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Abstract

We study a class of continuous time optimal entry-exit decisions under uncertainty for a

single firm and for a duopoly. Under very general hypotheses, the optimal policy for a single

firm exists and is unique. This unique optimal policy is a barrier policy: A firm optimally

enters or exits from an industry when the demand reaches certain barriers. In the context of a

duopoly, there may exist multiple subgame perfect equilibria. We demonstrate how to identify

a subgame perfect equilibrium in which both firms employ stationary barrier policies. In some

of these stationary equilibria, a firm may exit even when the demand has been rising on the

average.
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1 Introduction

Many important economic decisions are about the optimal timing to take certain actions. Examples

of these decisions include the optimal timing to undertake a capital investment project, to exercise

an American call option, to buy a house, and to refinance a mortgage. This paper focuses on

a firm's decision to enter or to exit from an industry. The methods developed here are general,

however, and can be applied to analyze optimal timing decisions in other contexts.

There is a vast economic literature on the entry and exit decisions of a firm, for which Wil-

son (1990) is a good recent survey. Much of the literature in entry-exit decisions of a firm uses

discrete-time models. The notable exceptions are Dixit (1989), Fudenberg and Tirole (1986), and

Ghemawat and NalebufF (1985). Fudenberg and Tirole (1986) analyze a gaming situation between

two competing firms with incomplete information when there is no exogenous uncertainty; while

Ghemawat and Nalebuff (1985) study a similar situation with complete information. Dixit (1989)

consider a single firm's entry and exit decision when the exogenous uncertainty is modeled by a

Brownian motion.

The purpose of this paper is twofold. First, we use a general methodology in solving a single

firm's optimal entry and exit problem in continuous time using the theory of martingales. Unlike

Dixit (1989), who drew implications of his model using a particular parameterized example, we give

general qualitative characterizations of a firm's optimal timing decision. Using a continuous time

model when the choice variable is time is natural as time, after all, is continuous. More important,

continuous time models are better able to yield clean analytic results. This has been evidenced in

particular by continuous time models in finance; see Merton (1990). Here in this paper, we also

get clean and general analytic results which are usually difficult to get using discrete time models.

Second, we go beyond a single firm's problem to analyze a duopolistic entry-exit game with

complete information. The focus of our study here is to examine subgame perfect equilibria directly

in continuous time without having to take limits of the outcomes of a sequence of discrete-time

games. This is in contrast to the emerging literature on continuous time extensive form games; see,

for example, Simon (1987) and Simon and Stinchcombe (1988).

The rest of this paper is organized as follows. Section 2 formulates the entry-exit problem

in continuous time for a single firm. The uncertain demand is modeled by a standard Brownian

motion. It is demonstrated that the optimal entry-exit policy is unique and is a barrier policy: The

firm should enter if the demand increases to exceed a certain level and should exit Jifterwards when

the demand decreases to reach another level.

Although presented in the context of a Brownian motion uncertainty, our methodology can be
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used in any environment where the uncertainty is modeled by a Strong Markov process. In such a

case, the optimal entry and exit decisions may no longer be barrier policies. Rather, a firm should

enter the first time the demand reaches a possibly time-dependent Borel set and should exit after-

wards the first time the demand reaches another possibly time-dependent Borel set. One advantage

of using a Brownian motion to model uncertainty is that, besides the qualitative characterizations,

the entry and exit barriers can also be analytically expressed.

Section 3 analyzes an exit game of a duopoly. The two firms in the industry, one strong and one

weak in a sense to be formalized, are seeking the best time to exit. One subgame perfect equilibrium

is the one in which the strong firm does not exit unless the demand is such that it cannot sustain

even as a monopoly and as a result the weak firm aJways exits before the strong firm does. We

also identify other candidates for a subgame perfect equilibria by characterizing the exact upper

bound and lower bound on each firm's subgame perfect equilibrium strategies. Some interesting

phenomena occur in these equilibria. For example, either firm may exit when the demand has been

on the average increasing. This happens for the strong firm, for example, because the weak firm

plays tough and would not exits until the demand falls significantly. The strong firm then trades

off the potential of becoming a monopolist after the weak firm exits against the current duopoly

losses. An increasing demand increases the expected waiting time for the strong firm to become a

monopolist and is a bad news. Thus it exits when the demand reaches a critical level from below.

We continue in Section 4 to consider a game of an incumbent versus a potential entrant. We

exhibit a subgame perfect equilibrium. In this equilibrium, as expected, the existence of a potential

entrant makes the life span of the incumbent shorter than when it is a monopoly even though the

incumbent may indeed remain as a monopoly throughout its lifetime. When the demand is low,

the possibility of future duopoly competition limits the potential future monopoly profits. As a

consequence the incumbent is less tolerant to the current monopoly losses than a monopoly facing

no potential entrant and thus it exits earlier than a monopoly will even before the entrant enters.

In addition, the entrant may not enter the industry even though the demand is above the level

where both firms can be profitable as a duopoly. This is so because by waiting longer, the entrant

may be able to enter after the incumbent exits. And the benefit from being a monopoly in the

future outweighs the losses in the current duopoly profit.

Section 5 outlines how the analysis of Section 2 can be generalized to allow re-entry once a firm

exits. Concluding remarks are in Section 6.
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2 Single Firm Problems

We consider a single firm's decision to enter or to exit out of an industry, which is characterized

by an uncertain demand. Formally we model the uncertain demand by taking the state space Q.

to be the space of continuous functions of time from time to infinity. Each u; G fl represents a

complete description of one possible demand over the time horizon [0, oo) and u>{t) is the demand

at time t if the state is u. The state-dependent demand can then be modeled by a coordinate

process X(u;,t) = u){t), that is, the demand at time t is X{uj,t) if the state is u.

The information the firm has at t contains the historical demands from time to time t.

Mathematically, this information is represented by the smallest sigma-field on fi with respect to

which {X{iJ,s);0 < s < i} is measurable and is denoted by J^°. The information the firm has at

"infinity" from observing the demand over time is J^°, which is the smallest sigma-field finer than

every J^° for all t. Let P be the probability on the measurable space {^,J^) under which X is a

(/z,(T)-Brownian motion starting from X(0). That is, X{t) = X(0) + fit -{ (7B(t), where 5 is a

standard Brownian motion under P, X{Q) is a random variable independent of B, and fi and a are

constants. Note that in the above specification, we have used X{t) and B{t) to denote the random

variables X{-,t) and B{-,t), respectively. Often, we will also use Xt interchangeably with X{t).

To simplify the technical difficulty, we will "complete" the measurable space (fi, 1"°) with respect

to P and denote this space by {Q,,T).^ Thus {Q,T^P) is a complete probability space. ^ We will

also enlarge the information the firm has at time t to include not only the historical realization

of demand from time to time t but also all the demand scenarios described in (fl,/", P) that

will only happen with zero probability. This information is the "completion" of ^° with respect

to the completed probability space and is denoted by Tt. It follows from Chung (1982, corollary

to theorem 2.3.4) that {Tt;t G [0, oo)}, the increasing family of sub-sigma-fields of !F, is right-

continuous in that J^t = C\s>t ^' f^'' ^ ^- We assume that the probability mecisure P induces a

family of conditional probability measures \^P^\x G 3?} such that, under P^, A' is a (/i,(T)- Brownian

motion with initial state x or starting from x. All the almost surely statements will be with respect

to P unless otherwise specified.

When the firm is already in the industry, it derives a profit rate of i^{Xi) at time t given the

demand Xf, where 7r(-) is increasing^ and nonconstant. We assume that £r[/o° ^''^'KC^OI^^l < °°

'The procedure of completion with respect to P is to generated a sigma-field T using T° and all the subsets of P
measure zero sets.

A probability space is said to be complete if all the subsets of probability zero sets are measurable.

