Appendix A

The Outer Integral

Throughout this appendix, (X, 4, p) is a probability space. Unless other-
wise specified, f, g, and h are functions from X to [ — 0, o0].

Definition A.1 If f > 0, the outer integral of f with respect to p is defined
by

f*fdp = inf{fg dp|f <g.gis @-measurable}‘ (1)
If f is arbitrary, define
f*fdp=f*f+dp—f*f'dp, )
where

f7(x)=max {0, f(x)},  f7(x) =max{0, —f(x)},

and we set c0 — 0 = 0.

Lemma A.1 If />0, then there exists a #-measurable g with g > f,
such that

[*rdp=[qdp. 3

273



274 APPENDIX A

Proof Choose g, = f, g, #-measurable, so that

[a.apL [ 1ap.

We assume without loss of generality thatg; > g, >---.Letg = lim,_ . ¢,.
Then g > f, g is #-measurable, and (3) holds. Q.E.D.

Lemma A.2 If f > 0and h > 0, then
[*r+nap< [*rdp+ [*hap. )
If either f or h is #-measurable, then equality holds in (4).
Proof Suppose g, > f, g, > f, 9, and g, are %-measurable, and
{*fdp=(g,dp, [*hdp=[g,dp. Then g, +g,>f+h and (4) follows
from (1). )

Suppose h is #-measurable and [hdp < oo. [If [hdp = oo, equality is
easily seen to hold in (4).] Suppose f + h < g, where g is #-measurable and

[7(f +mdp=[qap.
Then f < g — hand g — h is #-measurable, so
[*rdp < [gdp— [nap,
which implies
[*rdp+ [ndp < [*(f + wap.
Therefore equality holds in (4). Q.E.D.

We provide an example to show that strict inequality can occur in (4),
even if f' 4+ h is #-measurable. For this and subsequent examples we will
need the following observation: For any E < X,

[* 1wdp = p*(E) 5)
where p*(E) is p-outer measure defined by
p*(E) = inf{p(B)|E < B, Be }

and y is the indicator function of E defined by

yol0) = 1 if XxeE,
ZEX) =00 if xéE
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To verify (5), note that if yz < g and g is #-measurable, then {x|g(x) > 1}
is a #-measurable set containing E and consequently

[gdp = p*E).
Definition A.1 implies

[* redp = p*E). ©)

On the other hand, if {B,} is a sequence of #-measurable sets with E = B,
and p(B,) | p*(E), then p(( )7 B,) = p*(E). By construction, yn=_ g, = Xg-
But yn=_ g, is #-measurable, and

f XNz 8P = P*(E).

The reverse of inequality (6) follows. Note that the preceding argument shows
that for any set E, there exists a set Be 4 such that E < B and p(B) = p*(E).

ExaMpPLE 1 Let X = [0, 1], let & be the Borel g-algebra, and let p be
Lebesgue measure restricted to %. Let E < X be a set for which p*(E) =
p*(X — E) =1 (see [H1, Section 16, Theorem E]). Then

e+ 1x-p)dp = [1dp =1,
f* xedp + f* Ax-gdp =2,
and strict inequality holds in (4).

Lemma A.2 cannot be extended to (possibly negative) bounded functions,
even if h is #-measurable, as the following example demonstrates.

ExaMpPLE 2 Let (X, 4, p) and E be as before. Let f =y — yx-p, h = 1.
Then :

[*(r +mdp = [*27zdp =2,
f*fdp-l- fhdp= f*xEdp _f*Xx-EdP'l- 1=1.

Lemma A.3

(a) If f <g, then [*fdp < [*gdp.
(b) Ife>0and f<g<f+c¢ then

[“rap<["gdp< ["fdp+2e ™
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(c) If{*f*dp<ooor|*f~dp< co,then

[*=fydp=—[" rap. ®)
(d) If A, Be# are disjoint, then for any f
f* Xaonf dp = f* xafdp + f " xsf dp. ©)

() IfE < X satisfies p*(E) = 0, then for any f

[*fdp=["1xsfan

(f) If p*({x| f(x) = c0}) > 0, then for every g, [*(g + f)dp = 0.
(8) If p*({x|f(x) = —o0}) > O, then for every g either [*(g + f)dp =
or [¥g + f)dp = — 0.

Proof (a) Iff<g,thenf* <g*andf~ >g~.By(l),
[*reap<[*g7dp,  [“f dp=["g ap

The result follows from (2).
(b) In light of (a), it remains only to show that

f*(f+a)dpgf*fdp+zg. (10)
"Forg, > 7, g, #-measurable, and
f*f+dp=fgldp,
we have
(f+e)" <gi+e
o)
[*r+ardp< [gudp+e=["1*ap+e. (11)

Forg, > (f +¢)~, g, #-measurable, and
[ +edp=[g2dp,

we have
go+e=(f+e +e=max{f —¢&0}+e>f",
S0
a+f*(f+8)"dp=8+fg2dp=ﬁg2+8)dp2f*f'dp. (12)
Combine (11) and (12) to conclude (10).
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(c) We have
[T=frdp = [~y dp - [*(=)~ap
= ["rap-["r*ap= —[f*ﬁdp—f*f‘dp]

= —["rdp,

where the assumption that [*f* dp < oo or j*f ~dp < oo is necessary for the
next to last equality.
(d) Suppose f > 0.Let g bea #-measurable function withg >y, p fand

[*1acsfdp = [gap.
Then 149 = xaf, X189 = 15, 50
[*1acsfdp = [1agdp + [159.p

> ["yufdp+ [*1sf dp. (13)

Now suppose g; = y4f, g» = ypf are #-measurable and
[ardo=[*rufdp.  [g2dp=["2sfdp.
Then g, + g, = x40nf, SO
f* xafdp + f* xsf dp = f(gl + g2)dp

> [ tavsf dp. (14)

Combine (13) and (14) to conclude (9) for f > 0. The extension to arbitrary
f is straightforward.
(e) Suppose f = 0. Choose Be % with p(B) = p*(E) =0, B > E. By (d),

[*rap=["1xssdo< ["rxsfdp< [*fap.

Hence [*f dp = [*yx_pf dp. The extension to arbitrary f is straightforward.
(f) We have (g + f)"(x) = oo if f(x) = o0, so that

p*({x|(g + f)"(x) = 0}) > 0.

Hence [*(g + f)* dp = o0, and it follows that [*(g + f)dp = 0.
(2) Consider the sets E = {x|f(x) = —oo} and E, = {x|f(x) = — o0,
g(x) < oo}. If p*(E,) = 0, then

P*(E — E,) = p*(E — E,) + p*(E,) = p*(E) > 0.
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Since we have f(x) +g(x) = o0 for xeE — E,, it follows from (f) that
[*(g + f)dp = co. If p*(E,) > 0, then p*({x|(g + /)~ (x) = 0}) = p*(E,) > 0
and hence, by (f), [*(g + f)~ dp = co. Hence, if [*(g + f)* dp = oo, then
{¥(g + f)dp = o, while if [*(g+ f)*dp < oo, then [*(g + f)dp = — 0.

QED.

The bound given in (7) is the sharpest possible. To see this, let f be as
defined in Example 2, g = f + 1, and ¢ = 1. Despite these pathologies of
outer integration, there is a monotone convergence theorem, which we now
prove.

Proposition A.1 If {f,} is a sequence of nonnegative functions and

111, then
[* fudpt [* fap. (15)

If {f,}isa sequénce of nonpositive functions and f, | f, then
[*fudpL [* fap.

Proof We prove the first statement of the theorem. The second follows
from the first and Lemma A.3(c). Assume f, > 0 and £, 1 f. Let {g,} be a
sequence of #-measurable functions such that g, > f, and

[* fudp = [ gudp. (16)

If, for some n, {g,dp = [*f,dp = co, then (15) is assured. If not, then for
every n,

fgn dp < 0. (17)
Suppose (17) holds for every n and for some n,

P({x]gu(x) > gus+1(x)}) > 0.

Then since g,+; > f,+1 = f,, we have that g defined by

— _ gn(x) lf gn(x) < gn+ l(x)a

gx) = .

gn+ I(X) lf gn(x) > gn+ 1(X),

satisfies g, > g > f, everywhere and g < g, on a set of positive measure.
This contradicts (16). We may therefore assume without loss of generality
that (17) holdsand g; < g, --. Let g = lim,_  g,. Then g > f and
lim f*f,,dp= lim fgndp=fgdp2f*fdp.

n— o

But f, < f for every n, so the reverse inequality holds as well. Q.E.D.
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One might hope that if { f,} is a sequence of functions which are bounded
below and f, 1 f, then (15) remains valid. This is not the case, as the following
example shows.

ExampPLE 3 Let X = [0, 1), Z be the Borel g-algebra, and p be Lebesgue
measure restricted to 4. Define an equivalence relation ~ on X by

X ~ y<>Xx — y is rational.

