

LIBRARY
OF THE
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

ASYMPTOTIC STABILITY, IDENTIFICATION, AND THE HORIZON PROBLEM

Paul R. Kleindorfer

430-69

MASSACHUSETTS
INSTITUTE OF TECHNOLQGY 50 MEMORIAL DRIVE CAMBRIDGE, MASSACHUSETTS 12139

ASYMPTOTIC STABILITY, IDENTIFICATION, AND THE HORIZON PROBLEM

Paul R. Kleindorfer
430-69

Presented at the 36th National Meeting

$$
\begin{aligned}
& H E=1 \\
& M \cdot 114 \\
& \text { re. } 4=0-27
\end{aligned}
$$

Dewey
MASS. INST. TECH.
SEP 101975
LIBRARIES

Abstract

Recent literature in discrete adaptive control has emphasized the impcrtance of asymptotic stability of the adaptive controller in obtaining convergence of system parameter estimates to their true values. This paper studies the relationship between these results and the problem of the convergence of first period decisions in planning models as the planning horizon time increases. The primary results to date have been based on stationary and purely quadratic cost functions. This paper extends these results to cost functions containing linear tems and to discounted cost functions. The main results are a set of sufficient conditions on the nature of cost and system parameters under which first period decisions converge to a fixed value as the optimization time horizon increases. A characterization of the optimal asymptotic controls is given for the discounted and undiscounted cases.

\section*{I. INTRODUCTION}

Consider the following linear system.

$$
\begin{equation*}
x_{k+1}=A x_{k}+D u_{k}+v_{k} \tag{1.1}
\end{equation*}
$$

$$
(1.2) \quad y_{k}=M x_{k}+w_{k}
$$

In (1.1), x_{k} is a p-dimensional column vector which represents the state of the system at time k; A is a pxp transition matrix; D is a pxr control matrix; u_{k} is an r-dimensional control vector; and v_{k} represents a random disturbance. In (1.2), y_{k} is a q-dimensional vector representing an observation made on the system at time k; M is a $q x p$ observation matrix; and w_{k} represents noise. We will assume that v_{0}, v_{1}, \ldots and w_{1}, w_{2}, \ldots are independent sequences of zero mean, independent and identically distributed random vectors with covariance matrices V and W respectively and that x_{o} is independent of the $v_{i} s$ and $w_{j} s$ and has finite covariance matrix.

Linear least squares prediction and filtering may be done for the system (1.1)-(1.2) using the Kalman Filter [$/ \mathrm{f}$], which yields the projections $x_{t} \mid k$ and $y_{t \mid k}$ of x_{t} and y_{t} on the Hilbert subspace spanned by $y_{1}, y_{2}, \ldots, y_{k}$. These projections are given by

$$
\begin{align*}
& x_{k \mid k}=\left(I-\Lambda_{k}\right) A x_{k-1 \mid k-1}+\Lambda_{k} y_{k}, \quad k \geq 1 \tag{1.3}\\
& x_{t \mid k}=A^{t-k} x_{k \mid k} \\
& y_{t \mid k}=M_{t \mid k}, \quad t>k,
\end{align*}
$$

where I denotes the pxp identity matrix and $x_{0 \mid 0}=E\left[x_{0}\right]$. The weighting matrix Λ_{k} in (1.3) is determined by

$$
\begin{equation*}
\Lambda_{k}=S_{k} M^{\prime}\left[M S_{k} M^{\prime}+W\right]^{\dagger} \tag{1.4a}
\end{equation*}
$$

$$
k \geq 1
$$$S_{k}=A P_{k-1} A^{\prime}+V$,

$$
\begin{equation*}
\mathrm{k} \geq 1 \tag{1.4b}
\end{equation*}
$$

$$
\begin{equation*}
P_{k}=\left[I-\Lambda_{k} M\right] S_{k}, \tag{1.4c}
\end{equation*}
$$

$$
k \geq 1
$$

where ${ }^{+}$denotes pseudo-inverse, ' denotes transpose, and p_{o} is the covariance matrix of x_{0}.

Now consider the following optimization problem.
(1.5) $\operatorname{Min} E\left\{\sum_{k=1}^{N}\left[x_{k}^{\prime} Q_{1, k} x_{k}+u_{k-1}^{\prime} Q_{2, k-1} u_{k-1}+G_{1, k} x_{k}+G_{2, k-1} u_{k-1}\right]\right\}$ subject to (1.1), (1.2), $k=0,1, \ldots, N-1$, where for $k=1,2, \ldots, N, Q_{1, k}$ and $Q_{2, k-1}$ are symmetric positive semi-definite (psd) matrices and $G_{1, k}, G_{2, k-1}$ are $1 x p$ and 1 xr row vectors respectively, and one of the following conditions is satisfied: (a) $Q_{2, k-1}$ is positive definite (pd); (b) $Q_{1, k}$ is pd and rank(D)= $\min (p, r)$. Either (a) or (b) is required to insure the existence of a finite minimum of the performance criterion and to insure the existence of matrix inverses for the dynamic programing solution to the problem, (1.5).