^We will use weak relations throughout. For example, increasing means nondecreasing, positive means nonnegative,

lower than means no higher than and etc. When a relation is strict, we will use, for example, strictly increasing.
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and that the process {e '"*/(A'(),< 6 3ff+} is bounded below and above by two martingales, where

/(x) = E, fJo e-''7r{Xt)dt (1)

Ei[-] is the expectation under P^, ^+ = SJ+ U{+<^}> ^^^ we understand that at t = oo, e~'^* f{Xt)

is set to be zero. By the fact that n is increasing and X is a Brownian motion, f{x) is continuous

and increasing. When the firm is not in the market, the profit rate is assumed to be zero. Entering

or exiting from the market incur a one-time fixed cost. Let q denote the cost of entry and^ be the

cost of exit. For simplicity, we also assume that once a firm exits, it is prohibitively costly to re-

enter. (This is not necessary. We will show in Section 5 how our results can be generalized to allow

for the re-entry of a firm.) In order to avoid the trivial cases that the firm will either never enter or,

once enter, will never exit, we assume that there exists a x° and y^ with — oo < i° < r/° < oo such

that 7r(2/) > —r0 for y > x^, and x{y) < —r(3 for y < x°, and 7r(j/) > ra for y > y° and n{y) < ra

for y < 2/°.

We are interested in two problems a firm faces. First, what is the optimal time to exit from

the industry if the firm is already in it? Second, given an optimal exit time of a firm, what is its

optimal time to enter the industry? Formally, the first problem the firm faces is to find an optimal

exit time, to maximize the expected discounted future profits:

re-^'ir{Xt)dt-e-^T'p
, (2)

^0
sup E
T6T

where T denotes the collection of all optional times'*, E[-] is the expectation under P, and r > is

the riskless interest rate. Note that, by the strong Markov property of X ,^ the objective function

of the firm can be written as^ _ ,•,-,

rT

i
-rT,

e-'-'Tr{Xt)dt - e-'' (3 f{Xo)-E[e-^'{fiXT) + fi)].

Given the discussion above, (2) is equivalent to

Put

v{x) = fix) - mf.£,[e-^^(/(Xr) + /?)].

(3)

(4)

*T : u( — »+ is an optional time if {w G O : T(u) < t} e J^, for ail < 6 »+.
X is said to have the Strong Markov property if for all optional time T and random variables Y independent of

/"t, we have £[y'|J'r] = ^[yiA'r] a.s., where /'r, the sigma-field of events prior to T, consists of events A so that

.4n(r <«}€/•.
^Throughout, we understand that E[e-'''^g(XT)] = j^^^^^e-'''^'"^g{X(u!,T(ui))P{du) {or any real-valued func-

tion g.
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By the hypothesis that e~'^*f(Xt) is bounded below by a martingale, v(x) is finite for all x. More-

over, since / is continuous and A' is a Brownian motion, u is a continuous function.

The second problem the firm faces is to find the optimal time to enter the industry knowing

that it will behave optimally afterwards:

sup E[e-''^iviXT) - a)], (5)
TeT

where we have again used the strong Markov property of X. Put

i{x) = sup E^[e-''^{v{XT) - a)]. (6)
TeT

The hypothesis that e~'''/(A't) is bounded above by a martingale implies that v{x) is finite for all

X. Similar to v, v is also a continuous function.

A solution exists for either (3) or (5) means there exists an optional time that attains the

infimum or supremum, respectively.

We will show below that the solutions to (3) and (5) exist and are characterized by two barriers

/* and u*. The aptimaLexit time is the first time that the demand X is lower than /* and the entry

time is the first time that the demand is higher than u". When /* = -oo, the firm will never exit

once it is in the industry and when /* = +oo, the firm exits at any level of demand and thus it will

never enter to begin with and u* = +00. Similarly, when u* — —00, the firm enters at any level of

demand; and when u' = +00, the firm will never enter.

The next theorem shows the existence of a solution to (3) and this solution is a barrier policy.

Theorem 2.1 There exists a solution to (3) and

T' = inf{< > : v{Xt) + /3 = 0} = inf{< >0:Xt< I'}, (7)

for some /' 6 K with 7r(/*) < —rfi, is a solution.

Proof. From the hypothesis that the process {e~^^f{Xt),t 6 ^+} is bounded below by a martin-

gale, Theorem 1 of Huang and Li (1990) shows that there exists a solution to (3) and this solution

is characterized by the first time that e~^*(f{Xt) + 0) is equal to the largest regular submartingale

dominated by it.^ If these two processes never equal in certain state of nature, the firm will then

never exit. We claim that this largest submartingale is e~^^<j){Xt) = e~^^{f{Xt) — v{Xt)).

A regular submartingale {Yt\ t S 3?+} is an optional process so that for any bounded optional time T, E[Y.f] < c»

and for all optional times S >T, E[Ys\J'^t] < Yt a.s., where an optional process is a process measurable with respect

to the sigma-field on f2 x [0,oo) generated by all the processes adapted to /" having right-continuous paths.



2 SINGLE FIRM PROBLEMS

First we show that e~'''0(A'() is a regular submartingale dominated by e~'''(/(,\'() + 0). It is

easy to see that v{x) > -/3 for all x. Thus e~'''0(A'() < e~'"'(/(.Y() + f3) a.s. Note that for any

optional times S > T,

E[e-^^4>iXs)\J'T] e-^^ inf E[e-^^^-^HfiXr) + P)\XsUt a.s.
reT
T>S

> e-^^inf £[e-^(^-^)(/(X.) + /?)|^r] a.s.

r>r

= e-^^(/(XT) - KXt)) a.s.

= e""" </)(Arr), a.s.

where we have used the strong Markov property of X. Thus e~'^*(/){Xt) is a regular submartingale

dominated by e~''*f(Xt).

Second we claim that e~^^(j)(Xt) is the largest regular submartingale dominated by e~'^^{f(Xt) +

0). Suppose otherwise and let y be a regular submartingale dominated by e~'"'(/(Xt) + /3) and

Y{u;,t) > e~^'<i){X{u,t)) on a set of {u,t) whose projection onto 17 is of a strictly positive proba-

bility. Define

Sn = mi{t > : Yit) > e-'^VC^O + -}•
n

It is easily verified that Sn is an optional time and by the hypothesis there exists an n > so that

Pr{5n < oo} > 0. Since e-'"'(/(Xt) + /?) > Y{t), we have

e-'-nXsJ =
^^

m^f^^^ Eie-^-^ifiXj) + 0)\Ts„] >
^^

W^^^ E[YiT)\Ts„] = y(5„) a.s.,

where the last equality follows from the fact that F is a submartingale. However, F(5n) >

e~''^"(^(Xs„) + ^ with a strictly positive probability. Thus F(5„) > e~''^"<f){Xs„) with a strictly

positive probability, which is a contradiction.

Third, we want to show that

r- = inf{< > : f{Xt) + /? - <i>{Xt) = 0}

is a barrier policy, that is, T* is the first time that Xt is less than or equal to a level /*. Note

that f{x) — 4>{x) = v{x) and v{x) is increasing since tt is increasing and nontrivial and a Brownian

motion has stationary and independent increments. Recalling that v is continuous and v{x) > —0,

there must then exist a /* so that

T* = inf{t >0:Xt< /'}.
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Finally, we are left to demonstrate that /* G J? and 7r(/*) < — r/3. To see this, we observe that

T' is a solution to (3) if and only if it is a solution to

mf,£[e-V(Xr)],

where

fix) = E
/•oo

/ e-'-'(x(Xt) + r0)dt
Jo

Given this, T* is a solution to (2) if and only if it is a solution to

sup E
TeT

/ e-'\7:{Xt) + r(3)dt
Jo

= fiXo)-\nf^E[e-^'fiXT)].

That is, T* is also an optimal exit time when the firm's profit function is tt + r/3 and there is no

exit cost. In this case, it is clear that the firm will not exit unless it is making a loss; that is, when

7r(l') + rP <0. Hence we have ir{l*) < -rf3.

If /* = +00, 7r(j/) must be less than —r(3 for arbitrarily large y. This contradicts the hypothesis

that 7r(2/) > —r0 for y > x°. Similarly, if /* = — oo, we must have 7r(j/) > — r/3 for arbitrarily small

y and this contradicts the hypothesis that Tr{y) < — r/5 for j/ < i°. Hence /* 6 5?. I

Using similar arguments and the hypothesis that e~'''/(Xt) is bounded from above by a mar-

tingale, one can show that solution to (5) is also characterized by a barrier: enter the industry if

the demand Xt is greater than or equal to a given level u*.

Theorem 2.2 There exists a solution to (5) and

T' = infO > : v{Xt) = v{Xt) - a] = inf{< > : Xj > u*}, (8)

for some u* G 5f with 7r(u*) > ra, is a solution.