Let F, be constructed by choosing one representative from each equivalence
class. Let Q = {go,q;,. . .} be an enumeration of the rationals in [0, 1) with
go = 0 and define

F,={x+ g, [mod1]|xeFy} = Fy + g, [mod1] k=0,1,....

Then Fy, F,,. .. is a sequence of disjoint sets with

ka F, = [0, 1). (18)

If for some n < oo, we have p*({ i, F,) < 1, then E = ( J;Z} F, contains
a #-measurable set with measure 6 > 0. Fork =1,...,n — 1, let g, = /s,
where r, and s, are integers and r,/s, is reduced to lowest terms. Let {p,,
Ppa2,. ..} be a sequence of prime numbers such that
max S, <p; <p,<-°°
I<k<n—-1
Then the sets E, E + p;y ' [mod 1], E + p; * [mod 1], . . . are disjoint, and by
the translation invariance of p, each contains a %-measurable set with
measure ¢ > 0. It follows that [0,1) must contain a %-measurable set of
infinite measure. This contradiction implies

p*(@ Fk> =1 (19)

k=n

for every n. Define
Jo= — AUz Fio n=01,....
Then £, 10, but (5) and (19) imply that for every n

f*f,,dp= ~1.

By a change of sign in Example 3, we see that the second part of Theorem
A.1 cannot be extended to functions which are bounded above unless addi-
tional conditions are imposed. We impose such conditions in order to prove
a corollary.
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Corollary A.1.1 Let {¢,} be a sequence of positive numbers with
Y2 e, < 0. Let { f,} be a sequence with

lim £, = f, (20)
f<f,, n=12..., (1)
Jol%) < f(x) + &, if f(x)> —oo, (22)
f0)< fuci0)+6, i f(x)=—o00, n=23,..., (23
f*fl dp<oo. ‘ (24)

Then
lim f*f,,dp= f*fdp. 25)

n— oo

Proof From (20) we have lim,_ ., ff = f* and lim,_, . f, = f~. Now
infy,,fr <fi<f andinf,,,f; 1/ asn — oo. By Proposition A.1,

|71~ dp = 1im f*,gggf; dp<lim [*f7dp< [*fdp,

n— oo

SO
lim f* frdp= f*f- dp. (26)
Let A = {x|f(x) = — o0}.Ifp*(4) = 0, then (21), (22), (24), and Lemmas A.3(b)
and (e) imply

[*rrap<[*fidp<2e,+ ["1*dp< oo,
SO
1imj'*f,,+dp=f*f+dp<oo. @7)

Combine (26) and (27) to conclude (25). If p*(A4) > O, then f*f “dp=—
and (26) will imply (25) provided that

f *frdp < oo (28)
and

lim sup f* fFdp < co. (29)
Conditions (21) and (24) imply (28). Conditions (21)—(23) imply for every
xeX

fux) < foo1(x) + &, n=23,...,
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SO

[*r5dp<2e,+ ["fi,dp

and
[*ridp<2y a+["f7dp.
k=2

The finiteness of Y ;2 , ¢ and (24) imply (29).  Q.E.D.



Appendix B

Additional Measurability Properties of Borel Spaces

This appendix supplements Section 7.6. The notation and terminology
used here is the same as in that section and, in most cases, is defined in
Section 7.1.

B.1 Proof of Proposition 7.35(e)

Our first task is to give a proof of Proposition 7.35(e). To do this, we
introduce the space N* = {1,2,...} U {c0} with the topology induced by
the metric

1 1

d(x,y) = ’— -

x y

where we define 1/co = 0. Let 4% = N*N* - - - with the product topology.
The space .4 of sequences of positive integers is a topological subspace of
A*. The space A™* is compact by Tychonoff’s theorem, while .4~ is not.
If (X,2) and (Y, 2) are paved spaces, we denote by 22 the paving of XY:

B

22 ={PQ|Pc?, Qe 2} (1)

Proposition B.1 Let (X, %) be a paved space and ¢ the collection of
compact subsets of .4/"*. Then the projection on X of a set in #(2.%) is in
S(2). Conversely, every set in F(2) is the projection on X of some set in

[(‘@[)o‘]o

282
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Proof Let S be a Suslin scheme for 2.#". Then for every se X, S(s) has
the form S(s) = S1(s)S,(s), where S;(s)e # and S,(s)e #". Now
N©S)= U ) 5G9

zeN s<z

U NIS:(s)Sx(s)]

zeN s<z

yilaselasel;

projx[N(S)] = U ) S.(s),

zeAds<z

SO

where

A= {zeJVlﬂ S,(s) # g}.

s<z

Since each S,(s) is compact, we have

A= {(ClsCZV . ‘)e'/Vlkél SZ(claCZV . ’Ck) ?é Q Vn}

Define a Suslin scheme R for £ by

Sl(Cl!"'aCn) lf kOISZ(Cla"'aCk)#Q’

Ry, ..., 0) =
%) otherwise.
Then
projx [ NS = U () 516
= |J ) R(s) = N(R),
zeN s<z

s0 projx[N(S)] e #(2).
For the second part of the proposition, suppose S is a Suslin scheme
for 2. Define a Suslin scheme R for 4" by

R(O-la' . 96n) = {(CI?CZ?' . )e'/V*ICI = 0-17' . 9Cn = O-n}‘
For fixed zoe .4, we have (),<., R(s) = {20}, s0

N [S()R()] = [ N S(s)}[ N R(s)}

s<zg s<zop s<zo

= {(x, zo)lxe ) S(s)}. ()

s<zg
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Therefore,

NS)={J () Ss)

zeN s<z

U Pfojx{ﬂ [S(s)R(s)]}

zedN s<z

projx{ Un [s<s)R<s>]},

zeN s<z

and it remains only to show that

U NIS6Rs)]e[(@H),]15- 3)

zeN s<z

If we can show that

U NSORE] = () U SERE] @

zeN s<z k=1 seZyx

where X, is the set of elements in ¥ having k components, then (3) will
follow. Let xe X and z, = (£%,(3,.. ) e #* be given. Suppose

(x, z0)€ ﬂﬂ () [S(GR(s)]-

We see from (2) that zoe A" and (X, zp) € [ )s<2,[S(S)R(s)], so for every k > 1,

(x,20)€ (L3, . ., LIRS, - . ., {3). This implies (x, zo) € [ J¢= 1 sez[SO)R()],
and

U NISOREI= () U [SORE) 5
zeN s<z k=1 seZx
On the other hand, if (x,zo)€ ()% Usex[S(R(s)], then for each k > 1,
(x,20)€ Jsex [S()R(s)]. This can happen only if zoe A" and (x,zo)e
SE8,. .., IR, . .., L0). Therefore,

2

(x,zo)€ () [SCT,- -, IR, - ... ()]

k=1

= () [S(s)R(s)]

s<zo

= U NISORE)],

zeN s<z

which proves the reverse of set containment (5). Equality (4) follows.
Q.E.D.
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If (X, 2) is a paved space, Y is another space, and Q < Y, we define a
paving of XY by

2Q = {PQ|PeZ}.
Lemma B.1 Let (X, ) and (Y, 2) be paved spaces. Then:

(a) L(P)Q = F(PQ)forevery Q = Y;
(b) FL(P)2< F(22).

Proof Part (a) is trivial and part (b) follows from (a). Q.E.D.

We are now in a position to prove part (e) of Proposition 7.35.
Proposition B.2 Let (X, 2) be a paved space. Then #(2) = ¥ [F(2)].
Proof Inlight of Proposition 7.35(d), we need only prove

L (P) > L[S (P)]. (6)

Let A4 * and # be as in Proposition B.1. If 4 € #[ ¥ (2)], then by the second
part of Proposition B.1, 4 = projx(B) for some set Be([#(2)A ],)s- By
Lemma B.1(b) and Proposition 7.35(b) and (c), we have

Be([#P)A1o)s = (S (P AH)]a)s = S (PH).

The first part of Proposition B.1 implies that A = projx(B)e &(#) and (6)
follows. Q.ED.

B.2 Proof of Proposition 7.16

In Proposition 7.16 we stated that Borel spaces X and Y are Borel-
isomorphic if and only if they have the same cardinality. A related result is
that every uncountable Borel space is Borel-isomorphic to every other
uncountable Borel space. We used the latter fact in Proposition 7.27 to
assume without loss of generality that the Borel spaces under consideration
were actually copies of (0,1], we used it in Proposition 7.39 to transfer a
statement about 4" to a statement about any uncountable Borel space, and
we will use it again in Proposition B.7 to allow our treatment of the limit
o-algebra to center on the space ./". The proofs of Proposition 7.16 and
Corollary 7.16.1 depend on the following lemma, which is an immediate
consequence of Propositions 7.36 and 7.37. The reader may wish to verify
that these propositions depend only on Propositions 7.35, B.1, and B.2, so
no circularity is present in the arguments.

