e if x¢I, f*x)> —oo,
f[x’“"(x)]si—ue it xel ff9=-co. 19

Proof (a) (Cf. proof of Proposition 7.34 and Fig. 7.1.) The function
f* is lower semianalytic by Proposition 7.47. For k =0, +1, +2, .. ., define

A(k) = {(x,y)e D| f(x,y) < ke},
B(k) = {xepfon(D)I(k — e < f*(x) < ke},
B(—o0) = {xeprojx(D)|f*(x) = —c0}.
B(0) = {xeprojx(D)| f*(x) = o0}.

The sets A(k), k=0,+1,4+2,..., and B(—o0) are analytic, while the sets
B(k), k=0,%+1,+2,..., and B(oo) are analytically measurable. By the
Jankov-von Neumann theorem (Proposition 7.49) there exists, for each
k=0,+1,+2,..., an analytically measurable ¢,:projx[A(k)] - Y with
(x, pi(x)) e A(k) for all xeprojy[A(k)] and an analytically measurable
@:projx(D) = Y such that (x,3(x))eD for all xeprojx(D). Let k* be an
integer such that k* < —1/¢%. Define ¢:projy(D) — Y by

@r(x) if xeBk), k=0+1,+2,...,
@(x) ={¢(X) if xeB(o0),
@re(X) if xeB(— ).

Since B(k) = projx[A(k)] and B(— co0) = projx[A(k)] for all k, this definition
is possible. It is clear that ¢ is analytically measurable and Gr(¢) < D.
If x e B(k), then (x, @,(x)) e A(k) and we have

flx ()] = flx 0ux)] < ke < f*(x) + ¢

If xe B(0), then f(x,y) = oo for all yeD, and f[x,¢(x)] = 00 = f*(x). If
Xx € B(— o0), we have

fIx0()] = flx, @u(x)] < k¥e < —1/e.

Hence ¢ has the required properties.
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(b) Consider the set E = X YR* defined by
E = {(X,ya b)|(x7,V)€D,f(xeY) < b}

Since
E= () U {xb)|(y)eD, f(x,y) <7 r<b+(1/k)}
k=1reQ*
it follows from Corollary 7.35.2 and Proposition 7.38 that E is analytic in
XYR*, and hence the set
A = projxgr«(E)
is analytic in XR*. The mapping T :projx(D) — X R* defined by

T(x) = (x, f*(x))
is analytically measurable, and ‘
I = {x|(x, f*(x))e A} = T~ (A).

Hence I is universally measurable by Corollary 7.44.2.

Since E is analytic, there is, by the Jankov—von Neumann Theorem, an
analytically measurable p:A4 — Y such that (x,p(x,b),b)eE for every
(x,b)e A. Define y: I — Y by

Y(x) = p(x, f*(x)) = (p-T)(x)  Vxel
Then ¥ is universally measurable by Corollary 7.44.2, and by construction
FIx¥(x)] < f*(x) for xeI. Hence
¥ x)] = f*x) Vxel 117)

By part (a) there exists an analytically measurable ¥,:projy(D) — Y such
that

f*x)+¢ if f*(x)> —o0,

Define ¢:projyx(D) — Y by
if xel,
@(x) = V) . .
W, (x) if xeprojx(D)— I
Then ¢ is universally measurable and, by (117) and (118), it has the required
properties. Q.E.D.

Since the composition of analytically measurable functions can fail to
be analytically measurable (Appendix B), the selector obtained in the proof
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of Proposition 7.50(b) can fail to be analytically measurable. The composi-
tion of universally measurable functions is universally measurable, and so
we obtained a selector which is universally measurable. However, there is a
o-algebra, which we call the limit o-algebra, lying between o7y and %y such
that the composition of limit measurable functions is again limit-measurable.
We discuss this g-algebra in Appendix B and state a strengthened version
of Proposition 7.50 in Section 11.1.