Combining Theorem 2.1 and 2.4, the optimal entry time and exit time for the firm given that

the firm is currently outside the industry are recorded below:

Theorem 2.3 Suppose that the firm is currently outside the industry. Then the optimal entry time

for the firm is T^ defined in (8) and the optimal exit time for the firm is

T^ = inf{< >T^ :Xt< /'}. (9)

With the continuity and unbounded variation properties of a Brownian motion, we next show

that the barrier policy characterized in Theorem 2.3 is the unique optimal entry-exit policy.
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Theorem 2.4 The T^ and T^ defined in (8) and (9) are the unique optimal entry and exit times.^

Proof. We will show that T' defined in (7) is the unique solution to (3). The arguments for

proving the uniqueness of the optimal entry time are similar.

Proposition 2 of Huang and Li (1990) shows that if 5 is another optimal exit time, then S > T'

a.s. Thus if /* = -oo, T" must be the unique optimal exit time.

Assume therefore that P{S > T'} > 0. Put

Tn = in{{t >0:Xt<l'--}.
n

By the fact that a Brownian motion has continuous and unbounded variation sample paths, it is

easily seen that r„ [ T* P-a.s. Thus {5 > T*} = Uni'^ > T^]- If we can show that, for every n,

we have

E[e-^^<j>{Xs)\TT^ > e-^^"0(XTj a.s. on {S > T„}, (10)

then we are done as this will imply

E[e-'^<{>{Xs)\J^T'] > e-''^' 4>(Xt') a.s. on {S > T'}

and hence

E[e-^^{f{Xs) + f3)] > E[e-^^4>iXs)] > E[e-^^' 4>iXT')] = E[e-^'^' {/{Xt') + f3)],

and 5 is sub-optimal, where the first inequality follows as e~'''</)(X() is dominated by e~'^\f{Xt)+(3).

To show (10) let r = inf{< > r„ : Xj = /*} and set So = Tn, S2 = S V T„, and 5i = 52 A r.

Then for i = 0, 1,

e-'^'<j>{Xs.)<E[e-'^'^^<l>{Xs„,)\Ts.], a.s., (11)

since <^ is a submartingale. Inequality (11) for i = is strict on {^i > 5o} = {5 > r„}. To see

this, we note that

e-^^''<A(X5o) - E[e-'^'<l>iXs,)\J'so]

= e-^'%fiXso) + /?) - E[e-^'^{f{Xs,) + P)\J'so]
fOO TOO

= E[ e-^'{n{Xt) + r(i)dt\J^So]-E[ e'^'iniXt) + rP)dt\J^s,]
JSo JSi

= E[f ' e-^\ir{Xt) + rP)dt\Tso] < 0,
JSo

We used a different argument in an earlier version to prove this theorem. The current proof is suggested to us

by an anonymous referee.
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where the first equality follows since, on {S > T„}, 4>(Xs,) = f(Xs,) + for i = 0,1, and the

inequality follows because 7r(X() < —r(3 for t G [5o,5'i). The two inequalities in (11) (t = and

i = 1) imply that on {5 > Tn),

E[e-^'4>{Xs)\TT^ = E[e-^'^<l>{Xs,)\:Fso]

= E[E[e-^^<j>iXs,)\J's,]\rs,]

> e-^^"<^(.YrJ,

which is (10).

In sum, we have shown that there exists a unique solution to a firm's entry and exit decision

and this solution is a barrier policy. Note that in our demonstration of Theorems 2.1 and 2.2, we

only used the Strong Markov property and time and spatial homogeneity of a Brownian motion,

the latter of which allows us to conclude that v is increasing and time independent, thus the barrier

policy, and the barriers are time independent. Thus these two theorems can be generalized easily

to the cases where the demand is any optional process^ having the Strong Markov property except

that the barriers may be time dependent and may not be half-lines any more. Rather, the optimal

policy will prescribe entry or exit when the demand enters or leaves a time-dependent Borel set.

The proof of the uniqueness in Theorem 2.4 uses the fact that a Brownian motion has, in addition

to the Strong Markov property, continuous and unbounded variation sample paths. But we did

not use the distributional property of a Brownian motion, namely that its increments are Normally

distributed. Thus the proof will work for any (nondegenerate) diffusion process.^"

The advantage of using a Brownian motion to model uncertainty is that, besides the qualitative

statements made above, we can explicitly calculate the optimal exit and entry barriers as demon-

strated below. To determine the optimal barriers /' and u*, we first calculate the expected dis-

counted profits for any barriers, using Harrison (1985, chapter 3). Let T{y) = inf{( > : Xt = y}.

Then
exp[-a,(x -

J/)] \i X >y,
exp[-a*(j/ - x)] if y > X,

and

«(x,y).^.[e-^(v)j^|-pi-«:;--y;{ ;-^^- (12)

fix) = E, / e-'\{Xt)dt =1 niy)e{x,y)dy, (13)
7o J J-oo

See footnote 7 for the definition of an optional process and we need the optionality of the demand in order to use

the existence results of Huang and Li (1990).

A diffusion process is a process having continuous sample paths and the Strong Markov property. A nondegenerate

diffusion process also has unbounded variation sample paths.
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where

a. = a-'^[^J^i^ -\-2o^r^- n], and (15)

a* = a-'[^/i2 + 2a2r-;i]. (16)

Let a discrete variable indicate whether the firm has entered the market (/) or not (0), and let

v(xj\l) and v{x,u,l;0) be the expected future profits under a barrier policy with parameters /

and u when the current demand is a;. It follows from the strong Markov property of X that

( f(x)-EAe-^^^'HfiXT^,)) + f3)] = f{x)-eixJ)ifil) + (3) for x > /,

{ -fi for i< /;

f
^,[e-'-^W(t;(XT(„),/;/) -a)] = ^(x,u)(t;(t., /;/)-«) for x < u,

v{x,u,l;0) = <

{ v{x, l\ I) - a for X > u.

Thus, the values of the optimal barriers can be determined by finding an /* maximizing v{x,l;I)

and an u' maximizing v{x,uj*; 0). The optimal expected profits are v{x) = v{x,l'\ I) and v{x) =

v{x,u'J'';0), respectively, depending upon whether the firm is already in the industry or not.

These results are recorded in the following proposition.

Proposition 2.1 /' is the unique number satisfying

TOO

h{n = - e-^''[n(z) + rP]dz = 0, (17)

and u' is the unique number satisfying

h(u') = - r e^-'[Tr{z) - ra]dz + —(a + (i)e''''' = 0. (18)
Jl* a.

Moreover, — oo < /* < x° < j/° < u* < oo. In addition, the optimal expected profits are:

,V^^ - j 0{x,u'){v{u')-a) ifx<u*, . .

^(^^ - j v{x)-a \ix>u*;
^^'

I
^ _ j -0 if X < r, ,„„.

''^''' ~
\ fix)-eix,nif{n + (3) ifx>/-.

^''>

Now we have completely solved the optimal entry and exit problem of a firm. The optimal

policy is very simple. The firm should enter the industry if the demand rises to or above the level

u* and should exit afterwards when the demands falls to or below the threshold number /*. Note

that since 7r(/') < — r/3, once in the industry, the firm will not exit until the instantaneous profit
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rate becomes significantly negative. This is because there is a strictly positive probability that the

demand will in the future be higher and produce positive profits. Thus the firm chooses to remain

in the industry in anticipation of the rise in demand. This together with the exit cost and the

discounting cause the firm to optimally delay the exit decision. Similarly, the firm does not enter

the industry unless its instantaneous profit rate is significantly positive as there is a strictly positive

probability that the demand will soon decline to make the profit negative and there is an entry

cost. So the firm waits until the demand is sufficient high to enter.

The explicit expressions for /* and u' also allow us to derive the following comparative static:

Proposition 2.2 Let Xi > 1:2 o-nd (j\ > 02: ""^ '^' '1 ond I2 be the corresponding optimal exit

barriers for these two profit functions and exit costs, respectively. Then l\ < /2- Moreover, I' is

decreasing in fi, cr and f3 and increasing in r, and u* is increasing in a and a and decreasing in r.