Lemma B.2 Let X be a nonempty Borel space. There is a continuous
function f from A" onto X.
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Define . to be the set of infinite sequences of zeroes and ones. We can
regard ./ as the countable product of copies of {0,1} and endow it with
the product topology, where {0, 1} has the discrete topology. By Tychonoff’s
theorem, ./ is compact with this topology. It is also metrizable as a complete
separable space.

Our proof of Proposition 7.16 consists of three parts. We show first that
every uncountable Borel space contains a Borel subset homeomorphic to
M, we show second that every uncountable Borel space is isomorphic to a
Borel subset of .#, and we show finally that these first two facts imply that
every uncountable Borel space is isomorphic to ..

Lemma B.3 Let X be an uncountable Borel space. There exists a
compact set K = X such that .# and K are homeomorphic.

Proof Let f: /"> X be the continuous, onto function of Lemma B.2.
For each xe X, choose an element z, € .4 such that x = f(z,). Let
S = {z,|xe X}, so that f is a one-to-one function from S onto X. For z€S,
if possible choose an open neighborhood T(z) of z such that § n T(z) is
countable. Let R be the set of all ze S for which such a T(z) can be found.
Since separable metrizable spaces have the Lindelof property, there exists a
countable subset R’ of R such that UZE rT(z) = UZE r T(2), so

RCSm[U T(z):|= U [Sn T@)],
zeR zeR’

and R is countable. Since S is uncountable, S — R must be infinite. Further-
more, if zeS — R, then every open neighborhood of z contains infinitely
many points of S — R.

Let d be a metric on .4~ consistent with its topology for which (A", d) is
complete. For Ze ./, the closed sphere of radius r centered at Z is the set
{ze #"|d(z,Z) < r}. The interior of this sphere, denoted Int {zeN|d(z,z) <1},
is the set {ze./"|d(z,%Z) < r}. Let z(0) and z(1) be distinct points in S — R.
Then f[z(0)] # f[z(1)], so there exist disjoint open neighborhoods U and
V of f[z(0)] and f[z(1)] respectively. Let S(0) and S(1) be disjoint closed
spheres of radius no greater than one centered at z(0) and z(1) and contained
in f7(U) and f (V) respectively. We have that f[S(0)] and f[S(1)] are
disjoint. Note also that for every z€(S — R) n Int S(0), every open neighbor-
hood of z contains infinitely many points of (S — R) n Int S(0), and the
same is true of S(1). By the same procedure we can choose distinct points
z(0,0) and z(0,1) in (S — R) n Int S(0) and distinct points z(1,0) and z(1, 1)
in (S — R) n Int §(1), and we can also choose disjoint closed spheres S(0,0),
S(0,1), S(1,0) and S(1, 1) of radius no greater than  centered at z(0, 0), z(0, 1),
z(1,0) and z(1, 1), respectively, so that f[S(0,0)], f[S(0,1)], /[S(1,0)] and
SfIS(1,1)] are all disjoint. We can choose these spheres so that §(0,0) and
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S(0,1) are contained in S(0), while S(1,0) and S(1, 1) are contained in S(1).
At the kth step of this process, we choose a collection of disjoint closed

spheres S(uy, ..., ) of radius no greater than 1/k centered at distinct
points z(4y, . . ., ) in S — R, where each y; is either zero or one. Further-
more, we can choose the spheres so that for each (4, ..., t-1)

(1) f[S(#la . ‘71“”("1’0)] rWfI:S(/'l'l’ . Huk—l’l)] =Q’
(1) S(pys--os Me—1ot) ©S(Hys ooy tye—1), me=0,1.

For fixed m = (uy, 4, . . .)€ M, the sets {S(u, ..., )} form a decreasing
sequence of closed sets with radius converging to zero, so {z(uy, . . ., &)} is
Cauchy and thus has a limit @(m)e ()= S(ky, - - - He)-

We show that ¢:.# — & is a homeomorphism. If (uq,u,5,...) and
(v4,v,,...) are distinct elements of .#, then for some integer k, we have
U # V. Since @(py, oy . )ES(Uyy « v v s i), @(Vi, V2, .. JES(VY, ..., V), and
S(uq, ..., ) is disjoint from S(vy,...,v,), we see that @(uy, 4s,...) #
@(vy,v5,...), SO @ is one-to-one. To show ¢ is continuous, let {m,} be a
sequence converging to me .. Choose ¢ > 0 and let k be a positive integer
such that 2/k < ¢. There exists an 7 such that whenever n > 7, the elements
m, and m = (i, i, . . .) agree in the first k components, so both ¢(m,) and
@(m) are in S(44, - . . , &) This implies d(¢(m,), p(m)) < 2/k < ¢, s0 ¢ is con-
tinuous. To show that ¢! is continuous, it suffices to show that ¢(F) is
closed in @(.#) whenever F is closed in .#. This follows from the fact that
M is compact and ¢ is continuous. Define A4, = A" to be the compact
homeomorphic image of .# under ¢.

We now show that f: 4", — X is a homeomorphism. To see that f is
one-to-one, choose distinct points z and Z in .47,. Then there exist distinct
points m = (uy, Uy, - ..) and m = (fi;, fl,, . . .) in .4 such that z = @(m) and
2 = o(m). For some k, we have p # [, so by (1), f[S(ug,-..,m)]0
SIS, - -, &)] = . Since z € S(ug, - - -, ) and 2 € S(fo, - . . , [iy), we see
that f(z) # f(2), so f is one-to-one. Just as in the case of ¢, the continuity of
f ! follows from the fact that f is continuous and has a compact domain.

The set K = f(./",)is a compact subset of X homeomorphicto .#. Q.E.D.

Lemma B.4 Let X be an uncountable Borel space. There exists a Borel
subset L of .# such that X and L are Borel-isomorphic.

Proof By definition, X is homeomorphic to a Borel subset B of a com-
plete separable metric space Y. By Urysohn’s and Alexandroff’s theorems
(Propositions 7.2 and 7.3), Y is homeomorphic to a Gs-subset of the Hilbert
cube #, so B and hence X are homeomorphic to a Borel subset of . It
suffices then to show that . is Borel-isomorphic to a Borel subset of ./Z.

The idea of the proof is this. Each element in 2 is a sequence of real
numbers in [0,1]. Each of these numbers has a binary expansion, and by
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mixing all these expansions, we obtain an element in .#. Let us first define
Y:[0,1] — .# which maps a real number into a sequence of zeroes and ones
which is its binary expansion. It is easier to define ¥ ~!, which we define
on ./, u {(0,0,0,...)}, where

My ={(1y, Us, .. .)€M|p = 1 for infinitely many k}.
It is given by

l//_l(ula ﬂZa .. ') = Z #k/zka
k=1

and it is easily verified that Y ~! is one-to-one, continuous, and maps onto
[0,1]. Since 4 — M , is countable, the domain of y ~* is a Borel subset of ./,
and Proposition 7.15 tells us that ¥ is a Borel isomorphism. Since we have
not proved Proposition 7.15, we show directly that s is Borel-measurable.
Consider the collection of sets

R(k)__'{(ul’#Za)eﬂlﬂk:O}a k=1,2a'~-,

R(k) = {(pys o, .. JEM | =1}, k=1,2,....
These sets form a subbase for the topology of .#, so by the remark following
Definition 7.6, we need only prove that ¢ ~'[R(k)] and ¥ ~*[R(k)] are Borel-
measurable to conclude that ¥ is. Since one of these sets is the complement

of the other, we may restrict attention to ¥ ~'[R(k)]. Remembering that the
domain of Y "' is 4, U {0,0,0, . ..)}, we have

29

v IR0) = { g

j=1

(#17#29"-)6%1’ luk=0}u{0}7
and

it

Jj=1

k—1

Ui
(/’thNZa"')e’%la ,uk=0}= U {X‘i‘ =
(u1 Hx-1)

=12

1
0<x< '2‘,;},
which is a finite union of Borel sets.
The proof that #.# - -- and .# are homeomorphic is essentially the
same one given in Lemma 7.25, and we do not repeat it here. Let § mapping

MM - - - onto A be a homeomorphism and define ¢: # — .# by
(P(XI’XZ’ .- ) = Q[W(xl)’ W(xl)s .. ']-
Then ¢ is the required Borel-isomorphism. Q.E.D.

Lemma B.5 If K; and L are Borel subsets of .#, K, = L, and K, is
Borel-isomorphic to .#, then L is Borel-isomorphic to ..