In an extension of Gunckel and Franklin's result [3] for the pure quadratic loss function, it can be shown (see [7]) that the optimal controls, u_{k}, in (1.5) are given by

$$
\begin{equation*}
u_{k}=-C_{k} x_{k} \mid k-H_{k}^{-1} Z_{k}^{\prime}(1 / 2) \quad 0 \leq k \leq N-1 ; \tag{1.6}
\end{equation*}
$$

where C_{k} and H_{k} are determined by
(1.7a) $\quad H_{k} C_{k}=D^{9}\left(F_{k+1}+Q_{1, k+1}\right) A$
(1.7b) $\quad H_{k}=Q_{2, k}+D^{\prime}\left(F_{k+1}+Q_{1, k+1}\right) D$
(1.7c) $\quad F_{k}=A^{\prime}\left(F_{k+1}+Q_{I, k+1}\right) A-C_{k}^{\prime} H_{k} C_{k}, \quad F_{N}=0$
(1.8a) $\quad Z_{k}=G_{1, k+1} D+G_{2, k}+B_{k+1} D$
(1.8b)

$$
B_{k}=\left(G_{1, k+1}+B_{k+1}\right) A-Z_{k} C_{k}, \quad B_{N}=0,
$$

where it is shown in the dynamic programming solution to the problem that F_{k+1} is psd and therefore, by the assumptions on $Q_{1}, k+1, Q_{2}, k$, and D, H_{k} is nonsingular and C_{k} is determined uniquely from (1.7a).

As Kalman has shown, there is a close relationship between equations (1.4) and (1.7) which allows results obtained for the filter equations, (1.4), to be applied to the optimization equations (1.7) and (1.8). In section II of this paper we use this relationship and the uniform asymptotic stability of the Kalman filter to show that the matrices $\mathrm{C}_{\mathrm{o}}=\mathrm{C}_{\mathrm{o}}(\mathrm{N})$ and $\mathrm{H}_{\mathrm{o}}^{-1} \mathrm{Z}_{\mathrm{o}}^{\prime}=$ $H_{o}^{-1}(N) Z_{0}^{\prime}(N)$ in (1.6) converge to a fixed point as the time horizon N increases, when the costs in (1.5) are stationary. This result is extended in section III to the case of discounted costs. In section IV we explore the implications of these results for the aggregate planning problem in production scheduling. Briefly, these results imply that when sales are generated by a linear autoregressive system, then the first period decision rules approach a fixed point as the time horizon is increased. Finally, generalizations to the above results are discussed in the concluding remarks.

The above results for the undiscounted case with pure quadratic loss function were originally proven by Kalman [5], although his results on the "separation theorem" were known earlier in another form as the certainty equivalence theorem, see Simon [8]. Kalman's results were applied and extended to the problem of aggregate planning and information system design
by G. B. Kleindorfer [6]. Anderson et. al. extended Kleindorfer's work in their study of the identification problem and they laid most of the groundwork for the analytical methods to be used here. The present work extends past results on the convergence of the first period decision rules to the case where the objective function contains linear terms in the state and control variables as well as extending known results to the discounted case.

II. THE UNDISCOUNTED CASE

We begin by studying the asymptotic behavior of (1.4). We may combine equations (1.4) to obtain
(2.1) $\quad S_{k+1}=A\left(S_{k}-S_{k} M^{\prime}\left[M S_{k} M^{\prime}+W\right]^{\dagger} M S_{k}\right) A^{\prime}+V, \quad k \geq 1$.

Moreover, it is clear from (1.4) that the matrices $\left\{S_{1}, S_{2}, \ldots\right\}$ uniquely determine the corresponding sequences $\left\{\Lambda_{1}, \Lambda_{2}, \ldots\right\}$ and $\left\{P_{1}, P_{2}, \ldots\right\}$. We therefore restrict our attention to a study of (2.1) and note the following result proven in Anderson et. al. [1]. Theorem 1: Let $M=I$ and let V be pd and W psd; define Φ on the set T of pd matrices by
(2.2) $\quad \Phi(S)=A S(S+W)^{-1} W A^{\prime}+V, \quad S \in T$
so that $S_{k}=\Phi\left(S_{k-1}\right), k \geq 2$. Then Φ has a unique pd fixed point S_{o}, and $\Phi^{\mathrm{n}}(\mathrm{S}) \rightarrow \mathrm{S}$ o uniformly on T as $\mathrm{n} \rightarrow \infty$, where Φ^{n} denotes the nth iterate of ϕ. Moreover, $\Lambda_{k} \rightarrow \Lambda_{o}=S_{o}\left(S_{o}+W\right)^{-1}$, and $P_{k} \rightarrow P_{o}=S_{o}-S_{o}\left(S_{o}+W\right)^{-1} S_{o}$ as $k+\infty$.

This result was proven originally by Kalman [5] under the assumption that the system (1.1) and (1.2) is completely observable and completely controllable. His proof also allows for M, the observation matrlx, to be non-square.

[^0]Theorem 1 may also be easily generalized to include a non-square observation matrix.

Corollary 1: Let V and W be pd and let $\operatorname{rank}(M)=\min (q, p)$; define Φ on the set T of pd matrices by

$$
\begin{equation*}
\Phi(S)=A\left(S^{-1}+M^{\prime} W^{-1} M\right)^{-1} A^{\prime}+V, \tag{2.3}
\end{equation*}
$$

$$
S \varepsilon T .
$$

Then for any $S_{1} p d, S_{k}=\phi\left(S_{k-1}\right), k \geq 2$. Moreover, Φ has a unique pd fixed point, S_{0}, and $\phi^{n}(S) \rightarrow S_{o}$ uniformly on T as $n \rightarrow \infty$, where ϕ^{n} denotes the nth iterate of Φ. Furthermore, $\Lambda_{k} \rightarrow \Lambda_{0}=S_{0} M^{\prime}\left[M S_{0} M^{\prime}+W\right]^{-1}$, and $P_{k} \rightarrow P_{o}=$ $S_{o}-S_{o} M^{\prime}\left[M S_{o} M^{\prime}+W\right]^{-1} M S_{o}$ as $k \rightarrow \infty$.
Proof: We first verify that for any $S_{1} p d, S_{k}=\Phi\left(S_{k-1}\right), k \geq 2$. By (2.1) and the fact that $\left[M S_{k} M^{\prime}+W\right]^{\dagger}=\left[M S_{k} M^{\prime}+W\right]^{-1}$ since W is $p d$, we only need to show that

$$
\begin{equation*}
\left(S^{-1}+M^{\prime} W^{-1} M\right)^{-1}=S-S M^{\prime}\left[M S M^{\prime}+W\right]^{-1} M S, \quad S \varepsilon T \tag{2.4}
\end{equation*}
$$