A firm with a uniformly higher profit rate for all levels of demand than another firm will exit

later. Also, the higher the expected increase in the demand, the later a firm will exit; while the

higher the interest rate, the higher the exit barrier and the earlier the firm exits. The former is

obvious and the latter follows since the firm does not exit immediately after the instantaneous

profit becomes negative in the anticipation of future profits and an increase in the interest rate

makes future profits less valuable. In addition, the larger the volatility of the demand, the lower

the exit barrier. This is so since the exit option of the firm limits the downside risk of the uncertain

demands and thus the added upside potential by an increase in a makes the firm more willing to

suffer current losses. Finally, an increase in the exit cost makes the firm stay in the market longer.

The comparative statics for the optimal entry time are less intuitive because a change of the

parameters also affects the optimal exit time on which the optimal entry time depends. An increase

in a has two effects: the increase makes it more likely that the firm will suffer loss in the near future

and in the mean time it depresses the exit barrier and thus increcises the time span over which the

firm wiU be making a negative instantaneous profits. In anticipation of the latter and because of

the former, the firm increases its entry barrier and enters the industry later. So an increase in

the volatility of the demands, may or may not increase the life span of the firm. An increase in

the riskless interest rate also has two effects. First, it makes waiting to enter more costly for the

firm. Second, it increases the exit barrier and thus makes the time span over which the firm will

suffer losses shorter. The latter makes the firm afford to enter earlier and the former gives the firm

incentive to enter earlier. The combined effects are that the optimal entry time is earlier. But

since the optimal exit time is also earlier, it is unclear whether the total life span of the firm wiU

be longer.
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There is no clear direction of change in the optimal entry time when the firm has a uniformly

higher profit rate or when ^i increases. On the one hand, it makes waiting more costly. On the

other hand, it increases the time span over which the firm will suffer losses by decreasing the exit

barrier and thus creates an incentive for the firm not to enter until the demand is sufficiently high.

These are two opposing effects. To illustrate the point, we consider a change in the profit rate.

Let tt{z,6) be the instantaneous profit parameterized by 6. Assume Tr{-,6) is continuous, 7r(2,-) is

continuously differentiable, and d'K{z,6)/d6 > for all z. Thus, the profit rate is uniformly higher

as 6 increases. For simplicity also assume that a = /3 = 0. From the first order condition (17), we

obtain:

since k{1',8) < and dw{z,S)/d6 > 0. It then follows from (18) that

06 Tr{u-,6)
'<'••*%-/." '••"-''^"-''^=

Note that n{u',S) > 0. Thus, in the above expression inside the parentheses, the first term

represents the effect due to the increased profit loss after entry because of the reduced exit barrier,

which calls for an increase in u*. The second term represents the cost of waiting due to an increased

profit loss while waiting, which has a negative effect on the entry barrier u*. U dn{z,8)/d8 = for

z 6 [^',u'] and dTr{z,S)/d6 > for some non-trivial interval in (u*,oo), then du'/d6 > 0, i.e., the

firm will enter later with a higher profit rate. Notice that the negligible increments of the profit

rate in the region [/*,u'] implies an insignificant waiting cost but a significant profit loss after entry

if there is a significant decrease in the exit barrier which could be caused by a higher profit rate in

the region (u*,oo).

3 The Exit Game

We investigate in this section an duopolistic exit game. There are initially two firms in the industry

facing a stochastic demand modeled by a Brownian motion. Denote by ff,_,(A't) the profit rate for

firm i if there are j firms in the market and the total demand in the industry is Xt, and by

0ij the corresponding exit cost, where i = 1,2 and j = 1,2. As in the single firm context, we

cLSSume that 7r,j is increasing and nonconstant, and there exist i°, so that 7r,j(j/) > — r/3,j for

y > x°^ and 7r,_,(j/) < -r/3 for y < x^y Moreover, E[J^ e~'^'\iT,j{Xt)\dt] < oo and that the process

{e~^^fij{Xt),t G ^+} is bounded below and above by two martingales, where /,j is as defined in

(1) by replacing k with 7r,j. The profit for a firm in a duopoly situation is naturally less than that
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in a monopoly situation, and exit is usually more costly for a monopolist. Thus we assume that

^iiiy) > ^i2{y) for all y, and (Sn > fi,2- It then follows that i°j < x°2-

A firm will exit from the industry when it is no longer profitable to remain. As the profit

rate of a firm depends on whether it is a monopoly or a duopoly, its exit decision will certainly

depend on the exit decisions made by the other firm. Thus a gaming situation occurs. In the

analysis of this exit game, we will focus our attention on subgame perfect Nash equilibria in pure

strategies and therefore need an extensive form specification of the game. We will assume that

once a firm exits from the industry, it is prohibitively costly to re-enter. Note that once a firm

becomes a monopoly, its optimal strategy afterwards should simply be its unique optimal exit time

established in Section 2 in a single firm context. Therefore, the game will be completely specified

if we designate at any time t and in any state u, the strategy a firm follows given that its opponent

is still in the industry.

Formally, let </>{ : fi X K+ i-> S?+ be the strategy of firm i, where </>,(-,<) : fi —* J?+ is an optional

time with 4),{u>,t) > t P-a.s. and we recall that 3(f+ denotes the extended positive real line. We also

impose the following regularity conditions:

1. the set

A = {{u;,s) enx^+: (f>i{uj,s) = s, s e »+} (21)

is progressively measurable;^^

2. 4>t{uj,t) is right- continuous in t.

For brevity of notation, we will often use 0,(5) to denote (/>,(a;,5(u;)) as a random variable for

an optional time S. Our interpretation of </>, is as follows: At any optional time S, if firm i and

its opponent are both in the industry and its opponent will continue to be in the industry, firm

i will not exit immediately in the states where 4>,{S) > S and will exit immediately in the states

where 4>iiS) = S. The two regularity conditions are about how (^,(f) changes over time and their

purposes will become clear later. Denote by $ the space of all the mappings
(f)

: Q X S?^. t-+ Jf+ that

satisfy these above conditions.

Given </> 6 $ and an optional time S, we put

T(5; <l>)
= mf{t > S : 4>{uj,t) = t). (22)

''a process Y is progressively measurable if, as a mapping from fJ x 3?+ to 9?, its restriction to the time set [0, i\ is

measurable with respect to the product sigma-field generated by Tt and the Borel sigma-field of [0, (]. The progressive

sigma-field is the sigma-field on fJ x 3?.^. generated by all the progressively measurable processes. A subset of n x S+
is progressively measurable if it is an element of the progressive sigma-field. A good reference for these is Dellacherie

and Meyer (1978).
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In words, T{S\(t>) is the first time after S that the strategy
(f> instructs the firm to exit prior to the

exit time of its opponent.

To make our interpretation of 4'{S) and T{S\<t>) precisely correct, however, we need to show

that one is able to tell at each optional time 5* whether one should continue or exit according to

<f){S) and T{S;(t>). That is, we need to show </>(5) and T{S;<t>) are optional times. It is for these

properties we need the two regularity conditions.

Proposition 3.1 Suppose that
(f) E. ^ and S is an optional time. Then (t>{S) is an optional

time with 4>(S) > S a.s., and T{S;(p) is also an optional time with T{S;<t>) > S a.s. Moreover,

<i>{TiS;<P)) = T{S;4>)a.s.

Proof. To prove that 0(5) is an optional time it suffices to prove that 0(5) A t is /"(-measurable,

or 0(5) A < 6 /"( as 5 is an optional time. By the right-continuity of <f){Lj,t) in t, we know 0(<) is

Borel measurable in t. By the composition of two mappings, it follows that 0(a;, S{(jj) At) At E Tf

Next note that

<^(u;, 5(w)) A i = 0(w,5(u;) A0l{5(u;)<t}('^) + 'A(w.5'(w)A0l{5(u-)>t}('^)

= 0(a;, 5(a;) A Ol{S(u;)<(}('^) + 'l{5(u/)>(}(t^) os-

By the fact that {5(u;) ><}£/"( as 5 is an optional time, we know 0(5) A t G .?^( as 0(5) is an

optional time. The assertion that 0(5) > 5 a.s. is obvious.

Next we want to show that T{S;<t>) is an optional time. Observe that

T{S{uy,4>) = mf{t > : (u,t) e An[S{u),oo)},

where A is defined in (21). By the hypothesis that /I is a progressive set, and the fact that the

stochastic interval [5, oo) is also a progressive set, then Dellacherie and Meyer (1978, IV.50) shows

that T{S;4>) is an optional time.

