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Abstract: Exchange rates, like many other financial time series, display

substantial heteroscedasticity. This poses obstacles in detecting trend and

changes. Understanding volatility becomes extremely important in studying

financial time series. Unfortunately, estimating volatility from low frequency

data, such as daily, weekly, or monthly observations, is very difficult. Re-

cent availability of ultra-high frequency observations, such as tick-by-tick

data, to large financial institutions creates a new possibility for analysis of

volatile time series. Tick-by-tick data provides us a near continuous observa-

tion of the process that gives us potential to study volatility in much detail.

However, high frequency data has extremely high negative first order auto-

correlation in its return. In this paper, we use tick-by-tick Deutsche Mark

and US Dollar (DM/$) exchange rates to explore this new type of data. We
propose a model to explain the negative autocorrelation and a volatility es-

timator using the high frequency data. Daily and hourly volatility of the

DM/$ exchange rates are estimated and the behaviors of the volatility are

discussed.
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1 Introduction

There is considerable literature analyzing the behavior of exchange rates.

However, structural exchange rate modeling has not been very successful.

By studying monthly data, Meese and RogofF (1983a,b) have shown that

a random walk model fits at least as well as more complicated structural

models.

Empirical study (Hsieh 1988) has shown that daily returns are approxi-

mately symmetric and leptokurtic (i.e., heavy tailed). The autocorrelations

are weak but not independent and identically distributed (iid). One explana-

tion of the heavy tailed distribution is the hypothesis that data is indepen-

dently distributed as a normal distribution whose mean and variance change

over time ([6], [8] and [4]). The argument for changing variance of returns

is simple. The amount of "information flow" that cause change in prices is

not constant over time. Hence there is no reason to beheve that the variance

of the price changes is constant over time. Clark (1973) and many others

(Mandelbrot and Taylor 1969, Praetz 1972) have argued that observed re-

turns come from a mixture of normal distributions. If the random variable

Xt denotes the daily return of the price, the conditional distribution of ,Y(

given information is:

XtliJt -^NifiJiu,)) (1)

where cjt is all the information available at time t. The quantity ujt could be

the number of transactions (Mandelbrot and Taylor 1969), or trading volume

(Clark 1973).

One parametrization of this conditional heteroscedasticity was first stud-

ied by Engle (1982) where:

p

fiut)=ao + J2a,{Xt-,-fi)\ ao>Oa,>0, i = l,...,p (2)

«=i

It is called the autoregressive conditional heteroscedasticity (ARCH) model

since the heteroscedasticity is represented in an autoregressiv'e fashion.

Because the ARCH model exhibits the conditional heteroscedasticity present

in financial time series and is mathematically easy to manipulate, it has been

used to analyze many financial time series. Previous studies found that the

ARCH model provides a close approximation to many financial time series.



Since then many other parametrizations, such as the generalized autoregres-

sive conditional heteroscedasticity (GARCH) model (BoUerslev 1986), have

been proposed. They captured some characteristics of the volatility such as

volatility clustering. But there also exists problems. The parameters need to

be estimated. All these models use historical data. The volatility estimates

are often lagged.

The availability of high-frequency data has opened up new possibility in

estimating the volatility. Tick-by-tick data provides us with a near contin-

uous observation of the process. It gives us potential to study volatility in

great detail. Understanding volatility is the key issue in the conditional het-

eroscedasticity model (1) and any other financial time series model. This

paper explores tick-by-tick data and uses the data to estimate and study the

volatility.

2 High-Frequency Data

Because of fast growing computer power, gathering financial data is easier

than ever. Data is no longer recorded daily or weekly. Many large institutions

began to collect so called tick-by-tick exchange rate in the early eighties.

