


LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY







AN INTRODUCTION TO COMPUTER SOFTWARE

by

DAVID N. NESS*

A19-69

September, 1969

MASSACHUSETTS
iiNoriTUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

IBRIDGE. MASSACHUSETTS "^





AN INTRODUCTION TO COMPUTER SOFTWARE

by

DAVID N. NESS*

A19-69

September, 1969

*Asslstant Professor, Sloan School of Management, M.I.T.



Dewey

SEP 10 1975'

RECEIVED

I

SEP 231969
M. I. T. LIBRARIES



AN INTRODUCTION TO COMPUTER SOFTWARE

A computer program Is a procedure (or algorithm) for performing some

computation. This procedure must be written In, or translatable Into the

machine language of a given machine for us to be able to perform (or "run")

the program on that machine.

In our dlsctisslon here It will sometimes prove useful to be able to

draw an analogy between human (or natural) languages and machine languages.

In doing so we must remember not to stretch the analogy too far. If for

no reason other than the fact that computer languages are usually a great

deal more precise than natural languages and thus such analogies are bound

to break down.

The languages of different computers differ from one another In ways

parallel to natural language. Some of them look very different from one

another while others share some resemblance. As a general rule, however,

the languages differ enough so that a procedure expressed In the machine

language of a given machine cannot be performed or understood* by a

different machine. This Is analogous to asking someone who only understands

English to execute a procedure written In French.

*We often say "executed" In this context.





- 2

We have come to call computer programs which solve real world (as

opposed to computer generated) problems applications programs « Such

programs are obviously the ultimate goal of any problem solver who seeks

the aid of the computer. As we will see, however, there is much more to

the subject of computer software than simply applications programs.

After several years of experience writing applications programs in

machine language, some programmers began to focus on the question of making

the man/machine communication process more efficient. They observed that

computer-aided problem solving normally consisted of two distinct phases:

1) Expressing the solution to a problem in some convenient

(often mathematical but not necessarily so) form,

2) Translating such an expression into the machine language

of a particular computer.

The natural question was whether these two phases could be separated or not.

One of the earliest, and surely the most important, answer to this

question was proposed by the designers of the FORTRAN (PORmula TRANslator)

language. Their idea was to design a language for expressing numerical

calculations in a form which was more convenient than machine language.

This language was not, for most purposes, quite as convenient as a natural

language, but it possessed one extremely important property that no natural

language has. FORTRAN can be translated, with virtually no aniiguity,

into a machine language. In fact, it is possible to write down an explicit

procedure for making this translation.



1



Thus if I can express my solution to some problem In FORTRAN, then

someone who only understfinds the translation procedure (not the original

problem) can translate it into machine language.

In point of fact, of course, this translation procedure is written In

machine language, and it is the machine Itself that performs the transla-

tion. Such a translation procedure is commonly called a compiler . The

Input to a compiler is called source language and the output is called

object (or target ) language . The object language need not necessarily be

a machine language, although it often is.

In this situation, then, I use the computer twice in the process of

solving some problems. I write my procedure in FORTRAN source language.

I have the FORTRAN compiler translate this into machine language, and

then I take this machine language procedure and actually have the machine

execute it. The computer is used twice, once to translate and again to

execute.

Let us look at this process in the analogy as it is vitally Important

in understanding the role of software. Let us assume we have a machine

which can execute procedures written in English. Let us further assume

that we have a number of people who would rather write their procedures

in French. I sit down and write an unambiguous procedure for translating

from French into English. I write this procedure down in English . Now

when I want to execute some procedure written in French, I first have my





- 4

machine translate It Into English (using my translation program) , and

then 1 have the machine execute the result of that translation process

(see Figures 1-2).

Given a compiler like the FORTRAN compiler, I can think of my computer

as though Its language were FORTRAN, rather than Its own machine language.

Indeed It would be possible, although probably not very sound economically,

to build a machine whose language was FORTRAN (I.e., It would be wired to

perform FORTRAN procedures directly). Thus a machine with a FORTRAN

compiler looks like a piece of "FORTRAN hardware". A real FORTRAN machine

differs from a machine with a FORTRAN compiler, however. In that a change

In our FORTRAN language would require physically rewiring the real machine,

while It would only be necessary to change some Instructions In the

translation procedure In the second case. Thus It Is easier to change

the program than it Is to change the hardware. Therefore we come to the

name software .