Finally, the last assertion follows from the hypothesis that 0(<) is right-continuous in t. I

Note that the last assertion of the above proposition follows from the hypothesis that 6 $ is

right-continuous in t. In words, it says that a firm will indeed exit at 0(T(5;0)) = T{S;(p)) if both

its opponent and itself still remain at 5. This is related to the kind of intertemporal consistency

discussed by Perry and Reny (1990) and Simon and Stinchcombe (1988).'-^ To understand the

necessity of this, it suffices to consider the following example. Let 0(<) = 1 for all ( G [0, 1/2] and

<j>{t) = t for all < > 1/2. That is, one should remain in the industry from time to time 1/2 but

'^We thanks David Kreps for pointing this out to us.
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exit immediately after time 1/2. This specification implies that T{0;4)) = 1/2, but 4>{T(0;<p)) =

1 / T{0;(f>). At time 1/2, one is not sure what to do. His strategy at that time, </)(l/2) = 1,

instructs him to remain in the industry while his strategies after time 1/2 tell him, however, to exit

immediately! The right-continuity of (f>{t) in t eliminates this possibility.

Before we turn our attention to the existence of a Nash equilibrium and a subgame perfect

equilibrium, some notation is in order. Let I'j be the unique optimal exit barrier in the single firm

problem when the profit function is 7r,j and the exit cost is /3,j. Then l'^ is the optimal exit barrier

for firm i when there axe always j firms in the industry during its life span. For example, I22 is the

optimal exit barrier for firm 2 when it has no chance to be a monopoly. Given the ordering on 7r,i

and 7r,2, and /3,i and /3,2, assumed earlier, Proposition 2.2 shows that /*j < /t^. We assume further

that /ji < /21 and /jj < '22- That is, firm 1 is a stronger than firm 2 in that firm I's exit barriers

for both the monopoly case and the duopoly case are higher than those of firm 2. Note that these

last assumptions can be insured by the hypothesis that n-ij > ;r2j and /?ij > /92j- But this is not

necessary. Figure 1 depicts one possible relative positions of /* 's. For convenience, we use T'AS)

to denote inf{< > S : Xt < 1*^} for any optional time 5. Also, let /;_,, hi-j, and Vij be the functions

defined in (13), (17), and (20) respectively, with tt replaced by Kij and /J replaced by /9,j.

We will use <^_, to denote firm i's opponent's strategy. A Nash equiUbrium of the extensive

form exit game is a pair of strategies ((t>ii4'2) G $ X $ so that given (/>_,-, 0, solves:

SUp,e$
^[|T(O;0)AT(O;0_.)

,-rt^^^^x,)dt - e-^^(°--*)/3.2l{T(O;0)<T(O;^_.)}

+ ^"'"^^°''*~''^il(^T(O;.^_i))l{T(O;fli)>T(O;0_.)} '

for i = 1,2.

Note that the action taken by firm i, or the exit time of firm i, in a Nash equilibrium ((/>i,</>2)

is an optional time

T{0; 4>i)l{T(0;4>,)<T(0;<t>.,)) +^'ll{T(0;*,)>T(0;rf._.)}-

That is, on the set {T(0; <?!),) < T{Q;4>^i)}, where firm i exits first, it exits at T{0;4>,); while on the

set {T(0](f>i) > 7(0; (^_,)}, where the opponent exits first, firm i behaves like a monopoly.

A Nash equilibrium {(f)i,4>2) is a subgame perfect equilibrium^^ if for any optional time 5,

T{S;^t) solves

fT(S;0)AT(S;<*_.)

supIP E[
/

e-^^'-'K,2{Xt)dt - e-^(^(^^^)-^)/3.2l{T(5;0)<T(5;0_.)}
:$ J s

+ e-^('^(^'^-'^-'Ka{Xr^s-,4>.,))hns-S>ns;4>-.)}\^s], (24)

where E[-|^5] denotes the expectation conditional on Ts-

Our definition of a subgame perfect equilibrium is a direct generalization of Selten (1975) to continuous time.
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A subgame perfect equilibrium {4>i,4>2) is said to be unique if for any other subgame perfect

equilibrium ((t>\,d>'2), we have

T{S;<p,)l{T(S;4>,)<ns;4>-,)} - T{S; 4>',)l {ns;4>',)<T{S;4>'_,)) "••'• (25)

for all optional time S. This definition of uniqueness seems rather weak as it does not require the

uniqueness of the mappings 0,. Rather it focuses on the uniqueness of the exit times taken by the

two firms in any subgame. This, however, is the right sense of uniqueness. The significance of </>,

lies in the implied exit action taken by firm i in equilibrium. There can be two strategies (^, and

4>'- which differ on a set of (u;,<) whose projection onto fi is of a strictly positive probability. But

they can imply the same exit times of the two firms in the subgame starting from an optional time

S as long as (25) is true.

The optimizations of (23) and (24) look formidable as they are looking for complicated mappings

<jf) G $. The following proposition shows that (23) is equivalent to a much simpler problem in which

the optimization is performed by looking for optional times.

Proposition 3.2 Let 5 G T. For every r G T with t > S a.s., there exists a <i> E ^ so that

T = T(S\0) a.s. Thus, (24) for a given S is equivalent to

SUP.,T Elfs^^^''"-'^ e-^i'-^K,2iXt)dt - e-(-^)A2l{r<T(5;*_.)}
'•>^ (26)

+ e-^(^(^^*-)-^'i;.l(XT(S;*_.,)l{.>T(S;^_.)}|/-S .

Proof. Let r G T with r > S a.s. It suffices to show that there exists <f> £ ^ so that T{S; 4>) = t

a.s. Define

(f>iuj,t) = l[O,rH]('^,0l"(w) + tl(^(^),oo)(w,0-

Then

A = {(w,0 G n X 3?+ : <i>{u,t) = t,te^+} = [t(uj),oo).

It is known that the stochastic interval [r(a;),oo) is progressive measurable; see Dellacherie and

Meyer (1978, IV.62). Then <f) e ^. It is also easily verified that T{S;<t>) = r F-a.s. I

To characterize the subgame perfect equilibrium, we first note that the exit game we are con-

sidering satisfies the monotone property studied in Huang and Li (1990, Proposition 4) in the sense

that the longer its opponent stays in the industry, the earlier a firm will exit as the best response.

Lemma 3.1 For any optional time S, firm i 's optimal exit time from S on is monotone decreasing

in firm j 's exit time from S on, for i = 1,2 and j / i.
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Consequently, firm i's optimal exit time in response to an upper (lower) bound of its opponent's

exit time is a lower (upper) bound of firm i's exit time. Note that starting from any time 5, firm

z's optimal exit time is T'2(S) if T(S\(f>-,) = oo, and is T'i{S) if T{S;4)-,) = S. Therefore, the

optimal exit time of firm i in response to any feasible strategy of its opponent starting from any

optional time 5 cannot be later than its monopoly exit time and cannot be earlier than its exit

time when it is certain to remain a duopoly throughout its life span.

Proposition 3.3 Let {<pi,<p2) G $ X $ 6€ a subgame perfect equilibrium. Then for all optional time

S,

T'iiS) < T{S;(l>,)l{T{S;<i,.)<T{S;4,.,)} + 7''l('5')l{T(5;0,)>T{5;0_.)} < T,\{S) U.S.

Next we consider the optimal strategy of firm i when the other firm plays a simple strategy

suggested in the single firm problem. Suppose firm j, j ^ i, does not exit until the demand is lower

than or equal to a critical level Ij in every subgame, namely,

<f>j{t) = iRi{s>t:X,<lj}. (27)

Firm I's best response must solve (24) for any optional time S. The arguments identical to that in

Theorem 2.1 show that there is a unique solution to (24) which is a barrier policy of the following

form. At any optional time S when firm j is still present, firm i will exit when Xt enters the set

[ui, /*2] either from above or from below before it reaches ( — oo,/j] where u, > /_,. Otherwise, Xt

will reach the set (-oo, Ij] first and firm j will exit and firm i becomes a monopoly and will follows

its unique optimal strategy thereafter. The value u, is determined as follows.