To demonstrate the validity of (2.4) consider the following calculations.

$$
\begin{align*}
& \left(S^{-1}+M^{\prime} W^{-1} M\right)\left(S-S M^{\prime}\left[M S M^{\prime}+W\right]^{-1} M S\right) \tag{2.5}\\
& \quad=I-M^{\prime}\left[M S M^{\prime}+W\right]^{-1} M S+M^{\prime} W^{-1} M S-M^{\prime} W^{-1} M S M^{\prime}\left[M S M^{\prime}+W\right]^{-1} M S \\
& \quad=I+M^{\prime}\left(W^{-1}-\left[M S M^{\prime}+W\right]^{-1}-W^{-1} M S M^{\prime}\left[M S M^{\prime}+W\right]^{-1}\right) M S
\end{align*}
$$

However,

$$
\begin{align*}
W^{-1} \text { MSM' }^{\prime}\left[\text { MSM }^{\prime}+W\right]^{-1} & =W^{-1}\left(\text { MSM }^{\prime}+W-W\right)\left[\text { MSM }^{\prime}+W^{-1}\right. \tag{2.6}\\
& =W^{-1}\left(I-W\left[\text { MSM' }^{\prime}+W\right]^{-1}\right) \\
& =W^{-1}-\left[M S M^{\prime}+W\right]^{-1}
\end{align*}
$$

so that substitution of (2.6) into (2.5) yields the desired result.
Corollary 1 now follows from theorem 1 since when M is of full rank, $M^{\prime} W^{-1} M$
is invertible and
(2.7) $\quad\left(S^{-1}+M^{\prime} W^{-1} M\right)^{-1}=S\left[S+\left(M^{\prime} W^{-1} M\right)^{-1}\right]^{-1}\left(M^{\prime} W^{-1} M\right)^{-1}$
so that identifying $\left(M^{\prime} W^{-1} M\right)^{-1}$ with W in (2.2) yields the desired result. We now consider the relationship between the control equations (1.7) and
the Kalman filter equations (1.4). In fact, equations (1.7) may be combined to yield

$$
\begin{align*}
F_{k}= & A^{\prime}\left(F_{k+1}+Q_{1, k+1}\right) A- \tag{2.8}\\
& A^{\prime}\left(F_{k+1}+Q_{1, k+1}\right) D\left[Q_{2, k}+D^{\prime}\left(F_{k+1}+Q_{1, k+1}\right) D\right]^{-1} D^{\prime}\left(F_{k+1}+Q_{1, k+1}\right) A \\
F_{N}= & 0
\end{align*}
$$

or letting $R_{k}=F_{k}+Q_{1, k}, k=1,2, \ldots, N$, we obtain

$$
\begin{align*}
& R_{k}=A^{\prime}\left(R_{k+1}-R_{k+1} D\left[Q_{2, k}+D^{\prime} R_{k+1} D\right]^{-1} D^{\prime} R_{k+1}\right) A+Q_{1, k}, \quad k=1, \ldots, N-1 ; \tag{2.9}\\
& R_{N}=Q_{1, N}
\end{align*}
$$

Comparing (2.9) with (2.1) we see that these difference equations are of precisely the same form if we identify $R \leftrightarrow S, A \leftrightarrow A^{\prime}, D \leftrightarrow M^{\prime}, Q_{2, k} \leftrightarrow W$, $Q_{1, k} \leftrightarrow V, k \leftrightarrow N-k$. Thus, when $Q_{1, k}=Q_{1}, Q_{2, k}=Q_{2}$ for all k, it is clear that a study of the asymptotic behavior of $F_{1}+Q_{1}=R_{1}=R_{1}(N)$ as $N \rightarrow \infty$ may be obtained from corollary 1. Indeed, corollary 1 and the above remarks imply Theorem 2: Let $\operatorname{rank}(D)=\min (p, r)$ and let Q_{1} and Q_{2} be $p d$. Define ψ on the set of pd matrices T by

$$
\begin{equation*}
\Psi(R)=A^{\prime}\left(R-R D\left[Q_{2}+D^{\prime} R D\right]^{-1} D^{\prime} R\right) A+Q_{1}, \quad \operatorname{RET} \tag{2.10}
\end{equation*}
$$

so that $R_{k}=\Psi\left(R_{k+1}\right)$. Then Ψ has a unique pd fixed point R_{*} and $\Psi^{N}(R) \rightarrow R_{\star}$ uniformly on T as $N \rightarrow \infty$, where Ψ^{N} denotes the N th iterate of Ψ. Moreover, $H_{o}(N)=Q_{2}+D^{\prime} \Psi^{N-1}\left(Q_{1}\right) D \rightarrow Q_{2}+D^{\prime} R_{\star} D$ and $C_{o}(N)=\left[Q_{2}+D^{\prime} \Psi^{N-1}\left(Q_{1}\right) D\right]^{-1} D^{\prime} \Psi^{N-1}\left(Q_{1}\right) A$ $\rightarrow C_{\star}=\left[Q_{2}+D^{\prime} R_{\star} D\right]^{-1} D^{\prime} R_{\star} A$ as $N \rightarrow \infty$.