Proof For Borel subsets 4 and B of .#, we write A ~ B to indicate
that 4 and B are Borel-isomorphic. Note that 4 & B and B =~ C implies



ADDITIONAL MEASURABILITY PROPERTIES OF BOREL SPACES 289

A~ C. Also, if A;,A,, ...1s a sequence of disjoint Borel sets, if B, B,, . ..
is another such sequence, and if 4; ~ B; for every i, then | )&, 4; ~ ( &2, B;.
We note finally that if A = A; U 4, and 4 =~ B, then B = B; U B,, where
A; = B; and A, ® B,. If A, and A4, are disjoint, then B; and B, can be
taken to be disjoint.

Under the hypotheses of the lemma, let D, = .# — K. Since .#, ~ K,
and .4 = K, u D, there exist disjoint Borel sets K, and D, such that
K,=K,uD,,K;~K,andD; = D,.Since K; ® K,and K; = K, U D,,
there exist disjoint Borel sets K ; and D; such that K, = K5 U D5, K, ~ K3,
and D, ~ D;. Continuing in this manner, at the nth step we construct dis-
joint Borel sets K, and D, such that K,_; =K, u D,, K,_; ~ K,, and
D,_;=D,. Let K, =()2K,. Then # =K, v [|J,D,], and all the
sets on the right side of this equation are disjoint.

Let Ay =.# — L and B, = L — K,. Then A, and B, are disjoint and
D,=A, uB,.Foreachn D, * D,,s0 D, = A, u B,, where 4, and B, are
disjoint Borel sets and 4, ~ A4,, B, & B,. In particular, 4, ~ 4,,, for
n=1,2,...,and we have

o [

n=1

szu[w AH]U[OB,,:I
n=2 n=1
={Kwul:OD"]}—Al=%—A1=L. QED.

We can now prove Proposition 7.16, and the proof clearly shows that
Corollary 7.16.1 is also true.

Proposition B.3 Let X and Y be Borel spaces. Then X and Y are
isomorphic if and only if they have the same cardinality.

Proof If X and Y are isomorphic, then clearly they must have the same
cardinality. If X and Y both have the same finite or countably infinite
cardinality, then their Borel o-algebras are their power sets and any one-
to-one onto mapping from one to the other is a Borel-isomorphism.

If X is uncountable, then by Lemma B.4 there exists a Borel isomorphism
@:X — M such that L = ¢(X) is a Borel subset of M. By Lemma B.3,
X contains a compact set K which is homeomorphic to .#, so ¢(K) is
Borel-isomorphic to .# and ¢(K) = L. Set K, = ¢(K) and use Lemma B.5
to conclude that L and .# are isomorphic. It follows that X and .# are
isomorphic. If Y is uncountable, the same argument shows that Y and .#
are isomorphic, so X and Y are isomorphic. Q.E.D.
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B.3 An Analytic Set Which Is Not Borel-Measurable

Suslin schemes can be used to generate a strictly increasing sequence of
g-algebras on any given uncountable Borel space X. The first g-algebra in
this sequence is the Borel g-algebra %y and the second is the analytic o-
algebra o/, and, as a result of the following discussion, we will see that
o/ y 1s strictly larger than #y. The proof of this depends on a contradiction
involving universal functions, which we now introduce.

Let .4, be the set of sequences of zeroes and ones for which one occurs
infinitely many times. If the nonzero components of me .#, are in positions
my,m,,...,then we can think of m as a mapping from 4" to .#" defined by

m(Cl?ZZa' . ') = (Cmpsza .. )

Definition B.1 - Let 2 be a paving of A". A universal function L for 2 is
a mapping from 4 onto 2. If 2 is another paving of 4" and

{zeN|zeL[m(2)]}e2  Vme ., (7
we say L is consistent with 2.

Proposition B.4 Let ¢ be the collection of open subsets of .47 There
exists a universal function for ¢ consistent with 4.

Proof The space ./ is separable, so its topology has a countable base
{G(1),G(2),. ..}, where the empty set is included among these basic open
sets. Define L: A" — % by

LG ) = @ G(L,).

It is clear that Lis a universal function for 4. Now choose m € .4 | and suppose
the nonzero components of m are in positions m;,m,,. ... Choose z5 =
(€9,¢9,.. ) in the set

(zeNzeLlm(z)]} = {(cl,cz,. DeMEndae e U G(cmg}.

Then for some k, we have zoe G({5,). Let

Url(zo) = {(C1,Cas- - YEN [l = (g

Then G((5) = L[m(2)] for every ze U(zo), so zeL[m(z)] for every ze
Ux(zo) N G({p)- Therefore Ug(zo) N G({%,) is an open neighborhood of z,
contained in {ze A"|ze L[m(z)]}, so this set is open. Q.E.D.
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Given a paved space and a universal function for the paving which
satisfies a condition like (7), it is possible to construct similar universal
functions for larger pavings. We show first how this is done when the given
paving is extended by the use of Suslin schemes.

Proposition B.5S Let 2 be a paving for .#"and suppose that there exists
a universal function for £ consistent with &(2). Then there exists a universal
function for ¥ (#) consistent with ¥ (2).

Proof  Fix a partition {P,se X} of the positive integers into countably
many countable sets, and define for each se £ a corresponding m, =

(u1(5), p2(5),. . .)€ M | by

1 if keP,,
Hi(s) = {

0 if kéP, ®)

Let L be a universal function for 2 consistent with (#). Define K: A" —
S (?) by
K(zo) = (U [) LImyz0)]- (&)
zeN s<z
To show that K is onto, we must show that given any Suslin scheme S for
#, there exists zo €./ such that

S(s) = L[my(z,)]  VseX. (10)

If S:X — 2 is given and se X, then S(s)e 2. Since L is a universal function
for 2, there exists z;e 4" for which S(s) = L(z,). If z, is chosen so that
my(zo) = z, for every se X, then (10) is satisfied, and such a choice of z, is
possible because my(z,) depends only on the components of z, with indices
in P,. Therefore K is a universal function for % (2).

If m,ne.# ,, then there is an element in .# ;, which we denote by mn, such
that (mn)(z) = m[n(z)] for every ze .A". In fact, if the nonzero elements of m
are (my,m,,...) and the nonzero elements of n are (n,,n,,...), then the
nonzero elements of mn are (n,,,,ny,, - - .). Now suppose me .# . We have

{zoe N|zoe K[m(z0)]} = {zo eNlzoe J ) L[(msm)(zo)]}

zeN s<z

= U ﬂ {z0€ '/V’ZO € L[(mgm)(z,)]},
zeN s<z
which, since L is consistent with #(2), is the nucleus of a Suslin scheme for
F(2). 1t follows from Proposition B.2 that K is consistent with &(2).
Q.E.D.

Corollary B.5.1 There is a universal function for % (% ,) consistent
with S(F ).
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Proof Let & be the collection of open subsets of ./". By Propositions
B.4 and B.5, there is a universal function for &(%) consistent with ¥ (%),
and it remains only to show that & (%) = #(Z ). Since ¥ = B, it follows
from Proposition 7.36 that & (%) = &(Z ). Since every closed subset of A~
is a G;-set and, by Proposition 7.35, 9; = #(9); = S(¥), we see that # , <
& (%). Proposition B.2 implies that (¥ ;) =« & [Z@)] =ZL(9). Q.ED.

Corollary B.5.2 Let L be a universal function for #(# ) consistent
with (& ,-). The set

Ay = {zeN|ze L(2)} (11)
is analytic but not Borel-measurable, and 4~ — 4, is not analytic.

Proof The set 4, is analytic because L is consistent with #(# ;). We
have ‘

N — Ay = {zeN|z¢L(2)}, 12)
and if this set is analytic, then there exists zo€ 4" such that
/V - AO = L(Zo).

If zoe Ay, then zo¢ L(zo), and (11) is contradicted. If zZoe A" — Ao, then
zo€ L(zo) and (12) is contradicted. Therefore A" — Ao is not analytic, thus
not Borel-measurable, so 4, is also not Borel-measurable. Q.E.D.

Proposition B.6 Let X be an uncountable Borel space. There exists an
analytic subset A of X such that 4 is not Borel-measurable and X — 4 is
not analytic.

Proof Let ¢:.4" — X be a Borel isomorphism from 4" onto X (Corol-
lary 7.16.1), and let 4, = .4 be as in Corollary B.5.2. Then A = ¢(4o) is
analytic, but since A~ — 4o = ¢~ (X — A) is not analytic, neither is X — A.
It follows that A is not Borel-measurable. Q.E.D.