It suffices to consider the case when Xs = x G UjJi2]- By Harrison (1985, Chapter 3), firm i's

payoff under the barrier policy depicted above when firm j plays (27) can be written as:

Viix,Ui,l,) = fi2{x) - E, [e-^^("-)(/.2(u.) + /3.-2)|T(u,) < T(l,)

-E, [e-^^(^)/.2(/,)|r(r.,) > r(/,)] + E, \e-^^('')v,^{l,)\T{ui) > T(/,)] (28)

= fi2{x) - i^{x,Ui,lj){f,2{ui) + 0,2) - i^{x,lj,U,)fi2{lj) + i){x,lj,Ui)Vii{lj),

where we recall that T{y) = inf{i > : Xt = y} for any scalar,

for y A 2 < X < z V J/, X, y,2 G 5?. Thus u, must maximize (28). Direct computation yields:

9i;.(x,u,/j) L /„ / ^= Ci hi{u,lj),
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where Ci is a strictly positive term and

/i.(x,y) = 7 r(^.2(2) + rA2)(e''*'''-''' - e-'''^'-^^)dz + 0,2 + vn{y), (30)
Jy

for x,y £ ^ and for f = 1,2. Using this expression, it is straightforward to verify the following

proposition:

Proposition 3.4 Let j / i and suppose 4>-,it) = inf{5 > t : X, < Ij} 'it £ ^+. Then firm i's

unique optimal exit time in response to 4>j is

r(0l{X.,„€A.}+J;'(0l{X.(.,€^;}' (31)

where r{t) = inf{s > t : A', e Ail) Aj}, A, = [u,, /i], Aj = {-oo,lj], /, = /'j,

^^ f inf{2/ > /j : /i.(y,/,) < 0}, if inf{t/ > I, : /i.(y,/,) < 0} < /^j;

' 1 oo, otherwise,

and /ii(-, •) is defined in (30).

When firm i finds itself playing a duopoly gajne at S with a demand Xs G (/j, Ui), it knows that

the opponent will not exit until the demand falls to the level Ij. So staying in the industry, firm i

will incur losses as the current demand is lower than /'j. But, remaining in the industry gives firm

i the opportunity to become a monopolist if the demand falls to reach /_, and firm j exits. So firm

i trades off this potential future gains with the current losses. Falling demand turns out to be a

good news for firm i as it may become a monopolist sooner. On the other hand, a rising demand

means firm i will suffer losses longer and is a bad news. On balance, when the demand rises to

reach Ui, the prospect of the potential future monopoly profit becomes so dismal and firm i exits.

Similarly, if Xs > 1*2, firm i exits when the demand falls below /'j. Continuing on, firm i will suffer

too much loss to be balanced out by the prospect of becoming a monopoly in the future.

The set Ai = [ui,l'2] characterizes the situation when firm i exits as a duopoly. By Lemma 3.1,

the tougher the opponent (a smaller Ij ), the more likely that firm t exits as a duopoly, or equivalently,

the larger the set Ai (a smaller u, ). In particular, if /j < /*i, firm j will only exit after firm i cannot

sustain even as a monopolist. Thus firm i has no chance to become a monopolist and it should exit

optimally the first time the demand is below 1*2 and u^ = Ij. Now take j = I and /^ = /jj for this

case. Then U2 =
/ji and A2 = ['111^22]- Firm 2's optimal exit time in respond to firm I's strategy

is to exit immediately when the demand falls below I22.

On the other hand, if /j > /*2, then firm j exits before firm i does, and firm i will exit as a

monopolist at T'^ or u, = 00. Now take j = 2 and I2 = /22i ''^at is, firm 2 exits when the demand



3 THE EXIT GAME 19

falls below l22- Then Ui = oo and Ai = 0. Firm 1 never exits as a duopoly and its unique strategy

is not to exit until the demand falls below /jj.

Combining the above, we have thus identified a subgame perfect equilibrium in which the

"strong" firm (firm 1) always exits as a monopolist and the "weak" firm (firm 2) exits as a duopoly

since /*j < I21 and I22 > '12-

Proposition 3.5 Put, for all i G R+,

Mt) = n2{t).

{<P\i4>2) is a subgame perfect Nash equilibrium,}* The expected discounted future profits in the

equilibrium for the two firms, or equilibrium payoffs, are, respectively,

^^ ^

\ uii(x) ifi< I22; ^ '

V2{x) = t;22(x), (33)

where Vij is defined in (4) with tt and f3 replaced by nij and Pij, and where

gij{x,y) = fij{x) - e{x,y)f„{y). (34)

This equilibrium is a "stationary equilibrium" in that the strategies for the two firms at any

time t is a "copy" of their strategies at time 0. In this case, one easily verifies that T{S; 4>i) = <f)i{S)

with probability one.

Proposition 3.5 and Proposition 3.3 also gives a trivial sufficient condition for the uniqueness

of the subgame perfect equilibrium: if /J2 < ^21' ^^^ equilibrium of Proposition 3.5 is the unique

subgame perfect equilibrium. When 1^2 < '21 ' *^^ level of demand below which firm 2 cannot

survive as a monopolist is even higher than that at which firm 1 cannot survive as a duopoly. So

naturally, firm 2 always exits earlier than firm 1 in any subgame as firm 2 is much too weaker than

firm 1 and thus we have a unique subgame perfect equilibrium.

However, other equilibria may arise if /21 < /i2- See Figure 1 for the assumed order of barriers

l*j in this case. If this is the case, when demand is between /21 and /j2, neither firm can survive as

a duopoly and both can survive as a monopolist. Thus there may be more than one equilibrium.

We now identify candidates of other equilibria.

One easily verifies that 0, g 4>, for t = 1,2.
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Suppose that firm 2 does not exit until the demand is lower than or equal to /jj in every

subgame, namely, 4>2{t) — ^2i(0' which is an upper bound of firm 2's equilibrium exit time. By

Proposition 3.4 firm I's optimal exit time in response to firm 2's strategy is

r(01{.v.,„6^,}+Tr,(01{x.,.,e^.} (35)

where Ai = [tii,/j2]' ^2 = (-oOi'al' ^^'^ ''(O = inf{s > t : X, £ AiU A2}. One can also verify

that ui > /ji-
As a consequence of Lemma 3.1, this exit time of firm 1 is a lower bound on its

subgame perfect equilibrium exit times. This lower bound is a tighter lower bound than T'j'2(5) as

Suppose that ui above is equal to infinity. Then A-i is an empty set and firm 1 does not exit

as a duopoly in its response. Since its response here is a lower bound on its subgame perfect

equilibrium exit times at any subgame, the equilibrium of Proposition 3.5 is the unique subgame

perfect equilibrium. So we suppose that u\ G ('21 ''12]- Arguments similar to those used to prove

Theorem 2.1 show that, in response to firm I's exit time defined in (35), firm 2's optimal exit

time is a stationary two-barrier policy at an optional time 5 as a duopoly: exits when demajid

reaches A3 before it reaches A\, where Ai = [ui,/i2] a^ in (35), and A3 = (-00, /2] U [u2»'22] ^'^^

h (> ^21) ^'^d "2 being two critical numbers; otherwise, exits when the demand falls below
/ji-

The interpretation of this two-barrier policy is similar to that for (31). When the demand is below

^22 and firm 2 is a duopoly, it always trades off the potential of being a monopoly in the future

against the current duopoly losses in its exit decision. Furthermore, this best response exit time

for firm 2 becomes a new upper bound of its subgame perfect equilibrium exit times by Lemma

3.1 since (35) is a lower bound of firm I's subgame perfect equilibrium exit times at any subgame.

We repeat this procedure to generate tighter and tighter upper bounds on firm 2's and tighter

and tighter lower bounds on firm I's subgame perfect equilibrium exit times. If this procedure

has a fixed point other than the equilibrium of Proposition 3.5, this fixed point is itself a subgame

perfect equilibrium and provides the exact largest lower bound and the exact least upper bound,

respectively, for firm I's and firm 2's subgame perfect equilibrium exit times. This fact is recorded

in the following proposition:

Theorem 3.1 Suppose that there exist uj, /J, uj *'"'^ ^2 """• '21 < ^2 < "t ^ '1 - '12 < "2 *"^'*

that /ii( «;,/•) = 0, hi(u2J\) = 0, and h2(u\,l2) = ^^^^

^. ^ i \n{{y>i;:h2iy,ll)<0}, if inf{y >
/J : My,'r) < 0) < '22;

^
I

00, otherwise
,
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and h,{x,y) are defined in (30) with the understanding that J^ = — f^ for x < y. Then

<t>2it) =T^x{t)l{X.^,,eAr}+r(t)l{x^,„€A,}, te^+, ^"""^

is a subgame perfect equilibrium, where r(<) = inf{5 > t : X^ G ^i U ^2)1 ^1 = ["n'l]) a"<^

A2 = (-oo,/2] U [u2,^22]- Moreover, if {<t>'i,4>'2) is another subgame perfect equilibrium, then (t>i{t) <

T{t\4>\) < T^.it) andT^^it) < T{t-<t>2) < T2(t) a.s.