Now let us consider the asymptotic behavior of $B_{1}=B_{1}(N)$ in (1.8) which is required for the computation of $Z_{0}(N)$, used with $C_{0}(N)$ and $H_{0}(N)$ in (1.6) for the computation of the first period controls, u_{0}. From (1.8) we obtain

$$
\begin{align*}
& B_{k}=B_{k+1}\left(A-D C_{k}\right)+G_{1, k+1}\left(A-D C_{k}\right)+G_{2, k} C_{k}, \quad k=1,2, \ldots, N-1 ; \tag{2.11}\\
& B_{N}=0
\end{align*}
$$

In order to show that $B_{1}=B_{1}(\mathbb{N})$ converges to a fixed point as $N \rightarrow \infty$, we will need the following lemmas, the first of which is due to Stein and is proven

4
in [1].
Lemma 1: Let Y be a square matrix and let $\rho(Y)$ be the spectral radius of Y. If there exists a pd matrix L for which $L-Y$ 'LY is pd then $\rho(Y)<1$. Lemma 2: Let $C_{*}=\left[Q_{2}+D^{\prime} R_{*} D\right]^{-1} D^{\prime} R_{*} A$, where R_{*} is the unique pd fixed point of Ψ. Then, $\rho\left(A-D C_{*}\right)<1$.

Proof: By definition of $C_{\text {* }}$, we have

$$
\begin{align*}
A-D C_{*} & =A-D\left[Q_{2}+D^{\prime} R_{*} D\right]^{-1} D^{\prime} R_{*} A \tag{2.12}\\
& =\left(I-D\left[Q_{2}+D^{\prime} R_{*} D\right]^{-1} D^{\prime} R_{*}\right) A \\
& =R_{*}^{-1}\left(R_{*}-R_{*} D\left[Q_{2}+D^{\prime} R_{*} D\right]^{-1} D^{\prime} R_{*}\right) A
\end{align*}
$$

Now a calculation similar to the proof of (2.4) in corollary 1 shows that

$$
\begin{equation*}
R_{\star}-R_{*} D\left[Q_{2}+D^{\prime} R_{\star} D\right]^{-1} D^{\prime} R_{\star}=\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1} \tag{2.13}
\end{equation*}
$$

Therefore, we have from (2.12)

$$
\begin{equation*}
A-D C_{*}=R_{*}^{-1}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1} A \tag{2.14}
\end{equation*}
$$

To prove the assertion it will suffice by lemma 1 to exhibit a pd matrix L for which $L-\left(A-D C_{*}\right)$ ' $L\left(A-D C_{*}\right.$) is pd. But $L=R_{*}$ is such a matrix, for by definition, $R_{\star}=\Psi\left(R_{\star}\right)$, and therefore

$$
\begin{align*}
R_{\star}-\left(A-D C_{\star}\right)^{\prime} R_{\star}\left(A-D C_{\star}\right)= & A^{\prime}\left(R_{\star}-R_{\star} D\left[Q_{2}+D^{\prime} R_{\star} D\right]^{-1} D^{\prime} R_{\star}\right) A+ \tag{2.15}\\
& Q_{1}-\left(A-D C_{*}\right)^{\prime} R_{\star}\left(A-D C_{\star}\right)
\end{align*}
$$

Now using (2.13) and (2.14) in (2.15) we obtain

$$
\begin{align*}
R_{*}- & \left(A-D C_{*}\right)^{\prime} R_{*}\left(A-D C_{*}\right)=A^{\prime}\left(R_{*}-R_{*} D\left[Q_{2}+D^{\prime} R_{*} D\right]^{-1} D^{\prime} R_{*}\right) A- \tag{2.16}\\
& A^{\prime}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1} R_{*}^{-1} R_{*} R_{*}^{-1}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1} A+Q_{1} \\
= & A^{\prime}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1}\left(I-R_{*}^{-1}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1}\right) A+Q_{1} \\
= & A^{\prime}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1}\left\{I-\left(R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}-D Q_{2}^{-1} D^{\prime}\right)\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1}\right\}_{A}+O_{1} \\
= & A^{\prime}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1} D Q_{2}^{-1} D^{\prime}\left[R_{*}^{-1}+D Q_{2}^{-1} D^{\prime}\right]^{-1} A+Q_{1} \quad \text { QED. }
\end{align*}
$$

We now show that $B_{1}(N)$ converges to a given finite vector, B_{*}. For convenience, we reverse the time index in (2.11) so that $k \leftrightarrow \mathbb{N}-k$ and

$$
\begin{equation*}
B_{t+1}=B_{t}\left(A-D C_{t+1}\right)+G_{1}\left(A-D C_{t+1}\right)+G_{2} C_{t+1}, \quad B_{0}=0 . \tag{2.17}
\end{equation*}
$$

Theorem 3: Let B_{t} be defined by (2.17). Then B_{t} converges to B_{\star} given by

$$
\begin{equation*}
B_{*}=\left[G_{1}\left(A-D C_{*}\right)+G_{2} C_{*}\right]\left[I-A+D C_{*}\right]^{-1} \tag{2.18}
\end{equation*}
$$

where C_{*} is given in lemma 2. Consequently, $B_{1}(N)$ converges to B_{*} as $N \rightarrow \infty$. Proof: Define the matrices Ξ_{t} and Ω_{t} by

$$
\begin{equation*}
E_{t}=A-D C_{t+1} \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
\Omega_{t}=G_{1}\left(A-D C_{t+1}\right)+G_{2} C_{t+1} \tag{2.20}
\end{equation*}
$$

so that (2.17) becomes

$$
\begin{equation*}
B_{t+1}=B_{t} \Xi_{t}+\Omega_{t}, \quad B_{o}=0 . \tag{2.21}
\end{equation*}
$$

Now since $C_{t} \rightarrow C_{*}, \Xi_{t} \rightarrow \Xi_{\star}=A-D C$, and by lemma $2, \rho\left(E_{\star}\right)<1$, so that (2.21) is asymptotically stable. From (2.21) we obtain

$$
\begin{equation*}
B_{t+1}=B_{o} \Pi_{j=0}^{t} \Xi_{j}+\sum_{k=0}^{t} \Omega_{k}\left(\Pi_{j=k+1}^{t} \Xi_{j}\right) \tag{2.22}
\end{equation*}
$$