Different from stock market, the foreign exchange market has no geo-

graphical location, and no "business-hour" limitations. The deals are nego-

tiated and traded over the telephone. The transaction prices and trading

volume are not known to the public. The exchange rates used for most re-

search are the quotes from large data suppliers such as the Reuters, Telerate,

or Knight Ridder. Any market maker can submit new quotes to the data sup-

pliers. The quotes then are conveyed to data subscriber's screens. The data

suppliers cover the market information worldwide and twenty-four hours a

day. The quotes are intended to be used by market participants as a general

indication of where exchange rates stands, but does not necessarily represent

the actual rate at which transactions are being conducted. It is possible for

some participants to manipulate indicative prices occasionally and create a

favorable market movement. However, since a bank's reputation and credi-

bility as a market maker emerges from favorable relations with other market

participants, it is generally felt that these indicative prices would closely

match the true prices experienced in the market. A reader who is unfamil-



Table 1: A Sample of Tick-by-tick Exchange Rates
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Table 2: Summary Statistics of Tick-by-tick Returns
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Figure 1: Original Quotes From the Reuters and Telerate
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Figure 2: Validated Quotes
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Figure 3: Sample Kurtosis of Return of n-ticks
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unstable and then decreases. The last stage, decreasing kurtosis, is due to

increasing negative autocorrelation in data (see Figure 4).

Although we expect a slightly negative first lag autocorrelation as it re-

ported in other exchange rate literature, a —47% negative autocorrelation

in tick-by-tick return was surprising. To be cautious, we also calculated the

autocorrelations in four subgroups according to four quarters. The auto-

correlation coefficients are —0.4718, —0.4691, —0.4665 and —0.4632. The

negative autocorrelation is consistent. Obviously, high frequency data does

not follow a Brownian motion as it is assumed for low frequency data. Our

question is if there is any fundamental difference between the high and low

frequency data. After further studying the data, we find that the difference

in high and low frequency data is level of noises. The noise is neghgible in

low frequency data, but becomes very significant in high frequency data. The

noise may come from many different sources. For example, it could be round

off error. All financial data is quoted in finite digits. As we know that round

off Brownian motion introduces negative autocorrelation in its return. There

are also updating noises in quotes. To be visible in the market, traders keep



Figure 4: First-order Autocorrelations of Return of n-ticks
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updating their quotes. The new update is often sHghtly different from the

previous quotes even the market is still. Typographical errors are another

source of noise. Summarizing these arguments, we assume following process

for the exchange rate:

S{t) = dit) + B{Tit)) + tt (3)

where S{t) is logarithm of the exchange rate, B{-) is the standard Brownian

motion, both d{-) and t(-) are assumed deterministic functions, r(-) has

positive increments, and 6^ is the mean zero random noise independent to

the Brownian motion B{.). The noise, Cj, is combination of several sources

which were mentioned above. This extra noise causes most of the negative

autocorrelation in high frequency data.

Let X{s,t) = S{t) — S{s), the return in interval [s,t]. Then

X{s, t) = fiis, t) + ais, t)Zt + tt-e, (4)

where Zt is a standard normal random variable, a^{s,t) = r(f) — t{s) and

fi{s, t) = d{t) — d{s). The variance of the return is:

Var(X(3, 0) = ^'(5, t) + r]\t) + t]\s) + 2c{s, t)

8



where r/^(0 = Var(e() and c(s,t) = Cov(e,,et). When \s — t\ increcises,

cr^{s,t) increases as well. For large \s — t\, noise becomes negligible and

X{s,t) behaves like a random walk. When |5 — <| decreases to near zero,

cT^{s,t) diminishes. The return, X{s,t), is the difference of two noises. The

sample first order autocorrelation of such series is about —.5. When we study

high-frequency data, the noise is no longer negHgible. An autocorrelation of

-47% for the DM/$ exchange rate indicates that level of noises is very high

in tick-by-tick data.

There are several difficulties in analyzing the process (3). One of the

difficulties is lack of information about r(<) which we call it the cumulative

volatility. (7^{t — 6,t) = T{t) — r(< — 6) is called the ^-increment of volatility

or simply 6- volatility. Next section, we devote our attention to estimate the

volatility for any increment.

3 Volatility Estimation

In this section we concentrate on estimating the volatility of a given time

[0,n], T{n) — t(0). The function T{t) can be estimated increment by in-

crement. We first derive an optimal estimator of the volatility based on

assumption of constant variance and zero mean. Then we generalize the re-

sults to general process (3). Proofs of the theorems are listed in appendix

I.