B.4 The Limit o-algebra

We construct a collection of g-algebras indexed by the countable ordinals,
and at the end of this process we arrive at the limit s-algebra, denoted by
. The proofs of many of the properties of £y, and indeed the definition
of &y, proceed by transfinite induction. We also make frequent use of the
fact that if {«,} is a sequence of countable ordinals, then there exists a
countable ordinal & such that o, < @ for every n. In keeping with standard
convention, we denote by Q the first uncountable ordinal.
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Definition B.2 Let X be a Borel space and 4y the collection of open
subsets of X. For each countable ordinal «, we define

L% = 0(%x), (13)
% = 0[9< U ,%’():l. (14
B<a
The limit g-algebra is
Px= ) Z%. (15)
a<Q

We prove later (Proposition B.10) that ¥y is in fact a ¢-algebra. Note
that % = %y and i = o/x. When X is countable, By = £% for every
o < Q.If X is uncountable, there is no loss of generality in assuming X = A~
when dealing with the g-algebras #% and #y. This is the subject of the
next proposition.

Proposition B.7 Let X be an uncountable Borel space and let p: A" — X
be a Borel isomorphism from 4" onto X. (Such an isomorphism exists by
Corollary 7.16.1.) Then for every o < Q,

(&%) = Z%, % =0 ML), (16)
and
o(ZLy) = Py, $m=§0—1($x)- (17

Proof We prove (16) by transfinite induction. For « = 0, (16) clearly
holds. If (16) holds for all B < «, where « < Q, then we have

o U o)=Y Y=oy ).
B<a B<a B<a <a
Let S be a Suslin scheme for | J; <, #%. Then
@[N(S)] = N(@-°S),
where

(@ °S)(s) = @[S(s)] VseX.

Since ¢ o S is a Suslin scheme for ( J;<, %%, we see that

I I R

On the other hand, if R is a Suslin scheme for | J;<, %%, then
N(R) = ¢[N(¢™ ' = R)],



294 APPENDIX B

where
(@~ ' oR)(s) = @ '[R(s)] VseX.

This shows that N(R)e o[L(| p<.- %% )], which proves the reverse of set
containment (18). Therefore,

) I I

Since ¢ is one-to-one, we also have

R ) B

Now by (19), o(#%) is a o-algebra containing V(U f<a L4, so

o(L%) > L. (21)
By (20), ¢ ~1(#%) is a g-algebra containing F(| Js<. £%), so
< o” (LK) (22)
Since ¢ is one-to-one, (21) implies
L 29~ (LY (23)
and (22) implies
o(&Ly) = L. 24
Relations (21)—(24) imply (16). Relation (17) follows from (15) and (16).
Q.E.D.

We have already seen that in an uncountable Borel space X, #% is
properly contained in #} (Proposition B.6). We would like to show more
generally that if f < a < Q, then £% is properly contained in #%. Our
method for doing this is to generalize Corollary B.5.1 and then generalize
Corollary B.5.2. The following lemmas are a step in this direction. If 2 is
a paving for a space X, we denote by 2 the paving

P =20 {X-P|Pe?]. (25)

Lemma B.6 Let 2 be a paving for .4” which contains the open subsets
of ./, and suppose there exists a universal function for & consistent with
2. Then there exists a universal function for & consistent with ¢(2).

Proof Let L be a universal function for 2 consistent with 2. Define
K: N — 2 by
L(§27C37C4’~ . ) lf Cl iS Odd,

K(C.Choo )= B PP
(SNE ) {./V—L(Q27Q3,C4’-~-) if {iseven.
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It is clear that K is a universal function for 2. As in the proof of Proposition
B.4, choose me .4, and suppose that the nonzero components of m are in
positions my,m,,. ... Then
{ze ¥|ze K[m(2)]}
= {(Cl’§27 .. )’Cm; iS Odd and (ChCz’ .. ‘)EL(CmpZ:mg," . )}
) {(gl,C27 . ')Ile iS cven and (CDCZ" . ')¢L(Cm27cm37' . )}

([D {81,850 )|, = 2k — 1}:|

k=1

N {(ChCZ" - -)I(CNCZa- . ')GL(CmZ’Cmg,a' . )})

v (IikQ{(CuCz,. M, = 2k}]

GG NGy ) Ly G- - ~)}>- (26)

Since L is consistent with 2 and 2 contains every open set, we have that
every setin (26)is in ¢(2). It follows that K is consistent with (). Q.ED.

Lemma B.7 Let o be a countable ordinal. For each f < «, let 2, be a
paving for .#" which contains the collection % of open sets, and assume that
there exists a universal function L, for 2, consistent with 2. Then there
exists a universal function for U <o P consistent with ,V(U s<a?p)-

Proof The set of ordinals {|f < o} is countable whenever o < Q, so
there exists a partition {P(f)| < «} of the positive integers such that P(f)
is nonempty for each 8 < «. Define a universal function for (Ug<« P(B) by

L(CDCZ’)=LB(C2’C37') if CIEP(ﬂ)

Let me.# | have nonzero components m;, m,, . ... Then

{zeN|zeL[m(z)]}

= (J {(§17C27"‘)’§m1 EP(B) and (C17C29'")ELB(gmzacmy"')}

B<a

= U [{({17(2"")|§m1 EP(ﬁ)} 8 {(51’52"~)|(C1a§2,~-)€Lts(Cm2a é:mg,s"‘)}]n

p<a

and this set is in S”(U,Ka.@ﬂ) by Proposition 7.35(b), (c), and the fact that
each L; is consistent with 2. Q.E.D.

Proposition B.8 For each o <Q, there is a universal function for (%%
consistent with . (£%.).
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Proof For simplicity of notation, we suppress the subscript .4#". The
proof is by transfinite induction. When o = 0, the result follows from
Corollary B.5.1. Assume now that the result holds for every f§ < «, where
o < Q. We prove it for a.

By Lemma B.7 and the induction assumption, there is a universal func-
tion for | J4<, #(£”) consistent with L[( J; <, #(£*)]. Now

U £y £(&< 9’<U 3”), 27
B<a p<a f<a
and applying & to both sides of (27) and using Proposition B.2, we obtain
9’( U 3”) = 5”[ U 5/’(.5,””)]. (28)
B<a B<a

From Proposition B.5 and (28) we have the existence of a universal func-
tion for #(|Js<,£*) consistent with (| J;<, "), and Lemma B.6 implies
existence of a universal function for (| J;<, £*) consistent with #* From
Corollary 7.35.1 we have

e T

so we have a universal function for (| J;<,£”) consistent with
(<))
B<a

P c y[y< U gﬂ)} < AL,

B<a

But from (29),

and applying & to both sides, we see that
L (L) = 9[5”( U $ﬁ>:|. (30)
B<a

From Proposition B.5 and (30) we have the existence of a universal function
for #(#%) consistent with F(Z*). Q.E.D.

Proposition B.9 Let X be an uncountable Borel space. If f <a <Q,
then £% is properly contained in #%.

Proof We assume without loss of generality that X = .4" (Proposition
B.7) and suppress the subscript .4". It is clear that for § < o we have ¥*
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£* Let L be a universal function for &#(£*) consistent with #(#*) and
define

A= {ze N|zeL(z)}.
Then Ae L(LP). If ¥ — Ae F(LP), then for some z,€ A" we have
N — A= Lz)

If zge A4, then zy¢ L(z,) and a contradiction is reached. If zye A" — 4, then
zo€L(zo) and again a contradiction is reached. It follows that & — A¢
L (&P). But & — Ae #* so £* is properly contained in ¥~ Q.E.D.

Proposition B.10  Let X be a Borel space. The limit g-algebra #y is
contained in %y and

Ly =L (Ly). (31)

Indeed, ¥y is the smallest g-algebra containing the open subsets of X which
satisfies (31).

Proof The result is trivial if X is countable, so assume that X is un-
countable. It is clear that ¢f € &y and Ly is closed under complementation,
so we need only verify that ¥y is closed under countable unions in order
to show that it is a g-algebra. If Q;,Q,,. . . is a sequence of sets in £y, then
for some o < Q, we have Q, € #% for every k. Then | )i, Q,e ¥% = Zy.

We prove by transfinite induction that #% = %y for every o < Q. This
is clearly the case if o = 0. If 4 < %y for every B < o, where o < Q, then
by Lusin’s theorem (Proposition 7.42), (| Js<. £%) = %x. It follows that
F% < Ux. Therefore ¥y < Uy.

We now prove (31). As a result of Proposition 7.35(d), it suffices to prove
that ¥y o S (Ly). Let S be a Suslin scheme for #. Since T is countable,
there exists o < Q such that S(s)e #% for every se Z. Then N(S)e %! <
ZLx,and (31) is proved.

Suppose £ is a g-algebra containing the open subsets of X which satisfies
P = S (P).Clearly, By = L% = 2.1f £4 = P for every f < o, where o < Q,
then (14) implies that ¥% < 2. Therefore 2 contains .#,, which must be
the smallest g-algebra containing the open subsets of X and satisfying (31).

Q.E.D.