We now remark that since $\rho\left(\Xi_{*}\right)<1, I-\Xi_{*}$ is invertible, and

$$
\begin{equation*}
\left(I-\Xi_{\star}\right)^{-1}=\sum_{k=0}^{\infty} \Xi_{\star}^{k}, \tag{2.23}
\end{equation*}
$$

so that letting $B_{t}^{*}=\sum_{k=0}^{t} \Omega_{*}\left(\Pi_{j=k+1}^{t} \Xi_{*}\right)$, where $\Omega_{*}=G_{1}\left(A-D C_{*}\right)+G_{2} C_{*}$, we have $B_{t}^{*} \rightarrow B_{*}$. Thus it suffices to show that $\left|B_{t}-B_{t}^{*}\right| \rightarrow 0$, where $|\cdot|$ is the Euclidian norm. To show this, we note that $\rho\left(\Xi_{*}\right)<1$ implies (see Varga [10], p. 67) the existence of an integer $r \geq 1$ for which $\left|\bar{E}_{*}^{r}\right|<1$, and since $\Xi_{t} \rightarrow \Xi_{*}$, there exist $\rho_{0}<1$ and an integer $k_{o} \geq 1$ for which

$$
\begin{equation*}
\operatorname{Max}\left[\left|\Pi_{j=k}^{k+r} \Xi_{j}\right|,\left|\Xi_{k}^{r}\right|\right]<\rho_{o}, \tag{2.24}
\end{equation*}
$$

$$
k \geq k_{o} .
$$

Since Ω_{k} is a convergent sequence, there exists a uniform upper bound, U_{1}, such that $\left|\Omega_{k}\right| \leq U_{1}$ for all k. Moreover, (2.24) implies for $s \geq 1$, and $k \geq k_{o}$ that

$$
\begin{equation*}
\operatorname{Max}\left[\left|\pi_{j=k+1}^{t} \Xi_{j}\right|,\left|\Xi_{*}^{t-k-1}\right|\right] \leq \rho_{0}^{s} \operatorname{Max}\left[\left|\pi_{j=k+1+r s}^{t} \Xi_{j}\right|,\left|\Xi_{*}^{t-k-1-r s}\right|\right] \tag{2.25}
\end{equation*}
$$

In particular, $\lim { }_{t \rightarrow \infty}\left|\Pi_{j=j_{0}}^{t} \Xi_{j}\right|=0$ for every $j_{0} \geq 0$, so that
(2.26)

$$
\begin{aligned}
& \ell i m_{t \rightarrow \infty} \sup \left|B_{t+1}-B_{t+1}^{*}\right| \leq \ell i m_{t \rightarrow \infty} \sup U_{1}\left\{\Sigma_{k=0}^{t}\left|\pi_{j=k+1}^{t} \Xi_{j}\right|+\left|\pi_{j=k+1}^{t} \Xi_{*}\right|\right\} \\
& \quad=\ell i m_{t \rightarrow \infty} \sup U_{1}\left\{\Sigma_{k=j}^{t}\left|\Pi_{j=k+1}^{t} \Xi_{j}\right|+\left|\Xi_{*}^{t-k-1}\right|\right\} \\
& \quad \leq \ell i m_{t \rightarrow \infty} \sup \rho_{0}^{s} U_{1}\left\{\Sigma_{k=j}^{t} \|_{0}^{t} \Pi_{j=k+1+r s} \Xi_{j}\left|+\left|\Xi_{*}^{t-k-1-r s}\right|\right\}, j_{0} \geq k_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { I }
\end{aligned}
$$

,

But (2.25) implies for $j_{0} \geq k_{0}$ and for $i \geqslant 0$
(2.27) $\sum_{k=j_{0}}^{t}\left|\underset{j=k+i}{t} \Xi_{j}\right| \leq \sum_{p=0}^{P_{o}}\left\{\sum_{k=j_{0}+i}^{j_{o}+i+r}\left|\underset{j=j_{0}+i}{j_{o}+i+k} \Xi_{j}\right|\right\}_{\rho}^{p}{ }_{o}^{p}$
where p_{o} is the largest integer less than or equal to $\left(t-j_{o}-i\right) / r$. Therefore,

$$
\begin{equation*}
\left.\lim _{t \rightarrow \infty} \sup \sum_{k=j}^{t}\right|_{0} \pi_{j=k+i}^{t} \Xi_{j} \mid \leq U_{2} /\left(1-\rho_{0}\right) \tag{2.28}
\end{equation*}
$$

Then (2.26) and (2.28) imply

$$
\begin{equation*}
\ell \operatorname{im}_{t \rightarrow \infty} \sup \left|B_{t+1}-B_{t+1}^{*}\right| \leq 2 \rho_{o}^{s} U_{1} U_{2} /\left(1-\rho_{o}\right) \tag{2.29}
\end{equation*}
$$

which may be made arbitrarily small by proper choice of s. This completes the proof of theorem 2 .