Theorem 1 Assume that {S{t),t = 0, l,...,n} is a series of observations

from the process

S{t) = B{T{t)) + e, (5)

where et,t = l,..,n, are independent and identically distributed with normal

distribution and T[t) = a^t + b. Let Xt = S{t) — S{t — I). Then the maximum
likelihood estimator of a^ is

where

a'MLE = {l/n)±{X! + 2X,X,_,-^,)^-^^-^

P = ^ ana p = —

(6)



This MLE is not unbiased. However, we noticed that p and p' are very

close. An unbiased estimator can be obtained by eliminating the factors

^k^ and 4:

a'u = {Un)Ei^f + 2X,X,.,). (7)
1

Theorem 2 Under the assumptions of Theorem I, the mean and variance

of the estimator {!) are:

Ea^u = ^^ (8)

and

Var(<7\) = {\/n)a'i6 + ie^ + S^^ + ^'/n\ (9)

From (9), we find that variance of a'^u can be optimized by properly

adjusting the variance ratio rj'^/cr^. Since aggregation increases the variance

(7^, we apply estimator (7) to Xi^k = S{i) — S{i — k),i = k, 2k, ..., n where we

cLSsume that n is multiple of k. Let

(t2 u,k = - E (A7,,+2.Y,,X._,,,). (10)
" i=k,2k,...n

Estimator (10) is unbiased and the variance is given in following theorem:

Theorem 3 Under the assumptions of theorem 1

r? n^
Var(a2f;,fc) = (l/n)a''(6^ + IG-^ + S/-) + V/"' (H)

The variance is minimized at k =
[-Jj^]

or k = [-j^^] + 1, where [x] rounds

X down to the next integer.

Since the noise ej is independent, the variance of the estimator can be

further reduced by averaging the estimator (7) at different start points:

<^' = ^ E(A'.^ + 2X,^k.kX,.2k.k) (12)
kn

,^,

10



In fact, it can be proved that:

Var(a2) < -a\6k + 16^ + 8-j-^) + ^'/n^ (13)
ft Kff K O

The above three theorems assumed iid noises and constant variances.

However the estimator can also be used in a more general case. Suppose

that we have observations {5(<,),? = —'2k^—'2k + l,...,n} from process (3).

Then the volatility r{<„) — r(<o) can be estimated by:

^(^0, in) = ] f^iXlk + 2X,_,,,X„2k,k) (14)
^ .=1

Theorem 4 Assume Cov(ti,ti-k)=0 for alii. Then

E\/(<0,<n) = T{t^)-T{to)

k-l

+ ^(i/^')[a2(f,_i_;t,<._fc)-cr2(<„_,+i, <„_,)]

i=l

1=0

n

+{\lk)Y,[^i\U,U_,) + 2ti{ti,U_k)ti{ti_k^,_2k)] (15)
:=0

where r]^{t) = Var{et).

Only assumption we made in this theorem is the uncorrelated noises. T{t)

can be any increasing function and tt is not necessary stationary. Since

n

J2Wit„U_k) + 2fi{t„ t,_k)Kt,-k, t,.2k)] < 3 max{|/.(i„ U-k)\Mn) - d{0)]

i=k

the last term in (15) is negligible in high frequency data if the drift d{t) is

smooth. Therefore, for large n, the estimator (14) is approximately unbiased

if no jumps occurred in time interval [^o^n]- This estimator is also easy to

be updated when new data becomes available. It will allow us to estimate

the volatility T{t) dynamically.

11



4 Estimating Volatility of Exchange Rates

In this section, we apply the volatility estimator (14) to DM/$ exchange

rates. The data has one discontinuity which was in the week of August 13

when the data base was shutdown due to a power outage accident in lower

Manhattan area. The return of that week is set to be zero and so does the

volatility.