A major shortcoming of the analytic g-algebra is that the composition
of analytically measurable functions is not necessarily analytically measur-
able (cf. remarks following Proposition 7.50). However, the composition of
limit-measurable functions is limit-measurable. We first give a formal defini-
tion of these terms and then prove the preceding statements.
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Definition B.3 Let X and Y be Borel spaces, D = X, and £ a ¢-algebra
on X. A function f:D — Y is said to be #-measurable if { ~*(B)e 2 for every
BeBy. If ? = Ly, we say that f is limit-measurable. The o-algebra 2 is
said to be closed under composition of functions if, whenever f:X — X is
P-measurable and Pe 2, then f ~}(P)e 2.

In Definition B.3 there is no mention of a 2-measurable function g
mapping X into a Borel space Y with which to compose f. If there were
such a g, then to check that go f:X — Y is #-measurable, we would check
that f~1[g~%(B)] is #-measurable for every Be %y. Since g~ }(B)e 2, it
suffices to check that f~'(P)e# for every Pe2, which is the condition
stated in Definition B.3. The stipulation in Definition B.3 that f have the
same domain and range space is inconsequential as long as # = ¥% for
some o < Q or ? = ¥y (see Proposition B.7). These are the only cases we
consider. The closure of a g-algebra under composition of mappings and
the satisfaction of an equation like (31) are intimately related, as the follow-
ing lemma shows.

Lemma B.8 Let X be a Borel space and let £ be a g-algebra on X. If
# contains the analytic subsets of X and is closed under composition of
functions, then

P = F(P).

Proof If X is countable, the result is trivial, so we assume that X is
uncountable. In light of Proposition 7.35(d), we need only prove that under
the assumptions of the lemma we have 2 > (). To do this, for an arbi-
trary Suslin scheme S for £ we construct a #-measurable function f: X - X
and a set Pe 2 such that

fHP) = N(S). (32)

Let ¢:. A4 — X be a Borel isomorphism from .4/ onto X (Corollary
7.16.1), and let  be a one-to-one onto function from the set of positive
integers to . For k = 1,2,. .., define f,: 4" — {1,2} by

1 i e@eS[uk],
e = {2 otherwise,
and define f: A" — A" by
f(2) = [fi(2), f22), - - ).

Finally, let f:X — X be given by f = ¢ o fo¢~'. We show that f is #-mea-
surable. This is equivalent to showing that fo ¢~ ':X — 4 is -measurable.
But 7 o ¢! takes values in {({;,{,, .. .)€ A4"|{, < 2Vn} which has as a sub-
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base the collection of open sets {R(k), ﬁ(k)]k =12,...}, where

R(k) = {({1,C, - )< 2Vnand { = 1}, (33)
R(k) = {((,{z,.. Ja <2Vnand {, = 2}.
By the remark following Definition 7.6, the 2-measurability of the sets

o(7 ' [R(W]) = S[Y(k)], k=12,...,
o(F 'R =X - S[Y(k)], k=12...,

implies the 2-measurability of f o ¢~ 1. It follows that f is #-measurable.

Define P = X by
P=U ) oRY™'G)]),
zeN s<z
where R(k) is given by (33). Then P is an analytic subset of X, so Pe 2.
We have

[Py = (,,[ Uun f“(R[w'l(s)])]

zeN s<z

= U ) Ss) = N,

zeN s<z
so (32) holds. Q.E.D.

Proposition B.11 Let X be a Borel space. The limit g-algebra %y is the
smallest g-algebra containing the analytic subsets of X which is closed under
composition of functions.

Proof We show first that & is closed under composition of functions.
It suffices to show that if f:X — X is #x-measurable, & < Q, and Qe ¥%,
then f~'(Q)e Lx. If « = 0, this is true by definition. Suppose that for some
o < Q and for every f < o and Ce #% we have f ~}(C)e £y. We show that
f7HQ)e Ly for every Qe F(| s<,£%), and this implies that f~1(Q)e Ly
for every Qe #%. Choose Qe (| J;<, £%) and let S be a Suslin scheme for
Up<«Z% such that Q = N(S). Then

f7HQ) = N(f71eS), (34)
where f 71 oS is the Suslin scheme defined by

(f~1eS)s) = f[S(s)] VseX.

By the induction hypothesis, f ~! > S is a Suslin scheme for £y, and we have
from Proposition B.10 and (34) that = }(Q)e Zy.

The fact that £ is the smallest g-algebra containing the analytic subsets
of X which is closed under composition of functions follows from Proposition
B.10 and Lemma B.S8. Q.E.D.
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Corollary B.11.1 Let X, Y, and Z be uncountable Borel spaces. If
f:X - Y and g:Y — Z are limit-measurable, then gof:X — Z is limit-
measurable. In particular, if f and g are analytically measurable, then
ge f is limit-measurable. It is possible to choose f and g to be analytically
measurable so that go f is not analytically measurable.

Proof Proposition B.9 implies that «/y, «/y, and &/, are properly
contained in ¥y, Ly, and ¥, respectively. Apply Proposition B.7 to the
results of Proposition B.11. Q.E.D.

Using an argument similar to the first part of the proof of Proposition
B.11, the reader may verify that if f:X — Y and g:Y — Z are analytically
measurable, then gof is in fact #%-measurable. Indeed, one can show by
induction that if f is #%-measurable and g is #’}-measurable, where m and
n are integers, then g o f is #% " "-measurable.

Let X be a Borel space, and for Qe % define 6,: P(X) — [0,1] by

Bo(p) = p(Q). (35)

Then 0, is universally measurable (Corollary 7.46.1). If Q is Borel-measur-
able, then 0, is Borel-measurable (Proposition 7.25), and if Q is analytically
measurable, then 6, is analytically measurable (Proposition 7.43). We con-
sider the case when Q is ¥%-measurable.

Proposition B.12 Let X be a Borel space. If Qe %y, then 0, defined
by (35) is Lpx-measurable. In fact if o <Q and Qe %, then 0, is
£ xy-measurable.

Proof The last statement is true when o = 0. If it is true for every f < ,
where o < Q, and S is a Suslin scheme for | Jz<, £%. then for any ce R, (98)
of Chapter 7 holds, where 4 = N(S) and K(s) is defined by (92) of Chapter 7.
For each seZ, K(s)e| Jp<. L%, so by the induction hypothesis, the set
{pe P(X)|p[K(s)] = ¢ — (1/n)} is in |Jp<a Lo It follows from (98) of
Chapter 7 and Proposition 7.35(b) that

{pe P(X)|p[N(S)] = C}ey<BU gf’m) < Lrx-

Thus, if Qe F(Jp<a Lo then 0, is L3 x-measurable. The collection of
sets Q for which 6, is #}x,-measurable forms a Dynkin system, so by the
Dynkin system theorem (Proposition 7.24), 0, is £5(x-measurable for every
Qe #%. This completes the induction step.

If Qe Ly, then for some a < Q, Qe ¥%, so O, is L5 x-measurable, and
therefore 0y is £ px)-measurable. Q.E.D.
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B.5 Set Theoretic Aspects of Borel Spaces

The measurability properties of Borel spaces are closely linked to several
issues in set theory which we have for the most part skirted. These issues
are presented briefly here.

There is some controversy concerning the propriety of the axiom of
choice and Cantor’s continuum hypothesis in applied mathematics. The
former is generally accepted and the latter is regarded with suspicion. The
general axiom of choice says that given any index set 4 and a collection of
nonempty sets {S,lxeA}, there is a function f:4 — (Jzea S, such that
f(a)e S, for every w e A. We have used this axiom in Appendix A to construct
examples. In particular, the set E of Example 1 of that appendix for which
both E and E° have p-outer measure one is constructed by means of the
axiom of choice. We have also used this axiom to construct the set S in
the proof of Lemma B.3, and this lemma was instrumental in proving that
every uncountable Borel space is Borel-isomorphic to every other uncount-
able Borel space (Proposition B.3 and Corollary 7.16.1). However an alter-
native proof of Lemma B.3 which does not require the axiom of choice is
possible, but is quite lengthy and will not be given.

The countable axiom of choice is the same as the general axiom except
that the index set A4 is required to be countable. A paraphrase of this axiom
is that given any countable collection of nonempty sets, one element can
be chosen from each set. We have made extensive use of this axiom, such as
in the choice, for each k, of a selector ¢, in the proof of Proposition 7.50(a).
Indeed, much of real analysis and topology rests on the countable axiom
of choice.

Solovay [S13] has shown that if the general axiom of choice is replaced
by the weaker “principle of dependent choice,” which is still stronger than
the countable axiom of choice, then every subset of the real line may be
assumed to be Lebesgue-measurable. A slight extension of this result shows
that under these conditions every subset of any Borel space may be assumed
to be universally measurable. Therefore, by choice of the proper axiom
system, the measurability difficulties which are the subject of Part II can be
made to disappear.