We may summarize the results of this section as follows. Let $u_{0}(N)$ be the optimal first period controls given by (1.6) as

$$
\begin{equation*}
u_{0}(N)=-\left.C_{0}(N) x_{0}\right|_{0}-1 / 2 H_{0}^{-1}(N) Z_{0}^{\prime}(N) \tag{2.30}
\end{equation*}
$$

Let D be of full rank and let Q_{1} and Q_{2} be pd. Then $u_{0}(N)$ converges to (2.31) $u_{*}=-C_{*} x_{0} \mid 0-1 / 2 H_{*}^{-1} Z_{*}^{\prime}$
as $N \rightarrow \infty$. The values of the parameters in (2.31) are given below and $x_{0} \sigma_{0}$ is the linear least squares estimate of the system at the present time.

$$
\begin{equation*}
R_{\star}=A^{\prime}\left(R_{*}-R_{\star} D\left[Q_{2}+D^{\prime} R_{\star} D\right]^{-1} D^{\prime} R_{\star}\right) A+Q_{1} \tag{2.32}
\end{equation*}
$$

$$
\text { (2.33) } \quad C_{*}=\left[Q_{2}+D^{\prime} R_{\star} D\right]^{-1} D^{\prime} R_{*} A
$$

(2.34) $H_{*}=Q_{2}=D^{\prime} R_{*} D$

$$
\begin{equation*}
\mathrm{Z}_{\star}=\mathrm{G}_{1} \mathrm{D}+\mathrm{G}_{2}+\mathrm{B}_{\star} \mathrm{D} \tag{2.35}
\end{equation*}
$$

$$
\begin{equation*}
B_{*}=\left[G_{1}\left(A-D C_{*}\right)+G_{2} C_{*}\right]\left[I-A+D C_{*}\right]^{-1} \tag{2.36}
\end{equation*}
$$

It should be remarked that in practice one would determine R_{*} by iteration of (2.9) with $k \in N-k$ until successive values of R_{k} and R_{k+1} were within a desired tolerance. In this process it should be recalled that convergence of R_{k} to R_{*} is uniform. In fact, it can easily be shown on the basis of the proof of the above theorem 1 in Anderson et. al. [I], that (with $k \leftrightarrow N-k$)

$$
\begin{equation*}
R_{N}=\Psi^{N}\left(Q_{1}\right) \leq \Psi^{N}\left(A^{\prime}\left[D Q_{2}^{-1} D^{\prime}\right]^{-1} A+Q_{1}\right) \leq A^{\prime}\left[D Q_{2}^{-1} D^{\prime}\right]^{-1} A+Q_{1} \tag{2.37}
\end{equation*}
$$ where $X \leq Y$ in (2.37) if $Y-X$ is psd. Thus, since both $\Psi^{N}\left(Q_{1}\right)$ and $\Psi^{N}\left(A^{\prime}\left[D Q_{2}^{-1} D^{\prime}\right]^{-1} A+Q_{1}\right)$ are converging to the fixed point R_{*}, one can use the (some convenient) norm of the difference of these two quantities to obtain a precise bound on $\left|\Psi^{N}\left(Q_{1}\right)-R_{\star}\right|$.

III. THE DISCOUNTED CASE

Let α be a given discount factor, $0<\alpha<1$, and consider the minimization
(1.5) with

$$
\begin{equation*}
Q_{i, k}=\alpha^{k} Q_{i}, G_{i, k}=\alpha^{k} G_{i}, \quad i=1,2 ; k \geq 0 . \tag{3.1}
\end{equation*}
$$

In this case equations (1.7) and (1.8) yield

$$
\begin{align*}
& R_{k}=A^{\prime}\left(R_{k+1}-R_{k+1} D\left[D^{\prime} R_{k+1} D+\alpha^{k} Q_{2}\right]^{-1} D^{\prime} R_{k+1}\right) A+\alpha^{k} Q_{1}, \quad 1 \leq k \leq N-1 ; \tag{3.2}\\
& B_{k}=B_{k+1}\left(A-D C_{k}\right)+\alpha^{k+1} G_{1}\left(A-D C_{k}\right)+\alpha^{k} G_{2} C_{k}, B_{N}=0,0 \leq k \leq N-1 ; \tag{3.3}
\end{align*}
$$

where C_{k} is determined by (1.7) and where

$$
\begin{equation*}
\mathrm{R}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}}+\alpha^{\mathrm{k}} \mathrm{Q}_{1}, \quad \mathrm{R}_{\mathrm{N}}=\alpha^{\mathrm{N}_{\mathrm{Q}_{1}}} . \tag{3.4}
\end{equation*}
$$

We now show that, by redefining the system parameters, (3.2) can be put in the form of (2.9) with stationary parameters, so that the desired asymptotic properties follow from theorem 2. We begin by defining the parameters

$$
\text { (3.5) } \quad \underline{A}=B A, \quad Q_{1}=Q_{1}, \quad \underline{D}=D, \underline{Q}_{2}=(1 / \alpha) Q_{2}, \quad \beta^{2}=\alpha .
$$

Then letting $\underline{R}_{k}=\alpha^{-k} R_{k}$, we have from (3.2)

$$
\begin{align*}
\underline{R}_{k}= & A^{\prime}\left(\alpha^{-k} R_{k+1}-\alpha^{-k} R_{k+1} D\left[D^{\prime} R_{k+1} D+\alpha^{k} Q_{2}\right]^{-1} D^{\prime} R_{k+1}\right) A+Q_{1} \tag{3.6}\\
= & (\beta A)^{\prime}\left(\alpha^{-k-1} R_{k+1}-\alpha^{-k-1} R_{k+1} D\left[D^{\prime}\left(\alpha^{-k-1} R_{k+1}\right) D+\alpha^{-1} Q_{2}\right]^{-1} D^{\prime} \alpha^{-k-1} R_{k+1}\right) \\
& +Q_{1}
\end{align*}
$$

or, using (3.5),

$$
\begin{equation*}
\underline{R}_{k}=\underline{A}^{\prime}\left(\underline{R}_{k+1}-\underline{R}_{k+1} \underline{D}\left[\underline{D}^{\prime} \underline{R}_{k+1} \underline{D}+\underline{Q}_{2}\right]^{-1} \underline{D}^{\prime} \underline{R}_{k+1}\right) \underline{A}+Q_{1} \tag{3.7}
\end{equation*}
$$