In our analogy, a machine which executes procedures expressed in

French is the analogue of the FORTRAN machine. Note that if we wanted to

change the meaning of a French word it would be necessary to rewire this

machine. We would not have to touch our English machine, however, as it

would suffice simply to alter the translation procedure, and the machine

would not need to be modified.

In talking about computer languages we often have occasion to mention

the level of a language. This is a very imprecise notion, but generally

we consider one language to be of a higher level than another if it is





Solution to

Problem Written
In French





closer to normal human terms than to machine language. Thus machine

language, for a given machine, is very low level while a natural language

is of an extremely high level.

As might be suspected from some of the discussion above, the

restriction that a computer language (like FORTRAN) be directly translatable

into machine language imposes some rather significant constraints on its

structure and character. First, such langtiages usually are very demanding

in their grammar. They often require a strict attention to such things as

punctuation which are not directly indicated by the nature of the problems

that the languages are intended to help in solving. As we will discuss in

a moment, this aspect significantly affects the ease with which it is

possible to develop the passive and active vocabularies appropriate to

using such a language.

A second point of importance with respect to computer languages is

that for the most part they are constrained to dealing with some specific

problem domain. The greater part of the history of the developments in

computer languages center around the creation of languages appropriate to

some broad, but not completely general, area of problem solving. Thus we

see the development of many computer languages. COBOL (the COmmon E[usiness

Oriented Language) is directed towards making it easy to express the

solution to many (hopefully common) business data processing problems.

GPSS and SIMSCRIPT, on the other hand, are directed towards problems

associated with the development and construction of discrete simulation

models.





- 6

This Indicates that it is always appropriate to ask what broad

problem area a computer language is directed towards helping us attack.

Since FORTRAN is generally directed towards numerical computation, for

example, it may be quite difficult to use it to help us solve a problem

in business data processing (maintaining a list of customer addresses

might be an example) . Similarly it may be Inappropriate to use a

simulation language to solve a numerical computational problem.

There are, however, many other dimensions to the software problem.

So far we have only really considered compilers which translate one computer

related language into another. We must also deal with interpreters . As

their name indicates, these procedures are qualitatively analogous to

those used by human simxiltaneous translators. Our compilers translated a

procedure written in French into one written in English. This procedure

could be performed, if desired, at some later point in time. Any

interpreter, on the other hand, would perfoirm each statement as it was

being translated. This procedure, while not intrinsically different,

makes certain things easier and other things more difficult.

For example, an interpreter is slower (generally speaking) than

operating a compiler. Consider a statement which is executed several

times. An interpreter would translate the statement each time just before

performing it. A compiler, on the other hand, would translate it only

once, and then execute or perform it each time without any translation

being necessary.





7 -

On the other side of the coin, however, the Interpreter allows some

flexibility not easily attained by the compiler. If the performance of

some step in the procedure modifies some other step in the procedure

(clearly nothing we have said so far prevents this from being the case)

,

then it may be easier to retranslate the statement every time. In such

cases the translation time is a necessary expense, and such things as

error detection may be considerably simplified.

Another important dimension for the classification of computer

languages is efficiency. Here we must be very careful as efficiency can

be measured on several dimensions. We will consider only three rather

narrow interpretations without going into the potential complexity of

some of the more global measures.

First, we might measure the efficiency of the compiler or translation

procedure itself. Since the process of translating a source language

procedure into object language requires time, this is of concern to us.

We would like the translation process to require as little time as

possible. A compiler which is efficient in this sense translates a

given program in less time. We call this measure compile-time efficiency .

A second measure of efficiency concerns the procedure which results

from the translation process. This is somewhat more difficult to see.

Let us go to the analogy for a moment. If I write a procedure directly

in English it will presumably be more efficient (i.e., shorter and

require less time to perform) than an otherwise equivalent procedure

which was originally written in French and then translated into English





- 9

conceive of would be incredibly difficult, we cannot use it today. This

consideration is very important when designing a computer language. Some

languages are much easier to implement than others.

Another important dimension of classification is ease of use. Here,

too, things are perhaps more complex than they might appear to be on the

surface. First let us consider active vs. passive use. As a speaker of

English I have an active vocabulary which is much smaller than my passive

vocabulary. 1 recognize and understand many words which 1 would never

think of using. There is a considerable difference between reading or

listening (which exercise the passive vocabulary) and writing or speaking

(which exercises the active vocabulary)

.