It is possible to show without the use of the axiom of choice that every
uncountable Borel space X contains universally measurable sets which are
not limit measurable. An unpublished proof of this is due to Richard
Lockhart. If both the axiom of choice and the continuum hypothesis are
adopted then it follows that %y has a larger cardinality than £,. Since
for each a0 < Q, By = L% and %y has cardinality at least ¢, so does £%. On
the other hand, £% is contained in & (¥%) and there is a universal function
for #(£%), so the cardinality of #% is ¢. Now Ly = J,.0 %%, and the
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cardinality of the set of countable ordinals is less than or equal to ¢, so £y
has cardinality ¢. In contrast, under the assumption of the axiom of choice
and Cantor’s continuum hypothesis, % contains a set F of cardinality c
which has measure zero with respect to every nonatomic probability measure
[HS5,Chapter III, Section 14]. Thus every subset of F is also in %y, and the
cardinality of % is at least 2. It follows that ¥y must be properly contained
in%y.

Another relevant set theoretic work is that of Godel [G1], who showed
that it is consistent with the usual axioms of set theory to assume the existence
of the complement of an analytic set in the unit square whose projection
on an axis is not Lebesgue-measurable. This means that it is consistent
with the usual axioms to assume the existence of an analytically measurable
function f:[0,1][0,1] — R such that f*(x) = inf,f(x,y) is not Lebesgue
measurable. This places a severe constraint on the types of strengthened
versions of Proposition 7.47 which might be possible.



Appendix C

The Hausdorff Metric and the
Exponential Topology

This appendix develops a metric topology on the collection of closed
subsets (including the empty set ¢¥) of a compact metric space (X, d). We
denote this collection of sets by 2X. For 4e2¥ and xe X, define

d(x, A) = min d(x, a) if A#Y, (1)
acA
d(x, &) = diam(X) = max d(y, z). 2)

Definition C.1 Let (X,d) be a compact metric space. The Hausdorff
metric p on 2% is defined by

p(A4,B) = max{max d(a, B), max d(b, A)} if A B# g, 3)
acA beB
p(4, &) = p(J, A) = diam(X) if A#g, (4)

P, &) =0. )

We have written max in place of sup in (3), since every set in 2% is com-
pact and d(x, A) is a continuous function of x for every 4e2X. To see this
latter property, consider a set 4e2*. If 4 = (¥, then the function d(x, A) is

303
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constant and hence continuous. If 4 # ¢J, then for x, ye X and ae 4 we have
d(x,a) < d(x,y) + d(y,a).
By taking the infimum of both sides over a € A, we obtain
d(x,A) — d(y, A) < d(x, y).
By reversing the roles of x and y, we have
ld(x,4) — d(y,A)| < d(x,y)  Vx,yeX, (6)

which shows that d(x, A) is a Lipschitz continuous function of x.

It is a tedious but straightforward task to verify that (2%, p) is a metric
space, and this is left to the reader. We will prove that (2%, p) is a compact
metric space. We first show some preliminary facts.

If A is a (not necessarily closed) subset of X, define

24 = (Ke2¥|K < 4}.
We define two classes |
% ={29G is an open subset of X}, (7
A = {2¥ — 2¥|K is a closed subset of X}. ®)

To aid the reader, we will continue to denote points of X by lowercase Latin
letters and subsets of X by uppercase Latin letters. Uppercase script letters
will be used for subsets of 2%, except for subsets of the form 24 as defined
above. In keeping with this practice, we denote open spheres in the two spaces
as follows:

S(x) = {ye X|d(x,y) <e},
F(A) = {Be2¥|p(4,B) < &}

Finally, classes of subsets of 2% will be denoted by boldface script letters, as
in the case of ¢ and ¢ defined above.

The topology obtained by taking % U " as a subbase in 2% is called the
exponential topology and an extensive theory exists for it [K2,K3]. It can
be developed for a nonmetrizable topological space X, but we are interested
in it only when X is compact metric. In this case, the exponential topology
is the topology generated by the Hausdorff metric, as we now show.

Proposition C.1 Let(X,d)beacompact metricspace and p the Hausdorff
metric on 2%. The class ¥ U 4 as defined by (7) and (8) is a subbase for the
topology on (2%, p).

Proof We first prove that when G is open and K is closed in X, then
26 and 2% — 2K are open in (2%, p). If G or K is empty, then 26 or 2% — 2K,
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respectively, is easily seen to be open, so we assume G and K are nonempty.
Suppose A is a nonempty closed subset of X and 4e€2€. (The proof for
A = & is trivial.) Since A4 is compact, is a subset of G, and X — G is closed,
there exists ¢ with 0 < ¢ < diam(X) such that

mind(a, X — G) > e. 9)

aecA

For Be #(A), we have B # (& and
max d(b, 4) < e. (10)

beB
From inequalities (9) and (10) we have that B = G. Hence %,(4) = 2¢, and
2% must be open. Turning to the case of 2X — 2X for K closed, we let A€2¥ —
2K be nonempty. By definition, 4 ¢ 2%, so 4 — K contains at least one point
ay. Since X — K is open, we can find ¢ > 0 for which S,(a,) = X — K. For
Be ¥ (A), we have

d(ay,B) < maxd(a, B) < ¢,
acA

which implies B N S,(ao) # & and Be2X — 2%, Therefore &,(4) = 2X — 2K,
and 2¥ — 2K is open.

Having thus shown that the sets 2¢ and 2% — 2X are open in (2%, p) when
G is open and K is closed, we must now show that given any open subset 4
of (2%, p) and any nonempty 4 € %, we can find open sets G;,G,,. .., G, and
closed sets K, K,,...,K, in X for which

Ae2 - N2 AR =2y~ A (2 = 2Ky c @

Since % is open in (2%, p), there exists ¢ > 0 such that %,(4) = . Since 4
is closed in the compact set X, there exist points {x;,...,x,} in A such that
A < UZ=ISS/2(XR). Let

G, = {xe X|d(x,A) < &}
and
Kk=X—SE/2(Xk), k= 1,...,”.

By construction, 4€2° and, since for each k, A N Se2(x) # &, we have
Ae2X — 2K« Therefore

A28 A (2X = 2Ky~ - A (2 = 2Kn),

Suppose B is another set in 26 n (2¥ — 2%y A~ -+ A (2¥ — 2%%). The fact
that Be 2°* implies

max d(b, A) < e. (11)

beB
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If for some a,e A we had d(a,, B) > ¢, then we would also have S,(a,)
X — B. But for some x; € 4, ag€S,,(x;) and this would imply in succession
S.2(x) € X — B, B < K;, and B¢2¥ — 2%« This contradiction shows that

max d(a, B) < e. (12)

acA

Inequalities (11) and (12) establish that p(4, B) < ¢, and as a consequence
20 AR =25 (X =2 =5 (4) c 9. Q.E.D.

If a cover of a space contains no finite subcover, we say the cover is
essentially infinite. To show that (2%, p) is compact when X is compact, we
must show that no essentially infinite open cover of 2% exists. As a consequence
of the following lemma, this will be accomplished if we can show that the
subbase % U A contains no essentially infinite cover. We remind the reader
that a topological space in which every open cover has a countable subcover
is called Lindeldf, and in metrizable spaces this property is equivalent to
separability.

Lemma C.1 Let Q be a Lindel6f space and let & be a subbase for the
topology on Q. If there exists an essentially infinite open cover of Q, then
there exists one which is a subset of &.

Proof Let # be the base for the topology on Q constructed by taking
finite intersections of sets in & and let ¥ be an essentially infinite open cover
of Q. Each Ce®% has a representation C = Uae 4 By, where B,e# for
every o€ A(C). The collection | Jc.{B,|oe A(C)} is an essentially infinite
open cover of Q, and, by the Lindelof property, it contains a countable,
essentially infinite, open subcover 9 = {B,,B,,...}. Each B, has a repre-
sentation B, = (7%, S,;, where S;;€ &, j = 1,. .., n(k). If for each j the cover
2;={S8:;,B,,Bs,...} is not essentially infinite, then there exists a finite
subcollection Z; which also covers Q. But then

n(1)

e[ U@~ 5] =2

is a finite subcover of Q. This contradiction implies that for some index j,,
the cover Z;, is essentially infinite. Denote R; = S;; . In general, given
Ry,R,,...,R, in & such that B, < R;, k=1,...,n, and {R,,R,,...,R,,
B,i1,B,+2,...} is an essentially infinite open cover of Q, we can use the
preceding argument to construct R,,;e% for which B,,,; = R,.; and
{Ry,R3,...,R,, Ry 1,Bys2,B,+3,...} is an essentially infinite open cover
of Q. The collection {Ry, R,, ...} is an essentially infinite open cover con-
tained in .&. Q.E.D.