Thus, (3.7) is precisely of the same form as (2.9) and theorem 2 therefore implies that $R_{1}(N)=\alpha \underline{R}_{1}(N)$ converges uniformly to a fixed point, $\alpha \underline{R}_{*}$, as $N \rightarrow \infty$. This also implies the convergence of $C_{0}(N)$ and $H_{o}(N)$ to $C_{*}=H_{*}^{-1} D^{\prime} \alpha \underline{R}_{*} A$ and

$H_{*}=Q_{2}+D^{\prime} \underline{R}_{*} D$, respectively.
Similarly, the equation (2.11) for B_{k} becomes for the discounted case

$$
\begin{equation*}
B_{k}=B_{k+1}\left(A-D C_{k}\right)+\alpha^{k+1} G_{1}\left(A-D C_{k}\right)+{ }_{\alpha}^{k} G_{2} C_{k}, B_{N}=0 . \tag{3.8}
\end{equation*}
$$

Let $B_{k}=\alpha^{-k} B_{k}$. Then (3.8) implies

$$
\begin{equation*}
B_{k}=B_{k+1} \alpha\left(A-D C_{k}\right)+G_{1} \alpha\left(A-D C_{k}\right)+G_{2} C_{k} . \tag{3.9}
\end{equation*}
$$

If we identify $\Xi_{k}=\alpha\left(A-D C_{k}\right)$ and $\Omega_{k}=G_{1} \alpha\left(A-D C_{k}\right)+G_{2} C_{k}$, then we may proceed as in theorem 3 to prove the convergence of $\underline{B}_{1}(N)$ to a finite vector $\underline{B}_{\text {t }}$ provided that $\rho\left(\alpha\left[A-D C_{*}\right]\right)<1$, where C_{*} is the fixed point of $C_{o}(N)$ defined above. To show this we note that

$$
\begin{align*}
C_{*} & =\left[Q_{2}+D^{\prime} \alpha \underline{R}_{*} D\right]^{-1} D^{\prime} \alpha \underline{R}_{*} A \tag{3.10}\\
& =\left[\alpha^{-1} Q_{2}+D^{\prime} \underline{R}_{*} D\right]^{-1} D^{\prime} R_{*} A \\
& =B\left[\underline{Q}_{2}+\underline{D}^{\prime} \underline{R}_{*} \underline{D}\right]^{-1} \underline{D}^{\prime} \underline{R}_{*} A
\end{align*}
$$

and therefore, using (3.5), we obtain

$$
\begin{equation*}
\alpha\left(\mathrm{A}-\mathrm{DC} \mathrm{C}_{\star}\right)=\beta\left(\underline{\mathrm{A}}-\underline{\mathrm{DC}} \underline{\mathrm{C}}_{\star}\right) \tag{3.11}
\end{equation*}
$$

where \underline{C}_{*} is the fixed point of the stationary system with parameters, $\underline{A}, \underline{D}, Q_{1}$, and \underline{Q}_{2}, corresponding to $\underline{C}_{-}(N)$. But $\rho\left(B\left[\underline{A}-\underline{D C}_{*}\right]\right)=\beta \rho\left(\underline{A}-\underline{D C}_{*}\right)$ and $\rho\left(\underline{A}-\underline{D C}_{*}\right)<1$ by lemma 2, so that the desired result follows as in the proof of theorem 3. We may summarize the results of this section in the following manner.

Theorem 4: Let $u_{0}(N)$ be the optimal first period controls given by

$$
\begin{equation*}
u_{0}(N)=-\left.C_{0}(N) x_{0}\right|_{0}-1 / 2 H_{o}^{-1}(N) Z_{o}^{\prime}(N) . \tag{3.12}
\end{equation*}
$$

Let D be of full rank and let Q_{1} and Q_{2} be pd. Then $u_{o}(N)$ converges to u_{*} given by

$$
\begin{equation*}
\mathrm{u}_{*}=-\mathrm{C}_{*} \mathrm{x}_{0} / 0-1 / 2 \mathrm{H}_{*}^{-1} Z_{*}^{\prime} \tag{3.13}
\end{equation*}
$$

as $N \rightarrow \infty$. In (3.13) $\left.x_{o}\right|_{o}$ is the linear least squares estimate of the system state at the present time and the parameters C_{\star}, H_{\star}, and Z_{\star} are determined by

$$
\begin{equation*}
\underline{R}_{*}=\underline{A}^{\prime}\left(\underline{R}_{*}-\underline{R}_{*}\left[\underline{Q}_{2}+\underline{D}^{\prime} \underline{R}_{*} \underline{D}\right]^{-1} \underline{D}^{\prime} \underline{R}_{*}\right) \underline{A}+\underline{Q}_{1} \tag{3.14}
\end{equation*}
$$

要
Wiven

$$
\text { -1 = } 2 \text { 四 }
$$

$$
18=1
$$

white

$$
\begin{gathered}
a+8 \\
20
\end{gathered}
$$

(3.15)

$$
C_{*}=\left[Q_{2}+D^{\prime} \alpha R_{*} D\right]^{-1} D^{\prime} \alpha \underline{R}_{*} A
$$

(3.16) $\quad H_{*}=Q_{2}+D^{\prime} \alpha \underline{R}_{*} D$

$$
\begin{equation*}
Z_{*}=\alpha G_{1} D+G_{2}+\alpha \underline{B}_{*} D \tag{3.17}
\end{equation*}
$$

$$
\begin{equation*}
\underline{B}_{*}=\left[G_{1} \alpha\left(A-D C_{*}\right)+G_{2} C_{*}\right]\left[I-\alpha\left(A-D C_{*}\right)\right]^{-1} \tag{3.18}
\end{equation*}
$$

where $\underline{A}, \underline{D}, \underline{Q}_{1}$, and \underline{Q}_{2} are given in (3.5).