The equilibrium of Theorem 3.1 is a "stationary equilibrium" in the sense that every (t>i{t) is

a "copy" of 4>i{Q). We can thus describe the equilibrium by looking at 0,(0). We take cases, and

also refer to Figure 1 in which the relative positions of the barriers are depicted. First, if Xo > ^22'

firm 2 exits when the demand decreases to 1^2 and firm 1 continues to /Jj as a monopoly. Second, if

Xq G [u2,/22]i firm 2 exits immediately and firm 1 is a monopoly throughout. Third, if Xq G (/J,U2)i

firm 2 and firm 1 both stay on with the former making a negative profit. If the demand rises to

reach U2, it is a bad news for firm 2 as firm 1 will be in the industry for a long time. Thus firm 2

exits and firm 1 becomes a monopoly. On the other hand, if the demand drops to reach /j, which

is lower than /J2' ^r™ 1 knows that firm 2 will not exit until either the demand reaches Uj from

below or reaches /21 from above, so firm 1 exits cis the prospect of being a monopoly in the future

is gloomy and firm 2 becomes a monopoly. Fourth, if Xq G [uJ,/!], as firm 2 will continue until

the demand decrease to /j? firm 1 exits immediately. Fifth, if Xq G (/2,Ui), firm 1 exits when

the demand increases to reach u\ before it decreases to /J as the prospect of being a monopoly is

gloomy. Otherwise, firm 2 exits when the demand reaches /2 and firm 1 continues as a monopoly.

Finally, if Xq < I2, firm 2 exits immediately and firm 1 plays its monopoly strategy henceforth.

There are two interesting features of this equilibrium. First, either firm may exit when the

demand has been increasing. This happens in two occasions. When demand is between /j and U2,

the weak firm (firm 2) exits as the demand drifts up to reach U2 before it reaches down to /j; or

when the demand is between /j and Uj, the strong firm (firm 1) may exit as the demand goes up

to reach uj before it decreases to reach I2. Second, the strong firm exits before the weak firm does

when the demand has been declining. This happens when the demand is between /J and ^2-

The equations that determine uj, I2, /J, and Uj ^^^ from the first order conditions for the

two firms' optimization problems of (24). The existence of a solution to these equations with the

desired order implies the existence of a stationary subgame perfect equilibrium in addition to the

one in Proposition 3.5. Otherwise, Ai becomes an empty set and A2 becomes {—00,122]- Then one

concludes that the lower bound on firm I's subgame perfect equilibrium exit time at any subgame

starting from an optional time S is Ti*i(5) and the upper bound for firm 2's exit time is T22(5).

As a consequence, there exists a unique subgame perfect equilibrium.
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The following example demonstrates how one uses Theorem 3.1 to construct scenarios that

imply either a unique or multiple subgame perfect equilibria.

Example 3.1 Let l3,j = for all i,j and

be increasing step functions with a,i > a,2 > 0, 6,2 > b,\ > 0, and x°, < i°2 f'^'' ^J - ^'2- ^^^^

assume that /i < 0.

We choose the parameters, a,_,, 6,j and 1°
, through the following steps:

1. Choose /*!, /21, /i2.
and x?i so that /jj < /21 < lli, /ji < ^ii- «"<^ '12 " '21 < ^21 ~ 'ii-

2. Let

a* a,

/< can be shown that

r,'(x) = e"-^-e--4 > °' '{">"'
(37)

' ^ '

I
< 0, j/z < 0, ^ '

and for ^ < (or a' > a,),

^w.)-,(-.)){:°; ;::»: (38)

Thus, for e > sufficiently small, the following hold,

'?('2*i-'ti+0>r/(-(/t2-/2*i-20), (39)

and

Vil'u - '21 - - ^(0) ^ ^(/l2-/2'i)-^(0)
(40)

^('l2 - '21 - 20 - ^(0) v(-{lh - '2*1)) - ^(0)'

since r){l^i-lii) > riilU-^21) > ^(-('12-^21)) ^V (37) and (38), also noticing thatl^^-l^ <

I21 — III as determined in step I.

Choose e that satisfies (39), (40) and < ( < {/jj - /2i)/2- Then, set b,j so that

bi2 rj{l'2x - I'u + - '/(O)

611 r/(-(/t2-/2', -20)-r?(0)'
(41)

''22 _ vilh - '21 - - '7(0)
(42)

hi r/(/-2 - /21 - 2f) - r/(0)

Note that bn > 611 by (39) and 622 > &21 by (37). Furthermore,

^21 T?(-(/u-'2i))-^(0)

by (40).
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3. Let I22 = '12 + <5' where 6 > is so chosen that

621 r,(-(/*2-/2i))-'7(0)" '^
^

The existence of such a S follows from (43) since limiio'22 — '12-

4. Finally, we choose aij and 1° to satisfy

/^ = x° -lln(l + cf.,)

where d,j = a,j/b,j, for i,j = 1,2.

Let l^ = /21 + e and u^ = l'^^ - f- Then /iiCuJ,/^) = by (41) and h2{ul,l^) = by (42). Also,

for all y G (/t2,'22]'

h2{yJ\2) > e'"'^'(-&22(r/{-(/;2 - /;i)) - ^(0)) + h2,(i){l\2 - l2x) - ^(0))) > 0,

by (44)- Therefore, 1^2 = 00 and l^ = /12. So, (Ti,T2) in (36) with above u' and I' is an equilibrium.

It is much easier to construct the case in which there is a unique equilibrium. In the above

example, after completion of step 1, we simply set

bu r;(-(/t2-/^i))-r/(0)-

This can be done since i?(/2i ~ ^n) > ^(~('i2 ~ ^21))- Then, for any y G ['2i''r2]

h,(y,i;^) > hr{i;2,l2i) = e^-'H-buivi-ilu - '2*1)) - ^(0)) + bniriil'2^ - I'u) - r?(0))) > 0,

and firm 1 will not exit before firm 2's longest possible exit time T2\. The uniqueness of the

equilibrium follows from Theorem 3.1.

4 Game of an Incumbent Versus a Potential Entrant

In this section, we investigate the situation where firm 1 is initially in the market and has a single

option to exit, while firm 2 is not in the market at the beginning and has options to enter and then

exit. This is thus a game of an incumbent versus a potential entrant, henceforth abbreviated as

simply the entry game.

Before we proceed formally, we note the following. First, in any subgame perfect equilibrium,

once the two firms are in the industry in the same time, therehence, they must be playing a subgame

perfect equilibrium in the exit game discussed in Section 3. Second, if firm 1 exits before firm 2

enters, then afterwards, firm 2 must follow its unique optimal single firm entry and exit decisions
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characterized in Section 2. For simplicity, we assume that there exists a unique subgame perfect

equilibrium for the exit game. By the analysis of Section 3, this unique equilibrium is the one

in Proposition 3.5. Given this hypothesis and the two observations noted above, in analyzing the

entry game with a focus on subgame perfect equilibria, we can restrict our attention on firm I's

exit decision before firm 2 enters and on firm 2's entry decision before firm 1 exits.

Let 4)\ : ^ X ??+ H^ K+ be firm I's strategy before firm 2 enters, where (f>i{t) is an optional

time with <l>\{t) > t a.s. In words, if at time t firm 2 has not entered and firm 1 has not exited,

firm 1 will exit immediately if and only if <f>\{t) = t. Similarly, let </)2 : fi X Jf+ i-i- 3?+ be firm 2's

strategy before firm 1 exits, where 4>2{^) is an optional time with ^^i^) > t a.s. for all z G 3?. If

at time t, firm 1 has not exited and firm 2 has not entered, firm 2 enters immediately if and only

if <f>2{t) = t. We assume that (t>\ and 4>2 are right-continuous in t and satisfy the measurability

condition stipulated for 4>i in Section 3. Denote by $i and $2 the space of aU the possible 4>\ and

4>2, respectively.