In computer languages a similar phenomenon arises. Some languages

which are quite easy to read may be very difficult to write. For example,

the statement "ADD PAY TO TOTAL" may seem clear and easy to write, but

if the language does not allow the statement "ADD PAY TO SUM" (because

"SUM" is a word reserved for use only in certain contexts), then it may

prove to be difficult to write.

A second important consideration with respect to ease of use is the

sophistication of the user. Naive users and sophisticated users need and

want different things. A naive user may well want a language where

statements are self-explanatory. This helps him remember what statements

to use, and helps quickly recall the purpose of each statement. Self-

explamatory statements are usually somewhat longer than would otherwise

be necessary. Since the naive user usually is not (or should not) be

attacking huge problems this verbosity is not very painful.





- 8 -

by our translation procedure. In a similar fashion, a good machine

language programmer is usually able to write a program which requires

less space and runs more quickly than an equivalent program generated by

the FORTRAN compiler. We will call this measure run-time efficiency .

The compiler designer can often choose a balance between these two.

Let us take a conventional FORTRAN compiler and the WATFOR compiler as

an example. In WATFOR all attention was directed at compile-tlme

efficiency with no particular concern for run-time. This produced a

compiler which compiles programs exceedingly quickly, but the programs

which are produced may not run very efficiently. This is quite appropriate,

for example, in an academic envlronnent where a student's program is

compiled again and again until it works, and then after a successful test

run It is thrown away.

The typical FORTRAN compiler, on the other hand, spends a substantial

amount of time during compilation In an attempt to produce a procedure

which makes efficient use of the machine at run time. This is obviously

more appropriate to an environment where the testing phase is only a

small part of the time during which the procedure will be used.

The third measure of efficiency is of little direct concern to us

as users of software. This is the efficiency (and ease) with which the

language itself can be implemented. English might be a nice computer

language to use, but as any implementation that we presently could





10 -

To the sophisticated user, however, excessive verbosity Is a

nuisance. Such a user is often writing large programs where extra wordi-

ness may detract from overall readability. To some extent use of a concise

language is analogous to the use of jargon (in the best sense) to communicate

amongst workers In a field. Such communication is often clear to the

Initiated, but obscure to those less familiar with it.

There are many other dimensions of classification which could be

discussed here. Our purpose, however, was only to present some of the

basic concepts and terminology. Let us close this paper by considering

a particularly important example.

Let us assume that we have written all of our procedures in French,

and used a French-to-English translator to get them to run on our English

machine. Now someone comes along and sells us a German machine, which in

this case has some technological advantage. Must we rewrite all of our

procedures? Clearly not, as all we need is a French-to-German translator,

and all of our old procedures will still be useful.

This is analogous, of course, to the data processing facility which

has its programs written in higher level languages. With 100 programs

in FORTRAN and 50 in COBOL and two (the FORTRAN compiler and the COBOL

compiler) In Machine Language A, it is only necessary to rewrite* the two

compilers, rather than the 150 programs, to change to Machine Language B.

*This Is an overstatement. In most practical circumstances some

further effort is required, but it is usually relatively small when

compared to the task of rewriting a program from the beginning.





11 -

Let lis close by considering a question that an astute observer might

have asked as we considered our last analogy, "Why not write an English-

to-German translator (i.e., a Machine Language A to Machine Language B

translator)?" This is where our analogy breaks down. Translation between

two machine languages is typically much more complicated than translation

from a higher-level language. It is simply a case of the flexibility of

the source language getting in the way. Thus we must be careful not to

overextend the analogy which has been presented.







13





^'^c>th^l



3 TDfiD D03 702 153

3 IDfiQ D03 b71 112

illlillEi'liiiiffiiiiiiiifiiiii

3 TDflD DD3 702 lEQ ^

/?P--=f

^/Z|-^''1

•^22-

3 =1Q6D 003 b71 IfiM

^2f-fe1

3 =1060 003 b71 17b

3 TOfiO 003 b71 Ibfi

^^^'6<?

/27-6f

3 TDflD DD3 702 2bD

3 TOaO 003 702 252

3 TOfiO 003 702 dH:3