IV. APPLICATIONS AND EXTENSIONS

Although the results of the preceding sections have wider applicability, we restrict ourselves to a brief exploration of their implications for the aggregate planning of production and work force (see Holt et. al. [2]). This discussion will serve to highlight as well the limitations of the above analysis.

Following Holt et. al. [2], we first assume the following model for the aggregate planning problem.
(4.1) $\quad \operatorname{Min} E\left\{\sum_{k=1}^{N} f_{k}\left(I_{k+1}, P_{k}, W_{k}, U_{k}\right)\right\}$
subject to
(4.2) $\quad I_{k+1}=I_{k}+P_{k}-S_{k}$
(4.3) $\quad W_{k+1}=W_{k}+U_{k}$
(4.4) I_{o}, W_{o} given,
where f_{k} is a quadratic-linear cost function in its arguments and represents period k costs. I_{k} is the inventory at the beginning of period k, P_{k} is the aggregate production in period k, S_{k} is the sales in period k, W_{k} is the work force at the beginning of period k, and U_{k} is the change in work force during period k.

In order to reduce the above problem to the form of (1.1) and (1.2), we must assume that the sales are generated by a first order autoregressive scheme of the form

$$
x+2 x+2 x+2 x+2
$$

曻
(4.5) $\quad \xi_{k+1}=\Gamma \xi_{k}+v_{k}$
(4.6) $\quad \lambda_{k}=M \lambda_{k}+w_{k}$
where $\xi_{k}^{\prime}=\left(S_{k}, S_{k-1}, \ldots, S_{k-n}\right)$. Then (4.5) and (4.6) could be incorporated into (4.2) to yield a system of the form of (1.1) and (1.2). Besides only being able to consider sales generated by an autoregressive scheme , the present results are also limited to costs which are separable in the state and control variables. This would rule out, for example, costs of the form (see [2])

Cost of Overtime ${ }_{k}=c_{1}\left(P_{k}-c_{2} W_{k}\right)^{2}+c_{3} P_{k}+c_{4} W_{k}, c_{1}, c_{2}>0$, since such costs lead to terms of the form $-2 c_{1} c_{2} P_{k} W_{k}$. For the above reasons it seems appropriate to generalize the fundamental model (1.1)-(1.2) to the form

$$
\begin{equation*}
x_{k+1}=A x_{k}+D u_{k}+s_{k}+v_{k} \tag{4.7}
\end{equation*}
$$

$$
\text { (4.8) } y_{k}=M x_{k}+w_{k}
$$

where all quantities above are defined as in (1.1)-(1.2) except s_{k} which is a deterministic p-vector.

Recent work (see [9]) in Kalman filter techniques has generalized the underlying model to which the Kalman filter is applicable to the form of (4.7)(4.8). The fundamental filter equations (1.4) remain unchanged in this case and therefore the results on their asymptotic behavior are still applicable. Moreover, (4.7) and (4.8) are clearly directly related to the form of the aggregate planning problem (4.1)-(4.4). It remains to be determined whether the essential properties of equations (1.6)-(1.8) will hold for the system (4.7)(4.8). It is my conjecture that the results of theorems 2,3 , and 4 hold for the system (4.7)-(4.8) whenever the cost function in (1.5) is a quadratic-1inear function (including state-control cross-product terms) provided that the cost function is convex and strictly convex in the controls, u_{k}, and when, in addition, the terms, s_{k}, are bounded by a stationary linear system. Verification
(20) and
of this conjecture involves first resolving the dynamic program leading to (1.6)-(1.8) with added cross product terms in u_{k} and x_{k} and subject to (4.7) and (4.8) instead of (1.1) and (1.2). The present work and that reported in [I] and [7] provides a foundation for further studies in this direction.

$-$
$+r_{0}$
-$-$ T-

$$
-2
$$

I

REFERENCES

1. W. N. Anderson, Jr., G. B. Kleindorfer, P. R. Kleindorfer, and M. B. Woodroofe, "Consistent Estimates of the Parameters of a Linear System," To appear in Annals of Math Stat, Dec 1969.
2. C. C. Holt, F. Modigliani, J. F. Muth, and H. A. Simon, Planning Production, Inventories, and Work Force. Prentice-Hall, Englewood Cliffs, N. J., 1960.
3. T. L. Gunckel, III, and G. F. Franklin, 'A General Solution for Linear Sampled-data Control," J. Basic Eng Trans, ASME, Vol 85D (June, 1963), 197201.
4. R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," J. Basic Eng Trans, ASME, Vol 82D (1960), 35-45.
5. R. E. Kalman, "New Methods in Wiener Filtering Theory," In Proc First Symposium on Engineering Applications of Random Function Theory and Probability, Wiley, New York, 1963, 270-388.
6. G. B. Kleindorfer, "An Adaptive Control Model for Information System Design," Unpublished doctoral dissertation, Carnegie-Mellon University, Pittsburgh, Pa, May, 1968.
7. G. B. Kleindorfer and P. R. Kleindorfer, "Quadratic Performance Criteria with Linear Terms in Discrete-Time Control," IEEE Trans on Automatic Control, Vol. AC-12, (June, 1967), 320-321.
8. H. A. Simon, "Dynamic Programming Under Uncertainty with a Quadratic Criterion Function," Econometrica, Vol. 24, (1956), 74-81.
9. H. W. Sorenson, 'Kalman Filtering Techniques," In C. T. Leondes (ed.), Advances in Control Systems, Vol. 3, (1966), Academic Press, New York, 219292.
10. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood C1iffs, N. J., 1962.
. 02

[^0]: ${ }^{1}$ Results of a similar nature are also contained in some unpublished research of Professor Lance Taylor of Harvard University.