To choose the parameters k, we estimated the variance ratio rj^/a^ to

be approximate 6. Minimizing upper bond of variance (13), we have k =
6. Using all available tick-by-tick data, we estimate the volatility of DM/$
exchange rate in entire 1990. The estimate is .010349. To verify this estimate,

we compare it to the estimate under the Brownian motion assumption. If the

data had no noise and followed a Brownian motion, the quadratic variation

{n/k)

Qk= Yl x{Uk-k.tikf
i=k

would be a standard estimator of the volatility. When the quadratic variation

is used on data with noise, it overestimates the volatility. The bias decreases

along with the sample frequency. The expectation of the quadratic variation

is:

{n/k)

1=1

{n/k)

i=l

where c{t,f.,t,k-k) = Cov(e(,^, e(_^_^). When e('s are uncorrelated and /I's are

negligible,

{n/k)

EQ, =^r(^„)-r(<o) + 2 ^tjI (17)
1=1

which decreases as k increases. We plotted Qk against k in Figure 5. Both

axes have a logarithmic scale. When the frequency is low, the quadratic

variation is about the same as our estimate except for a high variation, which

is caused by small sample size. In high frequency, the bias is tremendous.

When k = I, the quadratic variation is about thirteen times the size of our

12



Figure 5: Quadratic Variations Using n-tick Returns
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estimate. Therefore, from (17), the total variance of the noise is about six

times the total volatility which confirmed our early estimate of the ratio.

To estimate daily volatihties, we need to define the start and the end of

a day since the foreign exchange market is a twenty four hour international

market. We choose 24 hours from 0:00 Greenwich Mean Time (GMT) as a

day because that 0:00 GMT is 9:00am Tokyo time and 24:00 GMT is 7:00pm

New York time. This twenty-four hour period covers most activities of the

world market. Average weekday daily ticks is more than 7,000. Quotes in

weekends or hoHday is much less. For small n, volatility estimate from (14)

could be negative. In such a case, we let the estimate to zero to avoid negative

volatility. The daily volatility estimates of DM/$ are plotted in Figure 6.

The six largest volatilities were on January 4, 5, 30, July 12 and Au-

gust 2, 3, 1990. On January 4 and 5, the German central bank surprisingly

intervened the foreign exchange market and pushed the dollar lower. On
January 30, a wide market followed a rumor that Mr. Gorbachev was con-

sidering resigning as secretary of the former Soviet Communist Party. On
July 12, the dollar tumbled because possible lower interest rate by the US

13



Figure 6: Daily Volatility Estimates of 1990 DM/$
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Federal Reserve. On August 2 and 3, the Dollar had another wild ride as

the news of Iraq's invasion of Kuwait spread around the world. However, the

large volatility does not always have large price change. The daily change

for above six days are -0.0537, 0.0162, 0.0212, -0.0178, 0.0058 and -0.0074

respectively. On August 2 and 3, the exchange rate only changed 58 and 74

points which are about the average.

When we study low frequency data like daily price, noise becomes negli-

gible and the price change, Xi, approximately normal distributed with mean

zero and variance erf, or rescaled return ¥{ = X,/ai is a standard normal

random variable. Therefore we can test our model assumption (3) by testing

the normality of rescaled return Y,. Excluding zero volatility estimates (all

on Saturdays), we plot Q-Q normal plots for both return A", and rescaled

return Yi in Figure 7. The basic statistics of both Xi and Yi are shown in

Table 3. The 95% confidence intervals of the moments of Yi are given in

the parentheses. Table 3 also shows the Kolmogorov-Smirnov goodness-of-fit

test for normality. Comparing the statistics in column A', and column Yi, we

conclude that Yi is much closer to having a normal distribution. It indicates

14



Figure 7: Q-Q Plot of Daily Returns
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Table 3: Basic Statistics of Daily Returns



Table 4: Average Daily Volatility



Figure 8: Average Daily Volatilities
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Figure 9: Average Hourly Volatilities
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Figure 10: Q-Q Plot of Hourly Returns



5 Conclusion

High frequency data can be described as a Brownian motion with a noise.

This noise brings a strong first lag negative autocorrelation in high frequency

data. The autocorrelation decreases as frequency decreases since the role of

the noise reduces. High frequency data can be used to estimate the volatility

in high frequency in reasonable precision. Different from other volatility

estimator, our volatility estimator mainly uses the data within the period we

are interested instead of historical data. This allows us to capture the market

volatility quickly without delay. The estimate is nearly unbiased when price

has no jump. Since trading volume and volatility are highly correlated, this

type of volatility estimation is more important in exchange market than in

other market because of unknown trading volume.