Define

T{S;(f>\) = mf{t> 5:0?(O = O

and

TiS;<t>'2) = ini{t>S:4>lit) = t}

for ail (p\ e <^i and <p2 G $2- By Proposition 3.1, T{S;4>\) and T{S;(f)2) are optional times.

A subgame perfect equilibrium of the entry game is composed of (</>5,</>2) 6 ^1 x $2 so that

r(5;(^i) solves, for all optional time S,

sup E[
/

e-^('-^)7rii(X,)(f5 - e-^(^-^)/3n l{T<r(S;0|)}

T>S

where vi is defined in (32), and T(S;<f)2) solves

sup E [e-^(^-^)(r2(Xr) - a22)l{r<T(5;<)} + ^''^^*^^*'^"^^^2l(^T(5;^J))l{r>T(5;<)}l-^5] ,

T>S

where V2 is defined in (33) and 1)21 is defined in (19) with x and a replaced by 7r2i and 021,

respectively.

The following proposition reports a stationary subgame perfect equilibrium for the entry game.

The proof of this proposition, being similar to that of Theorem 3.1, is omitted. In this equilibrium

firm 2 sets a critical level u^ such that it enters the market the first time demand is above u^ before
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firm 1 exits and then plays the unique subgame perfect equilibrium of the exit game thereafter;

otherwise it behaves optimally as a monopolist after firm 1 exits. The value Uj is determined so

as to balance the marginal benefit of being a duopoly presently and the marginal benefit of being

a future monopoly. Firm 1 sets a critical level /* such that it exits if demand is below l\ before

firm 2's entry; otherwise, it plays the unique subgame perfect equilibrium of the exit game after

firm 2 enters.

We will use uji and U22 to denote the entry barrier for firm 2 as a monopoly and as a duopoly,

respectively, as described in (18) of Proposition 2.1. In addition, define

T|i(i) = 'in{{s >t:Xs> u^j}.

Proposition 4.1 Put

4>\{t) = r(i)l{x.,„6^,} + ^n(^(0)l{X.,„€^.}' (45)

4>lit) = T|i(r(0)l{A:.,.,eA.} + r(Ol{x.,„e^.}, (46)

where l\ G ('ii5'i2)i ^2 S ("22''^) ^^^ unique solutions to hi{u2J\) = and ^2(^2, m) — ^ ^^^^

hiiuj) = ^|"(7r„(z) + r-/J„)(e"'("-^)-e-'"("-^))d2 + /3ii + t;i(u),

h2{u,l) = 7(- r(T22(^)-ra22)(e"-(^-"-e-''*(^-'))ciz
•''22

+ (^e-C--') + ^e-*('--')) (a22 + /322)) + t)2l(/),

and

T{t) = mf{s >t:XseAi\J A2],

with Ai — (
— 00,

/J],
and A^ — \u\^-\-oo). Then {4>i,<f>2) is a subgame perfect equilibrium.

Three interesting observations can be made. First, in the equilibrium, l\ > /Jj. Thus the

existence of a potential entrant may force the incumbent to exit earlier than when there is no

potential entrant and hence the incumbent has a shorter economic life time. This occurs when

demand decreases to reach l\ before it increases to reach u^. The potential of becoming a duopolist

at higher demand levels in the future, makes firm 1 less tolerant to the incurrence of current losses.

Second, the entrant sets its entry level U2 before firm 1 exits higher than its duopoly entry level

^22- This is due to the opportunity of its becoming a monopolist if it waits long enough for firm 1

to exit. Therefore the entrant sacrifices its current duopoly profits in exchange of the potential

monopoly profit in the future.



5 GENERALIZATIONS 26

Finally, there axe two possible results of the incumbent versus entrant game: "peace" or "war".

By "peace", we mean that the entrant enters after the incumbent exits and both firms share the

market by different time segment. If the entrant enters before the incumbent exits, then they battle

as a duopoly in the market.

5 Generalizations

In contrast to Dixit (1989), the single firm entry-exit problem analyzed in Section 2 does not allow

re-entry once a firm exits. Our approach can be generalized to count for re-entry, however.

Suppose that the cost of entry and re-entry is the same equal to a. The cost of exit is (3. For

simplicity, assume that tt is bounded, strictly increasing, and continuous. Let v(x; I) and v{x; 0) be

the optimal expected profits when the current demand is x, and the firm is in the market and out

of the majket, respectively. Given that tt is bounded and r > 0, v{x;I) and v{x;0) are bounded.

When the firm is in the market, the problem the firm faces is to find an optimal exit time that

solves:

(47)v{x; I) = sup E
Jo

When outside the market, the firm seeks an optimal entry time that solves:

v{x;0) = sup E [e-'"^(t;(XT; /) - a)l . (48)

Note that (47) is equivalent to

[n{E\e-^'^{fiXT)-viXT;0) + (i)

TeT i-

Assume to begin that v{x\ I) and v{x;0) are continuous in x. Theorem 1 of Huang and Li

(1990) shows that there exist solutions to (47) and (48). Assume that these solutions are barrier

policies.

Let v{x,l;I) and v{x,u;0) denote the expected future profits, in and outside the market re-

spectively, under a barrier policy with the exit and entry barriers, / and u. Then,

v{x,l;I) = f{x)-9{xj)f{l) + e{x,l){v(l,u;0)-(i) for x > /, and , (49)

v{x,u;0) = e{x,u){v{u,i,I)-a) for i < u. (50)

Letting i = u in (49) and i = / in (50), we can solve linear equations (49) and (50) to obtain:

v{l,u;0) = ————
. (52)

l-O{l,u)0{u,l)
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Thus, the expected future profits are given by (49) and (50) under a barrier policy with any pair

of parameters (l,u). The search for the values of the optimal barriers is reduced to finding / and u

that maximize v{x,u\0) and v(xj;l). It can be shown that

— = Ci/ii(/,u), and ——— = C2/i2(/, u),
ou ol

where C\ and C2 are strictly positive terms,

hi{l,u) = -{a + fi)- r(n{z)-ra)ie^'^'-'^-e-^'^'-'^)dz, (53)
7 Jl

h2{l,u) = -i(a + /3)+ r(7r(0) + 7-/3)(e-'"("-^)-e<''("-^))(iz, (54)
7 Jl

and a,, a,, and 7 are given by (14) - (16). Therefore, the optimal barriers must solve:

/ii(r,u*) = 0, and /i2(r,ti*) = 0. (55)

It is then straightforward to verify that v{x;I) and v{x;0) are indeed continuous functions of x

as we have assumed earlier. Finally, we can use the principle of dynamic programming to verify

that there do not exist non-barrier policies that strictly dominate the optimal barrier policy. This

justifies our searching for an optimal barrier policy.

Finally, differentiating hi{l,u) with respect to u gives

^Ml^ = (e-(''-') - e-<'*("-'))(m - x(u)).
ou

So, hi{l,u) > for / < u < 7r~^(ra) since x(-) is strictly increzising and /ii(/,/) = ')~^{ot + /3) >

and h{l,-) is increasing for / < u < x~^(ra). Thus, by (55)

u* > ;r~Vra) > n~'^iO).

Similarly, we can show that

Given the above solution to a single firm's problem, we can then apply the technique developed

in Section 3 to analyze a duopolistic entry-exit game, albeit more complicated.

6 Concluding remarks

We have analyzed optimal entry-exit decisions for a single firm and for firms behaving strategically,

both in continuous time with Brownian motion uncertainty. Under very general hypotheses, we

have demonstrated the existence and uniqueness of an optimal policy for a single firm. The optimal

policy is a barrier policy and the entry and exit barriers are solutions to algebraic equations.
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In a duopolistic context, we have worked directly in continuous time and shown ways to look for

subgame perfect equilibria. One equilibrium is always the one in which the strong firm behaves like

a monopoly throughout and thus the weak firm is always a duopoly in its lifetime. Other equilibria

may exist, however. In these other equilibria, both the strong firm and the weak firm may exit

even when the demand has been increasing on the average.

The method used in our analysis can potentially be useful to many other optimal economic

decisions. Indeed, any situation in which dichotomous choices are made over time under uncertainty

can be formulated as an optimal timing problem and our technique may apply.
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