Proposition C.2 Let (X,d) be a compact metric space and p the
HausdorfT metric on 2*. The metric space (2%, p) is compact.
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Proof We first show that (2%, p) is separable. Since (X, d) is compact,
it is separable. Let D be a countable dense subset of X and let

% = {S;(x)|xeD,n=1,2,.. }.

Let 2 consist of finite unions of sets in €. Then Z is countable and, as we
now show, is dense in (2%, p). Given A€2¥ and ¢ > 0, choose a positive
integer n satisfying 2/n < . The collection of sets {S,,,(x)|xe D} covers the
compact set A, so there is a finite subcollection {S,(x)|xe F} which also
covers 4 and which satisfies S;,(x) N 4 # J for every xe F. The set B =
(UxerS1/n(x) is in @ and satisfies p(4, B) < ¢.

As a result of Proposition C.1, Lemma C.1, and the separability of (2%, p),
to show that (2%, p) is compact we need only show that every open cover of
2% which is a subset of ¢ U 4 contains a finite subcover of 2X. Thus let
{G,|oe 4} be a collection of open sets and {K|fe B} a collection of closed
sets in X, and suppose

2X = [U 2G~] U [U (2% - 2"»9)].
aecA BeB

Define the closed set K = (");.5 K;. By definition, Ko ¢ | J;.5(2* — 2%#), s0

Ko €| Jqe 429 Thus for some o, € 4, we have K,€2°=, ie, Ko = G,,. This

means that

X_GaOCX_KO= U(X_KB),
BeB

and since X — G, is compact, there exists a finite set {f;,f,,...,5,} = B
for which
X -G, | J(X = Kp). (13)
k=1

To complete the proof, we show

2% = 26w { Jex- 2"”k)].
k=1
If C € 2%, then either C < G,,, in which case Ce2%o, orelse C N (X — G,,) #
. In the latter case, (13) implies that for some k, C n (X — K;,) # &,
ie, Ce2* —2ks.  Q.ED.

We now develop some convergence notions in (2%, p). Let {4,} be a
sequence of sets in 2%, Define

ﬂAn={xeX

n—aoo

liminfd(x, A,) = o}, (14)

n— oo

lim 4, = {xeX

n—oc

limsupd(x, 4,) = 0}. (15)

n— oo
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Forexample,if X = [—1,1]and 4, = {(—1)"}, we havelim,_ , 4, = {—1,1}
and lim,, A, = . If X =[—1,1] and 4, = [ —1/n,1/n], we have

lim 4, = lim 4, = {0}.
Clearly we have lim,, , A, = lim,_ ,, 4,. It is also true that lim,_.,, 4, and
lim,, , A, are closed. To see this for lim,_, 4,, let {x,} be a sequence in
lim,_, , A, converging to x. Then from (6) we have for each m
liminfd(x, 4,) < d(x, x,,) + liminfd(x,,, 4,) = d(x, X,,),

and since d(x, x,,) can be made arbitrarily small by choosing m sufficiently
large, we conclude that xelim,_, , A4,. Replace liminf,_, , by limsup,_, in
the preceding argument to show that lim,_, ., 4, is closed.

If lim,_, 4, = lim,_, 4,, we denote their common value by lim,_,  4,.
This notation is justified by the following proposition.

Proposition C.3 Let (X, d) be a compact metric space and p the Haus-
dorff metric on 2%. Let {4,} be a sequence in 2*. Then

lim A4, = lim 4, = 4 (16)
if and only if
lim p(4,,A) = 0. (17

Proof Assume for the moment that 4 # ¢ and suppose (16) holds.
Then for each x in the compact set A, d(x, A,) = 0 as n — oo. Given ¢ > 0,
let {xy, ..., x;} be points of 4 such that the open spheres S, ,(x;),j = 1,..., k
cover A. Choose N large enough so that for alln > N

d(x; A) <&,  j=1,...k

Now use the Lipschitz continuity [cf. (6)] of the function x — d(x, 4,) to
conclude that

d(x,A,) < ¢ Vxe A.
This implies that

lim max d(x, 4,) = 0.

n—>w xeA

This equation and (3) imply that (17) will follow if we can show
lim maxd(y,4) = 0. (18)

n—ow yeAn
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If (18) fails to hold, then for some & > 0 there exists a sequence y, € 4,, such
that n; <n, <---and

Ay, A)=¢ vk. (19)

The compactness of X implies that { y,} accumulates at some y,€ X which,
by (19) and the continuity of x — d(x, 4), must satisfy d(y,, ) > e. But
yo€lim,_, , A, by (14), and this contradicts (16). Hence (18) holds.

Still assuming 4 # J, we turn to the reverse implication of the prop-
osition. If (17) holds, then

lim d(x,4,) =0 VxeA, (20)
and
lim max d(y, 4) = 0. (21)
n—ow yeAn

Equation (20) implies that
Aclim A, < lim A4,. (22)

n— oo n—o
If xelim,_, , A,, then by definition there exists a sequence y, € A4,, such that
ny <n, <---and
lim d(x, ,) = 0. 23)

k—

We have from (6) that
d(x’ A) < d(x, yk) + d( Yis A)9

and, letting k — oo and using (21) and (23), we conclude d(x, 4) = 0. Since 4
is closed, this proves xe 4 and

[im 4, < A. (24)
Combine (22) and (24) to obtain (16).

Assume finally that A = . If (16) holds, then all but finitely many of
the sets A, must be empty, for otherwise one could find y, € 4, ,n; <n, <-- -,
and {y,} would accumulate at some y,elim,_, , 4,. If all but finitely many
of the sets A, are empty, then (5) implies that (17) holds. Conversely, if (17)
holds and 4 = &, then (4) implies that all but finitely many of the sets 4,
are empty. Equation (16) follows from (2), (14), and (15). Q.E.D.

For the proof of Proposition 7.33 in Section 7.5 we need the concept of
a function which is upper semicontinuous in the sense of Kuratowski, or
in abbreviation, upper semicontinuous (K).
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Definition C.2 Let Y be a metric space and X a compact metric space.
A function F:Y — 2% is upper semicontinuous (K) if for every convergent
sequence {y,} in Y with limit y, we have lim,, , F(y,) = F(y).

The similarity of Definition C.2 to the idea of an upper semicontinuous
real or extended real-valued function is apparent [ Lemma 7.13(b)]. Although
we will not discuss functions which are lower semicontinuous (K), it is
interesting to note that such a concept exists and has the obvious definition,
namely, that the function F:Y — 2% is lower semicontinuous (K) if for every
convergent sequence {y,} in Y with limit y, we have lim,_ , F(y,) = F(¥).
It can be seen from Proposition C.3 that a function F: Y — 2% is continuous
in the usual sense (where 2* has the exponential topology) if and only if it
is both upper and lower semicontinuous (K). We carry the analogy with
real-valued functions even farther by showing that an upper semicontinuous
(K) function is Borel-measurable, and the remainder of the appendix is
devoted to this.

Lemma C.2 Let Y be a metric space and X a compact metric space. If
F:Y — 2% is upper semicontinuous (K), then for each open set G = X, the
set

(yeY|F(y) = G} = F7(2%) (25)
is open.

Proof The openness of F ~1(2%) for every open G is in fact equivalent
to upper semicontinuity (K), but we need only the weaker result stated. To
prove it, we show that for G open, the set F~'(2¥ — 29) is closed. If {y,} is
a sequence in this set with limit ye Y, then

F(yn)m(X_G)#Qa n=172a~°'7

and so there exists a sequence {x,} in the compact set X — G such that
x,€F(y,),n=1,2,.... This sequence has an accumulation point xe X — G,
and, by (14), xelim,_ , F(y,). The upper semicontinuity (K) of F implies
xeF(y), and so F(y) n (X — G) # &, ie, ye F7'(2¥ - 2%.  QED.

Proposition C.4 Let Y be a metric space, (X,d) a compact metric space,
and let 2% have the exponential topology. Let F:Y — 2% be upper semicon-
tinuous (K). Then F is Borel-measurable.

Proof IfF:Y — 2¥isupper semicontinuous (K) and G is an open subset
of X, then F~!(2°) is Borel-measurable in Y by Lemma C.2. If K is a closed
subset of X, define open sets G, = {x|d(x,K) < 1/n}. We have K = (V=1 G,
and so a closed set A4 is a subset of K if and only if 4 = G,, n=1,2,....



THE HAUSDORFF METRIC AND THE EXPONENTIAL TOPOLOGY 311
This implies 2% = ()2 2%, and
0
F712% = () F71(2%)
n=1

is a G;-set, thus Borel-measurable in Y. It follows that for any set ¢ in the
subbase% U A for the exponential topology on 2%, F~1(%) is Borel-measur-
able in Y. By Proposition 7.1, any open set in 2% can be represented as a
countable union of finite intersections of sets in 4 U 2 and so its inverse
image under F is Borel-measurable. Q.E.D.
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