Besides of many other applications of the volatility, we are more interested

in modeling and forecasting the time series. Volatility can be used to rescale

the return to address the heteroscadesticity like the ARCH model. We also

can analyze the data in volatility scale in stead of calendar time scale to

eliminate the heteroscadesticity. We will discuss more of these issues in our

future papers.
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Appendix I: Proof of Theorems

• Proof of Theorem 1:

Under assumptions of the theorem,

Xt = aZt + e, - c,_i

is a normal random variable with mean zero and variance v^ = (7^ + 2r/^,

where 77^ is the variance of £(. Xt has the first lag autocorrelation

p = —Tj^/v^. The likelihood function of Xt is

L{s\p;Xu...,Xr,) = /(A'„|X„_i)/(X„_i|X„_2).../(.Yi|Xo)

Notice that Xt\Xt-i is also a normal variable with mean pXt-i and

variance s^ = i'^(l — p^), we have

L{s\ p; X, , ..., X„) = (27r.^)-"/^exp(-t ^^^^^^).
(=1 —

^

The log-likelihood function is

i{s\p;X,,...,X„\Xo) = -^M2;r.^)-X: ^^'7f-^^'

The partial derivative of the likelihood function with respect to p is

di ^^ iXt-pXt-,)Xt-i

dp h
Setting the derivative equal to zero and solve for /), we have

« _ Y^^-\ XjXt-i
P - r-n v-2

Similarly, for 5^, we have

d^ ^ n ^ {Xt-pXt-,Y ^

20



or

1 ^
s
2 = -j2{Xt-px,_,f

"«=i

^ (=1 (=1 t=l

Substituting p hy p m above formula, we have

" (=1 (=1

= -t-'^ii^-PP')

where

It is easy to show that

a' = v'{l+2p) = s'{l+2p)/{l-p')

Therefore, the maximum hkelihood estimator of a^ is

= i|:,.v?..v,A-,..A,lL^

• Proof of Theorem 2:

E{l/n)f2iXf + 2X,Xt-,) = (l/n)f;(Var(A^) + 2EX,X,_i)
1 1

= {l/n)±{a' + 2rj^-2r,^) = a\
1

and

Vara\ = (l/n)2Var X:(A? + 2A^X,_i)
1

21



1

+2aZt-xtt - 2aZt-itt-x - 2e(e(_2 + 2e,_ift_2) + e^ - tl]

n n^

n a^ a^ n^

• Proof of Theorem 3:

Since VarX,,i — ka^
, (9) implies that

Ws.v{ka^u,,) = {k/n}{ka')\6 + 16-^ + 8-^) + ^Vin/kf

or

Var(aV) = (l/n)(<72)2(6A: + IG^ + sf^) + V/n^
CT'' ka*

The variance reaches minimum when

• Proof of Theorem 4:

EVito,tr.) = (\/k)J2[a'it,_,J,) + r]'{U)-ri'{U_k)

+fl'^{t„t,_k) + 2^l{t„t,_k)fi{t,_k,t,_2k)]

= [r{tn) - T{to)]

k-1

1 = 1

k

+{Uk)j:iv'{t,-k)-v'itn-.)]
1=0

n

1=0

22



Appendix II: Validation Program
There are many reasons to have outliers in original data set shown in

Figure 1. Most quotes are typed in by human, there are unavoidable keying

errors. Most outliers we found are this type of errors. Outlier also could be

caused by large bid and ask spread. In such case, at least one of bid or ask

price does not reflect true market price and becomes an outlier. Occasionally,

electronic error also makes outliers. Following program is designed to remove

above three types of outhers:

A quote is considered as an outlier and removed from the time series if

i) a rate is more than 5 or less than 1, or

ii) bid and ask spread is more than 50 points, or

iii) a rate is above or below than its neighbor prices more than a certain

threshold.

For (iii), we carry out two regressions using ten bid prices on each side

of the data. If the current bid price is higher or lower than c-point from

both regressions, it is considered as an outlier, where c is range from 15 to

30 points dependent on the variances of the neighbor points. Whenever an

outlier is detected, we go back ten steps and repeat above procedure.

About 0.73% of data have been removed by this validation program.

The first ten removed data due to (iii) are listed in Table 6 with possible

explanation of error.

23



Table 6: The First Ten Outliers Removed From 1990 DM/$

Removed Data
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